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Abstract
In this paper, we study the discrete Kirchhoff-Choquard equation

— (a +b/3 |Vu|2d,u> Au+V(x)u = (Ry x F(w) fw), xeZ’,
Z.

where a, b > 0, « € (0, 3) are constants and R, is the Green’s function of the
discrete fractional Laplacian that behaves as the Riesz potential. Under some suitable
assumptions on V and f, we prove the existence of nontrivial solutions and ground
state solutions respectively by variational methods.
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1 Introduction

The Kirchhoff-type equation

- (a +b/ |Vu|2du) Au+V@u=g(x,u), ueH R, (1)
R3

where a, b > 0, has drawn lots of interest in recent years due to the appearance of
( fR3 |Vu|? dp) Au. For example, Wu [40] proved the existence of nontrivial solutions
under general assumptions on g by the symmetric mountain pass theorem. Moreover,
if g(x,u) = g(u), He and Zou [14] showed the existence of ground state solutions
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under the Ambrosetti—Rabinowitz conditions on g by the Nehari manifold approach;
Guo [11] also derived the existence of ground state solutions for g that does not satisfy
the Ambrosetti-Rabinowitz conditions; Wu and Tang [41] verified the existence and
concentration of ground state solutions under some assumptions on V and g by the
sign-changing Nehari manifold method. In particular, for g(u) = |u|?~'u, Sun and
Zhang [34] obtained the uniqueness of ground state solutions for p € (3, 5). Li and
Ye [21] established the existence of ground state solutions for p € (2, 5) based on a
monotonicity trick and a new version of global compactness lemma. Later, Lii and Lu
[29] extended the result of [21] to p € (1, 5) by different methods. For more related
works, we refer the readers to [1, 2, 4-6, 13, 36].

In many physical applications, the Choquard-type nonlinearity g(x, u) = (Iy *
F(u)) f (u) appears naturally, where I, is the Riesz potential. Clearly, two nonlocal
terms are involved in the Eq. (1), which means that the problem is not a pointwise
identity any more. Thus, some mathematical difficulties have been provoked, which
makes the research on these problems very meaningful. Recently, for o € (1, 3), Zhou
and Zhu [44] proved the existence of ground state solutions; Liang et al. [23] obtained
the existence of multi-bump solutions. For « € (0, 3), Chen et al. [3] proved the
existence of ground state solutions under some hypotheses on V and f; Lii and Dai
[28] established the existence and asymptotic behavior of ground state solutions by
a Pohozaev-type constraint technique; Hu et al. [15] obtained two classes of ground
state solutions under the general Berestycki-Lions conditions on f. Moreover, for
f(u) = |u|?~2u with p € (2, 3+ @), Lii [27] demonstrated the existence and asymp-
totic behavior of ground state solutions by the Nehari manifold and the concentration
compactness principle. For more related works about the Choquard-type nonlinearity,
we refer the readers to [8, 16, 24, 29, 42].

Nowadays, many researchers turn to study differential equations on graphs, espe-
cially for the nonlinear elliptic equations. See for examples [7, 12, 17, 18, 38, 43]
for the discrete nonlinear Schrodiner equations. For the discrete nonlinear Choquard
equations, we refer the readers to [22, 25, 26, 37]. Recently, Lii [30] proved the exis-
tence of ground state solutions for a class of Kirchhoff equations on lattice graphs Z>.
To the best of our knowledge, there is no existence results for the Kirchhoff-Choquard
equations on graphs. Motivated by the works mentioned above, in this paper, we would
like to study a class of Kirchhoff-type equations with general convolution nonlinearity
on lattice graphs Z> and discuss the existence of solutions under different conditions
on potential V.

Let us first give some notations. Let C (Z?) be the set of all functions on Z> and
C.(Z3) be the set of all functions on Z> with finite support. We denote by the ¢7 (Z3
the space of £”-summable functions on Z>. Moreover, for any u € C(Z3), we always
write fZ3 Fx)dw= > f(x), where u is the counting measure in Z3.

xeZ3
In this paper, we consider the following Kirchhoff-Choquard equation

- <a + b'/.} |Vu|2du) Au+V@u=Ry*Fw) fu), xeZ (2)
Z;

where a, b > 0 are constants, @ € (0, 3) and R, represents the Green’s function of
the discrete fractional Laplacian, see [31, 37],

@ Springer



Solutions to discrete nonlinear Kirchhoff-Choquard... Page3of25 138

K . o
Ra(x,y) = (z_>3/ AVRTS (kydk, x,y € 7,
T T3

which contains the fractional degree

3
1 o
Ke = s J 0k 0 = 6=23 oty

where T* = [0, 2713, k = (ky, k2, k3) € T>. We refer the readers to [9, 10, 20, 32,
33] for more results involved in the fractional calculus. Clearly, the Green’s function
R, has no singularity at x = y. According to [31], the Green’s function R, behaves
as |x — y|*3 for |x — y| > 1. Here Au(x) = > (u(y) — u(x)) and |Vu(x)| =

y~x
1

2
(% > (u(y) — u(x))z) :

y~x
Now we give assumptions on the potential V and the nonlinearity f:

