
Bull. Malays. Math. Sci. Soc. (2024) 47:148
https://doi.org/10.1007/s40840-024-01739-8

Greedy Block Extended Kaczmarz Method for Solving the
Least Squares Problems

Ni-Hong Ke1,2 · Rui Li3 · Jun-Feng Yin1,2

Received: 18 January 2024 / Revised: 14 May 2024 / Accepted: 25 June 2024 /
Published online: 29 July 2024
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2024

Abstract
A greedy block extended Kaczmarz method is introduced for solving the least squares
problem where the greedy rule combines the maximum-distances with relaxation
parameters. In order to save the computational cost of Moore–Penrose inverse, an
average projection technique is used. The convergence theory of the greedy block
extended Kaczmarz method is established and an upper bound for the convergence
rate is also derived. Numerical experiments show that the proposed method is efficient
and better than the randomized block extended Kaczmarz methods in terms of the
number of iteration steps and computational time.
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1 Introduction

Consider the solution of the least squares problem

min
x∈Rn

‖b − Ax‖22, (1.1)

where A ∈ R
m×n , b ∈ R

m , which widely arises from many scientific and engi-
neering computing fields, such as image reconstruction [15], big data analysis[6] and
optimization [16].

Iterative methods, particularly stochastic iterative methods, recently attract much
attention in solving the least squares problem, as direct methods such as QR decom-
position and singular value decomposition are usually expensive due to the memory
and computational cost. One stochastic iterative method is the randomized extended
Kaczmarz (REK) method [26], which was proved to have an exponential convergence
in expectation towards the least squares solution xLS = A†b of (1.1). To accelerate
the randomized extended Kaczmarz method, the randomized double block Kaczmarz
(RDBK) method was introduced in [20] by selecting multiple rows and columns for
projection. In order to save the computational cost of the Moore-Penrose inverse, the
randomized extended average block Kaczmarz method [10] and the extended random-
ized multiple rows method [23] were presented and well studied. For more research
on the randomized extended Kaczmarz method, we refer the readers to [3, 4, 9, 24].

Greedy techniques including maximizing the distance and the residual were firstly
considered for Schwarz method in [18] and were proved to improve the efficiency of
Kaczmarz methods [11]. A greedy randomized Kaczmarz method was proposed in
[2] by using the combination of the maximum distance and the average distance to
construct a novel greedy strategy. Further, a different greedy randomized Kaczmarz
method was presented and studied in [21] with the maximum distance and a relax-
ation parameter. From a geometric point of view, a geometric probability randomized
Kaczmarz method and its greedy version were established in [25].

In order to improve the performance of the randomized block extended Kaczmarz
methods, a greedy block extended Kaczmarz method is proposed for solving the least
squares problem, and the average block projection is used to save the computational
cost. The convergence theory of the greedy block extended Kaczmarz method is estab-
lished and an upper bound for the convergence rate is derived and analyzed in details.
Numerical experiments show that the proposed method is efficient and better than the
existing randomized block extended Kaczmarz methods.

The rest of the paper is organized as follows. In Sect. 2, the greedy block extended
Kaczmarz method is presented and its convergence theory is established. Numerical
experiments are provided in Sect. 3 to illustrate the efficiency and excellent perfor-
mance of the proposed method. Finally we conclude the paper with a brief summary
in Sect. 4.
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2 The Greedy Block Extended Kaczmarz Method

This section introduces the greedy block extended Kaczmarz method for solving the
least squares problem and establishes its convergence theory.

In the past decade, a number of greedy rules are proposed and studied, for instance,
maximizing the distance, the residual and the geometric angles, and different greedy
strategies usually lead to different block iterative methods [2, 21, 25].

