

Solutions to discrete nonlinear Kirchhoff–Choquard equations

Lidan Wang1

Received: 15 April 2024 / Revised: 11 June 2024 / Accepted: 18 June 2024 / Published online: 4 July 2024 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2024

Abstract

In this paper, we study the discrete Kirchhoff–Choquard equation

$$
-\left(a+b\int_{\mathbb{Z}^3}|\nabla u|^2d\mu\right)\Delta u+V(x)u=(R_\alpha*F(u))\,f(u),\quad x\in\mathbb{Z}^3,
$$

where $a, b > 0, \alpha \in (0, 3)$ are constants and R_α is the Green's function of the discrete fractional Laplacian that behaves as the Riesz potential. Under some suitable assumptions on V and f , we prove the existence of nontrivial solutions and ground state solutions respectively by variational methods.

Keywords Nonlinear equations · Discrete Kirchhoff–Choquard problems · Existence · Ground state solutions · Variational methods

Mathematics Subject Classification 35J20 · 35J60 · 35R02

1 Introduction

The Kirchhoff-type equation

$$
-\left(a+b\int_{\mathbb{R}^3}|\nabla u|^2d\mu\right)\Delta u+V(x)u=g(x,u),\quad u\in H^1(\mathbb{R}^3),\tag{1}
$$

where $a, b > 0$, has drawn lots of interest in recent years due to the appearance of $(\int_{\mathbb{R}^3} |\nabla u|^2 d\mu) \Delta u$. For example, Wu [\[40\]](#page-24-0) proved the existence of nontrivial solutions under general assumptions on *g* by the symmetric mountain pass theorem. Moreover, if $g(x, u) = g(u)$, He and Zou [\[14](#page-23-0)] showed the existence of ground state solutions

Communicated by Maria Alessandra Ragusa.

 \boxtimes Lidan Wang wanglidan@ujs.edu.cn

¹ School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China

under the Ambrosetti–Rabinowitz conditions on *g* by the Nehari manifold approach; Guo [\[11](#page-22-0)] also derived the existence of ground state solutions for *g* that does not satisfy the Ambrosetti–Rabinowitz conditions; Wu and Tang [\[41](#page-24-1)] verified the existence and concentration of ground state solutions under some assumptions on *V* and *g* by the sign-changing Nehari manifold method. In particular, for $g(u) = |u|^{p-1}u$, Sun and Zhang [\[34](#page-23-1)] obtained the uniqueness of ground state solutions for $p \in (3, 5)$. Li and Ye [\[21](#page-23-2)] established the existence of ground state solutions for $p \in (2, 5)$ based on a monotonicity trick and a new version of global compactness lemma. Later, Lü and Lu [\[29](#page-23-3)] extended the result of [\[21\]](#page-23-2) to $p \in (1, 5)$ by different methods. For more related works, we refer the readers to $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$ $[1, 2, 4-6, 13, 36]$.

In many physical applications, the Choquard-type nonlinearity $g(x, u) = (I_{\alpha} *$ $F(u)$ *f* (*u*) appears naturally, where I_α is the Riesz potential. Clearly, two nonlocal terms are involved in the Eq. [\(1\)](#page-0-0), which means that the problem is not a pointwise identity any more. Thus, some mathematical difficulties have been provoked, which makes the research on these problems very meaningful. Recently, for $\alpha \in (1, 3)$, Zhou and Zhu [\[44\]](#page-24-2) proved the existence of ground state solutions; Liang et al. [\[23](#page-23-6)] obtained the existence of multi-bump solutions. For $\alpha \in (0, 3)$, Chen et al. [\[3\]](#page-22-5) proved the existence of ground state solutions under some hypotheses on *V* and *f* ; Lü and Dai [\[28](#page-23-7)] established the existence and asymptotic behavior of ground state solutions by a Pohozaev-type constraint technique; Hu et al. [\[15](#page-23-8)] obtained two classes of ground state solutions under the general Berestycki-Lions conditions on *f* . Moreover, for $f(u) = |u|^{p-2}u$ with $p \in (2, 3 + \alpha)$, Lü [\[27](#page-23-9)] demonstrated the existence and asymptotic behavior of ground state solutions by the Nehari manifold and the concentration compactness principle. For more related works about the Choquard-type nonlinearity, we refer the readers to [\[8,](#page-22-6) [16,](#page-23-10) [24](#page-23-11), [29](#page-23-3), [42](#page-24-3)].

Nowadays, many researchers turn to study differential equations on graphs, especially for the nonlinear elliptic equations. See for examples [\[7](#page-22-7), [12](#page-23-12), [17](#page-23-13), [18,](#page-23-14) [38,](#page-23-15) [43\]](#page-24-4) for the discrete nonlinear Schrödiner equations. For the discrete nonlinear Choquard equations, we refer the readers to $[22, 25, 26, 37]$ $[22, 25, 26, 37]$ $[22, 25, 26, 37]$ $[22, 25, 26, 37]$ $[22, 25, 26, 37]$ $[22, 25, 26, 37]$ $[22, 25, 26, 37]$. Recently, Lü $[30]$ proved the existence of ground state solutions for a class of Kirchhoff equations on lattice graphs \mathbb{Z}^3 . To the best of our knowledge, there is no existence results for the Kirchhoff–Choquard equations on graphs. Motivated by the works mentioned above, in this paper, we would like to study a class of Kirchhoff-type equations with general convolution nonlinearity on lattice graphs \mathbb{Z}^3 and discuss the existence of solutions under different conditions on potential *V*.

Let us first give some notations. Let $C(\mathbb{Z}^3)$ be the set of all functions on \mathbb{Z}^3 and $C_c(\mathbb{Z}^3)$ be the set of all functions on \mathbb{Z}^3 with finite support. We denote by the $\ell^p(\mathbb{Z}^3)$ the space of ℓ^p -summable functions on \mathbb{Z}^3 . Moreover, for any $u \in C(\mathbb{Z}^3)$, we always write $\int_{\mathbb{Z}^3} f(x) d\mu = \sum$ *^x*∈Z³ $f(x)$, where μ is the counting measure in \mathbb{Z}^3 .

In this paper, we consider the following Kirchhoff–Choquard equation

$$
-\left(a+b\int_{\mathbb{Z}^3}|\nabla u|^2d\mu\right)\Delta u + V(x)u = \left(R_\alpha * F(u)\right)f(u), \quad x \in \mathbb{Z}^3,\qquad(2)
$$

where $a, b > 0$ are constants, $\alpha \in (0, 3)$ and R_α represents the Green's function of the discrete fractional Laplacian, see [\[31](#page-23-21), [37](#page-23-19)],

$$
R_{\alpha}(x, y) = \frac{K_{\alpha}}{(2\pi)^3} \int_{\mathbb{T}^3} e^{i(x-y)\cdot k} \mu^{-\frac{\alpha}{2}}(k) dk, \quad x, y \in \mathbb{Z}^3,
$$

which contains the fractional degree

$$
K_{\alpha} = \frac{1}{(2\pi)^3} \int_{\mathbb{T}^3} \mu^{\frac{\alpha}{2}}(k) dk, \ \mu(k) = 6 - 2 \sum_{j=1}^3 \cos(k_j),
$$

where $\mathbb{T}^3 = [0, 2\pi]^3$, $k = (k_1, k_2, k_3) \in \mathbb{T}^3$. We refer the readers to [\[9,](#page-22-8) [10,](#page-22-9) [20](#page-23-22), [32,](#page-23-23) [33\]](#page-23-24) for more results involved in the fractional calculus. Clearly, the Green's function *R*_α has no singularity at *x* = *y*. According to [\[31](#page-23-21)], the Green's function *R*_α behaves as $|x - y|^{\alpha - 3}$ for $|x - y| \gg 1$. Here $\Delta u(x) = \sum_{y \sim x} (u(y) - u(x))$ and $|\nabla u(x)| =$

$$
\left(\frac{1}{2}\sum_{y\sim x}(u(y)-u(x))^2\right)^{\frac{1}{2}}
$$

Now we give assumptions on the potential *V* and the nonlinearity *f* :

(*h*₁) for any $x \in \mathbb{Z}^3$, there exists $V_0 > 0$ such that $V(x) \geq V_0$;

.

- (*h*₂) there exists a point $x_0 \in \mathbb{Z}^3$ such that $V(x) \to \infty$ as $|x x_0| \to \infty$;
- (*h*₃) $V(x)$ is τ -periodic in $x \in \mathbb{Z}^3$ with $\tau \in \mathbb{Z}$;
- (f_1) $f(t)$ is continuous in $t \in \mathbb{R}$ and $f(t) = o(t)$ as $|t| \to 0$;
- (*f*₂) there exist *c* > 0 and $p > \frac{3+\alpha}{3}$ such that

$$
|f(t)| \le c(1+|t|^{p-1}), \quad t \in \mathbb{R};
$$

 (f_3) there exists $\theta > 4$ such that

$$
0 \le \theta F(t) = \theta \int_0^t f(s) \, ds \le 2f(t)t, \quad t \in \mathbb{R};
$$

 (f_4) for any $u \in H \setminus \{0\}$,

$$
\frac{\int_{\mathbb{Z}^3}(R_{\alpha}*F(tu))f(tu)u\,d\mu}{t^3}
$$

is strictly increasing with respect $t \in (0, \infty)$.

