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Abstract
A super-structure system for probability densities, covering not just typical types but
also fractional ones, was developed using the time scale theory. From a mathematical
point of view, we discover duals of the Poisson process on the time scale T = R for
the time scales T = Z and T = qZ, evaluating ∇−calculus and �−calculus. Also,
we search the fractional extensions of the Poisson process on these time scales and
detect duals of them. A simulation allows for comparing the nabla and delta types
of the observed distributions, not just typical types but also fractional ones. As an
application, we also propose new substitution boxes (S-boxes) using the proposed
stochastic models and compare the performance of S-boxes created in this way. Given
that the S-box is the core for confusion in Advanced Encryption Standard (AES), the
formation of these newS-boxes represents an interesting application of these stochastic
models.
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1 Introduction

Time scale theory ([1–3]) as a mathematical framework provides a unified formalism
for both continuous and discrete calculus and extends the study of dynamic systems on
any closed subset, called “time scale”, of the real line T. The case T = R corresponds
to real analysis and the case T = Z to discrete-time analysis. It also generalizes the
concepts of differential and difference equations to a single framework. On the other
hand, such formalism enables fractional Riemann–Liouville computation on any time
scale [4]. Fractional calculus deals with derivatives and integrals of arbitrary order
([48, 49]). It extends theNewtonian calculus to allow for differentiation and integration
of any real or complex order, not just integer values. The combination of time scale
theory and fractional calculus has been used to model complex systems that exhibit
both continuous and discrete behaviors, providing a more comprehensive understand-
ing of their dynamics. Time scale theory extends the m−th Riemann integration of a
function (by Cauchy formula, which, for repeated integration, allows for compressing
m integrations of a function into a single integral) for fractional orders. Recent studies
employing the combination of time scales and fractional calculus in probability theory
demonstrate the potential of time scale theory; for example see [6–10] and [11].

Poisson process is used to model random events that occur in a given time interval
in telecommunications, biology, physics and so on. The key assumption of Poisson
process is that the number of events occurring in non-overlapping time intervals are
independent of each other. Some of discrete distributions like binomial, geometric and
negative binomial are defined on the stochastic model of the sequence of independent
and identical Bernoulli trials. The Poisson distribution defined as an approximation
of the binomial or negative binomial distributions. Recently, it was observed that
binomial distribution on Z is a dual of Poisson distribution on real time scale [5]. The
authors in [5] have used delta calculus to generalize Poisson process on arbitrary time
scale. This is just one of the surprises that time scale theory has brought to probability
theory. To discover the useful aspects of applying this theory on distribution theory
two essential questions arise:
a) Is it possible to generate Poisson process on arbitrary time scale by applying delta
calculus?, and
b) Is it possible to generate a fractional version of the Poisson process on arbitrary
time scale by applying both nabla and delta calculus? We try to find solutions for
these questions.

Thiswork introduces two fractional and ordinary extensions of the differential equa-
tion that describes a Poisson process on an ordinary time scale. For both fractional and
ordinary, the nabla and delta types of calculus on a time scale are considered: (ordinary
or fractional) nabla Poisson processes, referring to the situation where applied time
scale for both fractional and ordinary differential equations are nabla; and (ordinary
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or fractional) delta Poisson processes, where both fractional and ordinary differential
equations are described by using delta calculus. The obtained distributions from ordi-
nary differential equations (delta or nabla types) include some cases of power series
distributions like Poisson, binomial, negative binomial, as well as gamma (continu-
ous and discrete types) and Euler distributions. Also, the obtained distributions from
fractional differential equations (delta or nabla types) include only fractional poisson
distribution as a known distribution, that is the most of obtained distributions are new.
A simulation study in order to compare of the observed distributions by nabla and delta
calculus is done. For the simulated data set, the parameters estimation are obtained
using the maximum likelihood method.

Fractional distributions are employed as a powerful tool to model complex data and
complex systems.They are characterized by their probability density functions (PDFs).
The main property of fractional distributions is that these models can take different
values of the real line by changing their parameters and mass values. This property has
made them flexible in comparison to the ordinary models. The clear rationale behind
the flexibility of PDFs lies in their ability to accommodate fractional support, which
is the very reason they are labeled as fractional models. The flexibility gives more
freedom to obtain different random values. It is a desirable situation in the construction
of S-boxes. Thatmeans increasing the randomness rate and then increasing the security
of the networks. In this paper, for the obtained distributions (ordinary and fractional
types), new S-boxes are proposed and compared the performance of S-boxes created
in this way.

Some of advantages of this paper are listed in the following:
a) Finding a versatile differential equation that generates most of the distributions;
b) Finding the relationship between ordinary and fractional types of distributions;
c) Finding the relationship between ordinary distributions and quantum distributions;
d) Finding the relationship between continuous and discrete types of distributions
(ordinary and fractional);
e) Introducing delta and nabla versions of distributions; as an example, this paper
realizes a new relationship between the binomial and negative binomial distributions
by applying time scale calculus.,
f) Introducing fractional stochastic models as perfect models to create S-boxes in
cryptography.
g) Comparing the observed distributions with nabla and delta calculus by using a
simulation study.

The paper is organized as follows: in the next section, we briefly describe the
instruments from time scale theory in order to define a versatile differential equation.
This section gives an insight about how this equation is resulted from its ordinary
one and time scale calculus. Section 3 includes the steps of finding solutions of the
equation on arbitrary time scale. Also, we obtain the other relative distributions, such
as Erlang and exponential. We present a fractional version of the versatile differential
equation along with its solutions in Section 4. Some S-boxes designed based on the
obtained distributions are found in Section 5.
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2 Preliminaries

Every closed subset of the real line can be viewed as a time scale T . In this work,
we consider nabla calculus on time scale T, where t ≥ 0, t ∈ T. The graininess
and the backward jump operators are defined as ρ(t) = sup{s ∈ T; s < t} and
ν(t) = t − ρ(t), respectively. The nabla derivative of a function f (t) on T is defined
as

f ∇(t) = f (t) − f (ρ(t))

ν(t)
.

The nabla integral is the antiderivative in the sense that, if f (t) = f ∇(t), then for
s, t ∈ T,

∫ t

τ=s
f (τ )∇τ = f (t) − f (s).

The nabla Taylor monomials are defined as

h0(t, s) = 1, hn+1(t, s) =
∫ t

s
hn(τ, s)∇dτ, t, s ∈ T.

The differential equation

f ∇(t) = z f (t); f (0) = 1

has the solution f (t) = ez(t, 0), where

ez(t, s) := exp

(∫ t

τ=s

−log(1 − ν(τ)z)

ν(τ )
∇τ

)
,

and z belongs to the set of regressive and right dense (rd)-continuous functions f :
T → R. For a regulated function f : T → R, the nabla Laplace transform is defined
by

Lt0{ f }(s) =
∫ ∞

t0
e�s(ρ(t), t0) f (t)∇t, t0 ∈ T,

where �s := −s/(1 − ν(t)s). The nabla fractional Taylor monomials are defined as

hα(t, t0) = L−1
t0

{
1

sα+1

}
(t)

to those regressive functions s ∈ C \ {0}, t ≥ t0; and for t < t0, hα(t, t0) = 0.
Also, h−α(t, 0) := h−α(t) is nabla Dirac delta function. The Caputo nabla fractional
derivative of order α ≥ 0 is defined as
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CDα
s f (t) = Dα

s

[
f (t) −

n−1∑
k=0

hk(t, s) f
∇k

(s)

]
,

where Dα
s f (t) = DnIn−α

s f (t), Iα
s f (t) = ∫ t

s hα−1(t, ρ(τ )) f (τ )∇τ are Riemann-
Liouville nabla fractional derivative and integral, respectively. The solution to the
differential equation

CDα
s f (t) = z f (t); f (0) = 1

is f (t) = Eα(z; t, s) := Eα,1(z; t, s), where

Eα,β(z; t, s) =
∞∑
k=0

zkhαk+β−1(t, s), (2.1)

is Mittag-Leffler function defined as provided the right-hand series is convergent,
where α, β > 0 and λ ∈ R. The nabla Laplace transform of this function is sα−β

sα−z ,
where |z| < |s|α . By differentiating k times with respect to λ on both sides of the
formula in the theorem above, we get the following result:

Lt0{E∇k

α,β(λ; t, s)} = k!sα−β

(sα − λ)k+1 .