(hy) for any x € Z3, there exists Vo > 0 such that V (x) > Vp;

(hy) there exists a point xo € 73 such that V(x) »> oo as |x — xg| = o0;
(h3) V(x) is t-periodic in x € 73 with T € Z;

(f1) f(t)iscontinuousint € R and f(¢) = o(¢) as |t| — O;

(f2) there existc > 0 and p > 3+T°‘ such that

FOI <cQ+1t1P7h, 1eR;
(f3) there exists 6 > 4 such that
t
0<OF() = 9/ f(s)ds <2f()t, telR;
0

(fa) forany u € H\{0},

Jy3(Ra % F(tu)) f (twu d
[3

is strictly increasing with respect ¢ € (0, 00).
By (f1) and (f2), we have that for any ¢ > 0, there exists C, > 0 such that

If(0)] < elt] + Celt|P™, teR. 3)
Hence
|[F(1)] < elt)® + Clt|P, teR. )
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Let H'(Z?) be the completion of C.(Z3) with respect to the norm

1
2
luell 1 = </ (|Vu|2 +u2) du) .
73

Let V(x) > Vp > 0, we introduce a new subspace

H = {u € HI(Z3):/ V(x)uzdu < oo}
73

with the norm

1
lull = (/ (a|vu|2 + V(x)u2> du>2 ,
73

where a is a positive constant. The space H is a Hilbert space with the inner product
(u,v) = / (@aVuVuv + Vuv) du.
73
Since V(x) > Vy > 0, we have
lll3 < i/ Vo dp < — full?
2= Vo Ju W )
Moreover, we have

lully < llullp, g = p.

which can be seen in [19, Lemma 2.1]. Therefore, for any # € H and g > 2, the above
two inequalities imply

lully < llull2 < Cllul. )

The energy functional J(u) : H — R associated to the Eq. (2) is given by
1 2 2 b 2 ?
Jw) =~ (a|Vu| FVou )du+ 2] 1vupau
2 73 4 73
1
—5/ (Ry * Fw))F(u)du.
73
Moreover, for any ¢ € H, one gets easily that
(J'w), ¢) = / (@VuVe + V(x)up)du + b/ |w|2du/ VuVedn
73 73 73

—/ (Ro % F(u)) f(u)p dpu.
73
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We say that u € H is a nontrivial solution to the Eq. (2), if u is a nonzero critical point
of J,i.e. J/(u) = 0 with u # 0. A ground state solution to the Eq. (2) means that u is
a nonzero critical point of J with the least energy, that is,

Jw)=inf J > 0,
N

where
N ={ue H\{0}: (J'(w), u) = 0}

is the Nehari manifold.
Now we state our main results.

Theorem 1.1 Let (hy), (h2) and (f1)-(f3) hold. Then the Eq. (2) has a nontrivial
solution.

Theorem 1.2 Let (hy), (h2) and (f1)-(f1) hold. Then the Eq. (2) has a ground state
solution.

Theorem 1.3 Let (hy), (h3) and (f1)-(f4) hold. Then the Eq. (2) has a ground state
solution.

The rest of this paper is organized as follows. In Sect. 2, we present some preliminary
results on graphs. In Sect.3, we prove Theorem 1.1 by the mountain pass theorem.
In Sect.4, we prove Theorem 1.2 based on the mountain pass theorem and Nehari
manifold approach. In Sect.5, we prove Theorem 1.3 by the method of generalized
Nehari manifold.

2 Preliminaries

In this section, we introduce the basic settings on graphs and give some basic results.
Let G = (V, E) be a connected, locally finite graph, where V denotes the vertex
set and [E denotes the edge set. We call vertices x and y neighbors, denoted by x ~ y,
if there exists an edge connecting them, i.e. (x, y) € E. Forany x, y € V, the distance
d(x, y) is defined as the minimum number of edges connecting x and y, namely

d(x,Y)zinf{k:x:xow...kaZy}.

Let B,(a) = {x € V :d(x,a) < r} be the closed ball of radius r centered at a € V.
For brevity, we write B, := B, (0).