By (f_1) and (f_2) , we have that for any $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that

$$
|f(t)| \le \varepsilon |t| + C_{\varepsilon} |t|^{p-1}, \quad t \in \mathbb{R}.
$$

Hence

$$
|F(t)| \le \varepsilon |t|^2 + C_{\varepsilon} |t|^p, \quad t \in \mathbb{R}.
$$
 (4)

 \mathcal{D} Springer

Let $H^1(\mathbb{Z}^3)$ be the completion of $C_c(\mathbb{Z}^3)$ with respect to the norm

$$
||u||_{H^1} = \left(\int_{\mathbb{Z}^3} \left(|\nabla u|^2 + u^2\right) d\mu\right)^{\frac{1}{2}}.
$$

Let $V(x) \geq V_0 > 0$, we introduce a new subspace

$$
H = \left\{ u \in H^1(\mathbb{Z}^3) : \int_{\mathbb{Z}^3} V(x) u^2 d\mu < \infty \right\}
$$

with the norm

$$
\|u\| = \left(\int_{\mathbb{Z}^3} \left(a|\nabla u|^2 + V(x)u^2\right) d\mu\right)^{\frac{1}{2}},
$$

where a is a positive constant. The space H is a Hilbert space with the inner product

$$
(u, v) = \int_{\mathbb{Z}^3} \left(a \nabla u \nabla v + V u v \right) d\mu.
$$

Since $V(x) \geq V_0 > 0$, we have

$$
||u||_2^2 \le \frac{1}{V_0} \int_{\mathbb{Z}^3} V(x) u^2(x) \, d\mu \le \frac{1}{V_0} ||u||^2.
$$

Moreover, we have

$$
||u||_q \le ||u||_p, \quad q \ge p,
$$

which can be seen in [\[19,](#page-23-25) Lemma 2.1]. Therefore, for any $u \in H$ and $q \ge 2$, the above two inequalities imply

$$
||u||_q \le ||u||_2 \le C||u||. \tag{5}
$$

The energy functional $J(u): H \to \mathbb{R}$ associated to the Eq. [\(2\)](#page-1-0) is given by

$$
J(u) = \frac{1}{2} \int_{\mathbb{Z}^3} \left(a|\nabla u|^2 + V(x)u^2 \right) d\mu + \frac{b}{4} \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2
$$

$$
- \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u)) F(u) d\mu.
$$

Moreover, for any $\phi \in H$, one gets easily that

$$
\langle J'(u), \phi \rangle = \int_{\mathbb{Z}^3} (a \nabla u \nabla \phi + V(x) u \phi) d\mu + b \int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \int_{\mathbb{Z}^3} \nabla u \nabla \phi d\mu
$$

$$
- \int_{\mathbb{Z}^3} (R_\alpha * F(u)) f(u) \phi d\mu.
$$

We say that $u \in H$ is a nontrivial solution to the Eq. [\(2\)](#page-1-0), if *u* is a nonzero critical point of *J*, i.e. $J'(u) = 0$ with $u \neq 0$. A ground state solution to the Eq. [\(2\)](#page-1-0) means that *u* is a nonzero critical point of *J* with the least energy, that is,

$$
J(u) = \inf_{\mathcal{N}} J > 0,
$$

where

$$
\mathcal{N} = \left\{ u \in H \backslash \{0\} : \left\langle J'(u), u \right\rangle = 0 \right\}
$$

is the Nehari manifold.

Now we state our main results.

Theorem 1.1 *Let* (h_1) *,* (h_2) *and* (f_1) *-* (f_3) *hold. Then the Eq.* [\(2\)](#page-1-0) *has a nontrivial solution.*

Theorem 1.2 *Let* (h_1) *,* (h_2) *and* (f_1) *-* (f_4) *hold. Then the Eq.* [\(2\)](#page-1-0) *has a ground state solution.*

Theorem 1.3 *Let* (h_1) *,* (h_3) *and* (f_1) *-* (f_4) *hold. Then the Eq.* [\(2\)](#page-1-0) *has a ground state solution.*

The rest of this paper is organized as follows. In Sect. [2,](#page-4-0) we present some preliminary results on graphs. In Sect. [3,](#page-9-0) we prove Theorem [1.1](#page-4-1) by the mountain pass theorem. In Sect. [4,](#page-12-0) we prove Theorem [1.2](#page-4-2) based on the mountain pass theorem and Nehari manifold approach. In Sect. [5,](#page-17-0) we prove Theorem [1.3](#page-4-3) by the method of generalized Nehari manifold.

2 Preliminaries

In this section, we introduce the basic settings on graphs and give some basic results.

Let $G = (\mathbb{V}, \mathbb{E})$ be a connected, locally finite graph, where \mathbb{V} denotes the vertex set and $\mathbb E$ denotes the edge set. We call vertices *x* and *y* neighbors, denoted by $x \sim y$, if there exists an edge connecting them, i.e. $(x, y) \in \mathbb{E}$. For any $x, y \in \mathbb{V}$, the distance $d(x, y)$ is defined as the minimum number of edges connecting x and y, namely

$$
d(x, y) = \inf\{k : x = x_0 \sim \cdots \sim x_k = y\}.
$$

Let $B_r(a) = \{x \in \mathbb{V} : d(x, a) \le r\}$ be the closed ball of radius *r* centered at $a \in \mathbb{V}$. For brevity, we write $B_r := B_r(0)$.

In this paper, we consider, the natural discrete model of the Euclidean space, the integer lattice graph. The 3-dimensional integer lattice graph, denoted by \mathbb{Z}^3 , consists of the set of vertices $\mathbb{V} = \mathbb{Z}^3$ and the set of edges $\mathbb{E} = \{(x, y) : x, y \in \mathbb{Z}^3, \sum_{n=1}^3$ *i*=1 $|x_i$ $y_i| = 1$. In the sequel, we denote $|x - y| := d(x, y)$ on the lattice graph \mathbb{Z}^3 .

For $u, v \in C(\mathbb{Z}^3)$, we define the Laplacian of *u* as

$$
\Delta u(x) = \sum_{y \sim x} (u(y) - u(x)),
$$

and the gradient form Γ as

$$
\Gamma(u, v)(x) = \frac{1}{2} \sum_{y \sim x} (u(y) - u(x))(v(y) - v(x)).
$$

We write $\Gamma(u) = \Gamma(u, u)$ and denote the length of the gradient as

$$
|\nabla u|(x) = \sqrt{\Gamma(u)(x)} = \left(\frac{1}{2}\sum_{y \sim x} (u(y) - u(x))^2\right)^{\frac{1}{2}}.
$$

The space $\ell^p(\mathbb{Z}^3)$ is defined as

$$
\ell^{p}(\mathbb{Z}^{3}) = \left\{ u \in C(\mathbb{Z}^{3}) : ||u||_{p} < \infty \right\},\
$$

where

$$
||u||_p = \begin{cases} \left(\sum_{x \in \mathbb{Z}^3} |u(x)|^p\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \sup_{x \in \mathbb{Z}^3} |u(x)|, & p = \infty. \end{cases}
$$

The following discrete Hardy-Littlewood-Sobolev (HLS for abbreviation) inequality plays a key role in this paper, see [\[22](#page-23-16), [37](#page-23-19)].

Lemma 2.1 *Let* $0 < \alpha < 3$, $1 < r$, $s < \infty$ *and* $\frac{1}{r} + \frac{1}{s} + \frac{3-\alpha}{3} = 2$ *. We have the discrete HLS inequality*

$$
\int_{\mathbb{Z}^3} (R_{\alpha} * u)(x) v(x) d\mu \le C_{r,s,\alpha} \|u\|_r \|v\|_s, \quad u \in \ell^r(\mathbb{Z}^3), \ v \in \ell^s(\mathbb{Z}^3). \tag{6}
$$

And an equivalent form is

$$
||R_{\alpha} * u||_{\frac{3r}{3-\alpha r}} \leq C_{r,\alpha} ||u||_{r}, \quad u \in \ell^{r}(\mathbb{Z}^{3}), \tag{7}
$$

where $1 < r < \frac{3}{\alpha}$ *.*

Denote

$$
I(u) := \frac{1}{2} \int_{\mathbb{Z}^3} (R_{\alpha} * F(u)) F(u) \, d\mu, \quad u \in H.
$$

Then for any $\phi \in H$, we have

$$
\langle I'(u), \phi \rangle = \int_{\mathbb{Z}^3} (R_\alpha * F(u)) f(u) \phi \, d\mu.
$$

Lemma 2.2 *Let* (*f*1)*-*(*f*3) *hold. Then*

- (i) *I is weakly lower semicontinuous;*
- (ii) *I is weakly continuous.*

Proof Let $u_n \rightharpoonup u$ in *H*. Then $\{u_n\}$ is bounded in *H*, and hence bounded in $\ell^{\infty}(\mathbb{Z}^3)$. Therefore, by diagonal principle, there exists a subsequence of $\{u_n\}$ (still denoted by itself) such that

$$
u_n \to u, \quad \text{pointwise in } \mathbb{Z}^3. \tag{8}
$$

(i) By Fatou's lemma, we get that

$$
I(u) = \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u)) F(u) d\mu \le \liminf_{n \to \infty} \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) F(u_n) d\mu
$$

= $\liminf_{n \to \infty} I(u_n),$

which implies that *I* is weakly lower semicontinuous.