Some of important time scales will form the basis of the theory in this study. By
choosing the time scale T = R, the continuous calculus is provided and every point is
dense. Hence, we have ρ(t) = t, ν(t) = 0 and f ∇ = f ′. The Lebesgue ∇-integral is
the same with the standard Lebesgue integral. The Taylor monomials can be written
as

hn(t, s) = (t − s)n

n! ,

and the fractional Taylor monomial is defined as

hα(t, s) = (t − s)α


(α + 1)
, α ∈ R \ {−N},

while h−α(t) = t−α


(1−α)
is the Dirac delta function on T = R. Further eλ(t, a) =

eλ(t−a), where “e” is ordinary exponential function.
Discrete calculus can be obtained by choosingT = Z.We have ρ(t) = t−1, ν(t) = 1
and so every point is discrete. The derivatives correspond to the left difference operator
is defined as f ∇(t) = f (t) − f (t − 1) = ∇ f (t). Finally, the ∇-integrals correspond
to a finite summation

∫ b

a
f (t)∇(t) =

b∑
k=a+1

f (k).
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The Taylor monomials can be written as

hn(t, s) = (t − s) n

n! ,

where t n = �n−1
j=0(t + j) and the fractional Taylor monomial is defined as

hα(t, s) = (t − s) α


(α + 1)
, α ∈ R \ {−N},

where t α = 
(t+α)

(t) , while h−α(t) = t −α


(1−α)
is the nabla Dirac delta function on

T = Z. Also, the nabla exponential function is eλ(t, a) = (1 − λ)a−t .

Quantum calculus is the result of choosing the time scale

qZ = {qn; n ∈ Z} ∪ {0},

where we have fixed q ∈ (0, 1) ∪ (1,∞). The choice of taking q > 1 or 0 < q < 1
is an arbitrary matter. One can convert one to another using the transformation q →
q−1. Let 0 < q < 1, then for all t ∈ T, ρ(t) = qt . We have ν(0) = 0 and for
t > 0, ν(t) = (1 − q)t . The nabla q−derivative of a function f : Tq → R is given
by

f ∇(t) = ∇q f (t) = f (t) − f (qt)

(1 − q)t
.

The nabla q-integral are given by the formula

∫ t

0
f (t)∇(t) = (1 − q)t

∞∑
i=0

qi f (tqi ).

The q-Taylor monomials can be written as

hn(t, s) = (t − s)nq
[n]q ! ,

where (t − s)nq = ∏n−1
i=0 (t − qi s), [n]q ! = [1]q [2]q ...[n]q , and [n]q = 1−qn

1−q is called
a q-real number. When α is a non-positive integer, the q-Taylor monomials is defined
by

hα(t, s) = (t − s)αq/
q(α + 1) = tα


q(α + 1)

∞∏
i=0

1 − (s/t)qi

1 − (s/t)qi+α
,
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where the q-gamma function is defined by


q(α) =
∫ ∞

0
xα−1Eq(−qx)∇q x, α > 0

with Eq(x) = �∞
i=1(1+ x(1− q)qi−1), where Eq−1(x) = eq(x) = �∞

i=1(1− x(1−
q)qi−1)−1. Also, h−α(t) = t−α


q (1−α)
is the nabla Dirac delta function on T = qZ.

In this work, we introduce a general form of q-exponential function as e�λ(t, s) =
�∞

i=0(1 + �λ(s)ν(t)qi ).

3 Duals of Poisson Process on Time Scales

3.1 Derivation

We aim to create a system that illustrates the discovery of a stochastic process on a time
scale using nabla calculus, reflecting a scenario for the Poisson process on T = R.We
assume the probability of occurrence of one event in the time interval [t, ρ(s)]T is

−(�λ)(t)(ρ(s) − t) + o(s − t),

where �λ := −λ/(1 − ν(t)λ) and λ > 0. Therefore, the probability of no event
occurring in the interval can be expressed as:

1 + (�λ)(t)(ρ(s) − t) + o(s − t),

where o(s − t) is such that lims→t
o(s − t)

s − t
= 0. We also assume no events have

occurred at t = 0. Let X : T → N0 be a counting process, where N0 is the set
of non-negative integers and pk(t) = P[X(t) = k] is the probability that k events,
k ∈ N0, have occurred by time t ∈ N. We also suppose t, s ∈ T with ρ(t) < s. When
considering the successive intervals [0, ρ(t))T and [ρ(t), s)T, the following system
of equations is established:

p0(ρ(s)) = p0(t)[1 + (�λ)(t)(ρ(s) − t)] + o(s − t),

p1(ρ(s)) = p1(t)[1 + (�λ)(t)(ρ(s) − t)] + p0(t)[−(�λ)(t)(ρ(s) − t)] + o(s − t),

...

pk(ρ(s)) = pk(t)[1 + (�λ)(t)(ρ(s) − t)] + pk−1(t)[−(�λ)(t)(ρ(s) − t)] + o(s − t),

with initial conditions p0(0) = 1 and pk(0) = 0 for k 	= 0. Therefore, we let
pk(0) = δk,0, where δk,a is the Kroneker delta function defined as 1, when k 	= a and
0, if k = a. Also, we let s go to t and first consider the p0 equation. Rearranging the
terms and by applying the definition of the nabla derivative we get
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p∇
0 (t) = lim

s→t

p0(ρ(s)) − p0(t)

ρ(s) − t
= (�λ)(t)p0(t). (3.1)

Applying the initial value p0(0) = 1, we get

p0(t) = e�λ(t, 0). (3.2)

Now we consider the equation p1. Replacing the solution of the p0 equation yields

p1(ρ(s)) =p1(t)[1 + (�λ)(t)(ρ(s) − t)]
+ e�λ(t, 0)[−(�λ)(t)(ρ(s) − t)] + o(s − t), (3.3)

which, using the nabla derivative of function on T, yields

p∇
1 (t) = (�λ)(t)p1(t) − (�λ)(t)e�λ(t, 0). (3.4)

Using the variation of constants formula on time scales, Theorem 3.42 from [3], we
obtain the solution

p1(t) = −
∫ t

0
e�λ(t, ρ(τ ))(�λ)(τ)e�λ(τ, 0)∇τ

= λ

∫ t

0
eλ(τ, t)(1 − ν(τ)λ)(�λ)(τ)e�λ(ρ(τ), 0)∇τ

= λ

∫ t

0
eλ(τ, 0)eλ(0, t)e�λ(τ, 0)∇τ

= λ

∫ t

0
e�λ(t, 0)∇τ

= λte�λ(t, 0)

= λt
e�λ(t, ρ(0))

1 − ν(0)λ
= −(�λ)(0)te�λ(t, ρ(0)).

Note that herewe applied Theorem 3.15 (ii), (v), and (iv) from [3]. Nowwe consider
the p2 equation. Substituting the solution of the p1 equation yields

p2(ρ(s)) = p2(t)[1 + (�λ)(t)(ρ(s) − t)]
− (�λ)(0)te�λ(t, ρ(0))[−(�λ)(t)(ρ(s) − t)] + o(s − t),

applying the nabla derivative of function on T yields

p∇
2 (t) = (�λ)(t)p2(t) + (�λ)(0)(�λ)(t)te�λ(t, ρ(0)). (3.5)
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Again, using the variation of constants formula on time scales, we get the solution

p2(t) =
∫ t

0
e�λ(t, ρ(τ ))(�λ)(0)(�λ)(τ)τe�λ(τ, ρ(0))∇τ

= (�λ)(0)
∫ t

0
eλ(τ, t)(1 − ν(τ)λ)(�λ)(τ)τe�λ(τ, ρ(0))∇τ

= −λ(�λ)(0)
∫ t

0
τeλ(τ, ρ(0))eλ(ρ(0), t)e�λ(τ, ρ(0))∇τ

= −λ(�λ)(0)e�λ(t, ρ(0))
∫ t

0
τ∇τ

= −λ(�λ)(0)e�λ(t, ρ(0))h2(t, 0)

= (�λ)(ρ(0))(�λ)(0)e�λ(t, ρ
2(0))h2(t, 0).

