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Abstract
In this paper we establish an angular characteristic for the class of quasimöbius
mappings in metric spaces.
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Mathematics Subject Classification 30L10 · 30C65

1 Introduction andMain Result

It is known that there are many equivalent ways of defining quasiconformal mappings
in Euclidean spaces and even inmetric spaces, e.g. via the conformalmoduli of quadri-
laterals or rings, the extremal lengths, the distortion of infinitesimal spheres or balls
or equilateral triangles, see [3, 10–12] and the references therein. These definitions
play important roles in dealing with many research problems [1, 2, 12, 15] and are
also useful in different situations, see [5, 10, 11, 13].

In 1965, Agard and Gehring [2] investigated the distortion of angles under planar
quasiconformal mappings in order to generalize the fact that a conformal mapping is
angle-preserving. For this reasoning, they introduced the notions of topological angles
and inner angular measures between intersecting arcs, and they obtained some angular
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characteristics for the class of quasiconformal mappings in the plane, see [2, Theo-
rem 4]. Later, Agard demonstrated some equivalent conditions for quasiconformality
in terms of topological angles and their measures in higher dimensional Euclidean
spaces, see [1, Theorems 5.1 and 5.2].

In 2005,Aseev et al. in [4] generalized the idea ofAgard andGehring by introducing
the following definition of an angle between sets in metric spaces.

Definition 1 Let A1 and A2 be two nonempty subsets of a metric space X with A1 ∩
A2 �= ∅ and diam(A1 ∪ A2) > 0. The angle between A1 and A2 is defined to be

∠(A1, A2) = inf
x1∈A1,x2∈A2

sup
z∈A

|x1 − x2|
|x1 − z| + |x2 − z| , (1)

where A = A1 ∩ A2.

Remark 1 If diam(A1 ∪ A2) = 0, then A1 = A2 = {x} for some x ∈ X . Thus the
inequality (1) is true for all c > 0, which leads to ∠(A1, A2) = ∞. Hence, to exclude
this possibility, we assume that diam(A1 ∪ A2) > 0, i.e., A1 ∪ A2 contains at least
two points. Note that 0 ≤ ∠(A1, A2) ≤ 1. Next we give some examples.

(1) If A1 = A2 = [0, 1] ⊂ R, then ∠(A1, A2) = 0.
(2) If A1 = A2 = {x, y}, then ∠(A1, A2) = 1.
(3) If A1 = A2 = {1, 2, 3} ⊂ R, then ∠(A1, A2) = 1/3.
(4) If A1 = Q ∩ [0, 1] and A2 = ([0, 1]\A1) ∪ {0, 1}, then ∠(A1, A2) = 0.

In this paper, X and Y are assumed to be metric spaces. The polish notation |x − y|
is used for the distance between x and y in any metric space. The primes always stand
for the images of points and sets under a mapping f . For example x ′ = f (x) and
A′ = f (A). Other notions and notations in this section will be explained in Sect. 2.

In [4], the authors observed that the notion of metric angles can be used to
characterize the class of quasisymmetric mappings.

Theorem 1 ( [4, Theorem 2.1]) Suppose that f : X → Y is a homeomorphism.
Then f is η-quasisymmetric if and only if there exist continuous strictly increasing
functions ϕ and ψ on [0, 1] such that ϕ(0) = 0 and ψ(0) = 0 and the inequalities
∠(A′

1, A
′
2) ≥ ψ(∠(A1, A2)) and ∠(A1, A2) ≥ ϕ(∠(A′

1, A
′
2)) hold for all subsets

A1, A2 ⊂ X.

On the one hand, the positive angle condition is helpful to study the gluing of qua-
sisymmetricmappings and quasimöbiusmappings, see e.g. [4, 7, 8]. On the other hand,
the procedures of sewing quasisymmetric mappings and quasimöbius mappings have
recently found applications in the study of hyperbolic groups with planar boundaries
and the planar Schönflies theorem for bilipschitz and quasisymmetric mappings, see
[9, 14, 15].

The above background motivates us to consider the following question:

Question 2 Is there an angular characteristic for the class of quasimöbius mappings
in Rn or metric spaces?
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As a special class of quasimöbius mappings, the inversion transformation is obvi-
ously quasimöbius but not quasisymmetric. Therefore, one finds from Theorem 1
that a quasimöbius mapping does not preserve positive angles unless certain addi-
tional assumptions are imposed. In this paper, a concrete example will be presented
to explain this phenomenon, see Example 1 in Sect. 4.