In this paper, we consider, the natural discrete model of the Euclidean space, the
integer lattice graph. The 3-dimensional integer lattice graph, denoted by Z>, consists

3
of the set of vertices V = Z3 and the set of edges E = {(x, y) : x, y € Z°, >lxi —
i=1

yi| = 1}. In the sequel, we denote |x — y| := d(x, y) on the lattice graph Z>.
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Foru,veC (Z3), we define the Laplacian of u as

Au(x) =Y (u(y) — u(x)),

y~x

and the gradient form I as

1
P, v)x) =7 Z(u(y) —u(x))(v(y) — v(x)).

We write I'(u) = I' (4, u) and denote the length of the gradient as

1

1 2
Vul(x) = VT w)(x) = (5 D ) — u(x)>2> :

y~x

The space £7(Z?) is defined as

ez = {u € C(Z% : ull, < oo},

where

1
P
(Z IM(X)I”) , 1 <p<oo,
lull, = § \xez?
sup |u(x)l,

p = oo.
xeZ3

The following discrete Hardy-Littlewood-Sobolev (HLS for abbreviation) inequal-
ity plays a key role in this paper, see [22, 37].

Lemma21 Let0O <a <3,1 <r,s < ooand%—i— % +3_T°‘ = 2. We have the
discrete HLS inequality

fa(Ra * WOV dit < Crsallullrvlly, u (), v et (6)
7

And an equivalent form is

|Ra % ull 3 < Crallully, uet'(Z), )
where 1 < r < 2
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Denote
I(u) = l/ (Ry * F(u))F(u)di, ue€H.
2 73

Then for any ¢ € H, we have

(I'w), $) = /Z3(Ra * F(u)) f(u)gdp.

Lemma2.2 Let (f1)-(f3) hold. Then

(1) 1 is weakly lower semicontinuous;
(ii) I’ is weakly continuous.

Proof Let u,—u in H. Then {u,} is bounded in H, and hence bounded in £°°(Z3).
Therefore, by diagonal principle, there exists a subsequence of {u,} (still denoted by
itself) such that
u, — u, pointwise in Z3. ®)
(i) By Fatou’s lemma, we get that
1 o1
I(u) == | (Ryx Fu))F(u)ydu <liminf = | (Ry * F(uy))F(u,)du
2 Jy3 n—o0o 2 J73

= liminf I (u,),
n—0o0

which implies that I is weakly lower semicontinuous.
(i) Since C.(Z?) is dense in H, we only need to show that for any ¢ € C, (Z3),

(I'(up) — I'(w), ) — 0, n — oo. ©)

In fact, let supp(¢) C B, with r > 1. A direct calculation yields that

(I'(un) = 1I'(w), §) = fZ3(Ra * (F(un) — F(u)) fu)pdu

+ /Z (R Fun)) () = £ ) @i
=T +T.
By (4) and (5), one gets easily that { F (u,)} is bounded in @H% (Z3). Then it follows
from the HLS inequality (7) that {(R, * F(u;))} is bounded in Z% (Z3). Moreover,
we have F(u,) — F(u) pointwise in Z3. By passing to a subsequence, we have

(Ro # F(u)—(Ro % Fw)), in €55 (Z7).
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Since f(u)¢ € Z%(Z%, we get
T, — 0, n— oo.
By the HLS inequality (6) and (8), we obtain that
3%
6
ITal < CIF@ s ( |1 = ranel du)
34a
6 6
< ¢ ([ 1 - raer an)
34a
6
=C </B |(f ) — f(u)p|3+e dM)
— 0, n— oo.
Then (9) follows from T, T, — 0 as n — oo. O

For any u € H\{0}, let

g() = 1I(tu) = %/ (Ry * F (tu)) F (tu) du, t > 0.
73

Lemma 2.3 Let (f1)-(f1) hold. Then

@) fort >0, (%tg’(t) - g(t)) is a positive and strictly increasing function;

(i) fort > 1, we have g(1) > t%g(1).

Proof (i) For t > 0, by (f3), we get that

¢ (1) = (I'(tu), u) = fZ (R F () f o dy

; / (Ry * F(tu)) f(tu)tudp
73

v

g f (Ry * F(tu)) F(tu)ydu
Zl 73

g Q)
P

A—l(t)
>tg ,

which implies that 1rg'(t) — g(t) > 0.

By (f4), one gets that g0 i strictly increasing for > 0. This means that

3

] t / /
Ztg/(l) —g() :/0 (gt(;) _ & (:)>s3ds

N
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is strictly increasing for ¢ > 0.
(i1) Clearly for ¢t = 1, the result holds. From the proof of (i), one gets that

0
g (s) > —g(s), s>0.
s
Integrating the above inequality from 1 to 7 with ¢ > 1,

t t

1 8 S

As a consequence, we get that
g(t) = 1%g(1).

O

Finally, we state some results about the compactness of H. The following one can
be seen in [43]

Lemma 2.4 Let (h1) and (hy) hold. Then for any q > 2, H is compactly embedded
into £9(Z3). That is, there exists a constant C depending only on q such that, for any
ueH,

lully < Cllull.

Furthermore, for any bounded sequence {u,} C H, there exists u € H such that, up
to a subsequence,

Up—U, in H,
u, — u, pointwise in 73,
U, = u, inli(7Z3.