In general, for the following general equation

p∇
k (t) = (�λ)(t)pk(t) − (�λ)(t)pk−1(t), k � 0, (3.6)

Equations (3.1), (3.4), (3.5), and (3.6) can be summarized by

p∇
k (t) = (�λ)(t)

[
pk(t) − pk−1(t)

] + δk,0δ(t), (3.7)

where t ∈ T, p−1(t) = 0 and δ(t) is the Dirac delta function δ(t) := t−1


(0) , t ≥ 0. The
general solution by induction is as follows:

pk(t) = (−1)khk(t, 0)e�λ(t, ρ
k(0))

k−1∏
i=0

(�λ)(ρi (0)). (3.8)

As can be seen from the proceeding discussion, the positivity of the above equation
follows from the factors that figures in the product term and the (−1)k term. Equation
(3.8) can be seen as a product of (−1)2k and some factors all which are positive.

Further, we can verify that (3.8) is a solution of (3.6). We note that, using the nabla
product rule, Theorem 3.3 (ii), and Theorem 3.15 (ii), (v), and (iv) from [3]:

p∇
k (t) = (−1)k

k−1∏
i=0

(�λ)(ρi (0))
[
−λe�λ(ρ(t), ρk(0))hk(t, 0) + hk−1(t, 0)e�λ(ρ(t), ρk(0))

]

= (�λ)(t)(−1)k
k−1∏
i=0

(�λ)(ρi (0))hk(t, 0)e�λ(t, ρ
k(0))

− (�λ)(t)(−1)k−1
k−2∏
i=0

(�λ)(ρi (0))hk−1(t, 0)e�λ(ρ(t), ρk−1(0))(
1 − ν(0)λ

1 − ν(ρk−1(0))λ
),
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which for time scales R,Z and qZ gives:

p∇
k (t) = (�λ)(t)pk(t) − (�λ)(t)pk−1(t).

This derivation motivates a general definition of Poisson process on time scales as
follows:

Definition 3.1 S : T → N0 is a T−Poisson process with rate λ > 0 on a time scale
T. For t ∈ T and k ∈ N0, we have

P[S(t, λ) = k] = (−1)khk(t, 0)e�λ(t, ρ
k(0))

k−1∏
i=0

(�λ)(ρi (0)).

The random variable representing the number of arrivals, t , has a distribution that
can be generated for each fixed t ∈ T. Three kinds of time scales are considered:R,Z

and qZ.

S : R → N0 is an R−Poisson process. Under this assumption, ρi (0) = 0, ∀i ∈
N, (�λ)(t) = −λ, ∀t ∈ R, hk(t, 0) = tk

k! , and e�λ(t, ρk(0)) = e−λt . These lead to
the probability density function of the Poisson distribution:

P[S(t, λ) = k] = (λt)k

k! e−λt . (3.9)

S : Z → N0 is an Z-Poisson process. Following that, ρi (0) = −i, ∀ i ∈
N, (�λ)(t) = −λ

1−λ
, hk(t, 0) = (t+k−1

k

)
, and e�λ(t, ρk(0)) = (1 + λ

1−λ
)−t−k . Thus

we have

P[S(t, λ) = k] =
(
t + k − 1

k

)
λk(1 − λ)t , (3.10)

which we recognize as the negative binomial distribution.
If we let S : qZ → N0 be an qZ-Poisson process, then we get ρi (0) = 0 for all

i ∈ N , (�λ)(t) = −λ
1−(1−q)tλ , hk(t, 0) = tk

[k]q ! and e�λ(t, ρk(0)) = ∏∞
i=1(1−λt(1−

q)qi−1). Thus, we have

P[S(t, λ) = k] = (λt)k

[k]q ! Eq(−λt), (3.11)

which we recognize as the q-Poisson distribution or Euler distribution. For further
details about the Euler distribution, see [15].

The Erlang distribution have been generated on arbitrary time scale equipment of
delta calculus in [5]. They have examined the waiting times between any number of
events in the T-Poisson process. Similarly, it can be generated on arbitrary time scale
equipment of the nabla calculus. Let S : T → N0 be a T-Poisson process with rate λ.
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Let Tn be a random variable that denotes the time until the nth event. We have

1 − P[Tn ≤ t] = P[S(t, λ) < n] = P[Tn > t],

which implies

1 −
n−1∑
k=0

P[S(t, λ) = k] = P[Tn ≤ t]

and that motivates the following definition.

Definition 3.2 Let T be a time scale, S : T → N0 be a T-Poisson Process with
rate λ > 0. We say F(t; n, λ) is the T−Erlang cumulative distribution function with
parameters (n, λ) provided

F(t; n, λ) =
∞∑
k=n

(P[S(t, λ) = k]).

From the derivation, it is clear that the T−Erlang distribution models the time until
the nth event in the T−Poisson process. We would like to know the probability that
the nth event is in any subset of T. To this end, we introduce the T−Erlang PDF in
the next definition.

Definition 3.3 Let T be a time scale, S : T → N0 be a T− Poisson Process with rate
λ > 0. We say f (t; n, λ) is the T−Erlang PDF with parameters (n, λ). We can derive
it by appling Theorem 3.3 (ii) and Theorem 3.15 (iv), (viii) from [3] as:

f (t; n, λ) =
∞∑
k=n

(P[S(t, λ) = k])∇

=
∞∑
k=n

(−1)k
k−1∏
i=0

(�λ)(ρi (0))[hk(t, 0)e�λ(t, ρ
k(0))]∇

=
∞∑
k=n

(−1)k
k−1∏
i=0

(�λ)(ρi (0))[−λe�λ(ρ(t), ρk(0))hk(t, 0)

+ hk−1(t, 0)e�λ(ρ(t), ρk(0))]

= (−1)nhn−1(t, 0)e�λ(ρ(t), ρn(0))
n−1∏
i=0

(�λ)(ρi (0)).

Let T be a time scale and let T be a T−Erlang random variable with parameter (n, λ).

By choosing T = R, we have

f (t; n, λ) = λe−λt (λt)n−1

(n − 1)! , (3.12)
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which is recognized as the gamma distribution. If T = Z, then we have

f (t; n, λ) = λn(1 − λ)t−1 t n−1

(n − 1)! , (3.13)

which is recognized as the nabla discrete gamma distribution. For further details about
the nabla discrete gamma distribution, see [7].

If we choose the time scale T = qZ then we have

f (t; n, λ) = λn Eq(−qλt)
tn−1

[n − 1]q ! , (3.14)

which is recognized as q-gamma distribution or q-Erlang distribution of the second
kind (see [15]).

Let us to consider the T− Erlang distribution with parameter n = 1. By the above
discussion and Eq. (3.2), the PDF of this distribution is given by

f (t; 1, λ) = −P[S∇(t, λ) = 0]) = −(�λ)(t)e�λ(ρ(t), 0).

Let T be a time scale and let T be a T−Erlang random variable with parameter n = 1
and rateλ.Thenwe say T is aT−exponential randomvariablewith rateλ.Bychoosing
T = R, then we have

f (t; 1, λ) = λe−λt , (3.15)

which is recognized as the exponential distribution. Note that in this case ρ(t) = t . If
T = Z, then we have

f (t; 1, λ) = λ(1 − λ)t−1, (3.16)

which is recognized as the geometric distribution . If we choose the time scaleT = qZ,

then we have

f (t; 1, λ) = λEq(−qλt), (3.17)

which is recognized as q-exponential distribution of the second kind (see [15]). We
can easily extend the definition of the T-gamma distribution with parameters (n, λ) to
parameters (r , λ), where r > 0 is not necessarily a positive integer. This can be done
by substituting the gamma function as a natural generalization of factorial function in
the PDFs.

