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Abstract
The usual theory of negative type (and p-negative type) is heavily dependent on an
embedding result of Schoenberg,which states that ametric space isometrically embeds
in some Hilbert space if and only if it has 2-negative type. A generalisation of this
embedding result to the setting of bi-lipschitz embeddingswas given byLinial, London
andRabinovich. In this articlewe use this newer embedding result to define the concept
of distorted p-negative type and extend much of the known theory of p-negative type
to the setting of bi-lipschitz embeddings. In particular we show that a metric space
(X , dX ) has p-negative type with distortion C (0 ≤ p < ∞, 1 ≤ C < ∞) if and only
if (X , d p/2

X ) admits a bi-lipschitz embedding into some Hilbert space with distortion
at most C . Analogues of strict p-negative type and polygonal equalities in this new
setting are given and systematically studied. Finally, we provide explicit examples of
these concepts in the bi-lipschitz setting for the bipartite graphs Km,n .

Keywords Negative type · Hilbert space · Bi-lipschitz embedding

1 Introduction

The theory of embeddings of metric spaces has a long and rich history, with some
of the most classical results in this area dating back to Cayley [2] in the nineteenth
century. In this paper we will study isometric and bi-lipschitz embeddings of metric
spaces through the theory of p-negative type. The concept of p-negative type was
originally developed by Schoenberg [12] to study isometric embeddings of powers of
metric spaces into Hilbert space. Recently p-negative type has been the topic of much
research in areas such as mathematical analysis and theoretical computer science (see
[3–7] for a list of some of the applications of p-negative type to the isometric theory of
metric spaces). The definition of p-negative type is as follows (note that the definition
of strict p-negative type is due to Li and Weston in [7]).
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Note that here we use the term semi-metric space to mean a ‘metric’ space except
that we drop the requirement that the triangle inequality holds. All results in this
paper will hold for semi-metric spaces since they do not require the use of the triangle
inequality anywhere in their proofs.

Definition 1.1 Let (X , dX ) be a semi-metric space and 0 ≤ p < ∞. Then X is said
to have p-negative type if

n∑

i, j=1

dX (xi , x j )
pξiξ j ≤ 0

for all distinct x1, . . . , xn ∈ X , ξ1, . . . , ξn ∈ R with
∑n

i=1 ξi = 0 and n ≥ 2.
Furthermore, X is said to have strict p-negative type if equality holds only for ξ1 =
· · · = ξn = 0.

Central to the theory of p-negative type and its applications are the two following
classical results of Schoenberg [11, 12] (note that the first statement below provides
an isometric characterisation of subsets of Hilbert space).

Theorem 1.2 Let (X , dX ) be a semi-metric space and 0 ≤ p < ∞.

(1) X has p-negative type if and only if (X , d p/2
X ) isometrically embeds in some

Hilbert space.
(2) If 0 ≤ q < p and X has p-negative type then X also has strict q-negative type.

Note that the second statement in the above theorem implies that all of the values of
p-negative type that a semi-metric space (X , dX ) possesses are encoded in the largest
value s ≥ 0 such that X has s-negative type. Thus one is led to consider the quantity

℘X = sup{p ≥ 0 : X has p-negative type}

which is referred to as the supremal p-negative type of X . Note that since all the
sums that appear in the definition of p-negative type are finite sums a simple limiting
argument shows that if ℘X < ∞ then X also has ℘X -negative type. Consequently
the set of values s ≥ 0 such that a semi-metric space (X , dX ) has s-negative type is
always of the form [0, ℘X ] or [0,∞).

More recently, Linial, London and Rabinovich [9] have provided a similar char-
acterisation of those finite metric spaces that admit a bi-lipschitz embedding into
some Hilbert space with a given level of distortion. Bi-lipschitz embeddings of metric
spaces, and finite metric spaces in particular, have been studied extensively over the
last half-century or so. Originally such embeddings were studied from the perspective
of geometric analysis and Banach space theory. However, more recently the theory
of bi-lipschitz embeddings has been examined from the perspective of combinatorial
optimisation and theoretical computer science. This is in part due to Linial, London
and Rabinovich [9] who showed that many problems in optimisation could be solved
efficiently by considering bi-lipschitz embeddings of certain metric spaces into larger
host spaces, such as Hilbert or Banach spaces.

Let us now recall the definition of a bi-lipschitz embedding.
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Definition 1.3 Let (X , dX ) and (Y , dY ) be semi-metric spaces and 1 ≤ C < ∞.

(1) A map f : X → Y is said to have distortion at most C if there exists a (scaling
constant) s > 0 such that

sdX (x, y) ≤ dY ( f (x), f (y)) ≤ sCdX (x, y)

for all x, y ∈ X . The smallest such C for which this holds is denoted by dist( f )
(and if no such C exists we set dist( f ) = ∞). If dist( f ) < ∞ then we say that f
is a bi-lipschitz embedding.