As our main result, we give an affirmative answer to Question 2 as follows.

Theorem 2 Suppose that f : X → Y is a homeomorphism between metric spaces.
Then f is θ -quasimöbius for some homeomorphism θ : [0,∞) → [0,∞)with θ(0) =
0 if and only if there is some continuous, strictly increasing functionϕ : [0, 1] → [0, 1]
with ϕ(0) = 0 with the following property: for all subsets A1, A2 ⊂ X satisfying

∠(A1, A2) ≥ t and diam(A1 ∩ A2) ≥ smin{diam(A1), diam(A2)},

for some s, t > 0, we have

∠(A′
1, A

′
2) ≥ ϕ(ts).

ϕ and θ depend only on each other.

Remark 2 The necessity of Theorem 2 can be regarded as a generalization of [7,
Lemma 3.2(i)] at two aspects. On the one hand, we do not need the intersection of two
given sets to be uniformly perfect. On the other hand, the distortion of angles under
metric spaces inversions, introduced by Buckley et al. [6], was investigated by Guan et
al. in [7], and what we considered here are quasimöbius mappings. Indeed, our proof
is quite different from theirs.

Moreover, one observes from Theorem 2 that the requirements (1) and (4) of [7,
Theorem 1.1] is reasonable and in a sense necessary.

The rest of this paper is organized as follows. In Sect. 2, we recall some necessary
terminology and several useful known results. Section3 is devoted to the proof of
Theorem 2. Finally, we show the properties of Example 1 in Sect. 4 regarding positive
angles and quasimöbius mappings.

2 Preliminaries and Auxiliary Results

Let X be a metric space. The sets A, A1 and A2 stand for subsets of X . For a bounded
set A, diam(A)means its diameter, and x, y, · · · mean the points in X . Given two real
numbers s and t , we let

s ∨ t = max{s, t} and s ∧ t = min{s, t}.

Next, we recall the definition of quasimöbius mappings introduced by Väisälä in
[16]. We refer to [5, 6, 9, 17] for more investigations and applications.
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Definition 2 Suppose that θ : [0,∞) → [0,∞) is a homeomorphism with θ(0) = 0.
A homeomorphism f : X → Y is called θ -quasimöbius if r(a, b, c, d) ≤ t implies

r(a′, b′, c′, d ′) ≤ θ(t)

for any quadruple of distinct points (a, b, c, d) in X and any number t ≥ 0, where

r(a, b, c, d) = |a − c||b − d|
|a − b||c − d|

denotes the cross ratio of (a, b, c, d).

In [5], Bonk and Kleiner introduced the following useful notation of a quadruple
of distinct points (a, b, c, d):

< a, b, c, d >= |a − c| ∧ |b − d|
|a − b| ∧ |c − d| .

Obviously, if we change the positions of b and c, then we obtain

r(a, b, c, d) = 1

r(a, c, b, d)
and < a, b, c, d >= 1

< a, c, b, d >
.

The relation between r(a, b, c, d) and < a, b, c, d > states as follows.

Lemma 3 ( [5, Lemma 2.3]) Let η0(t) = 3(t∨√
t) for t ≥ 0. Then for every quadruple

of distinct points (a, b, c, d) in a metric space X we have

< a, b, c, d >≤ η0(r(a, b, c, d)).

If we change the positions of b and c, then we get

< a, b, c, d >≥ η1(r(a, b, c, d))

with η1(t) = 1
η0(1/t)

, see [5, Page 133] or [18, Lemma 2.1]. By Lemma 3, a direct
computation gives the following equivalent condition for quasimöbius mappings.

Lemma 4 Ahomeomorphism f : X → Y is θ -quasimöbius for some homeomorphism
θ : [0,∞) → [0,∞) with θ(0) = 0 if and only if there exists a homeomorphism
θ1 : [0,∞) → [0,∞) with θ1(0) = 0 such that < a, b, c, b >≤ t implies

< a′, b′, c′, d ′ >≤ θ1(t)

for any quadruple of distinct points (a, b, c, d) in X and any number t ≥ 0, where θ

and θ1 depend on each other.
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3 Proof of Theorem 2

In this section, we assume that f : X → Y is a homeomorphism between metric
spaces.

The proof of Theorem 2 is divided into two parts. We first show the necessity which
is stated in the following lemma.