Remark There are also delta versions of the equations in Subsection 3.1 that are
analogous to the nabla duals of the Poisson process on time scales. The nabla and
delta duals of Poisson process on time scales are contained in Table 1.
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The alternative way to find pk(t) requires the probability generating function (PGF)
defined as ϕ(u, t) = ∑∞

k=0 u
k pk(t). A similar approach will be used in the follow-

ing section to solve the fractional generalized type of Eq. (3.8). Let us consider this
scenario. By taking the derivation of the PGF,

∇ϕ(u, t)

∇t
=

∞∑
k=0

uk p∇
k (t)

= (�λ)(t)p0(t) + (�λ)(t)
∞∑
k=1

uk
[
pk(t) − pk−1(t)

]

= (�λ)(t)p0(t) + (�λ)(t)
∞∑
k=1

uk pk(t) − (�λ)(t)u
∞∑
k=1

uk−1 pk−1(t)

= (�λ)(t)
∞∑
k=0

uk pk(t) − (�λ)(t)u
∞∑
k=1

uk−1 pk−1(t)

= (�λ)(t) (1 − u)

∞∑
k=0

uk pk(t).

By solving this differential equation, the following result is obtained:

ϕ(u, t) = e�λ(1−u)(t, 0).

Using the property of the PGF, we have

pk(t) = 1

k!
∂kϕ(u, t)

∂uk
|u=0.

Similarity, one can obtain the solution (3.8) by induction. Note that when we work
with quantum time scale, the recent formula is of the form

pk(t) = 1

[k]q !
∂kϕ(u, t)

∂quk
|u=0.

3.2 Simulation study

In this subsection we conduct a simulation study in order to compare nabla and delta
calculus of the observed distributions. We simulate 100 samples of size 500. For
the simulated data set, we estimated parameters of the distributions from Table 1,
and calculate their log-likelihood functions. The parameters estimation is obtained
using the maximum likelihood method. Thus, for an observed sample {x1, . . . , xk},
the maximization of the following log-likelihood function:
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Table 1 Summary of the PDFs of T-distributions on time scales equipment of ∇-calculus and �-calculus

T-distribution ∇-calculus �-calculus Authors

R-Poisson (λt)k

k! e−λt (λt)k

k! e−λt Eq. (3.9), [5]

Z-Poisson
(t+k−1

k
)
λk (1 − λ)t

(t
k
)
( λ
1+λ

)k ( 1
1+λ

)t−k Eq. (3.10), [5]

qZ-Poisson (λt)k

[k]q ! Eq (−λt) qk(k−1)/2(λt)k

[k]q ! eq (−λt) Eq. (3.11)

R-Erlang λe−λt (λt)n−1

(n−1)! λe−λt (λt)n−1

(n−1)! Eq. (3.12), [5]

Z-Erlang λn(1 − λ)t−1 t n−1

(n−1)! λn(1 + λ)−t−1 t
n−1

(n−1)! [7] and [7]

qZ-Erlang λn Eq (−qλt) tn−1

[n−1]q ! λneq (−λt) q
n(n−1)/2tn−1

[n−1]q ! Eq. (3.14)

R-exponential λe−λt λe−λt Eq. (3.15), [5]

Z-exponential λ(1 − λ)t−1 λ(1 + λ)−t−1 Eq. (3.16), [5]

qZ-exponential λEq (−qλt) λeq (−λt) Eq. (3.17)

Table 2 Estimated parameters with the standard deviation in the brackets and the values of the obtained
log-likelihood functions for Poisson PDFs of ∇-calculus and �-calculus

Distribution Estimated parameters Log-likelihood

Z-Poisson (∇-calculus) λ = 0.073(0.005), t = 4.997(0.002) -406.33

Z-Poisson (�-calculus) λ = 0.059(0.031), t = 7.841(0.724) -405.67

qZ-Poisson (∇-calculus) λ = 0.447(0.133), t = 4.007(1.469), q = 0.986(0.001) -214.01

qZ-Poisson (�-calculus) λ = 0.436(0.157), t = 4.323(1.401), q = 0.986(0.003) -219.27

L =
k∑

i=1

ln( f (xi ; θ)),

has been conducted, where θ is the vector of distribution parameters, and f (x; θ) is the
considered probability function. Themaximization procedure is obtained numerically,
using the programming language R.

For the group of Poisson probability functions, we simulated data set using the
Poisson distribution P(μ), where we set μ = 0.4. The obtained results of Z-Poisson
and qZ-Poisson distributions are given in Table 2.

Further, for the case of the Erlang distributions, we simulated data set by the Erlang
distribution with shape parameter n = 5 and rate parameter λ = 0.4. Table 3 contains
the results of Z-Erlang and qZ-Erlang distributions, where the estimated parameters
and log-likelihood functions are presented.

Finally, the data set for the family of exponential distribution is generated with
exp(λ), where the parameter is set to be λ = 0.4. The estimated parameters and
values of the log-likelihood function for Z-exponential and qZ-exponential are given
in Table 4.
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Table 3 Estimated parameters with the standard deviation in the brackets and the values of the obtained
log-likelihood functions for Erlang PDFs of ∇-calculus and �-calculus

Distribution Estimated parameters Log-likelihood

Z-Erlang (∇-calculus) λ = 0.327(0.012), n = 4.699(0.001) −1297.06

Z-Erlang (�-calculus) λ = 0.434(0.021), n = 4.598(0.002) −1415.19

qZ-Erlang (∇-calculus) λ = 0.343(0.066), n = 5.537(0.413), q = 0.981(0.031) −568.01

qZ-Erlang (�-calculus) λ = 0.449(0.057), n = 5.103(0.024), q = 0.997(0.001) −270.91

Table 4 Estimated parameters with the standard deviation in the brackets and the values of the obtained
log-likelihood functions for exponential PDFs of ∇-calculus and �-calculus

Distribution Estimated parameters Log-likelihood

Z-exponential (∇-calculus) λ = 0.399(0.015) −842.74

Z-exponential (�-calculus) λ = 0.402(0.018) −1045.31

qZ-exponential (∇-calculus) λ = 0.403(0.001), q = 0.992(0.020) −560.66

qZ-exponential (�-calculus) λ = 0.404(0.004), q = 0.991(0.011) −560.02

From Table 2, we can see that the Z-Poisson distribution derived from nabla and
delta calculus provide very similar results. It seams as there are some offset of the
estimates. But if we take into consideration that the initial derivation starts with rate
μ, whereμ = λt , thenwe can conclude that the estimated parameters provide estimate
for the parameter μ equally close to its real value 0.4. Regarding the Z-Poisson distri-
bution, there is no obvious differences between the obtained results. A slightly better
log-likelihood value is achieved with the nabla calculus, while the standard errors of
the estimates are quite similar.

According to the values of the log-likelihood functions, Table 3 implies that fitting
the Erlang distributions is slightly better with nabla calculus of Z-Erlang, and delta
calculus of qZ-Erlang. Although, the estimated parameters are close to the real values
in all cases.

Results from Table 4 suggest that nabla calculus of Z-exponential gives slightly
better fit of the simulated data, while there is no differences for the qZ-exponential
distribution functions. The estimated parameters are quite close to the real values, with
the very small standard error of the estimates.

Finally, we can conclude that fitting data looks pretty similar and equally adequate
with both nabla and delta calculus of the observed probability functions.

4 Fractional Duals of Poisson Process on Time Scales

APoisson process is a stochastic process that represents the number of events occurring
in a fixed interval of time or space. It has the property of memory-lessness, meaning
that the number of events in non-overlapping intervals are independent. A fractional
Poisson process is a generalization of the Poisson process that allows for events to
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exhibit long-range dependence. The exponential density of the inter-arrival times of
the Poisson process is replaced by the corresponding density of the fractional Pois-
son process, which depends on the (two-parameter) Mittag-Leffler function. For some
complete references, see [45–47] to earlier developments on the fractional extension
of the Poisson process. This subsection is devoted to the derivation of fractional Pois-
son, Erlang and exponential distribution functions, where both ∇ and �-calculus are
considered.

4.1 Derivation

Substituting Riemann-Liouville fractional derivative (see Section 2 of this paper) in
Equation (3.7), the fractional generalized type of this equation is obtained:

Dα pα
k (t) = (�λ)(t)

[
pα
k (t) − pα

k−1(t)
] + δk,0δ(t), (4.1)

where δ(t) is the Dirac delta function on time scale and pα−1(t) = 0.Note that for α =
1, this equation coincides with the equation governing Equation (3.7). Considering

Dα1 = Dα
∞∑
k=0

pα
k (t)

=
∞∑
k=0

{
(�λ)(t)

[
pα
k (t) − pα

k−1(t)
] + δk,0δ(t)

}

= (�λ)(t)
∞∑
k=0

pα
k (t) − (�λ)(t)

∞∑
k=1

pα
k−1(t) + δk,0δ(t)

= (�λ)(t)
∞∑
k=0

pα
k (t) − (�λ)(t)

∞∑
k=0

pα
k (t) + δ(t)

= δ(t),

and applying the definition of Riemann-Liouville fractional derivative, the Dirac delta
function on time scale can be obtained as

Dα1 = DI1−α1 =
∫ t

0
h−α(t, ρ(τ ))∇τ = h−α(t).