(2) We denote by c(Y ,dY )(X , dX ) (or simply by cY (X)) the infimum of all constants
1 ≤ C ≤ ∞ such that there exists a map f : X → Y with dist( f ) ≤ C (where
again we allow the possibility that c(Y ,dY )(X , dX ) = ∞). When Y = �2, we
denote cY (X) simply by c2(X).

Remark 1.4 For our purposes, it is useful to say that a map f : (X , dX ) → (Y , dY ) is
an isometry if there exists some s > 0 such that dY ( f (x), f (y)) = sdX (x, y) for all
x, y ∈ X . Note that this is slightly more general than the usual definition of isometries
in the literature. However, one may note that the defintion of (strict) p-negative type
is invariant under this more general definition of isometry too. Moreover, with this
definition one has that dist( f ) = 1 if and only if f is an isometry. In this way we may
think of bi-lipschitz embeddings as a generalisation of isometries.

One of themain problems that one faces when dealingwith bi-lipschitz embeddings
of semi-metric spaces is how onemay embed the given space into the larger space with
as little distortion as possible. The most classical result along these lines is perhaps a
result of Bourgain [1], which states that any n point metric space admits a bi-lipschitz
embedding into R

n with distortion at most O(log n) (the use of the word ‘metric’ is
necessary here, since the result fails to hold in general for n point semi-metric spaces.).
In [9] Linial, London and Rabinovich provided an algorithmic proof of this result and
were able to show that this bound is attained for constant degree expander graphs (and
hence cannot be improved in general).

To state one of themain results of [9] we need to introduce a certain class ofmatrices
that will frequently appear throughout this paper. We will use Mn(R) to denote the
space of all real-valued n×n matrices. Using AT to denote the usual matrix transpose
of A and 〈·, ·〉 to denote the standard inner product on Rn , we then set

M+
n (R) = {A ∈ Mn(R) : AT = A and 〈Aξ, ξ 〉 ≥ 0,∀ξ ∈ R

n}.

That is, M+
n (R) is simply the set of all positive semidefinite matrices in Mn(R). We

will also use 1 to denote the vector inRm whose entries are all 1, wherem may depend
on the context. Finally, we put

On(R) = {Q ∈ M+
n (R) : Q1 = 0}.

The result we shall be using from [9] is the following one.
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Theorem 1.5 Let (X , dX ) = ({x1, . . . , xn}, dX ) be a finite semi-metric space and
C ≥ 1. Then X admits a bi-lipschitz embedding into R

n with distortion at most C if
and only if

∑

qi j>0

dX (xi , x j )
2qi j + C2

∑

qi j<0

dX (xi , x j )
2qi j ≤ 0

for all Q = (qi j )ni, j=1 ∈ On(R).

Our starting point for constructing an analogue of p-negative type that is compatible
with bi-lipschitz embeddings is Theorem 1.5. Indeed, we are now in a position to
provide our definition of distorted p-negative type, which is the main object of study
in this article.

Definition 1.6 Let (X , dX ) be a semi-metric space, 0 ≤ p < ∞ and 1 ≤ C < ∞.
Then X is said to have p-negative type with distortion C if

∑

qi j>0

dX (xi , x j )
pqi j + C2

∑

qi j<0

dX (xi , x j )
pqi j ≤ 0

for all distinct x1, . . . , xn ∈ X , Q = (qi j )ni, j=1 ∈ On(R) and n ≥ 2. Furthermore,
X is said to have strict p-negative type with distortion C if equality holds only for
Q = 0.

In Sect. 2 we prove that with the above definition of distorted p-negative type
many of the basic properties of the usual p-negative type also hold in this setting. In
Sect. 3 we are able to show that a finite semi-metric space X has strict p-negative type
with distortion C if and only if p < ℘X or C > c2(X , d p/2

X ). Finally, in Sect. 4 we
provide explicit examples of optimal distortion Euclidean embeddings of powers of
the bipartite graph Km,n . In doing so we are also able to provide explicit examples of
distorted polygonal equalities for these spaces as well as determine for which values
of p and C these spaces have (strict) p-negative type with distortion C .

2 Distorted p-Negative Type

Our first point of call is to show that when C = 1, the definition of (strict) p-negative
type with distortion C coincides with usual definition of (strict) p-negative type (see
Definition 1.1).

Proposition 2.1 Let (X , dX ) be a metric space and p ≥ 0. Then the following are
true.

