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Abstract
Holditch’s theorem is a classical geometrical result on the areas of a given closed
curve and another one, its Holditch curve, which is constructed as the locus of a
fixed point dividing a chord of constant length that moves with its endpoints over the
given curve and that returns back to its original position after some full revolution.
Holditch curves have already been studied from the parametric point of view, although
numerical methods and approximations are often necessary for their computation. In
this paper, implicit equations of Holditch curves of algebraic curves are studied. The
implicit equations can be simply found from the computation of a resultant of two
polynomials.With the same techniques, Holditch curves of two initial algebraic curves
are also considered. Moreover, the use of implicit equations allows to find new and
explicit parameterizations of non-trivial Holditch curves, such as in the case of having
an ellipse as an initial curve.

Keywords Holditch’s theorem · Holditch curve · Implicit equation · Algebraic
curve · Resultant · Ellipse

Mathematics Subject Classification 53A04 · 14H50 · 52A10

1 Introduction

Given p ∈ [0, 1] and a planar curve α, consider that a chord of constant length � > 0
can be positioned with its two endpoints over α. A smooth motion of such a chord with
its endpoints always lying on α may be allowed while trying to return to its original
position after possibly some full revolutions. We say that Hp is a p-Holditch curve of
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Fig. 1 A p-Holditch curve Hp

of a convex curve α, for p = 1
3 .

Holditch’s theorem gives the
shaded area between both curves

α for a chord length � if it is the locus of points that split the chord of constant length �

in a ratio p : 1− p for all its possible positions during its smooth motion (see Fig. 1).
Holditch’s theorem is a classical geometrical result [1] that states that the difference

between the (algebraic) areas of a closed curve α and a p-Holditch curve Hp of α for
a chord length � is only dependent on � and p. More specifically, it holds

A(α) − A(Hp) = π p (1 − p) �2.

There aremanyworks treatingHolditch’s theorem and related scenarios, the interested
reader can see [2–7] and their references therein.

The initial position of themoving chord is decisive, as it could give rise to a different
p-Holditch curve (see Fig. 2). In addition, notice that retrograde movements may be
necessary in some cases to complete the motion. These happen when an endpoint of
the moving chord passes through the same point for different time instants.

Fig. 2 Two 1
2 -Holditch curves of

a Cassini oval for the same chord
length. The initial position of the
chord determines the curve that
is found during the motion

The analytical parametric computation of Holditch curves is often difficult and
numerical approximations are needed, particularly in the caseswhere retrogrademove-
ments appear. In this paper, we studyHolditch curves using implicit equations.Wewill
see that this approach is also useful for finding explicit parameterizations of Holditch
curves.

In Sect. 2, given a planar curve α and p ∈ [0, 1], we define the geometric p-
Holditch curve of α for a chord length � > 0 as the locus of points that split in a ratio
p : 1− p any chord of constant length � positioned with its endpoints over α. We have
mentioned that different p-Holditch curves can be obtained depending on the initial
position of the moving chord. In essence, the geometric p-Holditch curve is the union
(possibly disconnected) of all p-Holditch curves for a chord length �. This means that
in the geometric p-Holditch curve any initial position of the moving chord and any
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movement is considered. In particular, we show that the geometric p-Holditch curve
also includes the set of points given by a (1 − p)-Holditch curve (Proposition 1).

With the same idea used for the definition of a geometric Holditch curve, one can
find simple parameterizations of some Holditch curves by using the implicit equation
of the initial curve, even in the case of retrograde movements. We study the case of a
parabola in Example 1.

Later, in Sect. 3, we focus on real algebraic curves. We solve an implicitization
problem for Holditch curves, in the sense that we find a real algebraic curve that
contains the geometric Holditch curve (Theorem 1). The proof is constructive and
allows a way to find implicit equations of geometric Holditch curves by computing
a resultant of two polynomials. The derived implicit equation will consist of all the
possible p-Holditch curves for a chord length � that can be considered for such an
algebraic curve. That is, it will include all the possible p-Holditch curves that can
be found depending on the initial position of the moving chord. We show several
examples, including the ellipse and the hyperbola.