Substituting δ(t) Riemann-Liouville fractional derivative in Eq. (4.1), we have:

Dα pα
k (t) = (�λ)(t)

[
pα
k (t) − pα

k−1(t)
] + δk,0h−α(t).

To obtain pα
k (t), we use the PGF as following:

Dαϕα(u, t) = Dα
∞∑
k=0

uk pα
k (t)
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=
∞∑
k=0

uk(�λ)(t)
[
pα
k (t) − pα

k−1(t)
]

+
∞∑
k=0

δk,0u
kh−α(t)

= (�λ)(t)
∞∑
k=0

uk pα
k (t) + h−α(t)

= (�λ)(t)(1 − u)ϕα(u, t) + h−α(t).

This leads us to the following fractional differential equation

Dαϕα(u, t) = (�λ)(t)(1 − u)ϕα(u, t) + h−α(t).

To solve this equation, by taking the Laplace transform of the above equation we have

L {Dαϕα(u, t), s
} = L {(�λ)(t)(1 − u)ϕα(u, t) + h−α(t), s} .

By considering Lemma 22 and Definition 16 from [13],

sαϕ̃α(u, s) = (�λ)(t)(1 − u)ϕ̃α(u, s) + sα−1,

hence,

ϕ̃α(u, s) = sα−1

sα − (�λ)(t)(1 − u)
.

On the other hand, the Laplace transform of Mittag-Leffler function is obtained as

L {Eα((�λ)(t)(1 − u); t, 0), s} = sα−1

sα − (�λ)(t)(1 − u)
,

where the uniqueness of Laplace transform leads to

ϕα(u, s) = Eα((�λ)(t)(1 − u); t, 0) := Eα((�λ)(t)(1 − u)).

Using the property of the PGF, we have

pα
k (t) = 1

k!
∂kϕα(u, t)

∂uk
|u=0

= 1

k!
∂kEα((�λ)(t)(1 − u))

∂uk
|u=0

= ((−�λ)(t))k

k! E(k)
α ((�λ)(t)),
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where E(k)
α ((�λ)(t)) is kth derivation of the Mittag-Leffler function,

E(k)
α ((�λ)(t)) =

∞∑
n=0

(k + n)!
n! ((�λ)(t))n hα(k+n).

Thus, we obtain the probability mass function (PMF) of fractional Poisson process
as:

pα
k (t) = ((−�λ)(t))k

k!
∞∑
n=0

(k + n)!
n! ((�λ)(t))n hα(k+n).

This derivation motivates a general definition of the fractional Poisson process on time
scales as follows:

Definition 4.1 Let T be a time scale. We say Sα : T → N0 is a fractional T−Poisson
process with rate λ > 0 if for t ∈ T and k ∈ N0,

P[Sα(t, λ) = k] = ((−�λ)(t))k

k!
∞∑
n=0

(k + n)!
n! ((�λ)(t))n hα(k+n).

By fixing t ∈ T, a distribution of the number of arrivals at t is generated. Three kinds
of time scales are considered: R,Z and qZ.

Let Sα : R → N0 be an fractional R−Poisson process. Considering (�λ)(t) = −λ

for all t ∈ R, and hk(t) = tk
k! , we have

P[Sα(t, λ) = k] = (λ)k

k!
∞∑
n=0

(k + n)!
n! (−λ)n

tα(k+n)


(α(k + n) + 1)

= (λtα)k

k!
∞∑
n=0

(k + n)!
n! (−λ)n

tαn


(α(k + n) + 1)

= (λtα)k

k! E (k)
α (−λtα), (4.2)

which is recognized as the fractional Poisson distribution, where E (k)
α (.) is the kth

derivation of Mittag-Leffler function on T = R. Note that Eα(z) = Eα,1(z) is
an special case of the ordinary Mittag-Leffler function defined with Eα,β(z) =∑∞

n=0
znα


(nα+β)
.

Now, let Sα : Z → N0 be a fractional Z-Poisson process. In this case (�λ)(t) =
−λ
1−λ

:= −μ, hk(t) = t k


(k+1) , and thus we have

P[Sα(t, λ) = k] = 1

k!
(

λ

1 − λ

)k ∞∑
n=0

(k + n)!
n!

( −λ

1 − λ

)n t
α(k+n)


(α(k + n) + 1)
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= μk

k!
∞∑
n=0

(k + n)!
n! (−μ)n

t
α(k+n)


(α(k + n) + 1)

= μk

k! E
(k)
α

(−μ, t), (4.3)

which is recognized as the fractional nabla Poisson distribution and E (k)
α

(., .) is the
kth derivation of nabla Mittag-Leffler function [8, 14]. Obviously, based on Eq. (2.1),
one can easily see E

α
(z) = E

α,1
(z) is a special case of the nabla Mittag-Leffler

function defined with E
α,β

(λ, z) = ∑∞
n=0

λn z nα+β−1


(αk+β)
. Also, E α,β (λ, z) is the delta

Mittag-Leffler function [8].
If Sα : qZ → N0 is a fractional qZ-Poisson process, then we get (�λ)(t) =
−λ

1−(1−q)tλ := −ν(t), hk(t, 0) = tk
[k]q ! and thus we have

P[Sα(t, λ) = k] = 1

[k]q !
(

λ

1 − (1 − q)tλ

)k ∞∑
n=0

[k + n]q !
[n]q !

( −λ

1 − (1 − q)tλ

)n

× tα(k+n)


q(α(k + n) + 1)

= (ν(t)tα)k

[k]q !
∞∑
n=0

[k + n]q !
[n]q ! (−ν(t))n

tαn


q(α(k + n) + 1)

= (ν(t)tα)k

[k]q ! q E
(k)
α (−ν(t)tα), (4.4)

which is recognized as the fractional nabla q−Poisson distribution and q E
(k)
α (.) is

the kth derivation of nabla quantum Mittag-Leffler function [12]. Note that based on
Equation (2.1), we can easily find that q Eα(λ, z) =q Eα,1(λ, z) is an special case
of the quantum Mittag-Leffler function defined with q Eα,β(λ, z) = ∑∞

n=0
λn znα


q (αk+β)
.

Also, q−1Eα,β(λ, z) =q eα,β(λ, z).

Remark There are delta forms of the equations in Subsection 4.1 that are analogous to
the nabla duals of fractional Poisson processes on time scales with nabla calculus. The
nabla and delta duals of the fractional Poisson process on time scales are contained in
Table 5.

Similarly, we can define a fractional type of T−Erlang distribution. Let T be a time
scale, Sα : T → N0 be a fractional T-Poisson Process with rate λ > 0. We say
Fα(t; n, λ) is the fractional T−Erlang cumulative distribution function with shape
parameter n and rate λ provided

Fα(t; k, λ) =
∞∑
k=n

P[Sα(t, λ) = k] =
∞∑
k=n

(
((−�λ)(t))k

k!
∞∑
n=0

(k + n)!
n! ((�λ)(t))n hα(k+n)

)
,
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with f (t; n, λ) as the fractional T−Erlang PDF with shape parameter n and rate λ.
Hence,

f α(t; k, λ) =
∞∑
k=n

(
P[Sα(t, λ) = k])∇

=
(
((−�λ)(t))k

)∇

k!
∞∑
n=0

(
(k + n)!

n! ((�λ)(t))n hα(k+n)

)

+ ((−�λ)(t))k

k!
∞∑
n=0

(k + n)!
n!

×
[(

((−�λ)(t))n
)∇

hα(k+n) + ((−�λ)(t))nhα(k+n)−1

]
.