In this paper, the greedy rule of maximum-distances with relaxation parameter is
utilized for both row and column projections. At the (k + 1)-th iteration, the column
block Jk and row block Ik are selected as follows:

Jk = { j ∈ [n] : |AT
( j)z

(k)|2 ≥ ε̃k‖A( j)‖22},
Ik = {i ∈ [m] : |bi − z(k+1)

i − (A(i))T x (k)|2 ≥ εk‖A(i)‖22},

where A(i), A( j) denote the i-th row and the j-th column of A respectively, [m]
represents the set {1, 2, . . . ,m}, and

ε̃k = ρy max
j∈[n]

{ |AT
( j)z

(k)|2
‖A( j)‖22

}
, εk = ρx max

i∈[m]

{
|b(i) − z(k+1)(i) − (A(i))T x (k)|2

‖A(i)‖22

}
,

ρy, ρx ∈ (0, 1].

The condition ρy, ρx ∈ (0, 1] guarantees that Jk and Ik are non-empty sets. Without
pre-partitioning the rows and columns of A, the blocks Jk and Ik are adaptive and
made up of the larger entries of the distance vectors at each iteration.

By combining the above greedy selection rule with the average block projection
technique, the greedy block extended Kaczmarz method is proposed and described in
detail in Algorithm 1.

In Algorithm 1, η̃k and ηk are sparse residual vectors used to create two linear
combinations of rows in AT

:,Jk
and AIk ,: respectively. These linear combinations serves

as the direction of row and column projections, thus the computaion ofMoore-Penrose
inverse is not required.

Before discussion of the convergence property of the greedy block extended
Kaczmarz method, the following useful lemma is introduced.

Lemma 1 ([10]). Let A ∈ R
m×n and rank(A) = r . For any u ∈ R(A), it holds that

σ 2
1 (A)‖u‖22 ≥ ‖AT u‖22 ≥ σ 2

r (A)‖u‖22,

where σ1(A) ≥ σ2(A) ≥ . . . ≥ σr (A) > 0 denote all the nonzero singular values of
A.

Denote R(A)⊥ as the orthogonal complement of the column space of A and bR(A)⊥
as the orthogonal projection of b onto R(A)⊥. The convergence theory of the sequence
{z(k)}∞k=0 generated by Algorithm 1 is established as follows.
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Algorithm 1 (The greedy block extended Kaczmarz method)

Require: A ∈ R
m×n , b ∈ R

m , the maximum number of iteration steps �, , initial guess x(0) = 0, z(0) = b
and relaxation parameters ρx , ρz ∈ (0, 1]

Ensure: x(k+1)

1: for k = 0, 1, 2, . . . , � − 1 do

2: Compute ε̃k = ρz max
j∈[n]

{
|AT

( j)z
(k)|2

‖A( j)‖22

}

3: Determine the block Jk = { j : |AT
( j)z

(k)|2 ≥ ε̃k‖A( j)‖22}
4: Set η̃k = ∑

j∈Jk

(−AT
( j)z

(k))e j

5: Update z(k+1) = z(k) − η̃Tk AT z(k)

‖Aη̃k‖22
Aη̃k

6: Compute εk = ρx max
i∈[m]

{
|bi−z(k+1)

i −(A(i))T x(k)|2
‖A(i)‖22

}

7: Determine the block Ik = {i : |bi − z(k+1)
i − (A(i))T x(k)|2 ≥ εk‖A(i)‖22}

8: Set ηk = ∑
i∈Ik

(bi − z(k+1)
i − (A(i))T x(k))ei

9: Update x(k+1) = x(k) + ηTk (b−z(k+1)−Ax(k))

‖AT ηk‖22
AT ηk

10: end for

Theorem 1 The sequence {z(k)}∞k=0 generated by the GBEKmethod converges to z∗ =
bR(A)⊥ . Moreover, it holds that

‖z(k+1) − z∗‖22 ≤
(
1 − ρzσ

2
r (A)

‖A‖2F − φ̃min

)k+1

‖z(0) − z∗‖22, (2.1)

where φ̃min = min
j∈[n] ‖A( j)‖22.