(1) X has p-negative type if and only if X has p-negative type with distortion 1.
(2) X has strict p-negative type if and only if X has strict p-negative type with

distortion 1.
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Proof We will prove only the second statement, since the proof of the first statement
is more or less identical. First suppose that X has strict p-negative type with distortion
1. By definition, this means that

n∑

i, j=1

dX (xi , x j )
pqi j < 0

for all distinct x1, . . . , xn ∈ X , all nonzero Q = (qi j )ni, j=1 ∈ On(R) and n ≥ 2. Now,
suppose that n ≥ 2, x1, . . . , xn ∈ X are distinct and that ξ1, . . . , ξn ∈ R (not all zero)
with

∑n
i=1 ξi = 0. Setting Q = (ξiξ j )

n
i, j=1 it is a simple matter to check that Q 
= 0

and Q ∈ On(R). Hence, applying the above inequality to this particular choice of Q
gives that

n∑

i, j=1

dX (xi , x j )
pξiξ j =

n∑

i, j=1

dX (xi , x j )
pqi j < 0

which shows that X has strict p-negative type. Conversely, suppose that X has strict
p-negative type. Take distinct x1, . . . , xn ∈ X and a nonzero Q = (qi j )ni, j=1 ∈ On(R)

with rank(Q) = r . Since Q is positive semi-definite with Q1 = 0, we may write it
as Q = ∑r

k=1 Rk where each Rk is positive semi-definite with rank(Rk) = 1 and

Rk1 = 0. By basic linear algebra, for each 1 ≤ k ≤ r we can find ξ
(k)
1 , . . . , ξ

(k)
n ∈ R

(not all zero) with
∑n

i=1 ξ
(k)
i = 0 such that Rk = (ξ

(k)
i ξ

(k)
j )ni, j=1. Putting this all

togther, we have that

qi j =
r∑

k=1

ξ
(k)
i ξ

(k)
j

for all 1 ≤ i, j ≤ n. Hence

n∑

i, j=1

dX (xi , x j )
pqi j =

r∑

k=1

n∑

i, j=1

dX (xi , x j )
pξ

(k)
i ξ

(k)
j < 0

which shows that X has strict p-negative type with distortion 1. ��
Next we remark that the bi-lipschitz embedding theorem of Linial, London and

Rabinovich [9] can easily be extended to deal with infinite metric spaces also. This is
due to the following classical result which states that Hilbertian distortion is finitely
determined. A proof of the following proposition can be found in [13], for example.

Proposition 2.2 Let (X , dX ) be a semi-metric space and 1 ≤ C < ∞. Then (X , dX )

embeds in a Hilbert space with distortion at most C if and only if every finite subset
Y ⊆ X embeds in �2 with distortion at most C.

Combined with Theorem 1.5, this allows us to say the following.
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Theorem 2.3 Let (X , dX ) be a semi-metric space, 0 < p < ∞ and 1 ≤ C < ∞.
Then X has p-negative type with distortion C if and only if (X , d p/2

X ) embeds in a
Hilbert space with distortion at most C.

It is worth noting that for finite semi-metric spaces the definition of distorted p-
negative type simplifies somewhat, since there is no need to vary over all distinct
x1, . . . , xn ∈ X . This is a direct consequence of Theorems 1.5 and 2.3.

Theorem 2.4 Let (X , dX ) = ({x1, . . . , xn}, dX ) be a finite semi-metric space, 0 ≤
p < ∞ and 1 ≤ C < ∞. Then the following statements are equivalent in pairs.

(1) X has p-negative type with distortion C.
(2) (X , d p/2

X ) embeds in Rn with distortion at most C.
(3) The inequality

∑

qi j>0

dX (xi , x j )
pqi j + C2

∑

qi j<0

dX (xi , x j )
pqi j ≤ 0

holds for all Q = (qi j )ni, j=1 ∈ On(R).

An extremely useful corollary of the above theorem is the following formula for the
Euclidean distortion of a finite semi-metric space (this was first observed by Linial,
London and Rabinovich in [8]).

Corollary 2.5 Let (X , dX ) = ({x1, . . . , xn}, dX ) be a semi-metric space and 0 < p <

∞. Then

c2(X , d p/2
X )2 = max

{ ∑
qi j>0 dX (xi , x j )pqi j

−∑
qi j<0 dX (xi , x j )pqi j

: Q ∈ On(R), Q 
= 0

}
.

We now show that distorted p-negative type satisfies a simple nesting result.

Proposition 2.6 Let (X , dX ) be a semi-metric space, 0 < p < ∞ and 1 ≤ C1 <

C2 < ∞. If X has p-negative type with distortion C1 then X has strict p-negative
type with distortion C2.