The polynomial defined by the resultant could include extraneous factors and unde-
sired points [8], that is, points which do not actually belong to the geometric Holditch
curve but that can appear from the implicitization process. In particular we would also
like to mention the paper [9] in which the authors study implicit equations for offset
curves. In such a paper, the implicit equation gives a double-offset and it is showed that
it cannot be factorized into two factors, each of which containing a one-sided offset.
In the same way, for our case we observe that in general, for p �= 1

2 , we cannot split
our implicit equation into two factors, one of them containing a p-Holditch curve and
the other a (1 − p)-Holditch curve (Remark 3).

In Sect. 4 we extend the results to the case of having a Holditch curve of two initial
curves. In particular, we also have that if the two initial curves are algebraic, then the
geometric Holditch curve that we define in this case is included in an algebraic curve
(Theorem 2).

Finally, inSect. 5,we focus on theHolditch curveof an ellipse.Thanks to the implicit
equation of its Holditch curve we are able to obtain an explicit parameterization of the
endpoints of the moving chord along the ellipse, even in the case of retrograde motion.
As a result, we obtain an explicit parameterization of the Holditch curve of an ellipse.
Up to our knowledge, this is the first explicit parameterization of the Holditch curve
of an ellipse making unnecessary the use of numerical methods.

2 The Geometric Holditch Curve

Let us suppose that a planar curve C is defined by an implicit equation

f (x, y) = 0.

Given p ∈ [0, 1] and � > 0, let us define the geometric p-Holditch curve of C for
a chord length �, Hp, as the set of points (x, y) ∈ R

2 such that there exists an angle
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Fig. 3 Plot of a geometric p-Holditch curve of an ellipse for a chord length �

t ∈ R for which

(x, y) − p �
(
cos t, sin t

) ∈ C and (x, y) + (1 − p) �
(
cos t, sin t

) ∈ C.

Equivalently, such that

f (x − p � cos t, y − p � sin t) = 0,

f
(
x + (1 − p) � cos t, y + (1 − p) � sin t

) = 0. (1)

See a geometric p-Holditch curve of an ellipse in Fig. 3.
As an immediate consequence from the definition, we have the following property,

which shows how the geometric p-Holditch curve is composed by both a p-Holditch
curve and a (1 − p)-Holditch curve (see Fig. 4).

Fig. 4 The geometric
p-Holditch curve is composed
by a p-Holditch curve and a
(1 − p)-Holditch curve for the
same chord length

Proposition 1 Let C be a planar curve defined by an implicit equation f (x, y) = 0
and letHp be its geometric p-Holditch curve for a chord lengh � > 0 and p ∈ [0, 1].
If (x, y) ∈ Hp, then (x, y) + (1 − 2 p) � (cos t, sin t) ∈ Hp.

Proof The point (x, y)+ (1−2 p) � (cos t, sin t) belongs toHp because by definition
we have the angle t + π such that

(x, y) + (1 − 2 p) � (cos t, sin t) − p �
(
cos(t + π), sin(t + π)

)

= (x, y) + (1 − p) � (cos t, sin t)
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and

(x, y) + (1 − 2 p) � (cos t, sin t) + (1 − p) �
(
cos(t + π), sin(t + π)

)

= (x, y) − p � (cos t, sin t)

are points of C. ��
Remark 1 Notice that the points of Proposition 1 are the same if p = 1

2 :

(x, y) + (1 − 2 p) � (cos t, sin t) = (x, y).

This means that the geometric 1
2 -Holditch curve coincides with the

1
2 -Holditch curve

(see an example in Fig. 5).

Fig. 5 Example of a geometric
1
2 -Holditch curve of an ellipse

Example 1 Consider the parabola α(t) = (t, a t2), where a ∈ R \ {0} and let us try to
compute the Holditch curve of α for a chord length � > 0.

If we assume that there is no retrograde motion for the moving chord (i.e., taking a
small enoughchord length),we can suppose that thefirst endpoint canbeparameterized
by α(t), so that the second endpoint must be some α(s) such that

∥∥α(t) − α(s)
∥∥2 = �2.