We also present a discrete Lions lemma, which denies a sequence {u,} C H to
distribute itself over Z3.

Lemma 2.5 Let2 < s < oo. Assume that {u,} is bounded in H and
lunlloo = 0, n — oo.
Then, forany s <t < 0o,

u, — 0, in'(Z%.
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Proof By (5), we get that {u,} is bounded in £° (Z3). Hence, for s < t < oo, this result
follows from an interpolation inequality

lanllt < N5 llunllss® -

3 Proof of Theorem 1.1

In this section, we prove the existence of nontrivial solutions to the Eq. (2) by the
mountain pass theorem. First we show that the functional J (1) satisfies the mountain
pass geometry.

Lemma 3.1 Let (hy) and (f1)-(f3) hold. Then

(1) there exist o, p > 0 such that J(u) > o > 0 for |lu| = p;
(i1) there exists e € H with ||e|| > p such that J(e) < O.

Proof (i) By (4) and the HLS inequality (6), we get that

3ta
3

/(&*Fw»nmdusc</|meﬁum)
73 73

_6 3
<C (/ (€|u|2+C5|u|”>3+a du>
Z3

4 2
<ellul*y + Cellull”?,
3ta 3+a

< ellull* + Cellull*?. (10)

Then by (10), we have

1.5 b 5o\ 1
T = Slul”+ 7 / |Vul~dp _E/ (Ro * F(u))F(u)dp
73 z3

1 1
z—MW——f(&*nmwwwu
2 223
1
> —lull* — ellull* — Cellull”.

2

Note that p > 3+T°‘ > 1. Let ¢ — 07, then there exist o, p > 0 small enough such
that J(u) > o > 0 for |lu| = p.
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(i1) Let u € H\{0} be fixed. Then it follows from Lemma 2.3 (ii), (10) and 6 > 4
that

. N RS T >\
lim J(tu) = lim | —|u|“+ — |Vul“du | — = (Ry * F(tu))F(tu)du
1—00 t—oo| 2 4 73 2 73
R T >\ A
< lim [ —[lull”+ — Vul“du ) —— | (Rg*x F(u) F(u)dp
t—oo| 2 4 73 2 73
— —o00. )

Hence, we can choose #y > 0 large enough such that |le| > p with e = fou and
J(e) <O. O

In the following, we prove the compactness of Palais-Smale sequence. Recall that,

for a given functional ® € C'(X, R),asequence {u,} C X is a Palais-Smale sequence
atlevel c € R, (PS), sequence for short, of the functional &, if it satisfies, asn — oo,

®w,) —c, inX, and PD'(u,) —0, inX*

where X is a Banach space and X* is the dual space of X. Moreover, we say that ®
satisfies (P S). condition, if any (P S). sequence has a convergent subsequence.

Lemma3.2 Let (hy), (hy) and (f1)-(f3) hold. Then for any ¢ € R, J satisfies the
(PS),. condition.

Proof For any ¢ € R, let {u, } be a (PS), sequence for J (u),
J (up) =c+o0,(1), and J (un) = o0n(1), (12)
where 0,,(1) — 0 asn — oo.

Note that & > 4 and b > 0. By (12), we get that

b 2
llun |1 =f (Rg % F(un))F(uy) dp — ~ (f |wn|2du) +2¢ 4 04(1)
Z3 2 Z3

IA

2
z / (Ra*F(un»f(un)undu—é( f |Vun|2du> +2¢ 4 0,(1)
0 Z3 2 Z3

1 2
§(||un||2+b(/ |Vun|2du> +on(1>||un||)
Z3

b 2
- f \Vun > di )+ 2¢ + 0,(1)
2 Z3

1
§||Mn||2+0n(1)||un” + 2c + 0n(D), 13)

IA
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which implies that {u,} is bounded in H. Then by Lemma 2.4, up to a subsequence,
there exists u € H such that

Up—U, in H,
u, — u, pointwise in Z3, (14)
up, — u, int4(Z%,q > 2.

Since |Vu(x)|> = § 3" (u(y) — u(x))?, one gets easily that
y~x

f3 |Vul>du < Cllul3.
7

Hence by Holder inequality, the boundedness of {u,} and (14), we get

1

2 2
/|Vun||V(un—u)|dus (/ |Vun|2du) (/ |V<un—u)|2du>
Z3 Z3 Z3

< Cllunlllun — ull2

— 0, n— oo. (15)

Moreover, by the HLS inequality (6), Holder inequality, the boundedness of {u,} and
(14), we have

1 )y tn — u)| < /23(1301 s F(up))| f (un)(n —w)ldp

3+a

3+a
6 6
<c (/ |F ()| 55 dﬂ) (/ | ) 1t — )] 5 du)
Z3 Z3
3ta 3ta
2 6 6 1 - 6
), unl* + lun|?) 5 dp g [(etn] + |n 1P~ — ul]7 dp