Proof Take n ≥ 2, distinct x1, . . . , xn ∈ X and Q = (qi j )ni, j=1 ∈ On(R) with
Q 
= 0. Now, since Q ∈ M+

n (R), note that 〈Qξ, ξ 〉 = 0 if and only if Qξ = 0. One
direction is obvious. For the other, use the existence of the square root Q1/2. Then
〈Qξ, ξ 〉 = 0 implies that ‖Q1/2ξ‖22 = 〈Qξ, ξ 〉 = 0 and so Q1/2ξ = 0, and thus
Qξ = Q1/2(Q1/2ξ) = 0. Also, by linearity, since Q 
= 0 there exists some 1 ≤ k ≤ n
such that Qek 
= 0, and so 〈Qek, ek〉 > 0. Since Q1 = 0 this means there exists some
i 
= j such that qi j < 0 and since i 
= j we also have that qi j dX (xi , x j )p < 0. Hence

C2
2

∑

qi j<0

dX (xi , x j )
pqi j < C2

1

∑

qi j<0

dX (xi , x j )
pqi j .
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But then

∑

qi j>0

dX (xi , x j )
pqi j + C2

2

∑

qi j<0

dX (xi , x j )
pqi j

<
∑

qi j>0

dX (xi , x j )
pqi j + C2

1

∑

qi j<0

dX (xi , x j )
pqi j

≤ 0

which shows that X has strict p-negative type with distortion C2. ��
We may also bootstrap the nesting property from Theorem 1.2 to obtain the

following analogous nesting result for distorted p-negative type.

Theorem 2.7 Let (X , dX ) be a semi-metric space, 0 < q < p < ∞ and 1 ≤ C < ∞.
If X has p-negative type with distortion C then X has strict q-negative type with
distortion Cq/p.

Proof Since X has p-negative typewith distortionC , Theorem2.3 gives that (X , d p/2
X )

embeds into some Hilbert space (H , ‖ · ‖2) with distortion at most C . That is, there
exists a map φ : X → H such that

dX (x, y)p/2 ≤ ‖φ(x) − φ(y)‖2 ≤ C dX (x, y)p/2

for all x, y ∈ X . Take n ≥ 2, distinct x1, . . . , xn ∈ X and Q = (qi j )ni, j=1 ∈ On(R),
with Q 
= 0. Since 0 < 2q/p < 2, we have that H has strict 2q/p-negative type (see
Theorem 1.2), and so

n∑

i, j=1

‖φ(xi ) − φ(x j )‖2q/p
2 qi j < 0.

Putting this all together, we have that

∑

qi j>0

dX (xi , x j )
qqi j + C2q/p

∑

qi j<0

dX (xi , x j )
qqi j ≤

n∑

i, j=1

‖φ(xi ) − φ(x j )‖2q/p
2 qi j < 0

and so we are done. ��

3 Strictness and Polygonal Equalities

A very large part of the recent research effort into p-negative type has revolved around
the notions of strict p-negative type and polygonal equalities (see for example results
in [3–7, 10]). In this section, we derive some basic results pertaining to these concepts
in the distorted setting, including proving the existence of certain non-trivial polygonal
equalities.
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Let us start by defining what we mean by a polygonal equality here. In the distorted
setting, Theorem 2.3 prompts us to define our polygonal equalities slightly differently.
Whenwe talk about polygonal equalities from now on, wewill use the following (new)
definition.

Definition 3.1 Let (X , dX ) be a semi-metric space, 0 ≤ p < ∞ and 1 ≤ C < ∞. A
p-polygonal equality with distortion C (or a C-distorted p-polygonal equality) in X
is an equality of the form

∑

qi j>0

dX (xi , x j )
pqi j + C2

∑

qi j<0

dX (xi , x j )
pqi j = 0

for some distinct x1, . . . , xn ∈ X , Q = (qi j )ni, j=1 ∈ On(R) and n ≥ 2. Such an
equality is said to be non-trivial if Q 
= 0. Also, the rank of such a polygonal equality
is defined to be the rank of the matrix Q.

It follows immediately from the above definition and the definition of strict p-
negative type with distortion (Definition 1.6) that a semi-metric space X has strict
p-negative type with distortion C if and only if it has p-negative type with distortion
C and X admits no non-trivial p-polygonal equalities with distortion C .

At this point, we must stop and justify our use of the terminology ‘polygonal
equality’. Indeed the above definition in its current form looks nothing like the usual
definition of polygonal equalities as they have appeared in the literature at this point
in time. We now show the connection between our definition and the usual one.

Let (X , dX ) be a semi-metric space, x1, . . . , xn ∈ X be distinct, p ≥ 0 and Q =
(qi j )ni, j=1 ∈ On(R). By our definition a p-polygonal equality with distortion 1 is an
equality of the form

n∑

i, j=1

dX (xi , x j )
pqi j = 0.