Explicitly, this can be written as

(t − s)2 + a2
(
t2 − s2

)2 = �2.

which is an equation of 4th degree in t and s. It is technically possible to find s in
terms of t (although the expressions are complicated). However, to get a continuous
function s = f (t) different solutions must be considered and the function has to be
defined piecewise. After that, the p-Holditch curve can be parameterized by

Hp(t) = (1 − p) α(t) + p α
(
f (t)

)
.

We are going to show how the use of the implicit equation y − a x2 = 0 of the
parabola can help us to find an easier parameterization of the Holditch curve that will
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Fig. 6 On the left, a parabola α and its p-Holditch curve Hp , for a = 1, � = 2 and p = 1/3, as
a parametric curve for u ∈ ]−π/2, π/2[. On the right, a (1 − p)-Holditch curve is also obtained for
u ∈ ]−π, −π/2[ ∪ ]π/2, π [

also work in the case of a retrograde motion. Suppose now that if α(t) is the first
endpoint of the moving chord, then the second endpoint is α(t) + � (cos u, sin u), for
some u ∈ [0, 2π ]. Since the second endpoint must lie in the parabola, it must satisfy
its implicit equation. This leads to

2 a cos(u) t + a � cos2(u) − sin(u) = 0.

It is easier if we solve this equation for t instead of solving it for u:

t = sin(u) − a � cos2(u)

2 a cos(u)
,

where notice that cos(u) �= 0 because the moving chord is never vertical. This gives
a parameterization of the first endpoint as:

α1(u) =
(
sin(u) − a � cos2(u)

2 a cos(u)
, a

(
sin(u) − a � cos2(u)

2 a cos(u)

)2)
.

The second endpoint is

α2(u) = α1(u) + � (cos u, sin u).

Thus, given p ∈ [0, 1], the p-Holditch curve can be parameterized by

Hp(u) = (1 − p) α1(u) + p α2(u), u ∈
]
−π

2
,
π

2

[
.

If we consider the domain u ∈ ]−π,−π/2[ ∪ ]π/2, π [ , the (1 − p)-Holditch curve
is obtained by the same expression (see Fig. 6).
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3 Geometric Holditch Curve of an Algebraic Curve

Given a real algebraic curve C, this is,

C = {
(x, y) ∈ R

2 : f (x, y) = 0
}
,

where f ∈ R[x, y] is non-zero, we are interested now in their geometric Holditch
curves.

Recall that the resultant of two non-zero polynomials over a field F is a polynomial
expression of their coefficients that is equal to zero if and only if the polynomials
have a common root in some extension of F (see e.g. [10–12]). Using the notion of a
resultant of two polynomials, we aim to solve an implicitization problem for geometric
Holditch curves. For technical issues we will need first the following lemma.

Lemma 1 Let p, q ∈ C[u] be polynomials of degree m and n, respectively. Consider
the polynomials

p̂(u) := um p

(
−1

u

)
and q̂(u) := un q

(
−1

u

)
.

1. If 0 is neither a root of p nor q, then

Resu(p, q) = Resu( p̂, q̂).

2. If 0 is a root of p of multiplicity k, then

Resu(p, q) = (
(−1)n q(0)

)k Resu( p̂, q̂).

Proof We can write

p(u) = a (u − u1) (u − u2) · · · (u − um),

q(u) = b (u − v1) (u − v2) · · · (u − vn).

Suppose that ui �= 0 and v j �= 0 for all i, j . Using the expression of the resultant of
two polynomials in terms of their roots, we have

Resu(p, q) = an bm
∏

i, j

(ui − v j ).

The polynomials p̂ and q̂ can be written as

p̂(u) = (−1)m a (1 + u u1) (1 + u u2) · · · (1 + u um),

q̂(u) = (−1)n a (1 + u v1) (1 + u v2) · · · (1 + u vn),
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whose leading coefficients are (−1)m a
∏

i ui and (−1)n b
∏

j v j , respectively, and
their roots are −1/ui and −1/v j . Therefore,

Resu( p̂, q̂) =
(

(−1)m a
∏

i

ui

)n (
(−1)n b

∏

j

v j

)m ∏

i, j

(
− 1

ui
+ 1

v j

)

= anbm
∏

i, j

(ui − v j ) = Resu(p, q).