3ta 3ta
6 6 1 6 6
<C |:(/ (lunllun — ul) 3+ d:“-) + (/ (lun!?™ uy — ul) 3+ d:“«) i|
73 73

-1
< Cllunll a2 llun — ull 12+ Cllunl’s, llun — ull o
3+a 34+a Ita 3+a

= Cllup —ull 12 + Cllup —ull sp_
3+a 34a

IA

-0, n— oo. (16)
Then it follows from (12), (15) and (16) that
it =01 < 10" )ty = 6 [ 1V Pt [ 1900019 0y = ]
+|(1,(un); Uy — u)|

< 0n(D)lluy — ull + Chlluy|? /23 IVun ||V (un — w)l dpe + (1" (un), un — u)|

— 0, n— oo.
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Furthermore, since u,,—u in H, we have
(u,up —u) — 0, n— oo.
Hence we obtain that
lup, —ull -0, n— oo.

Note that u,, — u pointwise in Z3, we get u, — u in H.
]

Proof of Theorem 1.1. By Lemma 3.1, one sees that J satisfies the geometric structure
of the mountain pass theorem. Hence for ¢ = infF n}gﬁ] J(y@®) with = {y €
yel t€l0,

C(0,1], H) : y(0) =0, y(1) = e}, there exists a (PS). sequence. By Lemma 3.2,
J satisfies the (P S), condition. Then c is a critical value of J by the mountain pass
theorem due to Ambrosetti—Rabinowitz [39]. In particular, there exists u € H such
that J(u) = c. Since J(u) = ¢ > o > 0, we have u # 0. Hence the Eq. (2) possesses
at least a nontrivial solution. O

4 Proof of Theorem 1.2

In this section, we prove the existence of ground state solutions to the Eq. (2) under
the conditions (k1) and (42) on V. Now we show some properties of J on the Nehari
manifold NV that are useful in our proofs.
Lemma 4.1 Let (hy) and (f1)-(f1) hold. Then
(i) for any u € H\{0}, there exists a unique s, > 0 such that s,u € N and J (s u) =
ma(;)( J(su);
5>
(ii) there exists n > O such that ||u|| > n foru € N;
(iil) J is bounded from below on N by a positive constant.

Proof (i) For any u € H\{0} and s > 0, similar to (10), we get that
| R PP du = o5t + Cos 7.
73

Then we have

52 ) 2 bs* 2 2
J(su) = 3f23 <a|Vu| FVu )d,u+ = (fZ3 |Vl d/L)

_ %/ (R * F(su))F(su)dpu
73 amn

bs*

2 2
1
Sl + 2 (/ IVulsz> ——f (Rq * F(su)) F(su) dpt
Z3 2 Z3

2
s 2 4, 4 2 2
> ?Ilull —es"|lull” = Ces™Pllu|"P.
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Since p > HT“ > 1,let ¢ — 0T, we get easily that J(su) > 0 for s > 0 small

enough.
On the other hand, similar to (11), we get that

J(su) > —o0, s — 0.

Therefore, mag J(su) is achieved at some s, > 0 with s,u € N.
5>

Now we show the uniqueness of s,. By contradiction, suppose that there exist
s;, > s, > O such that s,u, s,u € N. Then we have

2 ) /
: ull®>+ b </ |Vu|2du) _ / (Rq * F(Suu)3)f(suu)u du,
(S,;) z3 73 (s;)

1 2 / ) )2 (Ro * F(syu)) f (syu)u
\% = .
G H’( V) = )’ an

As a consequence, we get

(s)" ) 3 (1)’

(R * F(syu)) f(suu)u
3 d
VA (Su)

which is a contradiction in view of (f3).
(ii) By the HLS inequality (6), we have

3ta

3ta
/ (Ra*F(u))f(u)udM§C</ P[5 du) : (/ | fGul T du) :
73 73 73

<cC (/ (elul® + Celul?) ™ du)
Z3

2
<ellul*y + Cellull”?,
3t+a 3ta
< ellull* + Cellull*?. (18)
Let u € N. Then we have
0=(J'(u),u)
2
=+ ([ vutan) = [ o P swudn
VA hA
> lull* — ellull* — Cellul?”.

Since p > 1, we get easily that there exists a constant n > 0 such that ||u|| > n > 0.
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(iii) For any u € NV, by (f3) and (ii), we derive that

1 /
Ju) = J(u) — 5(1 (u), u)

- (% - é) Jull® + b (i - %) (/Z IVulzdu>2

+l/ (Ro * F(u)) <gf(u)u - F(u)) du
2 73 %

]

In the following, we establish a homeomorphic map between the unit sphere S C H
and the Nehari manifold .