Proof By subtracting z∗ = bR(A)⊥ from both sides of step 5 in Algorithm 1, we get

z(k+1) − z∗ = z(k) − z∗ − η̃Tk AT z(k)

‖Aη̃k‖22
Aη̃k .

Let P̃k := Aη̃k η̃
T
k AT

‖Aη̃k‖22
, and P̃k is an orthogonal projection. Due to the fact that P̃k z∗ = 0,

it holds that
z(k+1) − z∗ = z(k) − z∗ − P̃k(z

(k) − z∗).

Let ẽ(k) = z(k) − z∗. Taking the norm of both sides of the above equality yields:

‖ẽ(k+1)‖22 = ‖ẽ(k)‖22 − ‖P̃k ẽ(k)‖22. (2.2)
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Note that ẽ(0) = z(0) − z∗ = AA†b ∈ R(A) and P̃k ẽ(k) ∈ R(A), then it follows that
ẽ(k+1) ∈ R(A). For the second term on the right side of (2.2), it holds that

‖P̃k ẽ(k)‖22 = (η̃Tk AT ẽ(k))2

‖Aη̃k‖22
≥ ‖(A:,Jk )

T z(k)‖42
σ 2
1 (A:,Jk )‖η̃k‖22

≥ ε̃k‖A:,Jk‖2F
σ 2
1 (A:,Jk )

, (2.3)

where the first inequality holds because ‖Aη̃k‖22 = ‖(A:,Jk )
T η̃k‖22 ≤ σ 2

1 (A:,Jk )‖η̃k‖22
and the second inequality holds because ‖η̃k‖22 = ‖(A:,Jk )

T z(k)‖22 ≥ ε̃k‖A:,Jk‖2F .
Note that

η̃Tk−1(A
T zk) = η̃Tk−1A

T

(
z(k−1) − η̃Tk−1A

T z(k−1)

‖Aη̃k−1‖22
Aη̃k−1

)
= 0,

therefore, ‖(A:,Jk−1)
T z(k)‖22 = 0 and then

‖AT z(k)‖22 =
∑

j∈[n]\Jk−1

|AT
( j)z

(k)|2
‖A( j)‖22

‖A( j)‖22

≤ max
j∈[n]

{ |AT
( j)z

(k)|2
‖A( j)‖22

}
(‖A‖2F − ‖AJk−1‖2F ).

Thus,

ε̃k = ρz max
j∈[n]

{ |AT
( j)z

(k)|2
‖A( j)‖22

}
≥ ρz

‖AT z(k)‖22
‖A‖2F − ‖A:,Jk−1‖2F

≥ ρz
σ 2
r (A)‖ẽk‖22

‖A‖2F − ‖A:,Jk−1‖2F
.

(2.4)
Substituting (2.3) and (2.4) into (2.2) yields

‖ẽ(k+1)‖22≤‖ẽ(k)‖22−
ε̃k‖A:,Jk‖2F
σ 2
1 (A:,Jk )

≤
(
1−ρz

‖A:,Jk‖2F
σ 2
1 (A:,Jk )

σ 2
min(A)

‖A‖2F−‖A:,Jk−1‖2F

)
‖ẽ(k)‖22.

From the fact
‖A:,J k‖2F
σ 2
1 (A:,J k )

≥ 1 and the definition φ̃min := min
j∈[n] ‖A( j)‖22, the recursive

expression (2.1) is derived. 	