Now, suppose that 0 is a root of p of multiplicity k ≥ 1. If q has also the root 0, then
both resultants are zero and the equality of the statement is satisfied. Thus, suppose
that all v j are non-zero. Let I be the set of indices 1 ≤ i ≤ m such that ui �= 0. Thus,

p(u) = a uk
∏

i∈I
(u − ui )

and

Resu(p, q) = anbm
(∏

j

(−v j )

)k ∏

i∈I , j
(ui − v j ).

We have

p̂(u) = um p

(
−1

u

)
= um a

(
−1

u

)k ∏

i∈I

(
−1

u
− ui

)

= um−k a (−1)k (−1)m−k
∏

i∈I

(
1 + u ui

u

)
= a (−1)m

∏

i∈I
(1 + u ui ),

which is a polynomial of degree m − k. Its leading coefficient is a (−1)m
∏

i∈I ui .
Thus,

Resu( p̂, q̂) =
(

(−1)m a
∏

i∈I
ui

)n (
(−1)n b

∏

j

v j

)m−k ∏

i∈I , j

(
− 1

ui
+ 1

v j

)

= anbm−k (−1)nk
∏

i∈I , j
(ui − v j ).

Therefore,

bk
(∏

j

v j

)k

Resu( p̂, q̂) = Resu(p, q).
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From this, by noticing that

q(0) = b (−1)n
n∏

j=1

v j ,

the expression of the statement is found. ��
Theorem 1 If C is an irreducible real algebraic curve and Hp is a geometric p-
Holditch curve of C, then there exists a real algebraic curve that contains Hp.

Proof Suppose that C is described by a non-zero polynomial f (x, y) of degree n.
The geometric p-Holditch curve Hp for a chord length � > 0 is the set of points

(x, y) ∈ R
2 such that Eqs. (1) are satisfied for some angle t ∈ R. Under the change

of variables t → 2 arctan(u) we have

(cos t, sin t) =
(
1 − u2

1 + u2
,

2 u

1 + u2

)
,

which provides, for u ∈ R, a rational parameterization of S1 \ {(−1, 0)}.
Looking at Eqs. (1) with the new variable u, consider the setH∗

p of points (x, y) ∈
R
2 such that there exists u ∈ R such that

g1(x, y, u) := (
1 + u2

)k
f

(
x − p �

1 − u2

1 + u2
, y − p �

2 u

1 + u2

)
= 0,

g2(x, y, u) := (
1 + u2

)k
f

(
x + (1 − p) �

1 − u2

1 + u2
, y + (1 − p) �

2 u

1 + u2

)
= 0,

(2)

where k ≤ n is the minimum natural number that makes g1 and g2 polynomials in u.
Notice that H∗

p is included inHp.
Suppose that g1 and g2, as polynomials in R[x, y][u], have a common factor. This

is, suppose that

g1(x, y, u) = λ(x, y, u) h1(x, y, u),

g2(x, y, u) = λ(x, y, u) h2(x, y, u),

where gcdu(h1, h2) = 1. The first observation is that λ(x, y, u) cannot depend on
(x, y). Indeed, given u0 ∈ R, notice that g1(x, y, u0) and g2(x, y, u0) are translations
of f (x, y), in its coordinates, multiplied by a constant factor depending on u0. How-
ever, since f (x, y) is irreducible, any translation f (x + a, y + b) must be irreducible
as well. Therefore, λ(x, y, u0) cannot depend on (x, y). Thus, we have that

g1(x, y, u) = λ(u) h1(x, y, u),

g2(x, y, u) = λ(u) h2(x, y, u),
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for all u ∈ R. Now, note thatλ(u) has no real roots, because otherwise therewould exist
some u0 ∈ R such that g1(x, y, u0) = g2(x, y, u0) = 0 for all (x, y) ∈ R

2, which
implies that the set H∗

p is equal to R
2 (and this cannot happen because a geometric

p-Holditch curve cannot be R2).
Since λ(u) has no real roots, we have

H∗
p = {

(x, y) ∈ R
2 : ∃u ∈ R g1(x, y, u) = g2(x, y, u) = 0

}

= {
(x, y) ∈ R

2 : ∃u ∈ R h1(x, y, u) = h2(x, y, u) = 0
}
.