Lemma 5 Let θ : [0,∞) → [0,∞) be a homeomorphism with θ(0) = 0. If f is
θ -quasimöbius, then there is a continuous, strictly increasing function ϕ : [0, 1] →
[0, 1] with ϕ(0) = 0 such that for all subsets A1, A2 ⊂ X satisfying

∠(A1, A2) ≥ t > 0 and diam(A1 ∩ A2) ≥ s(diam(A1) ∧ diam(A2)),

we have

∠(A′
1, A

′
2) ≥ ϕ(ts), (6)

where ϕ depends only on θ .

Proof We only need to show that

∠(A1, A2) ≥ t > 0 and diam(A1 ∩ A2) ≥ s(diam(A1) ∧ diam(A2))

imply that
|x ′

1 − x ′
2|

inf z′∈A{|x ′
1 − z′| + |z′ − x ′

2|}
≥ ϕ(ts), (7)

for all x1 ∈ A1 and x2 ∈ A2 with x1 �= x2, where A = A1 ∩ A2 and

ϕ(ts) = 1

2θ1( 3
st ) + 1

.

Note that the function θ1 is from Lemma 4 which depends only on θ .
If either x1 ∈ A or x2 ∈ A, then it is easy to get

|x ′
1 − x ′

2|
inf z′∈A′ {|x ′

1 − z′| + |z′ − x ′
2|}

≥ |x ′
1 − x ′

2|
|x ′

1 − x ′
2|

= 1,

which implies (7).
Thus, it is left to consider the case that x1 ∈ A1 \ A and x2 ∈ A2 \ A. Without

loss of generality, we also assume that diam(A1) ≤ diam(A2). Since ∠(A1, A2) ≥ t ,
there exists a point x ∈ A for which

|x1 − x2| ≥ t

2
(|x1 − x | ∨ |x2 − x |). (8)
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By the assumption diam(A) ≥ s diam(A1), there is a point y ∈ A such that

|x − y| ≥ 1

3
diam(A) ≥ s

3
|x1 − x |.

This, together with (8) and the fact that t, s ∈ [0, 1], shows that

< x1, x, x2, y >= |x1 − x2| ∧ |x − y|
|x1 − x | ∧ |x2 − y| ≥ t

2
∧ s

3
≥ st

3
.

Then we have

< x1, x2, x, y >= 1

< x1, x, x2, y >
≤ 3

st
.

Since f is θ -quasimöbius, it follows from Lemma 4 that

< x ′
1, x

′
2, x

′, y′ >≤ θ1

(
3

st

)
,

where the function θ1 depends only on θ .
Thus we get

< x ′
1, x

′, x ′
2, y

′ >= 1

< x ′
1, x

′
2, x

′, y′ >
≥ 1

θ1(
3
st )

,

which guarantees that

|x ′
1 − x ′

2|
|x ′

1 − x ′| ∨ |x ′
1 − x ′

2|
|x ′

2 − y′| ≥< x ′
1, x

′, x ′
2, y

′ >≥ 1

θ1(
3
st )

.

Therefore, we have

|x ′
1 − x ′

2|
inf z′∈A′ {|x ′

1 − z′| + |z′ − x ′
2|}

≥
( |x ′

1 − x ′
2|

|x ′
1 − x ′| + |x ′ − x ′

2|
)

∨
( |x ′

1 − x ′
2|

|x ′
1 − y′| + |y′ − x ′

2|
)

≥
( |x ′

1 − x ′
2|

2|x ′
1 − x ′| + |x ′

1 − x ′
2|

)
∨

( |x ′
1 − x ′

2|
2|y′ − x ′

2| + |x ′
1 − x ′

2|
)

= |x ′
1 − x ′

2|
2(|x ′

1 − x ′| ∧ |x ′
2 − y′|) + |x ′

1 − x ′
2|

≥ 1

2θ1( 3
ts ) + 1

.
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Let

ϕ(ts) =
{

0 for ts = 0,(
2θ1( 3

ts ) + 1
)−1 for ts ∈ (0,+∞).

Hence we obtain (7) and then ∠(A′
1, A

′
2) ≥ ϕ(ts). The lemma follows. ��

Next, we prove the sufficiency.

Lemma 9 Suppose ϕ : [0, 1] → [0, 1] is a continuous, strictly increasing function
with ϕ(0) = 0. If for all subsets A1, A2 ⊂ X satisfying

∠(A1, A2) ≥ t > 0 and diam(A1 ∩ A2) ≥ s(diam(A1) ∧ diam(A2)),

we have

∠(A′
1, A

′
2) ≥ ϕ(ts),

then f is θ -quasimöbius for a homeomorphism θ : [0,∞) → [0,∞) with θ(0) = 0
depending only on ϕ.