(ii) Since $C_c(\mathbb{Z}^3)$ is dense in *H*, we only need to show that for any $\phi \in C_c(\mathbb{Z}^3)$,

$$
\langle I'(u_n) - I'(u), \phi \rangle \to 0, \quad n \to \infty. \tag{9}
$$

In fact, let supp $(\phi) \subset B_r$ with $r > 1$. A direct calculation yields that

$$
\langle I'(u_n) - I'(u), \phi \rangle = \int_{\mathbb{Z}^3} (R_\alpha * (F(u_n) - F(u)) f(u)) \phi d\mu
$$

$$
+ \int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) (f(u_n) - f(u)) \phi d\mu
$$

$$
= T_1 + T_2.
$$

By [\(4\)](#page-2-0) and [\(5\)](#page-3-0), one gets easily that $\{F(u_n)\}\$ is bounded in $\ell^{\frac{6}{3+\alpha}}(\mathbb{Z}_2^3)$. Then it follows from the HLS inequality [\(7\)](#page-5-0) that $\{(R_\alpha * F(u_n))\}$ is bounded in $\ell^{\frac{6}{3-\alpha}}(\mathbb{Z}^3)$. Moreover, we have $F(u_n) \to F(u)$ pointwise in \mathbb{Z}^3 . By passing to a subsequence, we have

$$
(R_{\alpha}*F(u_n)) \to (R_{\alpha}*F(u)), \text{ in } \ell^{\frac{6}{3-\alpha}}(\mathbb{Z}^3).
$$

 \mathcal{D} Springer

Since $f(u)\phi \in \ell^{\frac{6}{3+\alpha}}(\mathbb{Z}^3)$, we get

$$
T_1\to 0, \quad n\to\infty.
$$

By the HLS inequality (6) and (8) , we obtain that

$$
|T_2| \leq C \|F(u_n)\|_{\frac{6}{3+\alpha}} \left(\int_{\mathbb{Z}^3} |(f(u_n) - f(u))\phi|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

$$
\leq C \left(\int_{\mathbb{Z}^3} |(f(u_n) - f(u))\phi|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

$$
= C \left(\int_{B_r} |(f(u_n) - f(u))\phi|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

$$
\to 0, \quad n \to \infty.
$$

Then [\(9\)](#page-6-1) follows from T_1 , $T_2 \to 0$ as $n \to \infty$.

For any $u \in H \setminus \{0\}$, let

$$
g(t) := I(tu) = \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(tu)) F(tu) d\mu, \quad t \ge 0.
$$

Lemma 2.3 *Let* (f_1) - (f_4) *hold. Then*

(i) *for* $t > 0$, $\left(\frac{1}{4}tg'(t) - g(t)\right)$ *is a positive and strictly increasing function;* (ii) *for* $t \geq 1$ *, we have* $g(t) \geq t^{\theta} g(1)$ *.*

Proof (i) For $t > 0$, by (f_3) , we get that

$$
g'(t) = \langle I'(tu), u \rangle = \int_{\mathbb{Z}^3} (R_{\alpha} * F(tu)) f(tu)u d\mu
$$

= $\frac{1}{t} \int_{\mathbb{Z}^3} (R_{\alpha} * F(tu)) f(tu)tu d\mu$
 $\geq \frac{\theta}{2t} \int_{\mathbb{Z}^3} (R_{\alpha} * F(tu)) F(tu) d\mu$
= $\frac{\theta}{t} g(t)$
 $\geq \frac{4}{t} g(t),$

which implies that $\frac{1}{4}tg'(t) - g(t) > 0$.

By (f_4) , one gets that $\frac{g'(t)}{t^3}$ is strictly increasing for $t > 0$. This means that

$$
\frac{1}{4}tg'(t) - g(t) = \int_0^t \left(\frac{g'(t)}{t^3} - \frac{g'(s)}{s^3}\right)s^3 ds
$$

is strictly increasing for $t > 0$.

(ii) Clearly for $t = 1$, the result holds. From the proof of (i), one gets that

$$
g'(s) \geq \frac{\theta}{s}g(s), \quad s > 0.
$$

Integrating the above inequality from 1 to t with $t > 1$,

$$
\int_1^t \frac{dg}{g} \ge \theta \int_1^t \frac{ds}{s}.
$$

As a consequence, we get that

$$
g(t) \ge t^{\theta} g(1).
$$

 \Box

Finally, we state some results about the compactness of *H*. The following one can be seen in [\[43](#page-24-4)]

Lemma 2.4 *Let* (h_1) *and* (h_2) *hold. Then for any* $q \geq 2$ *, H is compactly embedded into* $l^q(\mathbb{Z}^3)$. That is, there exists a constant C depending only on q such that, for any $u \in H$.

$$
||u||_q \leq C||u||.
$$

Furthermore, for any bounded sequence $\{u_n\} \subset H$ *, there exists* $u \in H$ *such that, up to a subsequence,*

$$
\begin{cases} u_n \to u, & \text{in } H, \\ u_n \to u, & \text{pointwise in } \mathbb{Z}^3, \\ u_n \to u, & \text{in } \ell^q(\mathbb{Z}^3). \end{cases}
$$

We also present a discrete Lions lemma, which denies a sequence $\{u_n\} \subset H$ to distribute itself over \mathbb{Z}^3 .

Lemma 2.5 *Let* $2 \leq s < \infty$ *. Assume that* $\{u_n\}$ *is bounded in H and*

$$
||u_n||_{\infty} \to 0, \quad n \to \infty.
$$

Then, for any s < $t < \infty$ *,*

$$
u_n \to 0, \quad \text{in } \ell^t(\mathbb{Z}^3).
$$

Proof By [\(5\)](#page-3-0), we get that $\{u_n\}$ is bounded in $\ell^s(\mathbb{Z}^3)$. Hence, for $s < t < \infty$, this result follows from an interpolation inequality

$$
||u_n||_t^t \leq ||u_n||_s^s ||u_n||_{\infty}^{t-s}.
$$

3 Proof of Theorem [1.1](#page-4-1)

In this section, we prove the existence of nontrivial solutions to the Eq. [\(2\)](#page-1-0) by the mountain pass theorem. First we show that the functional $J(u)$ satisfies the mountain pass geometry.

Lemma 3.1 *Let* (*h*1) *and* (*f*1)*-*(*f*3) *hold. Then*

- (i) *there exist* σ , $\rho > 0$ *such that* $J(u) \ge \sigma > 0$ *for* $||u|| = \rho$;
- (ii) *there exists e* \in *H* with $||e|| > \rho$ *such that* $J(e) < 0$ *.*

Proof (i) By [\(4\)](#page-2-0) and the HLS inequality [\(6\)](#page-5-1), we get that

$$
\int_{\mathbb{Z}^3} (R_{\alpha} * F(u)) F(u) d\mu \le C \left(\int_{\mathbb{Z}^3} |F(u_n)|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{3}}
$$

\n
$$
\le C \left(\int_{\mathbb{Z}^3} \left(\varepsilon |u|^2 + C_{\varepsilon} |u|^p \right)^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{3}}
$$

\n
$$
\le \varepsilon \|u\|_{\frac{12}{3+\alpha}}^4 + C_{\varepsilon} \|u\|_{\frac{6p}{3+\alpha}}^{2p}
$$

\n
$$
\le \varepsilon \|u\|^4 + C_{\varepsilon} \|u\|^{2p}.
$$
 (10)

Then by (10) , we have

$$
J(u) = \frac{1}{2} ||u||^2 + \frac{b}{4} \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u)) F(u) d\mu
$$

\n
$$
\geq \frac{1}{2} ||u||^2 - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u)) F(u) d\mu
$$

\n
$$
\geq \frac{1}{2} ||u||^2 - \varepsilon ||u||^4 - C_\varepsilon ||u||^{2p}.
$$

Note that $p > \frac{3+\alpha}{3} > 1$. Let $\varepsilon \to 0^+$, then there exist σ , $\rho > 0$ small enough such that $J(u) \ge \sigma > 0$ for $||u|| = \rho$.