Consider the resultant of the polynomials h1 and h2 with respect to u:

h(x, y) := Resu(h1, h2) ∈ R[x, y],

which is a non-zero polynomial because gcdu(h1, h2) = 1.
Therefore, we have

H∗
p ⊆ {

(x, y) ∈ R
2 : h(x, y) = 0

}
.

Now, it is left to justify that in fact the whole curve Hp also satisfies this relation
(the points corresponding to u = ∞ are not included inH∗

p).
Suppose that we consider now

−
(
1 − u2

1 + u2
,

2 u

1 + u2

)
,

which is a rational parameterization of S1 \ {
(1, 0)

}
that includes the point (−1, 0).

This parameterization can also be found by making the variable change u �→ −1/u
in the rational parameterization we considered above. Thus, define now the set H̃∗

p of
points (x, y) ∈ R

2 such that there exists u ∈ R such that

g̃1(x, y, u) := (
1 + u2

)k
f

(
x + p �

1 − u2

1 + u2
, y + p �

2 u

1 + u2

)
= 0,

g̃2(x, y, u) := (
1 + u2

)k
f

(
x − (1 − p) �

1 − u2

1 + u2
, y − (1 − p) �

2 u

1 + u2

)
= 0.

(3)

Analogously as above, we can write

g̃1(x, y, u) = λ̃(u) h̃1(x, y, u),

g̃2(x, y, u) = λ̃(u) h̃2(x, y, u),

where gcdu (̃h1, h̃2) = 1. Notice that

u2k gi

(
x, y,−1

u

)
= g̃i (x, y, u), i = 1, 2.
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These are equalities of polynomials in u. With the notation of Lemma 1, we denote
by ĝi the left-hand side polynomials, so that

ĝi (x, y, u) = g̃i (x, y, u), i = 1, 2.

Thus, we have

λ̃(u) h̃i (x, y, u) = λ̂(u) ĥi (x, y, u), i = 1, 2.

We have that u0 ∈ C is a root of g̃1 and g̃2 for all (x, y) ∈ R
2 if and only if it is a

root of ĝ1 and ĝ2 for all (x, y) ∈ R
2. Thus, by definition of λ and λ̃, we deduce that

λ̃(u) = λ̂(u), up to a constant factor. Therefore, since gcdu (̃h1, h̃2) = 1, we have

0 �= Resu
(
h̃1(x, y, u), h̃2(x, y, u)

)
= Resu

(
ĥ1(x, y, u), ĥ2(x, y, u)

)
,

up to a constant factor. Now, by Lemma 1, the set

{
(x, y) ∈ R

2 : Resu
(̃
h1(x, y, u), h̃2(x, y, u)

) = 0
}

is equal to

{
(x, y) ∈ R

2 : h(x, y) = 0
}
.

Therefore,

H̃∗
p ⊆ {

(x, y) ∈ R
2 : h(x, y) = 0

}
.

Since Hp = H∗
p ∪ H̃∗

p, we conclude that

Hp ⊆ {
(x, y) ∈ R

2 : h(x, y) = 0
}
,

which is what we wanted to prove. ��
Remark 2 Consider the case p = 1

2 . Let H be the algebraic curve of Theorem 1 that
contains the geometric p-Holditch curveHp and let (x, y) ∈ H. If (x, y) ∈ Hp, then
there exists a common root u ∈ R of g1 and g2 from Eqs. (2). If u �= 0 this happens
if and only if −1/u is also a common root of g1 and g2. If u = 0, then u = 0 is also a
common root of g̃1 and g̃2 from Eqs. (3). So, all the points (x, y) ∈ Hp are double.

Now, if (x, y) ∈ H\Hp, whichmight happen due to extraneous factors or undesired
points, it means that there exists a common root u ∈ C \ R of g1 and g2. In such a
case, the conjugated root ū ∈ C \ R is also a common root of g1 and g2. So, these
points are also double.