When T = R or T = Z, the term (�λ)(t) is a constant value and it can be written
with a simple way. Then, by choosing T = R, we have

f α(t; k, λ) =
∞∑
k=n

(
P[Sα(t, λ) = k])∇

=
∞∑
k=n

λk

k!
∞∑
n=0

(k + n)!(−λ)ntα(k+n)−1α(k + n)

n!
(α(k + n) + 1)

=
∞∑
k=n

αkλk

k!
∞∑
n=0

(k + n)!(−λ)ntα(k+n)−1

n!
(α(k + n) + 1)

+
∞∑
k=n

αλk

k!
∞∑
n=0

n(k + n)!(−λ)ntα(k+n)−1

n!
(α(k + n) + 1)

= (λtα)k

k!
∞∑
n=0

(k + n)!(−λtα)n

n!
(α(k + n) + 1)

= αλk tαk−1

(k − 1)! E (k)
α (−λtα)

or

f α(t; n, λ) = λk tαk−1

(k − 1)!
∞∑
n=0

(k + n − 1)!(−λtα)n

n!
(αk + αn)
= λk

tαk−1

(k − 1)! E
(k−1)
α,α (−qλtα),

(4.5)

which is recognized as the fractional gamma distribution. By the same way, if T = Z,
we have

f α(t; k, λ) = μk

(k − 1)!
∞∑
n=0

(k + n − 1)!(−μ)nt
α(k+n)−1

n!
(αk + αn)
= μk

(k − 1)! E
(k−1)
α,α

(−μ, t),

μ = λ

1 − λ
, (4.6)
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which is recognized as nabla fractional gamma distribution. If we choose the time
scale T = qZ, we have

f α(t; k, λ) = ν(t)k tαk−1

[k − 1]q !
∞∑
n=0

(k + n − 1)!(−qν(t)tα)n

n!
q(αk + αn)

= (ν(t))k
tαk−1

[k − 1]q ! q E
(k−1)
α,α (−qν(t)tα), ν(t) = λ

1 − (1 − q)tλ
,

(4.7)

which is recognized as fractional q-gamma distribution or fractional q-Erlang distri-
bution of the second kind.

Similarly and obviously, if we consider the fractional T−Erlang distribution with
shape parameter k = 1, we get a fractional T−exponential random variable with rate
λ. The PDFs of fractional T−exponential random variable are mentioned in Table 5.

Remark There are alternative delta kinds of fractional Poisson processes on time
scales, which are comparable to their nabla duals. Both of nabla and delta duals of
Poisson process on time scales are contained in Table 5.

4.2 Simulation study

Similarly as in Subsection 3.2 we compare the behaviour of the discussed distribution
function on simulated data sets. The distribution functions that we observe here are
summarized in Table 5. The data sets contains 100 samples of size 500, generated with
the appropriate distributions. Similarly as before, we employ the maximum likelihood
method for the parameter estimation, and the maximization procedure is conducted
numerically.

For the group of F. Poisson distribution functions, the simulated data set is obtained
with R-F. Poisson PMF, where the parameter values are set to λ = 0.4, t = 0.9
and α = 0.3. The estimated parameters together with their standard deviation and
the log-likelihood values for Z-F. Poisson and qZ-F. Poisson distributions are given
in Table 6. From the presented results we can conclude that ∇ and �-calculus of
Z-F. Poisson provide quite similar results inmodeling the observed data set. The values
of log-likelihood function are almost the same and the deviations of the estimates
from true values are very similarly. A little bit different conclusion can be made for
qZ-F. Poisson, where the log-likelihood of the ∇ function is bigger.

Further, the F-Erlang distribution is simulated by using theR-F. Erlang distribution
function from Table 5, where the parameters take values λ = 0.4, n = 2 and α = 0.3.
The results are summarized in Table 7 for Z-F. Erlang and qZ-F. Erlang distributions.
From Table 7 we can make similar conclusion for both ∇ and �-calculus. While the
Z-F. Erlang provide a bit better results for �-calculus, the qZ-F. Erlang appears to be
better with ∇-calculus.

Finally, R-F. exponential distribution was used to simulate the data set, where the
parameter values are λ = 0.4 and α = 0.3. Table 8 contains the results for qZ-
F .exponential and qZ-F .exponential distributions. The presented results suggest that
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Table 6 Estimated parameters with the standard deviation in the brackets and the values of the obtained
log-likelihood functions for F. Poisson PDFs of ∇-calculus and �-calculus

Distribution Estimated parameters Log-likelihood

Z-F.Poisson (∇-calculus) λ = 0.314(0.062), t = 0.895(0.011), α = 0.442(0.347) −371.31

Z-F.Poisson (�-calculus) λ = 0.267(0.031), t = 0.841(0.438), α = 0.323(0.191) −370.03

qZ-F.Poisson (∇-calculus) λ = 0.487(0.088), t = 0.864(0.055), −297.64

α = 0.307(0.078), q = 0.967(0.001)

qZ-F.Poisson (�-calculus) λ = 0.411(0.079), t = 0.904(0.091), −378.67

α = 0.288(0.095), q = 0.943(0.039)

Table 7 Estimated parameters with the standard deviation in the brackets and the values of the obtained
log-likelihood functions for F. Erlang PDFs of ∇-calculus and �-calculus

Distribution Estimated parameters Log-likelihood

Z-F.Erlang (∇-calculus) λ = 0.362(0.027), n = 1.997(0.001), α = 0.232(0.057) −1407.21

Z-F.Erlang (�-calculus) λ = 0.401(0.031), n = 1.985(0.002), α = 0.399(0.029) −1333.91

qZ-F.Erlang (∇-calculus) λ = 0.499(0.006), n = 1.988(0.013), −1004.07

α = 0.399(0.043), q = 0.769(0.131)

qZ-F.Erlang (�-calculus) λ = 0.499(0.003), n = 1.983(0.011), −1144.61

α = 0.363(0.091), q = 1.038(0.203)

Table 8 Estimated parameters with the standard deviation in the brackets and the values of the obtained
log-likelihood functions for F.exponential PDFs of ∇-calculus and �-calculus

Distribution Estimated parameters Log-likelihood

Z-F.exponential (∇-calculus) λ = 0.402(0.018), α = 0.239(0.059) −1174.75

Z-F.exponential (�-calculus) λ = 0.424(0.021), α = 0.399(0.048) −1235.41

qZ-F.exponential (∇-calculus) λ = 0.405(0.001), α = 0.307(0.066), q = 0.984(0.012) −211.13

qZ-F.exponential (�-calculus) λ = 0.585(0.106), α = 0.473(0.059), q = 0.989(0.001) −334.01

the ∇-calculus provides the higher values of the log-likelihood function. While the
estimated values are close to the real ones, in both cases, it can be said that the estimates
of ∇-calculus are closer.