Remark 1 In the extended randomized multiple rows method, the expected decrease
in mean squared error at the (k + 1)-th iteration is

E‖P̃k ẽ(k)‖22 = ‖AT z(k)‖42
‖AAT z(k)‖22

,

which is obtained by taking the expectation overJk for the first equality of (2.3). Here
E denotes the expected value conditional on the first k iterations. For the greedy block
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extended Kaczmarz method, the error reduction is
(η̃Tk AT ẽ(k))2

‖Aη̃k‖22
. It is obvious that

(η̃Tk AT ẽ(k))2

‖Aη̃k‖22
=

∑
j∈Jk

(AT z(k))4j∑
j∈Jk

‖A( j)‖22(AT z(k))2j
≥

∑
j∈[n]

(AT z(k))4j∑
j∈[n]

‖A( j)‖22(AT z(k))2j
= ‖AT z(k)‖42

‖AAT z(k)‖22
,

which indicates that the convergence rate of {z(k)}∞k=0 in the greedy block extended
Kaczmarzmethod is larger than that of the extended randomizedmultiple rowsmethod.

The convergence analysis of {x (k)}∞k=0 in the greedy block extended Kaczmarz
method relies on the utilization of the following lemma.

Lemma 2 ([5]). Let c1, c2 be real numbers such that c1 ∈ [0, 1), c2 ≥ −1, c2 −
c1 = c1c2, then

(r1 + r2)
2 ≥ c1r

2
1 − c2r

2
2 , ∀ r1, r2 ∈ R.

By Theorem 1 and Lemma 2, the convergence property for the greedy block
extended Kaczmarz method is constructed as follows.

Theorem 2 Assume rank(A) = r . The sequence {x (k)}∞k=0 with the initial guess x
(0) =

0 generated by the GBEK method converges to the least squares solution xLS = A†b.
Moreover, the solution error satisfies

‖x (k+1) − xLS‖22 ≤ max{αx , αz}k+1
(
1 + (k + 1)βσ 2

1 (A)
)

‖x (0) − xLS‖22,

where

αx := 1−ρx c
2
1

σ 2
r (A)

‖A‖2F − φmin
, αz := 1−ρz

σ 2
r (A)

‖A‖2F − φ̃min
, β := ρx c1c2

‖A‖2F − φmin
+c2 + 1

φmin
,

with constants c1, c2 from Lemma 2, φmin = min
i∈[m] ‖A

(i)‖22 and φ̃min = min
j∈[n] ‖A( j)‖22.

Proof Subtracting xLS from both sides of step 9 in the Algorithm 1 leads to

x (k+1) − xLS = x (k) − xLS + ηTk (b − z(k+1) − Ax (k))

‖AT ηk‖22
AT ηk .

For simplicity, let e(k) = x (k) − xLS and Pk = AT ηkη
T
k A

‖AT ηk‖22
. Then we have

e(k+1) = e(k) − Pke
(k) − AT ηkη

T
k ẽ

(k+1)

‖AT ηk‖22
.
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Observe that e(k) − Pke(k) is perpendicular to
AT ηkη

T
k ẽ

(k+1)

‖AT ηk‖22
and Pk is an orthogonal

projection. By taking the norm of both sides of the above equality and using the
Pythagorean Theorem, it yields

‖e(k+1)‖22 = ‖e(k)‖22 − ‖Pke(k)‖22 + (ηTk ẽ
(k+1))2

‖AT ηk‖22
. (2.5)

Since e(0) = x (0) − xLS = A†b ∈ R(AT ),
ηTk (b−z(k+1)−Ax (k))

‖AT ηk‖22
AT ηk ∈ R(AT ), it holds

e(k+1) ∈ R(AT ) by induction. It follows that

‖Pke(k)‖22 − (ηTk ẽ
(k+1))2

‖AT ηk‖22
= (ηTk Ae(k))2 − (ηTk ẽ

(k+1))2

‖AT ηk‖22
= ηTk (Ae(k) + ẽ(k+1))ηTk (Ae(k) − ẽ(k+1))

‖AT ηk‖22
≥ ηTk (−Ae(k) + ẽ(k+1))‖ηk‖22

σ 2
1 (AIk ,:)‖ηk‖22

=

∑
i∈Ik

(
−(A(i))T e(k) − ẽ(k+1)

i

) (
−(A(i))T e(k) + ẽ(k+1)

i

)
σ 2
1 (AIk ,:)

= ‖AIk ,:e(k)‖22 − ‖ẽ(k+1)
Ik ‖22

σ 2
1 (AIk ,:)

.