Now, as in the proof of Proposition 2.1, we have that that rank(Q) ≤ 1 if and only if
there exist ξ1, . . . , ξn ∈ Rwith

∑n
i=1 ξi = 0 such that qi j = ξiξ j , for all 1 ≤ i, j ≤ n.

So, in this case we actually have that

n∑

i, j=1

dX (xi , x j )ξiξ j = 0.

Readers familiar with the theory of p-negative type will recognise this as one of the
more standard definitions of a polygonal equality, from say [6]. To summarise, our
definition of rank 1 polygonal equalities with distortion 1 is equivalent to the standard
definition of a polygonal equality from the isometric theory of p-negative type.

An invaluable tool in the study of strict p-negative type and polygonal equalities in
the isometric setting is the p-negative type gap function. This was originally defined
by Doust and Weston in [3] and studied extensively in [3, 4, 7, 14, 15].

123



Negative Type and Bi-lipschitz Embeddings Into Hilbert… Page 9 of 16 139

Here we introduce an analogue of the p-negative type gap in the distorted setting.
For what follows, if n ≥ 1 and A = (ai j )ni, j=1 ∈ Mn(R), we will use the notation

pos(A) =
∑

ai j>0

ai j .

Definition 3.2 Let (X , dX ) = ({x1, . . . , xn}, dX ) be a finite semi-metric space. The
distorted type gap function for X is defined to be the function�X : [0,∞)×[1,∞) →
R given by

�X (p,C) = inf
Q∈On(R)
pos(Q)=1

−C2
∑

qi j<0

dX (xi , x j )
pqi j −

∑

qi j>0

dX (xi , x j )
pqi j

for all 0 ≤ p < ∞ and 1 ≤ C < ∞.

First we remark that �X (p,C) is always finite. To see this let Q denote the set
of all Q ∈ On(R) with pos(Q) = 1 and topologize Q with the pointwise topology
(i.e. Qk → Q if and only if Qk converges to Q entrywise). Note that since Mn(R) is
finite-dimensional this coincides with the restriction of the unique norm topology on
Mn(R) to Q. It is a simple matter to check that with this topology Q is compact (it is
a closed and bounded subset of Mn(R)). Also, define f : [0,∞) × [1,∞) ×Q → R

by

f (p,C, Q) = −C2
∑

qi j<0

dX (xi , x j )
pqi j −

∑

qi j>0

dX (xi , x j )
pqi j .

Then f is continuous and also

�X (p,C) = inf
Q∈Q

f (p,C, Q).

So, since f is continuous and Q is compact it follows that �X (p,C) is always finite
and that the above infimum is always attained for some Q ∈ Q.

The fact that �X (p,C) is the infimum over a compact set also implies that it must
be continuous. Here we will use the following result from elementary analysis. The
proof of this result is left as an exercise for the reader.

Proposition 3.3 Let (Y , τY ) be a topological space and let (Z , τZ ) be a compact
topological space. Suppose that f : Y × Z → R is continuous (with respect to the
product topology on Y × Z) and define g : Y → R by

g(y) = inf
z∈Z f (y, z)

for all y ∈ Y . Then g is continuous.
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Corollary 3.4 Let (X , dX ) = ({x1, . . . , xn}, dX ) be a finite semi-metric space. Then
�X : [0,∞) × [1,∞) → R is continuous (with respect to the product topology on
[0,∞) × [1,∞).

It follows immediately from the above definition (and the fact that one may rescale
appropriately) that if (X , dX ) = ({x1, . . . , xn}, dX ) is a finite semi-metric space,
0 ≤ p < ∞ and 1 ≤ C < ∞ then X has p-negative type with distortion C if
and only if �X (p,C) ≥ 0. More importantly however is the following refinement of
this property when dealing with strict distorted p-negative type. That is, �X has the
following property.

Theorem 3.5 Let (X , dX ) = ({x1, . . . , xn}, dX ) be a finite semi-metric space, 0 ≤
p < ∞ and 1 ≤ C < ∞. Then X has strict p-negative type with distortion C if and
only if �X (p,C) > 0.

Proof First suppose that �X (p,C) > 0. So, take Q = (qi j )ni, j=1 ∈ On(R) with

Q 
= 0. Then, since pos(Q) 
= 0 one may define R = (ri j )ni, j=1 by R = pos(Q)−1Q.

Of course, one then has that R ∈ On(R) with pos(R) = pos(Q) pos(Q)−1 = 1.
Hence

− 1

pos(Q)

( ∑

qi j>0

dX (xi , x j )
pqi j + C2

∑

qi j<0

dX (xi , x j )
pqi j

)

= −C2
∑

ri j<0

dX (xi , x j )
pri j −

∑

ri j>0

dX (xi , x j )
pri j

≥ �X (p,C)

> 0.