 \mathcal{D} Springer

 \Box

(ii) Let $u \in H \setminus \{0\}$ be fixed. Then it follows from Lemma [2.3](#page-7-0) (ii), [\(10\)](#page-9-1) and $\theta > 4$ that

$$
\lim_{t \to \infty} J(tu) = \lim_{t \to \infty} \left[\frac{t^2}{2} ||u||^2 + \frac{bt^4}{4} \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(tu)) F(tu) d\mu \right]
$$

\n
$$
\leq \lim_{t \to \infty} \left[\frac{t^2}{2} ||u||^2 + \frac{bt^4}{4} \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 - \frac{t^\theta}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u)) F(u) d\mu \right]
$$

\n
$$
\to -\infty.
$$
 (11)

Hence, we can choose $t_0 > 0$ large enough such that $||e|| > \rho$ with $e = t_0 u$ and $J(e) < 0$. $J(e) < 0.$

In the following, we prove the compactness of Palais-Smale sequence. Recall that, for a given functional $\Phi \in C^1(X, \mathbb{R})$, a sequence $\{u_n\} \subset X$ is a Palais-Smale sequence at level $c \in \mathbb{R}$, $(PS)_c$ sequence for short, of the functional Φ , if it satisfies, as $n \to \infty$,

 $\Phi(u_n) \to c$, in *X*, and $\Phi'(u_n) \to 0$, in X^*

where *X* is a Banach space and X^* is the dual space of *X*. Moreover, we say that Φ satisfies $(PS)_c$ condition, if any $(PS)_c$ sequence has a convergent subsequence.

Lemma 3.2 *Let* (h_1) , (h_2) *and* (f_1) *-* (f_3) *hold. Then for any* $c \in \mathbb{R}$ *, J satisfies the* (*P S*)*^c condition.*

Proof For any $c \in \mathbb{R}$, let $\{u_n\}$ be a $(PS)_c$ sequence for $J(u)$,

$$
J(u_n) = c + o_n(1)
$$
, and $J'(u_n) = o_n(1)$, (12)

where $o_n(1) \to 0$ as $n \to \infty$.

Note that $\theta > 4$ and $b > 0$. By [\(12\)](#page-10-0), we get that

$$
||u_n||^2 = \int_{\mathbb{Z}^3} (R_{\alpha} * F(u_n)) F(u_n) d\mu - \frac{b}{2} \left(\int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \right)^2 + 2c + o_n(1)
$$

\n
$$
\leq \frac{2}{\theta} \int_{\mathbb{Z}^3} (R_{\alpha} * F(u_n)) f(u_n) u_n d\mu - \frac{b}{2} \left(\int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \right)^2 + 2c + o_n(1)
$$

\n
$$
\leq \frac{1}{2} \left(||u_n||^2 + b \left(\int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \right)^2 + o_n(1) ||u_n|| \right)
$$

\n
$$
- \frac{b}{2} \left(\int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \right)^2 + 2c + o_n(1)
$$

\n
$$
= \frac{1}{2} ||u_n||^2 + o_n(1) ||u_n|| + 2c + o_n(1), \qquad (13)
$$

which implies that $\{u_n\}$ is bounded in *H*. Then by Lemma [2.4,](#page-8-0) up to a subsequence, there exists $u \in H$ such that

$$
\begin{cases}\n u_n \rightharpoonup u, & \text{in } H, \\
u_n \to u, & \text{pointwise in } \mathbb{Z}^3, \\
u_n \to u, & \text{in } \ell^q(\mathbb{Z}^3), q \ge 2.\n\end{cases}
$$
\n(14)

Since $|\nabla u(x)|^2 = \frac{1}{2} \sum_{x \in \mathbb{R}^2}$ $\sum_{y \sim x} (u(y) - u(x))^2$, one gets easily that

$$
\int_{\mathbb{Z}^3} |\nabla u|^2 \, d\mu \leq C \|u\|_2^2.
$$

Hence by Hölder inequality, the boundedness of $\{u_n\}$ and [\(14\)](#page-11-0), we get

$$
\int_{\mathbb{Z}^3} |\nabla u_n| |\nabla (u_n - u)| d\mu \le \left(\int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \right)^{\frac{1}{2}} \left(\int_{\mathbb{Z}^3} |\nabla (u_n - u)|^2 d\mu \right)^{\frac{1}{2}} \n\le C \|u_n\| \|u_n - u\|_2 \n\to 0, \quad n \to \infty.
$$
\n(15)

Moreover, by the HLS inequality (6) , Hölder inequality, the boundedness of $\{u_n\}$ and (14) , we have

$$
|\langle I'(u_n), u_n - u \rangle| \leq \int_{\mathbb{Z}^3} (R_{\alpha} * F(u_n)) |f(u_n)(u_n - u)| d\mu
$$

\n
$$
\leq C \left(\int_{\mathbb{Z}^3} |F(u_n)|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}} \left(\int_{\mathbb{Z}^3} |f(u_n)(u_n - u)|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

\n
$$
\leq C \left(\int_{\mathbb{Z}^3} (|u_n|^2 + |u_n|^p)^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}} \left(\int_{\mathbb{Z}^3} [(|u_n| + |u_n|^{p-1}) |u_n - u|]^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

\n
$$
\leq C \left[\left(\int_{\mathbb{Z}^3} (|u_n| |u_n - u|)^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}} + \left(\int_{\mathbb{Z}^3} (|u_n|^{p-1} |u_n - u|)^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

\n
$$
\leq C ||u_n||_{\frac{12}{3+\alpha}} ||u_n - u||_{\frac{12}{3+\alpha}} + C ||u_n||_{\frac{6p}{3+\alpha}}^{p-1} ||u_n - u||_{\frac{6p}{3+\alpha}}
$$

\n
$$
\leq C ||u_n - u||_{\frac{12}{3+\alpha}} + C ||u_n - u||_{\frac{5p}{3+\alpha}}
$$

\n
$$
\to 0, \quad n \to \infty.
$$
 (16)

Then it follows from (12) , (15) and (16) that

$$
|(u_n, u_n - u)| \leq |\langle J'(u_n), u_n - u \rangle| + b \int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \int_{\mathbb{Z}^3} |\nabla u_n| |\nabla (u_n - u)| d\mu
$$

$$
+ |\langle I'(u_n), u_n - u \rangle|
$$

\n
$$
\leq o_n(1) \|u_n - u\| + Cb \|u_n\|^2 \int_{\mathbb{Z}^3} |\nabla u_n| |\nabla (u_n - u)| d\mu + |\langle I'(u_n), u_n - u \rangle|
$$

\n
$$
\to 0, \quad n \to \infty.
$$

 \Box

Furthermore, since $u_n \rightarrow u$ in *H*, we have

$$
(u, u_n - u) \to 0, \quad n \to \infty.
$$

Hence we obtain that

$$
||u_n - u|| \to 0, \quad n \to \infty.
$$

Note that $u_n \to u$ pointwise in \mathbb{Z}^3 , we get $u_n \to u$ in *H*.

Proof of Theorem [1.1.](#page-4-1) By Lemma [3.1,](#page-9-2) one sees that *J* satisfies the geometric structure of the mountain pass theorem. Hence for $c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]}$ *t*∈[0,1] $J(\gamma(t))$ with $\Gamma = {\gamma \in \mathbb{R}^n}$ $C([0, 1], H)$: $\gamma(0) = 0, \gamma(1) = e$, there exists a $(PS)_c$ sequence. By Lemma [3.2,](#page-10-1)

J satisfies the $(PS)_c$ condition. Then *c* is a critical value of *J* by the mountain pass theorem due to Ambrosetti–Rabinowitz [\[39](#page-24-5)]. In particular, there exists $u \in H$ such that $J(u) = c$. Since $J(u) = c \ge \sigma > 0$, we have $u \ne 0$. Hence the Eq. [\(2\)](#page-1-0) possesses at least a nontrivial solution at least a nontrivial solution.

4 Proof of Theorem [1.2](#page-4-2)

In this section, we prove the existence of ground state solutions to the Eq. [\(2\)](#page-1-0) under the conditions (h_1) and (h_2) on *V*. Now we show some properties of *J* on the Nehari manifold N that are useful in our proofs.

Lemma 4.1 *Let* (*h*1) *and* (*f*1)*-*(*f*4) *hold. Then*

- (i) *for any* $u \in H \setminus \{0\}$ *, there exists a unique* $s_u > 0$ *such that* $s_u u \in \mathcal{N}$ *and* $J(s_u u) =$ $max_{s} J(su);$ *s*>0
- (ii) *there exists* $n > 0$ *such that* $||u|| > n$ *for* $u \in \mathcal{N}$;

(iii) *J is bounded from below on N by a positive constant.*

Proof (i) For any $u \in H \setminus \{0\}$ and $s > 0$, similar to [\(10\)](#page-9-1), we get that

$$
\int_{\mathbb{Z}^3} (R_\alpha * F(su)) F(su) d\mu \leq \varepsilon s^4 \|u\|^4 + C_\varepsilon s^{2p} \|u\|^{2p}.
$$

Then we have

$$
J(su) = \frac{s^2}{2} \int_{\mathbb{Z}^3} \left(a|\nabla u|^2 + V(x)u^2 \right) d\mu + \frac{bs^4}{4} \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2
$$

$$
- \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(su)) F(su) d\mu
$$

$$
= \frac{s^2}{2} ||u||^2 + \frac{bs^4}{4} \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(su)) F(su) d\mu
$$

$$
\geq \frac{s^2}{2} ||u||^2 - ss^4 ||u||^4 - C_\varepsilon s^{2p} ||u||^{2p}.
$$
 (17)

 \mathcal{D} Springer

Since $p > \frac{3+\alpha}{3} > 1$, let $\varepsilon \to 0^+$, we get easily that $J(su) > 0$ for $s > 0$ small enough.