For the term ‖AIk ,:e(k)‖22,

‖AIk ,:e
(k)‖22 =

∑
i∈Ik

|(A(i))T e(k)|2 =
∑
i∈Ik

|bR(A)i − (A(i))T x (k)|2

≥
∑
i∈Ik

(
c1

(
bi − z(k+1)

i − (A(i))T x (k)
)2 − c2

(
z(k+1)
i − bR(A)⊥i

)2)

≥
∑
i∈Ik

(
c1εk‖A(i)‖22 − c2|ẽ(k+1)

i |2
)

= c1εk‖AIk ,:‖2F − c2‖ẽ(k+1)
Ik ‖22, (2.6)

where the first inequality holds because of Lemma2. Therefore equation (2.5) becomes

‖e(k+1)‖22 ≤ ‖e(k)‖22 − c1εk‖AIk ,:‖2F
σ 2
1 (AIk ,:)

+ c2 + 1

σ 2
1 (AIk ,:)

‖ẽ(k+1)
Ik ‖22

≤ ‖e(k)‖22 − c1εk + c2 + 1

min
i∈[m] ‖A

(i)‖22
‖ẽ(k+1)

Ik ‖22, (2.7)
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where the second inequality holds because
‖AIk ,:‖2F
σ 2
1 (AIk ,:)

≥ 1 and σ 2
1 (AIk ,:) ≥

min
i∈[m] ‖A

(i)‖22. For the lower bound of εk , it holds that

εk = ρx max
i∈[m]

{
|b(i) − z(k+1)(i) − (A(i))T x (k)|2

‖A(i)‖22

}
≥ ρx

‖b − z(k+1) − Ax (k)‖22
‖A‖2F − min

i∈[m] ‖A
(i)‖22

≥ ρx
c1‖bR(A) − Ax (k)‖22 − c2‖z(k+1) − bR(A)⊥‖22

‖A‖2F − min
i∈[m] ‖A

(i)‖22

≥ ρx
c1σ 2

r (A)‖e(k)‖22 − c2‖ẽ(k+1)‖22
‖A‖2F − min

i∈[m] ‖A
(i)‖22

.

Let φmin = min
i∈[m] ‖A

(i)‖22. With the lower bound of εk , the inequality (2.7) is

reformulated as

‖e(k+1)‖22 ≤
(
1 − ρxc

2
1

σ 2
r (A)

‖A‖2F − φmin

)
‖ek‖22

+
(

ρx c1c2
‖A‖2F − φmin

+ c2 + 1

φmin

)
‖ẽ(k+1)‖22.

(2.8)

According to Theorem 1,

‖ẽ(k+1)‖22 ≤
(
1 − ρz

σ 2
r (A)

‖A‖2F − φ̃min

)
‖ẽ(k)‖22,

where φ̃min = min
j∈[n] ‖A( j)‖22. For simplicity, let

αx := 1−ρx c
2
1

σ 2
r (A)

‖A‖2F − φmin
, αz := 1−ρz

σ 2
r (A)

‖A‖2F − φ̃min
, β := ρx c1c2

‖A‖2F − φmin
+c2 + 1

φmin
,

then the inequality (2.8) is rewritten as

‖e(k+1)‖22 ≤ αx‖e(k)‖22 + β‖ẽ(k+1)‖22 (2.9)

≤ αk+1
x ‖e(0)‖22 + β

k∑
l=0

αl
x‖ẽ(k+1−l)‖22

≤ αk+1
x ‖e(0)‖22 + β

k∑
l=0

αl
xα

k+1−l
z ‖ẽ(0)‖22

≤ max{αx , αz}k+1‖e(0)‖22 + (k + 1)β max{αx , αz}k+1‖bR(A)‖22
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≤ max{αx , αz}k+1
(
1 + (k + 1)βσ 2

1 (A)
)

‖e(0)‖22, (2.10)

where the third inequality holds because of ẽ(0) = z(0) − bR(A)⊥ = bR(A), and the last
inequality holds because of x (0) = 0 and ‖bR(A)‖22 ≤ σ 2

1 (A)‖xLS‖22. This completes
the proof. 	