Hence, after dividing both sides by − pos(Q)−1 one finds that

∑

qi j>0

dX (xi , x j )
pqi j + C2

∑

qi j<0

dX (xi , x j )
pqi j < 0

which shows that X has strict p-negative type with distortion C . Conversely, suppose
that X has strict p-negative typewith distortionC . Let us keep the notation from below
Definition 3.2 so that

�X (p,C) = inf
Q∈Q

f (p,C, Q).

Since f is continuous andQ is compact this infimum must be attained. That is, there
exists some Q0 ∈ Q (that depends on both p and C) such that

�X (p,C) = inf
Q∈Q

f (p,C, Q) = f (p,C, Q0).

But since X has strict p-negative type with distortionC one has that f (p,C, Q0) > 0
and hence by the above equation we conclude that �X (p,C) > 0 as required. ��
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Combining this with Corollary 3.4 gives the following result pertaining to strict
distorted p-negative type.

Corollary 3.6 Let (X , dX ) be a finite semi-metric space, 0 ≤ p < ∞ and 1 ≤ C < ∞.
Suppose that X has strict p-negative type with distortion C. Then there exists some
ζ > 0 (that depends on both p and C) such that X has strict q-negative type with
distortion K for all q ∈ [p, p + ζ ] and K ∈ [max(C − ζ, 1),C].

Thus we are now able to obtain a generalisation of the fact that all finite semi-metric
spaces admit a non-trivial non-distorted℘X -polygonal equality (recall that℘X is used
to denote the supremal p-negative type of X ).

Corollary 3.7 Let (X , dX ) be a finite semi-metric space and p ≥ ℘X . Then there exists
a non-trivial c2(X , d p/2

X )-distorted p-polygonal equality in X.

Proof For ease of notation, let us denote c2(X , d p/2
X ) simply by c2(X p/2). By Theorem

2.3 note that X has p-negative typewith distortion c2(X p/2), for all p ≥ 0. In particular
thismeans that�X (p, c2(X p/2)) ≥ 0, for all p ≥ 0. So, take p ≥ ℘X and let us assume
for a contradiction that �X (p, c2(X p/2)) > 0. Then by Theorem 3.5 this means that
X has strict p-negative type with distortion c2(X p/2) and hence by Corollary 3.6 there
exists some ζ > 0 such that X also has strict (p + ζ )-negative type with distortion
c2(X p/2). By Theorem 2.3 this means that (X , d(p+ζ )/2

X ) embeds in �2 with distortion
at most c2(X p/2) and hence c2(X (p+ζ )/2) ≤ c2(X p/2). But this is impossible since
the function r �→ c2(Xr/2) is strictly increasing for r ≥ ℘X (see Theorem 2.7). Hence
it must be the case that �X (p, c2(X p/2)) = 0.

Now, arguing as in the proof of Theorem 3.5 (and keeping the notation from that
proof) there must exist some Q0 ∈ Q such that

f (p, c2(X
p/2), Q0) = �X (p, c2(X

p/2)) = 0.

But this is just another way of saying that Q0 is a c2(X p/2)-distorted p-polygonal
equality in X . Also, since Q0 ∈ Q we have that pos(Q0) = 1 and hence Q0 
= 0.
Hence Q0 is a non-trivial c2(X p/2)-distorted p-polygonal equality in X and so we are
done. ��

The above corollary enables us to classify those p and C for which a finite semi-
metric space X has strict p-negative type with distortion C .

Corollary 3.8 Let (X , dX ) be a finite semi-metric space, 0 ≤ p < ∞ and C ≥ 1.
Then X has strict p-negative type with distortion C if and only if p < ℘X or C >

c2(X , d p/2
X ).

Proof First suppose that p < ℘X . By the definition of ℘X we have that X has ℘X -
negative type with distortion 1 and hence by Theorem 2.7 X also has strict p-negative
type with distortion 1. But then by Proposition 2.6 we also have that X has strict
p-negative type with distortion C . Now, suppose instead that C > c2(X , d p/2

X ). Then

Theorem 2.3 gives that X has p-negative type with distortion c2(X , d p/2
X ) and so

Proposition 2.6 again shows that X has strict p-negative type with distortion C .
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Conversely, suppose that X has strict p-negative type with distortion C and that
p ≥ ℘X . Then Theorem 2.3 implies that C ≥ c2(X , d p/2

X ). But by Corollary 3.7 we

know that X has nonstrict p-negative type with distortion c2(X , d p/2
X ) and so it must

be the case that C > c2(X , d p/2
X ). ��

4 Examples

In this section we provide examples of semi-metric spaces and their values of (strict)
distorted p-negative type, as well as some of their non-trivial polygonal equalities.