Proof Choose x , x1, y, x2 ∈ X arbitrarily. Let

t =< x, x1, y, x2 >= |x − y| ∧ |x1 − x2|
|x − x1| ∧ |x2 − y| . (10)

Without loss of generality, we may assume that

|x ′ − y′| ≥ |x ′
1 − x ′

2|. (11)

Let A1 = {x1, x, y} and A2 = {x2, x, y}. Then we get A = A1 ∩ A2 = {x, y}. It
follows from (10) that

|x − y| ≥ t(|x − x1| ∧ |x2 − y|).

An elementary computation shows that

(t + 1)|x − y| ≥ t
(
(|x1 − x | + |x − y|) ∧ (|x2 − y| + |x − y|)),

which leads to

(t + 1) diam(A) ≥ t(diam(A1) ∧ diam(A2)).

Thus we have
diam(A) ≥ t

t + 1
(diam(A1) ∧ diam(A2)). (12)
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Moreover, by (10), we obtain

(|x1 − x | + |x − x2|
) ∧ (|x1 − y| + |y − x2|

)
≤ (

2|x1 − x | + |x1 − x2|
) ∧ (

2|x2 − y| + |x1 − x2|
)

= 2(|x1 − x | ∧ |x2 − y|) + |x1 − x2|
= 2

t
(|x − y| ∧ |x1 − x2|) + |x1 − x2|

≤ 2 + t

t
|x1 − x2|

which ensures that

∠(A1, A2) = |x1 − x2|
|x1 − x | + |x − x2| ∨ |x1 − x2|

|x1 − y| + |y − x2| ≥ t

t + 2

and therefore, by the assumption and (12), we have

∠(A′
1, A

′
2) ≥ ϕ

(
t2

(t + 1)(t + 2)

)
. (13)

Since

∠(A′
1, A

′
2) = |x ′

1 − x ′
2|

|x ′
1 − x ′| + |x ′ − x ′

2|
∨ |x ′

1 − x ′
2|

|x ′
1 − y′| + |y′ − x ′

2|
,

it follows from (11) that

∠(A′
1, A

′
2) ≤ |x ′

1 − x ′
2|

|x ′
1 − x ′| ∧ |x ′

2 − y′| = |x ′
1 − x ′

2| ∧ |x ′ − y′|
|x ′

1 − x ′| ∧ |x ′
2 − y′| =< x ′, x ′

1, y
′, x ′

2 > .

This, together with (13), ensures that

T =< x ′, x ′
1, y

′, x ′
2 >≥ ϕ

(
t2

(t + 1)(t + 2)

)
≥ ϕ

(
t2

(t + 2)2

)
,

which guarantees that

t ≤ ψ−1 ◦ ϕ−1(T ),

where

ψ−1(u) = 2
√
u

1 − √
u

.

Note that T → 0 implies that t → 0.
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Now, Lemma 4 asserts that f −1 is θ1-quasimöbius with θ1 depending only on ϕ.
Since the inverse of a quasimöbius mapping is also quasimöbius (cf. [16]), we know
that f is quasimöbius as well. ��
Proof of Theorem 2 Theorem 2 follows from Lemmas 5 and 9. ��

4 An Example

The following example shows that a quasimöbius mapping does not preserve positive
angles. Let C be the complex plane and let z = t1 + i t2 be a point in C.

Example 1 Consider the inversion transformation u : C\{0} → C\{0} with

u(z) = z

|z|2 , for z ∈ C \ {0}.

Let A1 = {n}∞n=1 and A2 = {1} ∪ {−n}∞n=1. Then we have the following:

(1) u(z) is θ -quasimöbius with θ(t) = t ;
(2) ∠(A1, A2) = 1;
(3) ∠(u(A1), u(A2)) = 0.

Proof Obviously, u is a Möbius mapping and so (1) holds true. Part (2) follows easily
from that |a1 − a2| = |a1 − 1| + |a2 − 1| for all a1 ∈ A1 and a2 ∈ A2 as a2 ≤ 1 ≤ a1.

For (3), note that u (A1) = { 1
n

}∞
n=1 and u (A2) = {1} ∪ {− 1

n }∞n=1. Thus, we have

∠(u(A1), u(A2)) = lim
n→∞

2
n

|1 − 1
n | + |1 + 1

n | = 0,

which implies the statement (3). ��
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