Lemma4.2 Let (hy) and (f1)-(fa) hold. Define the maps s : H\{0} — (0, co),
u v+ s, and

m: H\{0} — N,

u— mu) = s,u.

Then

(i) the maps s and m are continuous;
(ii) the map m := i |g is a homeomorphism between S and N, and the inverse of m
is given by

Proof (i) Letu, — uin H\{0}. Denote s, = s,,, then m(u,) = s,u, € N.Since, for
any s > 0, m(su) = m(u), without loss of generality, we may assume that {u,} C S.
By Lemma 4.1 (ii), we get that

Sp = |ISpunll = n > 0.

We claim that {s,} is bounded. Otherwise, s, — 00 as n — oo. By Lemma 2.3
(ii), we have that

/ (Ra # F(snttn)) F (syttn) djt > s° / (Ro # F () F () dit.
73 73
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Moreover, since ||u,|| = 1, one gets easily that

/ (Ro % F (un)) F (up) dn < C.
73

Then it follows from (i) and (iii) of Lemma 4.1 and 6 > 4 that

J (Snun)
0 < —22
Ry 7|
2
_ 1 b (Jza IV (snttn)|* dx)” [ (Ro % F (sntan)) F(snuen) dpt
2 ||5nun||2 4 ||Snun||4 ”Snun”4
1
5-——+——m94/ (Ry % F () F (uy) dp
2sn
— —00,

which is a contradiction. Hence {s, } is bounded. By the boundedness of {s,}, up to a
subsequence, there exists so > 0 such that s, — so and 7 (u,) — sou. Since N is
closed, sou € N. This implies that s = s,,. As a consequence,

Su, —> Su
and
muy,) — sou = syu = m(u).

Hence the maps s and 7 are continuous.

(ii) Clearly, m is continuous. For any u € N, let i = then u € S. Since

IIMII’

u = |lulliz and s; is unique, we get s; = |ull. Hence m(u) = szu = u € N,
which means that m is surjective. Next, we prove m is injective. Let uj,uy € §
and m(u1) = m(uz). Then sju; = spuo implies that s; = s, and hence u; = us.
Therefore m has an inverse mapping m~' : N' — S with m ™' (u) = ﬁ Then for
anyu € S, m~ (m@u)) = u = id(u). o
Now we set
=infJ > 0,
N
cy:= inf maxJ(su),
ueH\{0} s>0
and

¢ = inf max J(y(s)),
vl se€l0,

where

Iy ={y e C([0. 1], H) : ¥(0) =0, J(y(1)) < O}.
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Lemma4.3 Let (hy) and (f1)-(f4) hold. Then ¢y = c; = ¢ > 0.

Proof We first prove ¢; = ¢. By Lemma 4.1 (i), there exists a unique s, > 0 such that
J(syu) = ma())( J(su). Then
§>

= inf J = inf J = inf J =c.
= o) 520 (su) werh\(0) (Sutt) weN W =ec

Next we prove ¢; > c3. By (11), for any u € H\{0}, there exists a large so > 0
such that J (sou) < 0. Define

vo:[0,1] - H,

S > SSoU.
Since y9(0) = 0 and J(yp(1)) < 0, we have yy € ['>. Then for any u € H\{0},

max J(su) > max J(ssou) = max J s)) > inf max J(y(s)),
s>0 ( )_se[O,l] (s:501) s€[0,1] (ol ))_yEI‘zse[O,l] ()

which implies that ¢; > c».

Now we prove ¢ > c¢. By Lemma 4.1 (i), for any u € H\{0}, there exists a
unique s, > 0 such that s,u € N. Then we can separate H into two components
H=H UH;,where HH={ue H:s,>1}and Hy={ue H:s, < 1}.

We claim that each y € I'; has to cross . In fact, one gets easily that y () and 0
belong to H; for s small enough. We only need to prove y (1) € H,. Let

G(s) =JGsy(d), s=0.

Clearly G(0) = 0 and G(1) < 0. By similar arguments to (17), we get that G(t) > 0
for s > 0 small enough. Hence there exists 5,1y € (0, 1) such that ma())( G(s) =
5>

J(syyy(1)), and hence y(1) € H,. By the continuity of s in Lemma 4.2 @), we
obtain that each y € T'; has to cross A. The claim is completed.

Then for any y € Iy, there exists 7y € (0, 1) such that y (fo) € N. As a conse-
quence,

L}é‘ﬁ/ J(u) = J(y(t0)) = max, J(y(5)),

which implies that ¢ < ¢;. Therefore, we have ¢y = ¢; = c.
[}

Proof of Theorem 1.2 By Lemma 3.1 and Lemma 3.2, one sees that J satisfies the
geometric structure and (P .S)., condition. Then by the mountain pass theorem, there
exists u € H such that J(u) = ¢ and J/'(u) = 0. Then it follows from Lemma 4.3
that c; = ¢ > 0. Hence u # 0 and u € N The proof is completed. O
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5 Proof of Theorem 1.3

In this section, we prove the existence of ground state solutions to the Eq. (2) under
the conditions (#) and (h3) on V.