Throughout this section we will use the following standard notation when
computing the distortion of a given embedding.

Definition 4.1 Let (X , dX ) and (Y , dY ) be semi-metric spaces, and suppose that f :
X → Y .

(1) The contraction of f is defined to be

contraction( f ) = sup
x,y∈X
x 
=y

dX (x, y)

dY ( f (x), f (y))
.

(2) The expansion of f is defined to be

expansion( f ) = sup
x,y∈X
x 
=y

dY ( f (x), f (y))

dX (x, y)
.

It is a simple matter to check that using this notation one has that if (X , dX ) and
(Y , dY ) are semi-metric spaces and f : X → Y is a bi-lipschitz embedding then the
distortion of f is given by

dist( f ) = contraction( f ) × expansion( f ).

The spaces that we will study here are the bipartite graphs Km,n . When we
say let (X , dX ) be the bipartite graph Km,n we mean that X is the space X =
{u1, . . . , um, v1, . . . , vn} with metric dX defined by dX (ui , u j ) = dX (vk, vl) = 2,
for all 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n with i 
= j and k 
= l, and also dX (ui , v j ) = 1
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

To properly describe the optimal embeddings of powers of Km,n into Hilbert space
we first need to understand how the complete graph Kn can be isometrically embedded
into Hilbert space. For what follows when we say let (X , dX ) be the complete graph
Kn we mean that X = {u1, . . . , un} with metric dX such that dX (ui , u j ) = 1, for all
1 ≤ i, j ≤ n with i 
= j .

It is a simple matter to construct an isometric embedding of Kn intoRn . Indeed, one
may simply take ui �→ ei/

√
2 for all 1 ≤ i ≤ nwhere e1, . . . , en are the standard basis

vectors. However, since Kn is an n point metric space it must therefore be possible
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to isometrically embed Kn into Rn−1. In fact, it can also be shown that Kn cannot be
isometrically embedded into Rr for any r < n − 1. Indeed, since Kn is an ultrametric
space it has strict 2-negative type and hence it must embed isometrically into Rn−1 as
an affinely independent set. For such results see [5].

While the problem of writing an explicit formula for an isometric embedding of
Kn into R

n−1 is not a conceptually challenging one it is rather tedious. Let

cn =
√
2(1 + √

n)

2(n − 1)

and

Cn = 1

n

(
cn + 1√

2

)
1

where here 1 denotes the vector in R
n−1 all of whose entries are 1. Then define

φ : Kn → R
n−1 by φ(ui ) = ei/

√
2−Cn for all 1 ≤ i ≤ n−1 and φ(un) = cn1−Cn .

It is a simple yet tedious task to check that φ is an isometric embedding of Kn into
R
n−1. It is also simple to check that ‖φ(ui )‖2 = (1− 1/n)1/2/21/2 for all 1 ≤ i ≤ n.

We will refer to this particular embedding as the standard embedding of Kn intoRn−1.
We now move on to the problem of desribing optimal embeddings of powers of

Km,n . In proving the optimality of our embeddings we will require a matrix Q that
will serve as a distorted polygonal equality for Km,n .

Lemma 4.2 Define Q = (qi j )
m+n
i, j=1 ∈ Mm+n(R) by

qi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
m2 , if 1 ≤ i, j ≤ m,
1
n2

, if m + 1 ≤ i, j ≤ m + n,

− 1
mn , if 1 ≤ i ≤ m,m + 1 ≤ j ≤ m + n,

− 1
mn , if m + 1 ≤ i ≤ m + n, 1 ≤ j ≤ m.

Then Q ∈ Om+n(R).

Proof Define ξ1, . . . , ξm+n ∈ R by

ξi =
{

1
m , if 1 ≤ i ≤ m,

− 1
n , if m + 1 ≤ i ≤ m + n.

Then
∑m+n

i=1 ξi = 0 and Q = (ξiξ j )
m+n
i, j=1. As in the proof of Proposition 2.1, it now

follows that Q ∈ Om+n(R). ��
In what follows if r ≥ 1 then we shall use 0r to denote the zero vector in R

r (i.e.
the vector in Rr all of whose coordinates are zero). Also, for ease of notation we shall
set