On the other hand, similar to (11) , we get that

$$
J(su)\to -\infty, \quad s\to\infty.
$$

Therefore, max *J*(*su*) is achieved at some $s_u > 0$ with $s_u u \in \mathcal{N}$.

Now we show the uniqueness of s_u . By contradiction, suppose that there exist $s'_u > s_u > 0$ such that $s'_u u, s_u u \in \mathcal{N}$. Then we have

$$
\frac{1}{(s'_u)^2} \|u\|^2 + b \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 = \int_{\mathbb{Z}^3} \frac{(R_\alpha * F(s'_u u)) f(s'_u u) u}{(s'_u)^3} d\mu,
$$

$$
\frac{1}{(s_u)^2} \|u\|^2 + b \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 = \int_{\mathbb{Z}^3} \frac{(R_\alpha * F(s_u u)) f(s_u u) u}{(s_u)^3} d\mu.
$$

As a consequence, we get

$$
\left(\frac{1}{(s_u')^2} - \frac{1}{(s_u)^2}\right) \|u\|^2 = \int_{\mathbb{Z}^3} \frac{(R_\alpha * F(s_u' u)) f(s_u' u) u}{(s_u')^3} d\mu - \int_{\mathbb{Z}^3} \frac{(R_\alpha * F(s_u u)) f(s_u u) u}{(s_u)^3} d\mu,
$$

which is a contradiction in view of (f_4) .

(ii) By the HLS inequality (6) , we have

$$
\int_{\mathbb{Z}^3} (R_{\alpha} * F(u)) f(u)u \, d\mu \le C \left(\int_{\mathbb{Z}^3} |F(u)|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}} \left(\int_{\mathbb{Z}^3} |f(u)u|^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{6}}
$$

\n
$$
\le C \left(\int_{\mathbb{Z}^3} \left(\varepsilon |u|^2 + C_{\varepsilon} |u|^p \right)^{\frac{6}{3+\alpha}} d\mu \right)^{\frac{3+\alpha}{3}}
$$

\n
$$
\le \varepsilon \|u\|_{\frac{12}{3+\alpha}}^4 + C_{\varepsilon} \|u\|_{\frac{6p}{3+\alpha}}^{2p}
$$

\n
$$
\le \varepsilon \|u\|^4 + C_{\varepsilon} \|u\|^{2p}.
$$
 (18)

Let $u \in \mathcal{N}$. Then we have

$$
0 = \langle J'(u), u \rangle
$$

= $||u||^2 + b \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu \right)^2 - \int_{\mathbb{Z}^3} (R_\alpha * F(u)) f(u)u d\mu$
 $\ge ||u||^2 - \varepsilon ||u||^4 - C_\varepsilon ||u||^{2p}.$

Since $p > 1$, we get easily that there exists a constant $\eta > 0$ such that $||u|| \ge \eta > 0$.

(iii) For any $u \in \mathcal{N}$, by (f_3) and (ii), we derive that

$$
J(u) = J(u) - \frac{1}{\theta} \langle J'(u), u \rangle
$$

= $\left(\frac{1}{2} - \frac{1}{\theta}\right) ||u||^2 + b \left(\frac{1}{4} - \frac{1}{\theta}\right) \left(\int_{\mathbb{Z}^3} |\nabla u|^2 d\mu\right)^2$
+ $\frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(u)) \left(\frac{2}{\theta} f(u)u - F(u)\right) d\mu$
 $\ge \left(\frac{1}{2} - \frac{1}{\theta}\right) ||u||^2$
 $\ge \left(\frac{1}{2} - \frac{1}{\theta}\right) \eta^2$
 $\ge 0.$

 \Box

In the following, we establish a homeomorphic map between the unit sphere $S \subset H$ and the Nehari manifold *N* .

Lemma 4.2 *Let* (h_1) *and* (f_1) *-* (f_4) *hold. Define the maps* $s : H \setminus \{0\} \rightarrow (0, \infty)$ *,* $u \mapsto s_u$ *and*

$$
\widehat{m}: H \setminus \{0\} \to \mathcal{N},
$$

$$
u \mapsto \widehat{m}(u) = s_u u.
$$

Then

- (i) *the maps s and m are continuous;*
- (ii) *the map* $m := \hat{m} \mid_S$ *is a homeomorphism between S and N*, *and the inverse of m is given by*

$$
m^{-1}(u) = \frac{u}{\|u\|}.
$$

Proof (i) Let $u_n \to u$ in $H \setminus \{0\}$. Denote $s_n = s_{u_n}$, then $\widehat{m}(u_n) = s_n u_n \in \mathcal{N}$. Since, for any $s > 0$, $\hat{m}(su) = \hat{m}(u)$, without loss of generality, we may assume that $\{u_n\} \subset S$. By Lemma [4.1](#page-12-1) (ii), we get that

$$
s_n=\|s_nu_n\|\geq\eta>0.
$$

We claim that $\{s_n\}$ is bounded. Otherwise, $s_n \to \infty$ as $n \to \infty$. By Lemma [2.3](#page-7-0) (ii), we have that

$$
\int_{\mathbb{Z}^3} (R_\alpha * F(s_n u_n)) F(s_n u_n) d\mu \geq s_n^{\theta} \int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) F(u_n) d\mu.
$$

Moreover, since $||u_n|| = 1$, one gets easily that

$$
\int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) F(u_n) d\mu \leq C.
$$

Then it follows from (i) and (iii) of Lemma [4.1](#page-12-1) and $\theta > 4$ that

$$
0 < \frac{J(s_n u_n)}{\|s_n u_n\|^4}
$$
\n
$$
= \frac{1}{2 \frac{\|s_n u_n\|^2}{\|s_n u_n\|^2}} + \frac{b \left(\int_{\mathbb{Z}^3} |\nabla(s_n u_n)|^2 dx\right)^2}{4 \left\|s_n u_n\right\|^4} - \frac{\int_{\mathbb{Z}^3} (R_\alpha * F(s_n u_n)) F(s_n u_n) d\mu}{\|s_n u_n\|^4}
$$
\n
$$
\leq \frac{1}{2s_n^2} + \frac{b}{4} - s_n^{\theta - 4} \int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) F(u_n) d\mu
$$
\n
$$
\to -\infty,
$$

which is a contradiction. Hence ${s_n}$ is bounded. By the boundedness of ${s_n}$, up to a subsequence, there exists $s_0 > 0$ such that $s_n \to s_0$ and $\hat{m}(u_n) \to s_0u$. Since N is closed, $s_0u \in \mathcal{N}$. This implies that $s_0 = s_u$. As a consequence,

$$
s_{u_n} \to s_u
$$

and

$$
\widehat{m}(u_n) \to s_0 u = s_u u = \widehat{m}(u).
$$

Hence the maps *^s* and *^m* are continuous.

(ii) Clearly, *m* is continuous. For any $u \in \mathcal{N}$, let $\bar{u} = \frac{u}{\|u\|}$, then $\bar{u} \in S$. Since $u = ||u||\bar{u}$ and $s_{\bar{u}}$ is unique, we get $s_{\bar{u}} = ||u||$. Hence $m(\bar{u}) = s_{\bar{u}}\bar{u} = u \in \mathcal{N}$, which means that *m* is surjective. Next, we prove *m* is injective. Let $u_1, u_2 \in S$ and $m(u_1) = m(u_2)$. Then $s_1u_1 = s_2u_2$ implies that $s_1 = s_2$, and hence $u_1 = u_2$. Therefore *m* has an inverse mapping m^{-1} : $\mathcal{N} \to S$ with $m^{-1}(u) = \frac{u}{\|u\|}$. Then for any *u* ∈ *S*, $m^{-1}(m(u)) = u = id(u)$. □

Now we set

$$
c := \inf_{\mathcal{N}} J > 0,
$$

$$
c_1 := \inf_{u \in H \setminus \{0\}} \max_{s > 0} J(su),
$$

and

$$
c_2 := \inf_{\gamma \in \Gamma_2} \max_{s \in [0,1]} J(\gamma(s)),
$$

where

$$
\Gamma_2 = \{ \gamma \in C([0, 1], H) : \gamma(0) = 0, J(\gamma(1)) < 0 \}.
$$

 $\textcircled{2}$ Springer

Lemma 4.3 *Let* (h_1) *and* (f_1) *-* (f_4) *hold. Then* $c_1 = c_2 = c > 0$.