As we see, the condition (/,) ensures a compact embedding, see Lemma 2.4, while
the condition (h3) leads to the lack of compactness. Moreover, since we only assume
that f is continuous, A is not a C I_manifold. Hence we cannot use the Ekeland
variational principle on N directly. Note that Lemma 4.1 and Lemma 4.2 still hold,
we shall follow the lines of Hua and Xu [18] to prove this theorem.

We show that W (see below) is of class C! and there is a one-to-one correspondence
between critical points of W and nontrivial critical points of J. The proof of the lemma
is similar to that as in [18, 35]. For completeness, we present the proof in the context.

Lemma 5.1 Let (hy) and (f1)-(f1) hold. Define the functional

v:S— R,
w i Y(w) = J(m(w)).

Then
(i) W(w) € CY(S,R) and

(W'(w), 2) = Im) || {J'm(w)), 2}, z€Tyw(S)={veH: (w v)=0}

(i) {wy} is a Palais-Smale sequence for V if and only if {m (w,)} is a Palais-Smale
sequence for J;

(ili) w € § is a critical point of V if and only if m(w) € N is a nontrivial critical
point of J. Moreover, the corresponding critical values of ¥ and J coincide and
iI;f v = i/l\l/f J.

Proof (i) Define the functional

U : H\{0} —> R,
w > Y(w) = J0mw)).

Since J € CI(H, R) and m(w) = s, w is a continuous map, we have

. d _
(V'(w), z) = o li=0 W(w + 12)

d
= 7 li=0 J(m(w + t2))

. d .
= J'(m(w + 12)) li=0 -~ lr=0 M (W +12)

dt
= J' (m(w))syz
= sy (J (M(w)), 2)
_ A
lw]|

@ Springer



Solutions to discrete nonlinear Kirchhoff-Choquard... Page190f25 138

Note that W = W |g and m = 1 |s. Hence the result follows from the above equality.
(i1) Denote

L2
V@) = Sllull®, ueH.

Clearly, ¢ € Cl(H, R), and for any v € H,
(W' (u), v) = (u, ).

Hence v is bounded on finite sets and (¥’ (w), w) = 1 for all w € S. Then we have
H =T,(S) ® Rw for all w € §, and the projection

H—>T,0S): z+twrz

has uniformly bounded norm with respect to w € S. In fact, ¥’ is bounded on finite
sets and (V' (w), (z +tw)) =1, soif |z + tw| = 1, then |z| < C. Hence

lzll <t +llz +tw] < A+ O)lz+tw]l, weS, z€Ty(S) andr € R. (19)

Let u := m(w). On one hand, by (i), we have

W' (W)l = sup (¥'(w),z) =llull sup (J'(u),z). (20)
ZﬁTlllu(Sl), ZﬁTﬁv(Sl'),
2= zZ|l=

On the other hand, since u € N, we have (J' (1), w) = m(J’(u), u) = 0. Then it
follows from (19), (20) and (i) that

W )l < llullllJ" @l
(J'(w), (z +tw))

= |lull  sup
2€Tw(S).1€R, Iz + twl]|
z+tw#0
J' (w),
<(1+0) lull{J" (), z)
2€Tw(SH\{0} Izl
v’ ,
T, N0y Izl

=1+ O1¥' wl.

By Lemma 4.1 (ii), we have ||u|| > n > 0 for all u € N. Then the result follows from
the previous estimate and the fact J (1) = ¥ (w).

(iii) By (20), ¥'(w) = 0 if and only if J'(u) = 0. The rest is clear. O
Proof of Theorem 1.3. Note that ¢ = il;f V. Let {w,} C S be a minimizing sequence

such that W (w,) — c. By Ekeland’s variational principle, we may assume that
W’ (w,) — 0asn — oo. Hence {w,}is a (PS). sequence for W.

@ Springer



138 Page 20 of 25 L.Wang

Let u, = m (w,) € N. Then it follows from Lemma 5.1 that
J@Wwy) —c, and J (uy) =0, n— oo.
By (13), one gets that {u,} is bounded in H. Hence there exists u € H such that
up,—u, in H, and  u, — u, pointwise in 73.
If
lunlleo = 0, n — o0, (21)

then by Lemma 2.5, we have that u,, — 0 in 01(Z3) with t > 2. Hence

N———"

2
'/%S(Ra * F(uy)) f(upu,du < C (”un”ilz + ||Mn||é;p
3+a

3+«
— 0, n— oo.

Namely
/Z%(Ra * F(un)) f (up)un dpe = op(1).