℘m,n = log2

(
2mn

2mn − m − n

)
.
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Theorem 4.3 Let (X , dX ) be the bipartite graph Km,n, where m, n ≥ 1 (not both
1) and let ℘ = ℘m,n. Also, let x1, . . . , xm ∈ R

m−1 be the image of the standard
embedding of Km into Rm−1 and let y1, . . . , yn ∈ R

n−1 be the image of the standard
embedding of Kn into R

n−1 (see the comments above Lemma 4.2). Then for p ≥ ℘

the map φ : (X , d p/2
X ) → R

m−1 ⊕ R
n−1 = R

m+n−2 defined by

φ(ui ) = (xi , 0n−1), ∀1 ≤ i ≤ m,

φ(v j ) = (0m−1, y j ), ∀1 ≤ j ≤ n,

has dist(φ) = c2(X , d p/2
X ). Consequently ℘X = ℘ and

c2(X , d p/2
X ) =

⎧
⎪⎨

⎪⎩

1, if 0 ≤ p ≤ ℘,

2p/2
(
1 − 1

2

(
1
m + 1

n

))1/2

, if ℘ ≤ p < ∞.

Proof It follows immediately from the definition of φ that

‖φ(ui ) − φ(u j )‖2 = 1 = ‖φ(vk) − φ(vl)‖2

for all 1 ≤ i 
= j ≤ m, 1 ≤ k 
= l ≤ n. Now take 1 ≤ i ≤ m and 1 ≤ j ≤ n. By
what was said above about the standard embeddings of Kr into R

r−1 we have that
‖φ(ui )‖2 = (1−1/m)1/2/21/2 and ‖φ(v j )‖2 = (1−1/n)1/2/21/2. Also, since φ(ui )
and φ(v j ) are clearly orthogonal we have that

‖φ(ui ) − φ(v j )‖22 = ‖φ(ui )‖22 + ‖φ(v j )‖22
= 1

2

(
1 − 1

m

)
+ 1

2

(
1 − 1

n

)

= 1 − 1

2

(
1

m
+ 1

n

)
.

Hence, since we are we are thinking of φ as a map φ : (X , d p/2
X ) → R

m+n−2, one has
that

expansion(φ) = sup
x,y∈X
x 
=y

‖φ(x) − φ(y)‖2
dX (x, y)p/2

= max

(
1

2p/2
,

(
1 − 1

2

(
1

m
+ 1

n

))1/2)
.

Since p ≥ ℘ = ℘m,n it is readily checked that

expansion(φ) =
(
1 − 1

2

(
1

m
+ 1

n

))1/2

.
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Similarly, since p ≥ ℘ = ℘m,n the contraction of φ is given by

contraction(φ) = sup
x,y∈X
x 
=y

dX (x, y)p/2

‖φ(x) − φ(y)‖2

= max

(
2p/2,

(
1 − 1

2

(
1

m
+ 1

n

))−1/2)

= 2p/2.

Hence the distortion of φ : (X , d p/2
X ) → R

m+n−2 is

dist(φ) = contraction(φ) × expansion(φ) = 2p/2
(
1 − 1

2

(
1

m
+ 1

n

))1/2

.

For the lower bound, let Q = (qi j )
m+n
i, j=1 be thematrix defined in Lemma 4.2, which we

know is in Om+n(R). Then taking z1 = u1, . . . , zm = um, zm+1 = v1, . . . , zm+n =
vn , Theorem 2.5 gives that

c2(X , d p/2
X )2 ≥ −

∑
qi j>0 dX (zi , z j )pqi j

∑
qi j<0 dX (zi , z j )pqi j

= 2p
(
1 − 1

2

(
1

m
+ 1

n

))
.

Thus for p ≥ ℘ one has that

c2(X , d p/2
X ) = 2p/2

(
1 − 1

2

(
1

m
+ 1

n

))1/2

.

Note in particular that c2(X , d℘/2
X ) = 1. The fact that c2(X , d p/2

X ) = 1 for all 0 ≤
p < ℘ now follows from Theorem 2.7. ��
Corollary 4.4 Let (X , dX ) be the bipartite graph Km,n, where m, n ≥ 1 (not both 1),
℘ = ℘m,n, 0 ≤ p < ∞ and 1 ≤ C < ∞. Then X has p-negative type with distortion
C if and only if 0 ≤ p ≤ ℘, or p > ℘ and

C ≥ 2p/2
(
1 − 1

2

(
1

m
+ 1

n

))1/2

.

Proof This is a direct consequence of the above theorem and Theorem 2.3. ��
Corollary 4.5 Let (X , dX ) be the bipartite graph Km,n, where m, n ≥ 1 (not both 1),
℘ = ℘m,n, 0 ≤ p < ∞ and 1 ≤ C < ∞. Then X has strict p-negative type with
distortion C if and only if 0 ≤ p < ℘, or p ≥ ℘ and
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C > 2p/2
(
1 − 1

2

(
1

m
+ 1

n

))1/2

.

Proof This is a direct consequence of Theorem 4.3 and Corollary 3.8. ��
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