Proof We first prove $c_1 = c$. By Lemma [4.1](#page-12-1) (i), there exists a unique $s_u > 0$ such that $J(s_u u) = \max_{s>0} J(su)$. Then *s*>0

$$
c_1 = \inf_{u \in H \setminus \{0\}} \max_{s > 0} J(su) = \inf_{u \in H \setminus \{0\}} J(s_u u) = \inf_{u \in \mathcal{N}} J(u) = c.
$$

Next we prove $c_1 \ge c_2$. By [\(11\)](#page-10-2), for any $u \in H \setminus \{0\}$, there exists a large $s_0 > 0$ such that $J(s_0u) < 0$. Define

$$
\gamma_0: [0, 1] \to H,
$$

$$
s \mapsto ss_0 u.
$$

Since $\gamma_0(0) = 0$ and $J(\gamma_0(1)) < 0$, we have $\gamma_0 \in \Gamma_2$. Then for any $u \in H \setminus \{0\}$,

$$
\max_{s>0} J(su) \ge \max_{s \in [0,1]} J(s s_0 u) = \max_{s \in [0,1]} J(\gamma_0(s)) \ge \inf_{\gamma \in \Gamma_2} \max_{s \in [0,1]} J(\gamma(s)),
$$

which implies that $c_1 \geq c_2$.

Now we prove $c_2 \geq c$. By Lemma [4.1](#page-12-1) (i), for any $u \in H \setminus \{0\}$, there exists a unique $s_u > 0$ such that $s_u u \in \mathcal{N}$. Then we can separate *H* into two components *H* = *H*₁ ∪ *H*₂, where *H*₁ = {*u* ∈ *H* : *s_u* ≥ 1} and *H*₂ = {*u* ∈ *H* : *s_u* < 1}.

We claim that each $\gamma \in \Gamma_2$ has to cross *N*. In fact, one gets easily that $\gamma(t)$ and 0 belong to H_1 for *s* small enough. We only need to prove $\gamma(1) \in H_2$. Let

$$
G(s) = J(s\gamma(1)), \quad s \ge 0.
$$

Clearly $G(0) = 0$ and $G(1) < 0$. By similar arguments to [\(17\)](#page-12-2), we get that $G(t) > 0$ for $s > 0$ small enough. Hence there exists $s_{\gamma(1)} \in (0, 1)$ such that $\max_{s \geq 0} G(s) =$ $J(s_{\nu(1)}\gamma(1))$, and hence $\gamma(1) \in H_2$. By the continuity of *s* in Lemma [4.2](#page-14-0) (i), we obtain that each $\gamma \in \Gamma_2$ has to cross *N*. The claim is completed.

Then for any $\gamma \in \Gamma_2$, there exists $t_0 \in (0, 1)$ such that $\gamma(t_0) \in \mathcal{N}$. As a consequence,

$$
\inf_{u \in \mathcal{N}} J(u) \leq J(\gamma(t_0)) \leq \max_{s \in [0,1]} J(\gamma(s)),
$$

which implies that $c \leq c_2$. Therefore, we have $c_1 = c_2 = c$.

Proof of Theorem [1.2](#page-4-2) By Lemma [3.1](#page-9-2) and Lemma [3.2,](#page-10-1) one sees that *J* satisfies the geometric structure and $(PS)_{c_2}$ condition. Then by the mountain pass theorem, there exists $u \in H$ such that $J(u) = c_2$ and $J'(u) = 0$. Then it follows from Lemma [4.3](#page-15-0) that $c_2 = c > 0$. Hence $u \neq 0$ and $u \in \mathcal{N}$. The proof is completed.

 \Box

5 Proof of Theorem [1.3](#page-4-3)

In this section, we prove the existence of ground state solutions to the Eq. [\(2\)](#page-1-0) under the conditions (h_1) and (h_3) on *V*.

As we see, the condition (*h*2) ensures a compact embedding, see Lemma [2.4,](#page-8-0) while the condition $(h₃)$ leads to the lack of compactness. Moreover, since we only assume that *f* is continuous, N is not a C^1 -manifold. Hence we cannot use the Ekeland variational principle on *N* directly. Note that Lemma [4.1](#page-12-1) and Lemma [4.2](#page-14-0) still hold, we shall follow the lines of Hua and Xu [\[18](#page-23-14)] to prove this theorem.

We show that Ψ (see below) is of class C^1 and there is a one-to-one correspondence between critical points of Ψ and nontrivial critical points of *J*. The proof of the lemma is similar to that as in [\[18](#page-23-14), [35\]](#page-23-26). For completeness, we present the proof in the context.

Lemma 5.1 *Let* (*h*1) *and* (*f*1)*-*(*f*4) *hold. Define the functional*

$$
\Psi: S \to \mathbb{R},
$$

$$
w \mapsto \Psi(w) = J(m(w)).
$$

Then

(i) $\Psi(w) \in C^1(S, \mathbb{R})$ *and*

$$
\langle \Psi'(w), z \rangle = ||m(w)|| \langle J'(m(w)), z \rangle, \quad z \in T_w(S) = \{ v \in H : (w, v) = 0 \};
$$

- (ii) $\{w_n\}$ *is a Palais-Smale sequence for* Ψ *if and only if* $\{m(w_n)\}$ *is a Palais-Smale sequence for J ;*
- (iii) $w \in S$ *is a critical point of* Ψ *if and only if* $m(w) \in N$ *is a nontrivial critical point of J. Moreover, the corresponding critical values of* Ψ *and J coincide and* $\inf_{S} \Psi = \inf_{M} J.$ *S N*

Proof (i) Define the functional

$$
\widehat{\Psi}: H \setminus \{0\} \to \mathbb{R},
$$

$$
w \mapsto \widehat{\Psi}(w) = J(\hat{m}(w)).
$$

Since $J \in C^1(H, \mathbb{R})$ and $\hat{m}(w) = s_w w$ is a continuous map, we have

$$
\langle \widehat{\Psi}'(w), z \rangle = \frac{d}{dt} \mid_{t=0} \widehat{\Psi}(w + tz)
$$

\n
$$
= \frac{d}{dt} \mid_{t=0} J(\widehat{m}(w + tz))
$$

\n
$$
= J'(\widehat{m}(w + tz)) \mid_{t=0} \cdot \frac{d}{dt} \mid_{t=0} \widehat{m}(w + tz)
$$

\n
$$
= J'(\widehat{m}(w))s_{w}z
$$

\n
$$
= s_{w} \langle J'(\widehat{m}(w)), z \rangle
$$

\n
$$
= \frac{\|\widehat{m}(w)\|}{\|w\|} \langle J'(\widehat{m}(w)), z \rangle.
$$

 $\textcircled{2}$ Springer

Note that $\Psi = \widehat{\Psi} |_{S}$ and $m = \widehat{m} |_{S}$. Hence the result follows from the above equality. (ii) Denote

$$
\psi(u) = \frac{1}{2} ||u||^2, \quad u \in H.
$$

Clearly, $\psi \in C^1(H, \mathbb{R})$, and for any $v \in H$,

$$
\langle \psi'(u), v \rangle = (u, v).
$$

Hence ψ' is bounded on finite sets and $\langle \psi'(w), w \rangle = 1$ for all $w \in S$. Then we have $H = T_w(S) \oplus \mathbb{R}w$ for all $w \in S$, and the projection

$$
H \to T_w(S) : z + tw \mapsto z
$$

has uniformly bounded norm with respect to $w \in S$. In fact, ψ' is bounded on finite sets and $\langle \psi'(w), (z + tw) \rangle = t$, so if $||z + tw|| = 1$, then $|t| \leq C$. Hence

$$
||z|| \le |t| + ||z + tw|| \le (1 + C)||z + tw||, \quad w \in S, z \in T_w(S) \text{ and } t \in \mathbb{R}.
$$
 (19)

Let $u := m(w)$. On one hand, by (i), we have

$$
\|\Psi'(w)\| = \sup_{\substack{z \in T_w(S), \\ \|z\| = 1}} \langle \Psi'(w), z \rangle = \|u\| \sup_{\substack{z \in T_w(S), \\ \|z\| = 1}} \langle J'(u), z \rangle.
$$
 (20)

On the other hand, since $u \in \mathcal{N}$, we have $\langle J'(u), w \rangle = \frac{1}{\|u\|} \langle J'(u), u \rangle = 0$. Then it follows from (19) , (20) and (i) that

$$
\|\Psi'(w)\| \le \|u\| \|J'(u)\|
$$

= $\|u\| \sup_{z \in T_w(S), t \in \mathbb{R}, \atop z + t w \neq 0} \frac{\langle J'(u), (z + tw) \rangle}{\|z + tw\|}$
 $\le (1 + C) \sup_{z \in T_w(S) \setminus \{0\}} \frac{\|u\| \langle J'(u), z \rangle}{\|z\|}$
= $(1 + C) \sup_{z \in T_w(S) \setminus \{0\}} \frac{\langle \Psi'(w), z \rangle}{\|z\|}$
= $(1 + C) \|\Psi'(w)\|$.

By Lemma [4.1](#page-12-1) (ii), we have $||u|| \ge \eta > 0$ for all $u \in \mathcal{N}$. Then the result follows from the previous estimate and the fact $J(u) = \Psi(w)$.