5 The S-box design

Diffusion and confusion are fundamental concepts in cryptography [19]. The Data
Encryption Standard (DES) [20] and the Advanced Encryption Standard (AES) [21]
are traditional cryptographic standards that utilize S-boxes for the confusion process.
Enhancing the complexity of the S-box formation processwith newer andmore diverse
methods makes it harder to reverse-engineer. In simpler terms, the S-box incorporates
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random numbers generated in various ways. These numbers are generated in two pri-
mary methods: True Random Number Generators (TRNGs) that generate numbers
based on physical noise, ensuring they are statistically random and entirely unpre-
dictable. On the other hand, Pseudo Random Number Generators (PRNGs) produce
numbers that seem statistically random but are actually predictable. In the realm of
Pseudo-Random Number Generation (PRNG), recent advancements have focused on
increasing the key space of chaoticmaps and enhancing their dynamic complexity [22–
32]. While this aspect is crucial for combating side-channel attacks [33], challenges
arise in implementing chaos-based encryptions [34]. Some approaches involve solv-
ing the chaotic cyclic problem using stochastic models [35]. Combining both methods
appears to enhance performance in certain scenarios. Chaotic S-boxes exhibit a high
maximum probability of differential approximation, as assessed through the Differ-
ence Distribution Table (DDT) for differential cryptanalysis. Reference [36] describes
a systematic approach for designing chaotic S-boxes, leveraging the DDT, suitable for
integration into multimedia encryption algorithms. The design process incorporates
the DDT to enhance the differential approximation probability. This reference demon-
strates a nonlinearity average of 104, while ourmethod for producing S-boxes achieves
a higher nonlinearity average value. Reference [37] introduces an innovative approach
for constructing a S-box or Boolean function for block ciphers. This method involves
utilizing Gaussian distribution and linear fractional transformation. This reference
shows an average Strict Avalanche Criterion (SAC) value of 0.503662, while our S-
Box production method achieves an average SAC value closer to 0.5. Reference [31]
introduces a novel approach to constructing a robust initial S-box based on the chaotic
Rabinovich–Fabrikant fractional order (FO) system. The method involves utilizing
numerical results from the FO chaotic Rabinovich–Fabrikant system with specific
parameters computed using the four-step Runge Kutta method or Adams–Bashforth–
Moulton method. Additionally, a new key-based permutation technique is proposed
to improve the initial S-box’s functionality and create the final S-box. This reference
evaluates the performance of both the initial and final S-boxes. While it enhances the
nonlinearity in thefinal S-box, itmakes resultsworse in theSAC,BIC-nonlinearity,DP,
and LP. In comparison, the S-box production method proposed in this paper appears to
offer better results for non-linear SAC and BIC-nonlinearity. Reference [32] worked
on generating high nonlinearity S-boxes using cellular automata logic and a chaotic
tent map initialization method. In comparison, the proposed S-box has better SAC and
BIC-nonlinearity. Because of the randomly distributed noise, the main attention is on
the (TRNGs) that utilize an innovative approach to enhance randomness and reduce
area utilization. This approach entails generating random values from the PDFs of
fractional models, which are more adaptable stochastic models. This method enables
the creation of diverse types of S-boxes. The dependence of the supports of fractional
distributions on their parameters renders them highly flexible and valuable for various
applications, including S-box creation, where modeling plays a crucial role. This fact
is applied to introduce a powerful approach to construct S-boxes by using fractional
and non-fractional stochastic models by the authors in [38], and then the resulting S-
box served as a foundation for achieving a highly secure image encryption. Basically,
a PDF offers greater flexibility compared to a pure linear transformation or a random
variable as it encompasses its associated random variable and parameters. Therefore,
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we generate random values from the PDF. Originally, this task was successfully com-
pleted using Mathematica 11.0.1, and all random values were generated newly with
this software. The proposed algorithm was implemented on Windows 10 Pro, 22H2
version, with 2.20 GHz Gen Intel core and 2.00 GB RAM. In reference [38], normal
and fractional stochastic models were utilized to construct S-boxes. In comparison, the
models introduced in this paper exhibited superior performance, likely attributable to
the generation of higher-quality random numbers. As the creation of S-boxes remains
an ongoing challenge [39], this paper represents a new endeavor to explore additional
avenues for producing enhanced S-boxes. Indeed, the pursuit of generating superior
random numbers to enhance cryptographic performance has long been a challenge
for both attackers and security experts. The performance of S-boxes has been tested
by common attacks, such as nonlinearity, strict avalanche criterion, bit independence
criterion, linear approximation probability, and differential approximation probability.

In this section, we intend to use the stochastic numbers generated with different
PDFs from Table 1 and Table 5, and to form new S-boxes. Table 9 provides a list of
suggested S-boxes generated from these PDFs. Then, we analyze and compare the
obtained values with each other and with the results from other relevant papers. The
proposed algorithm is implemented on the Ubuntu 22.04.2 LTS platform with 12th
Gen Intel core i9- 12900K and 125 GB RAM using MATLAB R2021b.

5.1 The stochastic S-box

The substitution box is defined mathematically as:

S : {0, 1}n → {0, 1}m .

All steps of the stochastic S-box algorithm are:

Step 1: Enter the parameters of stochastic models.
Step 2: Create the probability distribution for stochastic model.
Step 3: Create 1500 random number from the probability distribution.
Step 4: The A(i) numbers can be defined as follow:

A(i) = abs(RN (i) ∗ 106mod256)

Step 5: Create an empty 16 ∗ 16 box.
Step 6: Select random number from A(i).
Step 7: Put this number as a S-box number.

S(e) = A(i)

Step 8: If S(e) exists in the S-box, it goes to Step 6.
Step 9: Put S(e) in the S-box table and continue until the entire box is full.

Step 10: Calculate the nonlinearity.
Step 11: Save the nonlinearity and S-box.
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Fig. 1 S-box creation algorithm

The S-box flowchart is drawn in Figure 1. Tables 10 and 11 show the best S-boxes
produced from the stochastic models from Tables 1 and 5, respectively.

5.2 The analysis of S-box

In this subsection, the S-box Table 10 and Table 11 are evaluated using the following
criteria:

• Nonlinearity:
The most property of the S-box is high nonlinearity. By considering that the affine
functions are weak in cryptography, the similarity of the Boolean function vari-
able of S-box can be measured with the affine variable. The nonlinearity can be
calculated as

N = 2n−1 − 1

2
max
a∈Bn

∣∣∣∣∣
∑
x∈Bn

(−1) f (x)+a.x

∣∣∣∣∣ ,

where B = {0, 1}, f : Bn → B, a ∈ Bn and a.x is the dot product between a and
x [40]. Nonlinearities of related eight Boolean functions to the suggested S-box
are 107, 108, 105, 102, 105, 105, 105, and 108.

• Strict avalanche criterion (SAC):
SAC is defined by [41], where a change in one bit in the Boolean function’s input

123



Fractional Duals of the Poisson Process on Time Scales... Page 27 of 36 145

Table 9 Suggested S-box
designs

Suggested S-box values generated by

S-box1 of Table 1 R−Poisson.

S-box2 of Table 1 Z−Poisson(delta version)

S-box3 of Table 1 Z−Poisson(nabla version)

S-box4 of Table 1 qZ−Poisson(delta version)

S-box5 of Table 1 qZ−Poisson(nabla version)

S-box6 of Table 1 R−Erlang

S-box7 of Table 1 Z−Erlang(delta version)

S-box8 of Table 1 Z−Erlang(nabla version)

S-box9 of Table 1 qZ−Erlang(delta version)

S-box10 of Table 1 qZ−Erlang(nabla version)

S-box11 of Table 1 R−exponential

S-box of Table 1 Z−exponential(delta version)

S-box12 of Table 1 Z−exponential(nabla version)

S-box13 of Table 1 qZ−exponential(delta version)

S-box14 of Table 1 qZ−exponential(nabla version)

S-box1 of Table 5 R−F.Poisson

S-box2 of Table 5 Z−F.Poisson(delta version)

S-box3 of Table 5 Z−F.Poisson(nabla version)

S-box4 of Table 5 qZ−F.Poisson(delta version)

S-box5 of Table 5 qZ−F.Poisson(nabla version)

S-box6 of Table 5 R−F.Erlang

S-box of Table 5 Z−F.Erlang(delta version)

S-box7 of Table 5 Z−F.Erlang(nabla version)

S-box8 of Table 5 qZ−F.Erlang(delta version)

S-box9 of Table 5 qZ−F.Erlang(nabla version)

S-box10 of Table 5 R−F.exponential

S-box11 of Table 5 Z−F.exponential(delta version)

S-box12 of Table 5 Z−F.exponential(nabla version)

S-box13 of Table 5 qZ−F.exponential(delta version)

S-box14 of Table 5 qZ−F.exponential(nabla version)

changes half of the output bits. Passing this test occurs successfully when the value
of SAC is 0.5. The dependence matrix of suggested S-box is calculated based on
this definition. This matrix is seen in Table 12.