Then

2
0=(J" (un), tn) = lunll* + b <fZ |wn|2du> - /Z3<Ra * F(un)) f (un)ttn dp

> Jlupll* + o (1),

which implies that ||u,] — 0 as n — oo. This contradicts ||u,|| > n > 0 in
Lemma 4.1 (ii). Hence (21) does not hold, and hence there exists § > 0 such that

liminf fluy|loo =6 > 0, (22)
n—oo
which implies that u # 0. Therefore, there exists a sequence {y,} C Z> such that

[t (V)| =

| o

Letk, € 73 satisfy {y, — k,7} C Q, where Q = [0, 7)3. By translations, let v, (y) :=
uy (y + k,,t). Then for any v,,

8
||Un||l°°(Q) > vy (Y0 — knT)| = |un(yn)l = ) > 0.
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Since V is t-periodic, J and A are invariant under the translation, we obtain that {v, }
isalsoa (PS). sequence for J and bounded in H. Then there exists v € H withv # 0
such that

v,—v, in H, and v, — v, pointwisein 7.

We prove that v is a critical point of J. Let A > 0 be a constant such that
J73 IVva?djn — A asn — oo. Note that

/23 Vo2 du < qlnliogffw Vo> dp = A.

We claim that

/3 [Vo|?dp = A.
Z

Arguing by contradiction, we assume that fZ3 |Vv|2d u < A.Forany ¢ € C, (Z3),
we have (J' (v,) , @) = 0,,(1), namely

/ @V, + V() ung) du+b/ Vo2 du/ VoaVedu
Z3 Z3 Z3

- fZ3(Ra * F(vp) f(vn)p dp = 0 (1). (23)

Let n — oo in (23) and by Lemma 2.2, we get that

/3(aVvV<p + V(x)ve)du —i—bA/3 VoVedu — /3(Ra * F(v)) f(v)pdu = 0.
Z Z Z
(24)

Since C.(Z3) is dense in H, (24) holds for any ¢ € H.Let ¢ = v in (24), then we
have

2
(J'(v), v) = [ (a|Vv|2 + V(x)v2) du+b (f |VU|2dM)
73 73

- /Z (Ra % Fu) f)vdp
<[ (a|Vv|2+V(x)v2)du+bA/ IVu2du
73 73

- /Z (R % F) fwdn
= 0.
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Let
h(s) = (J'(sv), sv), s> 0.

Then h(1) = (J'(v), v) < 0.
By (18), we get that

| R Foo)feusodie < st ol + oo ol

Then for s > 0 small enough,
h(s) = (J'(sv), sv)

2
= s2|v)* + s*b (/ |Vv|2d,u) —/ (Ry * F(sv)) f (sv)svdu
73 73

2 2 4 4 2 2
> 577 = es v = CesPllv||7P
> 0. 25)

Hence, there exists so € (0, 1) such that & (s9) = 0, i.e. (J/ (sov), sov) = 0. This
means that sov € AV, and hence J (sov) > c¢. By Lemma 2.3, we get that

1/ (Ry * F(sv)) f(sv)svdu — 1/ (Ry x F(sv))F(sv)dp = 1sg’(S) —g(s) >0,
4 73 2 73 4

and is strictly increasing with respect to s > 0. By (f3), one has that

1 1 1/2
(Zf(v)v - EF(v)) >3 (gf(v)v - F(U)) > 0.
Then by Fatou’s lemma, we obtain that

¢ < J (sov) = J (sov) — %(J/ (sov) . Sov)
52 1 1
= D45 / (Ra Flsuw) fGov)sovdp — 5 / (Ry % F(so0)) F(s0v) d
73 73
1 1 1
< Il + 1/ (Ro # F0)) f0)vdp — 5/ (Ro  F)F() dpt
ZS Z3
< liminf [1||vn||2+l / (Ry % F(un) f (v)vn djt — / (Ra*Fwn))F(vn)du]
n—oo | 4 4 )3 2 3

= lhrglol(lyf [] ('Un) - % (‘,/ (vl’l) s UI’I)}

=cC.

@ Springer



Sol

utions to discrete nonlinear Kirchhoff-Choquard. .. Page230f25 138

This is a contradiction. Hence,

/Z2 IV, |? dp — /ZB |Vo|?dp = A.

The claim is completed. Then by (23) and (24), we get that J'(v) = 0,i.e. v € N. It
remains to prove that J (v) = c. In fact, by Fatou’s lemma, we obtain that

c

1 !
<J - Z(] (), v)
1 1 1
_ Z”””2+1/ (Ry % F(0) f(w)vdpt — 5/ (Ro % F)F() dpt
ZB Z3
< lim inf [1||vn||2+l / (Ry % F(un)) f (v)vn djt — f <Ra*F(vn)>F(vn>du]
n—oo | 4 4 Jy3 2 3

= hnrgloléf [] ('Un) - % (‘,/ (v}’l) s UI’I)}

=c.
Hence J(v) = c. O
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