(iii) By [\(20\)](#page-18-1), $\Psi'(w) = 0$ if and only if $J'(u) = 0$. The rest is clear.

Proof of Theorem [1.3.](#page-4-3) Note that $c = \inf_{S} \Psi$. Let $\{w_n\} \subset S$ be a minimizing sequence such that $\Psi(w_n) \rightarrow c$. By Ekeland's variational principle, we may assume that $\Psi'(w_n) \to 0$ as $n \to \infty$. Hence $\{w_n\}$ is a $(PS)_c$ sequence for Ψ .

Let $u_n = m(w_n) \in \mathcal{N}$. Then it follows from Lemma [5.1](#page-17-1) that

$$
J(u_n) \to c
$$
, and $J'(u_n) \to 0$, $n \to \infty$.

By [\(13\)](#page-10-3), one gets that $\{u_n\}$ is bounded in *H*. Hence there exists $u \in H$ such that

$$
u_n \rightharpoonup u
$$
, in *H*, and $u_n \rightharpoonup u$, pointwise in \mathbb{Z}^3 .

If

$$
||u_n||_{\infty} \to 0, \quad n \to \infty,
$$
\n(21)

then by Lemma [2.5,](#page-8-1) we have that $u_n \to 0$ in $\ell^t(\mathbb{Z}^3)$ with $t > 2$. Hence

$$
\int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) f(u_n) u_n d\mu \leq C \left(\|u_n\|_{\frac{12}{3+\alpha}}^4 + \|u_n\|_{\frac{6p}{3+\alpha}}^{2p} \right) \to 0, \quad n \to \infty.
$$

Namely

$$
\int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) f(u_n) u_n d\mu = o_n(1).
$$

Then

$$
0 = \langle J'(u_n), u_n \rangle = ||u_n||^2 + b \left(\int_{\mathbb{Z}^3} |\nabla u_n|^2 d\mu \right)^2 - \int_{\mathbb{Z}^3} (R_\alpha * F(u_n)) f(u_n) u_n d\mu
$$

$$
\ge ||u_n||^2 + o_n(1),
$$

which implies that $||u_n|| \to 0$ as $n \to \infty$. This contradicts $||u_n|| \geq \eta > 0$ in Lemma [4.1](#page-12-1) (ii). Hence [\(21\)](#page-19-0) does not hold, and hence there exists $\delta > 0$ such that

$$
\liminf_{n \to \infty} \|u_n\|_{\infty} \ge \delta > 0,
$$
\n(22)

which implies that *u* \neq 0. Therefore, there exists a sequence {*y_n*} $\subset \mathbb{Z}^3$ such that

$$
|u_n(y_n)| \geq \frac{\delta}{2}.
$$

Let $k_n \in \mathbb{Z}^3$ satisfy $\{y_n - k_n \tau\} \subset \Omega$, where $\Omega = [0, \tau)^3$. By translations, let $v_n(y) :=$ u_n ($y + k_n \tau$). Then for any v_n ,

$$
||v_n||_{l^{\infty}(\Omega)} \geq |v_n(y_n - k_n \tau)| = |u_n(y_n)| \geq \frac{\delta}{2} > 0.
$$

Since *V* is τ -periodic, *J* and $\mathcal N$ are invariant under the translation, we obtain that $\{v_n\}$ is also a $(PS)_c$ sequence for *J* and bounded in *H*. Then there exists $v \in H$ with $v \neq 0$ such that

$$
v_n \rightharpoonup v
$$
, in *H*, and $v_n \rightharpoonup v$, pointwise in \mathbb{Z}^3 .

We prove that v is a critical point of *J*. Let $A \ge 0$ be a constant such that $\int_{\mathbb{Z}^3} |\nabla v_n|^2 d\mu \to A$ as $n \to \infty$. Note that

$$
\int_{\mathbb{Z}^3} |\nabla v|^2 d\mu \le \liminf_{n \to \infty} \int_{\mathbb{Z}^3} |\nabla v_n|^2 d\mu = A.
$$

We claim that

$$
\int_{\mathbb{Z}^3} |\nabla v|^2 d\mu = A.
$$

Arguing by contradiction, we assume that $\int_{\mathbb{Z}^3} |\nabla v|^2 d\mu < A$. For any $\phi \in C_c(\mathbb{Z}^3)$, we have $\langle J'(v_n), \phi \rangle = o_n(1)$, namely

$$
\int_{\mathbb{Z}^3} (a\nabla v_n \nabla \varphi + V(x)v_n \varphi) d\mu + b \int_{\mathbb{Z}^3} |\nabla v_n|^2 d\mu \int_{\mathbb{Z}^3} \nabla v_n \nabla \varphi d\mu
$$

$$
- \int_{\mathbb{Z}^3} (R_\alpha * F(v_n)) f(v_n) \varphi d\mu = o_n(1).
$$
 (23)

Let $n \to \infty$ in [\(23\)](#page-20-0) and by Lemma [2.2,](#page-6-2) we get that

$$
\int_{\mathbb{Z}^3} (a \nabla v \nabla \varphi + V(x) v \varphi) d\mu + bA \int_{\mathbb{Z}^3} \nabla v \nabla \varphi d\mu - \int_{\mathbb{Z}^3} (R_\alpha * F(v)) f(v) \varphi d\mu = 0.
$$
\n(24)

Since $C_c(\mathbb{Z}^3)$ is dense in *H*, [\(24\)](#page-20-1) holds for any $\phi \in H$. Let $\phi = v$ in (24), then we have

$$
\langle J'(v), v \rangle = \int_{\mathbb{Z}^3} \left(a|\nabla v|^2 + V(x)v^2 \right) d\mu + b \left(\int_{\mathbb{Z}^3} |\nabla v|^2 d\mu \right)^2
$$

$$
- \int_{\mathbb{Z}^3} (R_\alpha * F(v)) f(v) v d\mu
$$

$$
< \int_{\mathbb{Z}^3} \left(a|\nabla v|^2 + V(x)v^2 \right) d\mu + bA \int_{\mathbb{Z}^3} |\nabla v|^2 d\mu
$$

$$
- \int_{\mathbb{Z}^3} (R_\alpha * F(v)) f(v) v d\mu
$$

$$
= 0.
$$

Let

$$
h(s) = \langle J'(sv), sv \rangle, \quad s > 0.
$$

Then $h(1) = (J'(v), v) < 0$.

By (18) , we get that

$$
\int_{\mathbb{Z}^3} (R_\alpha * F(sv)) f(sv) s v d\mu \leq \varepsilon s^4 \|v\|^4 + C_{\varepsilon} s^{2p} \|v\|^{2p}.
$$

Then for $s > 0$ small enough,

$$
h(s) = \langle J'(sv), sv \rangle
$$

= $s^2 ||v||^2 + s^4 b \left(\int_{\mathbb{Z}^3} |\nabla v|^2 d\mu \right)^2 - \int_{\mathbb{Z}^3} (R_\alpha * F(sv)) f(sv) s v d\mu$
 $\geq s^2 ||v||^2 - \varepsilon s^4 ||v||^4 - C_\varepsilon s^{2p} ||v||^{2p}$
> 0. (25)

Hence, there exists $s_0 \in (0, 1)$ such that $h(s_0) = 0$, i.e. $\langle J'(s_0 v), s_0 v \rangle = 0$. This means that $s_0v \in \mathcal{N}$, and hence $J(s_0v) \ge c$. By Lemma [2.3,](#page-7-0) we get that

$$
\frac{1}{4} \int_{\mathbb{Z}^3} (R_\alpha * F(sv)) f(sv) s v \, d\mu - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(sv)) F(sv) \, d\mu = \frac{1}{4} s g'(s) - g(s) > 0,
$$

and is strictly increasing with respect to $s > 0$. By (f_3) , one has that

$$
\left(\frac{1}{4}f(v)v - \frac{1}{2}F(v)\right) > \frac{1}{2}\left(\frac{2}{\theta}f(v)v - F(v)\right) \ge 0.
$$

Then by Fatou's lemma, we obtain that

$$
c \leq J (s_0 v) = J (s_0 v) - \frac{1}{4} \langle J' (s_0 v), s_0 v \rangle
$$

\n
$$
= \frac{s_0^2}{4} ||v||^2 + \frac{1}{4} \int_{\mathbb{Z}^3} (R_\alpha * F(s_0 v)) f(s_0 v) s_0 v d\mu - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(s_0 v)) F(s_0 v) d\mu
$$

\n
$$
< \frac{1}{4} ||v||^2 + \frac{1}{4} \int_{\mathbb{Z}^3} (R_\alpha * F(v)) f(v) v d\mu - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(v)) F(v) d\mu
$$

\n
$$
\leq \liminf_{n \to \infty} \left[\frac{1}{4} ||v_n||^2 + \frac{1}{4} \int_{\mathbb{Z}^3} (R_\alpha * F(v_n)) f(v_n) v_n d\mu - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(v_n)) F(v_n) d\mu \right]
$$