3 Numerical Experiments

In this section, the numerical examples are presented to show the efficiency of the
greedy block extended Kaczmarz (GBEK) method compared with the randomized
double block Kaczmarz (RDBK) method, the randomized extended average block
Kaczmarz (REABK) method and the extended randomized multiple rows (ERMR)
method.

The inconsistent system is Ax + ε = b, where ε is a noise vector whose entries are
drawn from a normal distribution and satisfies ‖ε‖2 = 0.01 × ‖Ax‖2. The number
of iteration steps (denoted as “IT”) and the computational time in seconds (denoted
as “CPU”) are used for evaluation. The row blocks {Ii }si=1 and the column blocks{J j

}t
j=1 of the RDBK, REABK and ERMR methods are partitioned as follows:

Ii = {(i − 1)τr + 1, (i − 1)τr + 2, . . . , iτr }, i = 1, 2, . . . , s − 1,

Is = {(s − 1)τr + 1, (s − 1)τr + 2, . . . ,m}, |Is | ≤ τr ,

and

J j = {( j − 1)τc + 1, ( j − 1)τc + 2, . . . , jτc}, j = 1, 2, . . . , t − 1,

Jt = {(t − 1)τc + 1, (t − 1)τc + 2, . . . , n}, |Jt | ≤ τc,

where τr and τc are block sizes for the rowand columnpartitions respectively. To ensure
a fair comparison, it is necessary to use the same block size for all four methods. This
is achieved by initially applying the GBEK method to get the average sizes of the row
and column blocks, then utilizing these sizes to partition the rows and columns for the
RDBK, REABK and ERMR methods.

All the methods are started from the initial vectors x (0) = 0 and z(0) = b and
stopped if the relative solution error (RSE) satisfies

RSE = ‖x (k) − xLS‖22
‖xLS‖22

≤ 10−6,

or the number of iteration steps exceeds 50000. To compare the difference in compu-
tational time between the proposed method and other methods, define the following
speed-ups:

speed-up1 = CPU of RDBK

CPU of GBEK
, speed-up2 = CPU of REABK

CPU of GBEK
,
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Fig. 1 Curves of the computing time versus ρz with fixed ρx (left: A ∈ R
1000×100, cond(A) = 50, right:

A = rel5, cond(A) = Inf)

speed-up3 = CPU of ERMR

CPU of GBEK
.

Example 1 Apply the GBEK method with different parameters ρx and ρz to solve the
problem, where A is either a random Gaussian matrix or a sparse matrix from [8].

The influence of parameters ρx and ρz on the efficiency of the GBEK method is
firstly explored in Example 1.

In Fig. 1, the curves of the computational time versus ρz with fixed ρx of the GBEK
method for two different matrices are presented respectively. For A ∈ R

1000×100 and
cond(A) = 50, it is observed that the computing time first decreases and then increases
when the value of ρx is fixed and value of ρx is increasing. Similar phenomenon
exists in A = rel5. For the rest of the numerical examples, we set the parameters
ρx = ρz = 0.5 in the GBEK method.

Example 2 The coefficient matrix A is an overdetermined random Gaussian matrix.

In Table 1, the number of iteration steps, computational time and speed-ups for the
RDBK, REABK, ERMR and GBEK methods for solving Example 2 are presented
respectively.

From Table 1, it is obvious that the GBEKmethod significantly reduces the number
of iteration steps and computing time, compared with the RDBK, REABK, ERMR
methods. The GBEK method demonstrates a noticeable performance against the
ERMR method, with a maximum value of speed-up3 reaching 12.9021. Due to the
fact that the GBEK method and the ERMR method employ the same iterative format,
the possible reason of the superior performance of the GBEK method is the use of
greedy block criterion.