• Bit independence criterion (BIC):
The definition of a desirable feature for any encryption transformation for S-box
analysis, is the output bits independence criterion (BIC)[41]. In another words,
BIC measures the independence of the avalanche vectors sets [42]. We calculated
the BIC-nonlinearity and BIC-SAC based on [41]. These results are contained in
Tables 13 and 14, respectively.
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Table 10 Suggested S-box for the stochastic model of the Table 1

233 14 229 60 5 230 9 167 140 182 88 106 102 222 105 161

2 34 175 96 156 224 227 71 243 228 155 24 202 203 240 190

128 108 133 245 73 101 216 248 211 163 212 158 54 149 33 232

173 193 19 132 250 206 112 84 195 180 142 170 138 78 36 0

214 22 184 186 207 4 153 39 110 238 58 62 235 219 205 119

67 234 162 53 40 1 178 90 139 103 246 157 72 134 196 121

37 171 146 85 239 168 141 31 136 55 56 89 47 218 27 18

20 210 194 29 26 41 252 137 116 120 13 231 38 199 80 226

135 249 169 147 148 124 50 247 66 23 215 63 59 94 25 160

16 223 64 7 188 172 220 251 197 92 44 213 10 154 76 253

129 127 11 150 52 49 86 174 91 241 151 48 165 125 111 115

75 109 177 118 254 15 166 6 123 130 107 176 93 209 201 164

208 12 97 69 114 192 81 57 242 83 28 144 204 32 255 42

17 187 51 35 77 185 145 122 179 45 200 30 117 61 198 21

237 70 181 126 46 98 99 68 225 87 143 183 104 131 256 159

82 191 8 3 95 65 217 189 152 43 244 113 236 74 79 100

Table 11 Suggested S-box for the stochastic model of the Table 5

70 29 167 147 82 65 125 206 39 62 233 194 146 231 9 172

214 76 49 138 242 143 18 3 75 48 202 199 213 171 118 81

57 61 249 60 5 66 163 67 187 151 166 121 119 183 239 190

179 124 83 10 91 236 51 175 162 245 159 238 2 256 24 140

248 19 103 80 23 156 218 28 77 153 235 160 210 101 31 92

46 170 240 50 217 130 250 137 109 229 139 14 6 241 97 106

186 255 228 53 116 203 251 243 21 84 100 78 189 148 185 232

74 149 131 127 63 136 122 237 27 246 25 174 234 180 105 43

73 68 192 90 115 12 177 45 219 55 4 135 193 1 164 225

15 181 152 72 173 168 215 157 230 120 0 113 207 16 178 176

144 196 209 208 7 114 184 142 221 26 96 93 253 211 95 223

64 47 205 128 154 201 17 204 112 86 108 30 188 133 165 254

195 87 11 69 150 197 40 200 226 94 145 32 111 20 58 132

155 22 56 89 161 252 44 220 123 85 99 129 54 37 244 104

36 247 34 102 42 216 141 88 227 134 33 224 52 59 98 126

191 198 158 35 71 212 38 8 182 107 169 41 222 110 79 13

• Linear approximation probability (LP):
By considering a, b as the input and output masks, x as all the possible inputs, and
2n as the number of its elements, linear approximation probability (LP) [43] can
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Table 13 BIC-Nonlinearity
criterion for the best suggested
S-box

– 99 102 105 102 102 98 99

99 – 103 104 99 103 103 104

102 103 – 103 106 106 106 105

105 104 103 – 101 107 105 104

102 99 106 101 – 104 104 107

102 103 106 107 104 – 102 101

98 103 106 105 104 102 – 105

99 104 105 104 107 101 105 –

Table 14 BIC-SAC criteria for the best suggested S-box

– 0.531250 0.505859 0.492188 0.500000 0.500000 0.498047 0.541016

0.531250 – 0.505859 0.507813 0.494141 0.492188 0.515625 0.507813

0.505859 0.505859 – 0.470703 0.484375 0.503906 0.513672 0.500000

0.492188 0.507813 0.470703 – 0.476563 0.521484 0.523438 0.476563

0.500000 0.494141 0.484375 0.476563 – 0.509766 0.519531 0.503906

0.500000 0.492188 0.503906 0.521484 0.509766 – 0.523438 0.498047

0.498047 0.515625 0.513672 0.523438 0.519531 0.523438 – 0.517578

0.541016 0.507813 0.500000 0.476563 0.503906 0.498047 0.517578 –

Table 15 Differential approach
table of the best suggested
S-box. The maximum value is 12

8 6 8 6 8 8 6 6 6 6 8 6 6 6 6 6

8 8 8 8 6 4 6 8 6 6 12 8 6 6 10 6

6 6 6 6 6 6 8 6 6 8 6 8 6 6 8 8

6 6 6 8 6 8 6 6 8 10 8 6 6 6 6 8

6 6 8 10 6 6 6 6 6 6 6 6 6 8 6 8

6 6 6 6 8 8 6 8 8 8 8 8 8 6 8 6

8 6 8 6 6 6 6 4 6 6 8 6 8 8 6 6

8 6 6 8 6 6 10 6 6 6 6 6 6 6 6 8

8 10 8 6 8 6 6 6 6 10 6 8 8 8 6 6

6 6 8 10 8 6 10 6 6 6 8 8 6 6 6 8

6 10 8 8 8 10 8 10 6 6 8 8 6 6 6 10

6 8 6 6 8 6 6 6 6 6 6 8 6 8 8 6

6 6 8 8 6 6 6 6 6 6 6 10 8 6 6 6

6 8 6 6 6 6 8 6 8 6 6 8 6 6 6 6

8 6 8 8 8 6 6 8 8 8 6 6 6 6 8 6

6 6 8 6 8 8 6 6 6 8 6 6 8 8 8 –

be defined as:

LP = max
a,b 	=0

∣∣∣∣#{x |x .a = f (x).b}
2n − 0.5

∣∣∣∣ .
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In another words, the maximum value of imbalance in the event between input and
output bits is the LP. If this value is low, S-box resists against linear attacks.

• Differential approximation probability (DP):
Close distribution between the input and output bits in order to S-box resistant
against differential attacks is necessary. XOR operator between input and output
bits of S-box is calculated based on Biham and Shamir method [44]. In another
words, DP is:

DP = max
�x 	=0,�y

(#x ∈ X , fx ⊕ f (x + �x ) = �y/2
n),

where X is the set of all possible input values, and 2n shows the number of its
elements.

Table 15 exhibits a differential approach table for the suggested S-box. The max-
imum of this table represents DP. Tables 16 presents results of nonlinearity, SAC,
BIC and LP, DP for the suggested S-box and comparison with the results from other
relevant papers. The stochastic models for each S-box, whose results are summarized
in these tables, are given below:

As can be seen in Table 16, the nonlinearity average value for the suggested S-box
of Table 5 is better than the other models, and this value is also better than those stated
in [22, 23, 27], [38](case 1), [38](case 2), [31, 36](case 1), and [24]. According to
Table 16, the SAC value for the suggested S-box2 of Table 1 and S-box3 of Table 5
are better than the other models. These are also better than all previous references
except [38](case 3), [36]. According to Table 16, the BIC-SAC value of the suggested
S-box7, S-box9 and S-box14 of Table 5 are better than other models. This value is
also better than the previously mentioned references. Regarding the BIC-nonlinearity
value, as can be seen, the value of the suggested S-box4 of Table 5 is better than the
other models, and compared to the previous works, it is better than all the references
in the table except [27], [37], and AES. Considering Table 16, the LP value of the
suggested S-box3 and S-box4 of Table 1 are better than the other models. In addition,
this value is better compared to all the references in the table except [36], and [37],
and [24]. According to the DP values in Table 16, the DP values of the suggested
S-box2, S-box5, S-box7, S-box11, S-box12 of Table 1 and suggested S-box4, S-box5,
S-box6, S-box9, S-box11, S-box12 of Table 5 are better than the all other models.
Also, this value is better according to references [22, 23, 27], [31](case 2), [32], and
[24]. Additionally, this value is equal with other references except [36, 37], and AES.

Conclusion

Thiswork introduces two fractional andordinary extensions of the differential equation
that describes the Poisson process on an ordinary time scale. For both fractional and
ordinary, the nabla and delta types of calculus on a time scale are considered: (ordinary
or fractional) nabla Poisson processes, referring to the situation where applied time
scale for both fractional and ordinary differential equations are nabla calculus; and
(ordinary or fractional) delta Poisson processes, where both fractional and ordinary
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differential equations are described by using delta calculus. The obtained distributions
from the ordinary differential equations (delta or nabla types) include some cases
of power series distributions like Poisson, binomial, negative binomial, as well as
gamma (continuous and discrete types) and Euler distributions. Also, the obtained
distributions from fractional differential equations (delta or nabla types) include only
fractional poisson distribution as a known distribution, that is the most of obtained
distributions are new. For these obtained distributions (ordinary and fractional types),
new S-boxes are proposed and compared to the performance of S-boxes created in this
way.
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