\n
$$
= \liminf_{n \to \infty} \left[J (v_n) - \frac{1}{4} \langle J' (v_n), v_n \rangle \right]
$$

\n
$$
= c.
$$

$$
\int_{\mathbb{Z}^3} |\nabla v_n|^2 d\mu \to \int_{\mathbb{Z}^3} |\nabla v|^2 d\mu = A.
$$

The claim is completed. Then by [\(23\)](#page-20-0) and [\(24\)](#page-20-1), we get that $J'(v) = 0$, i.e. $v \in \mathcal{N}$. It remains to prove that $J(v) = c$. In fact, by Fatou's lemma, we obtain that

$$
c \leq J(v) - \frac{1}{4} \langle J'(v), v \rangle
$$

= $\frac{1}{4} ||v||^2 + \frac{1}{4} \int_{\mathbb{Z}^3} (R_\alpha * F(v)) f(v) v d\mu - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(v)) F(v) d\mu$
 $\leq \liminf_{n \to \infty} \left[\frac{1}{4} ||v_n||^2 + \frac{1}{4} \int_{\mathbb{Z}^3} (R_\alpha * F(v_n)) f(v_n) v_n d\mu - \frac{1}{2} \int_{\mathbb{Z}^3} (R_\alpha * F(v_n)) F(v_n) d\mu \right]$
= $\liminf_{n \to \infty} \left[J(v_n) - \frac{1}{4} \langle J'(v_n), v_n \rangle \right]$
= c.

Hence $J(v) = c$.

Declarations

Conflict of interest The author declares that there are no Conflict of interest regarding the publication of this paper.

References

- 1. Benchira, H., Matallah, A., El Mokhtar, M.E.O., Sabri, K.: The existence result for a *p*-Kirchhoff-type problem involving critical Sobolev exponent. J. Funct. Spaces, Art. ID 3247421, 8 pp (2023)
- 2. Chen, S., Tang, X.: Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials. J. Math. Phys. **60**(12), 121509, 16 pp (2019)
- 3. Chen, S., Zhang, B., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. **9**, 148–167 (2020)
- 4. Cheng, B., Wu, X.: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. **71**, 4883–4892 (2009)
- 5. Eddine, N.C., Nguyen, A.T., Ragusa, M.A.: The Dirichlet problem for a class of anisotropic Schrödinger–Kirchhoff-type equations with critical exponent. Math. Model. Anal. **29**, 254–267 (2024)
- 6. El-Houari, H., Chadli, L.S., Moussa, H.: Multiple solutions in fractional Orlicz–Sobolev spaces for a class of nonlocal Kirchhoff systems. Filomat **38**, 2857–2875 (2024)
- 7. Grigor'yan, A., Lin, Y., Yang, Y.: Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci. China Math. **60**, 1311–1324 (2017)
- 8. Gu, G., Tang, X.: The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. Adv. Nonlinear Stud. **19**, 779–795 (2019)
- 9. Guariglia, E.: Riemann zeta fractional derivative-functional equation and link with primes. Adv. Differ. Equ., Paper No. 261, 15 pp (2019)
- 10. Guariglia, E.: Fractional calculus, zeta functions and Shannon entropy. Open Math. **19**(1), 87–100 (2021)
- 11. Guo, Z.: Ground states for Kirchhoff equations without compact condition. J. Differ. Equ. **259**, 2884– 2902 (2015)
- 12. Han, X., Shao, M., Zhao, L.: Existence and convergence of solutions for nonlinear biharmonic equations on graphs. J. Differ. Equ. **268**, 3936–3961 (2020)
- 13. He, F., Qin, D., Tang, X.: Existence of ground states for Kirchhoff-type problems with general potentials. J. Geom. Anal. **31**, 7709–7725 (2021)
- 14. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J. Differ. Equ. **252**, 1813–1834 (2012)
- 15. Hu, D., Tang, X., Yuan, S., Zhang, Q.: Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki–Lions type conditions. Anal. Math. Phys. 12(1), Paper No. 19, 27 pp (2022)
- 16. Hu, D., Tang, X., Zhang, N.: Semiclassical ground state solutions for a class of Kirchhoff-Type problem with convolution nonlinearity. J. Geom. Anal. **32**(11), Paper No. 272, 37 pp (2022)
- 17. Hua, B., Li, R., Wang, L.: A class of semilinear elliptic equations on groups of polynomial growth. J. Differ. Equ. **363**, 327–349 (2023)
- 18. Hua, B., Xu, W.: Existence of ground state solutions to some Nonlinear Schrödinger equations on lattice graphs. Calc. Var. Partial Differ. Equ. **62**(4), Paper No. 127, 17 pp (2023)
- 19. Huang, G., Li, C., Yin, X.: Existence of the maximizing pair for the discrete Hardy–Littlewood–Sobolev inequality. Discrete Contin. Dyn. Syst. **35**(3), 935–942 (2015)
- 20. Li, C., Dao, X., Guo, P.: Fractional derivatives in complex planes. Nonlinear Anal. **71**, 1857–1869 (2009)
- 21. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J. Differ. Equ. **257**, 566–600 (2014)
- 22. Li, R., Wang, L.: The existence and convergence of solutions for the nonlinear Choquard equations on groups of polynomial growth. [arXiv: 2208.00236](http://arxiv.org/abs/2208.00236)
- 23. Liang, S., Sun, M., Shi, S., Liang, S.: On multi-bump solutions for the Choquard–Kirchhoff equations in R*^N* . Discrete Contin. Dyn. Syst. Ser. S **16**, 3163–3193 (2023)
- 24. Liang, S., Pucci, P., Zhang, B.: Multiple solutions for critical Choquard–Kirchhoff type equations. Adv. Nonlinear Anal. **10**, 400–419 (2021)
- 25. Liu, Y., Zhang, M.: Existence of solutions for nonlinear biharmonic Choquard equations on weighted lattice graphs. J. Math. Anal. Appl. **534**(2), Paper No. 128079, 18 pp (2024)
- 26. Liu, Y., Zhang, M.: The ground state solutions to a class of biharmonic Choquard equations on weighted lattice graphs. Bull. Iran. Math. Soc. **50**(1), Paper No. 12, 17 pp (2024)
- 27. Lü, D.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. **99**, 35–48 (2014)
- 28. Lü, D., Dai, S.: Existence and asymptotic behavior of solutions for Kirchhoff equations with general Choquard-type nonlinearities. Z. Angew. Math. Phys. **74**(6), Paper No. 232, 15 pp (2023)
- 29. Lü, D., Lu, Z.: On the existence of least energy solutions to a Kirchhoff-type equation in \mathbb{R}^3 . Appl. Math. Lett. **96**, 179–186 (2019)
- 30. Lü, W.: Ground states of a Kirchhoff equation with the potential on the lattice graphs. Commun. Anal. Mech. **15**, 792–810 (2023)
- 31. Michelitsch, T., Collet, B., Riascos, A. Nowakowski, A., Nicolleau, F.: Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices. J. Phys. A **50**(50), 505004, 29 pp (2017)
- 32. Ragusa, M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Global Optim. **40**, 361–368 (2008)
- 33. Ragusa, M.A.: Parabolic Herz spaces and their applications. Appl. Math. Lett. **25**(10), 1270–1273 (2012)
- 34. Sun, D., Zhang, Z.: Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in \mathbb{R}^3 . J. Math. Anal. Appl. **461**, 128–149 (2018)
- 35. Szulkin, A., Weth, T.: The method of Nehari manifold. Handbook of nonconvex analysis and applications, pp. 597–632. International Press, Somerville (2010)
- 36. Tang, X., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. **56**(4), Paper No. 110, 25 pp (2017)
- 37. Wang, L.: The ground state solutions to discrete nonlinear Choquard equations with Hardy weights. Bull. Iran. Math. Soc. **49**(3), Paper No. 30, 29 pp (2023)
- 38. Wang, L.: The ground state solutions of discrete nonlinear Schrödinger equations with Hardy weights. Mediterr. J. Math. **21**(3), Paper No. 78 (2024)
- 39. Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)
- 40. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \mathbb{R}^N . Nonlinear Anal. Real World Appl. **12**, 1278–1287 (2011)
- 41. Wu, M., Tang, C.: The existence and concentration of ground state sign-changing solutions for Kirchhoff-type equations with a steep potential well. Acta Math. Sci. Ser. B (Engl. Ed.) **43**, 1781– 1799 (2023)
- 42. Yin, L., Gan, W., Jiang, S.: Existence and concentration of ground state solutions for critical Kirchhofftype equation invoLüing Hartree-type nonlinearities. Z. Angew. Math. Phys. **73**(3), Paper No. 103, 19 pp (2022)
- 43. Zhang, N., Zhao, L.: Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci. China Math. **61**, 1481–1494 (2018)
- 44. Zhou, L., Zhu, C.: Ground state solution for a class of Kirchhoff-type equation with general convolution nonlinearity. Z. Angew. Math. Phys. **73**(2), Paper No. 75, 13 pp (2022)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.