Example 3 The coefficient matrix A is an underdetermined random Gaussian matrix.

The numerical results of Example 3 are listed in Table 2. When the coefficient
matrix A is underdetermined, the GBEK method outperforms the RDBK, REABK
and ERMRmethods in terms of both iteration counts and computing time. The GBEK
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Table 3 Numerical results for Example 4

name rel5 abtaha1 relat6 df2177 lp_qap8

m × n 340 × 35 14596 × 209 2340 × 157 630 × 10358 912 × 1632

density 5.51% 1.68% 2.21% 0.34% 0.49%

cond(A) Inf 12.2283 Inf 2.0066 2.32 × 1017

rank(A) 24 209 137 630 742

RDBK IT 170 3921 419 158 374

CPU 0.1200 16.5563 0.5023 0.4192 0.3356

REABK IT 792 12435 6976 405 2665

CPU 0.0121 2.7548 0.2851 0.2597 0.1423

ERMR IT 325 5779 1146 333 1162

CPU 0.0061 2.6146 0.0734 0.0985 0.0772

GBEK IT 92 793 319 45 912

CPU 0.0022 0.4685 0.0280 0.0196 0.0103

speed-up1 55.3191 35.3376 17.9583 21.4212 32.4548

speed-up2 5.5783 5.8798 10.1924 13.2687 13.7592

speed-up3 2.8219 5.5806 2.6243 5.0345 7.4629

method exhibits the lowest iteration counts and the shortest computational time to
achieve the desired accuracy.

Example 4 The matrix A is taken from the SuiteSparse Matrix Collection [8].

For solving Example 4, the numbers of iteration steps, the computational time and
the speed-ups for the RDBK, REABK, ERMR and GBEK methods are provided in
Table 3. All the coefficient matrices are sparse and rank-deficient, with different matrix
sizes, densities, and condition numbers. Here the density of A is defined as

density = number of nonzeros of A

mn
,

which accurately describes the sparsity of A.
From Table 3, it is seen that the GBEK method outperforms the RDBK, REABK

and ERMRmethods in terms of the number of iteration steps and computational time.
Furthermore, in Table 3, the maximum values of speed-up1 and speed-up2 are 55.3191
and 13.7952 respectively, which further confirms the superiority of the GBEKmethod
for solving large sparse least squares problems.

The curves of the relative solution error versus the iteration counts for the RDBK,
REABK, ERMR and GBEK methods for different matrices are showed in Fig. 2. It is
clear that the relative solution error of the GBEK method decreases the fastest as the
number of iteration steps increases for these three examples.

Example 5 Consider solving the X-ray computed tomography problem in AIR Tools
II [14]. The size of the matrix A is set to be 15300 × 3600.
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Fig. 2 Convergence curves of the RDBK, REABK, ERMR and GBEKmethods for different matrices (left:
A ∈ R

10000×500, middle: A ∈ R
500×10000, right: A = abtaha1)

Fig. 3 Numerical results for Example 5

In Example 5, the effectiveness of the RDBK, REABK, ERMR andGBEKmethods
is evaluated by the Peak Signal-to-Noise Ratio (PSNR), which is a widely used metric
in image processing to measure the similarity between two images. The higher PSNR
value indicates the better image quality. All methods were run with the same number
of iteration steps.

The original image and the approximate images recovered by the four methods are
given in Fig. 3. It is obvious that the image reconstructed by the GBEK method is the
best and attains the highest PSNR value of 34.9177.

4 Conclusions

A greedy block extended Kaczmarz method is proposed for solving least squares
problems. Theoretical analysis is established and a linear convergence rate is derived.
Numerical experiments show the proposed method exhibits a better performance than
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randomized block extendedKaczmarzmethods in terms of both the number of iteration
steps and computational time.
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