To sum up, if p = 1
2 , all the points of H are double.
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Example 2 (Holditch curve of a circle) Consider a circle of radius r centered at (0, 0):

f (x, y) = x2 + y2 − r2.

We have

g1(x, y, u) = (
1 + u2

) (
�2 p2 − r2 + x2 + y2

) − 2 p �
(
(1 − u2) x + 2 u y

)
,

g2(x, y, u) = (
1 + u2

) (
(1 − p)2�2 − r2 + x2 + y2

)

+ 2 (1 − p) �
(
(1 − u2) x + 2 u y

)
.

The resultant of g1 and g2 is

h(x, y) = 16 �2
(
x2 + y2

) (
x2 + y2 + p (1 − p) �2 − r2

)2
.

Notice that x2+y2 is an undesired extraneous factor thatmust be discarded. Therefore,
the geometric p-Holditch curve for a chord length � > 0 is given by

x2 + y2 = r2 − p (1 − p) �2,

which is a circle.

Example 3 (Holditch curve of an ellipse) Consider an ellipse with half-axes a and b:

f (x, y) = x2

a2
+ y2

b2
− 1.

Although that the resultant of g1 and g2 can be computed, it leads to a wide expression.
However, it can be greatly simplified if p = 1

2 , which gives

16 �8 (a − b)2(a + b)2
(
4 a6y2

(
y2 − b2

) + a4b2y2
(
�2 + 4 x2

)

+a2b4x2
(
�2 − 4 b2 + 4 y2

) + 4 b6x4
)2

.

Therefore, the geometric 1
2 -Holditch curve for a chord length � > 0 is given by

4 a6y2
(
y2 − b2

) + a4b2y2
(
�2 + 4 x2

) + a2b4x2
(
�2 − 4 b2 + 4 y2

) + 4 b6x4 = 0.

(4)

An example is plotted in Fig. 5.
Notice that the algebraic equation we have found can include undesired points that

do not belong to the geometric Holditch curve. For instance, (0, 0) is a point that
satisfies (4) for any a, b, � > 0 but that does not belong to the geometric Holditch
curve. Other undesired points different from the origin of coordinates can appear, as
we will point out later in Remark 3.
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Example 4 (Holditch curve of a hyperbola) Consider the hyperbola given by the
implicit equation

f (x, y) = x2

a2
− y2

b2
− 1 = 0.

Similarly as with the ellipse, the resultant of g1 and g2 can be computed but it leads
to a wide expression except for the case p = 1

2 . In such a case, the resultant of g1 and
g2 is reduced to

16 �8
(
a2 + b2

)2(−4 a6y2
(
b2 + y2

) + a4b2y2
(
�2 + 4 x2

)

−a2b4x2
(
�2 + 4 b2 + 4y2

) + 4 b6x4
)2

.

Therefore, the geometric 1
2 -Holditch curve is given by

−4 a6y2
(
b2 + y2

) + a4b2y2
(
�2 + 4 x2

) − a2b4x2
(
�2 + 4 b2 + 4y2

) + 4 b6x4 = 0.

See some examples in Fig. 7.

Fig. 7 The geometric p-Holditch curve of the hyperbola f (x, y) = 0, with a = 1
4 and b = 1

3 , for a chord

length � = 1 and p = 1
2 (left) and p = 1

3 (right)

Remark 3 In general, if p �= 1
2 the implicit equation of a geometric p-Holditch curve

cannot be factorized in such a way that a factor provides the implicit equation of a
p-Holditch curve and the other factor gives that of a (1 − p)-Holditch curve.

Consider the ellipse from Example 3. If we take a = 2, b = 1 and p = 1/4, the
implicit equation of the geometric p-Holditch curve for a chord length � > 0 can be
reduced to

h(x, y) = 144 + 54
(
�2 − 32

)
y2 + 9

16

(
9
(
�2 − 64

)
�2 + 11776

)
y4
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+ 270
(
�2 − 32

)
y6

+ 3600 y8 − 9

2

(
3 �2 + 16

)
x2 + 9

32

(
9 �4 − 240 �2 + 4864

)
x2y2

+ 27
(
5 �2 − 136

)
x2y4 + 2376 x2y6 + 9

256

(
3 �2 + 16

)2
x4

+ 27

8

(
5 �2 − 112

)
x4y2 + 513 x4y4 + 36 x6y2.

Notice that in this case there is no term in x8. Assume that it is possible to split

h(x, y) = h1(x, y) h2(x, y), (5)

with h1(x, y) and h2(x, y) being the implicit equations of the p-Holditch curve and the
(1− p)-Holditch curve, respectively, supposed to be of degree 4. In fact, by symmetry,
we have h2(x, y) = h1(x,−y) and, explicitly, we can write

h1(x, y) =
∑

i+ j≤4

qi, j x
i y j .

The coefficient of x8 of h1(x, y) h1(x,−y) is q24,0, which by the equality (5) must be
equal to zero, i.e. q4,0 = 0. Now, the coefficient of x6y2 of h1(x, y) h1(x,−y), which
is

2 q2,2 q4,0 − q23,1 = −q23,1,

must be equal to the coefficient, 36, of x6y2 of h(x, y), but this is impossible for real
coefficients. Therefore, a factorization of this kind is not possible.

Finally, note that

h(0, y) = 9

16

(
16 + 3

(
�2 − 32

)
y2 + 80 y4

)2
.

This expression equal to zero has four real solutions

y = ±
√
96 − 3 �2 ± √

9 �4 − 576 �2 + 4096

4
√
10

,

for any � ∈ [−2, 2]. Two solutions correspond to points belonging to the geometric p-
Holditch curve, but the other two are undesired points. For example, if � = 3

2 , the points
(0, ±0.94404) belong to the geometric p-Holditch curve. However, (0, ±0.473723)
are points that satisfy the implicit equation h(x, y) = 0 but that do not belong to the
geometric p-Holditch curve.
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Fig. 8 Two initial curves α and
β and a 1

3 -Holditch curve Hp of
α and β for a chord of constant
length that does not make any
full revolution during its motion

4 An Extension to Two Initial Curves

It is well-known that Holditch’s theorem can be extended to the case where the end-
points of themoving chord of constant length lie on twodifferent curves. This extension
is due to Woolhouse (see page 96 of [13]) and, more recently, this case was also con-
sidered by other authors [2, 14]. Let α and β be the two initial curves. If Hp is a
p-Holditch curve of α and β for a chord length � > 0, then their algebraic areas are
related through the expression

A(Hp) = (1 − p)A(α) + pA(β) − n π p (1 − p) �2,

where n is the number of chord revolutions (the number of counterclockwise full
revolutions minus the number of clockwise full revolutions of the moving chord). An
example is shown in Fig. 8.

If the two initial curves C1 and C2 are given by implicit equations f (x, y) = 0 and
g(x, y) = 0, respectively, we can define a geometric p-Holditch curve of C1 and C2
analogously as we have done in Sect. 2. Given p ∈ [0, 1] and � > 0, the geometric
p-Holditch curve of C1 and C2 for a chord length �,Hp, is the set of points (x, y) ∈ R

2

such that there exists an angle t ∈ R for which

(x, y) − p �
(
cos t, sin t

) ∈ C1 and (x, y) + (1 − p) �
(
cos t, sin t

) ∈ C2.

Equivalently, such that

f (x − p � cos t, y − p � sin t) = 0,

g
(
x + (1 − p) � cos t, y + (1 − p) � sin t

) = 0. (6)

There is an important difference with the case of a single initial curve, which is
that an extended version of Proposition 1 is not possible. This means that here we
can distinguish with a separate implicit equation geometric p-Holditch curves and
geometric (1 − p)-Holditch curves. This is due to the fact that from the beginning,
each endpoint of the constant length chord is associated with one of the two curves
and with either p or 1 − p and so a later interchange is not possible. See an example
in Fig. 9.
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Fig. 9 A straight line α and a
circle β as two initial curves,
their geometric p-Holditch
curveHp and their geometric
(1 − p)-Holditch curveH1−p ,
which are different curves
defined by different implicit
equations

However, an extended version of Theorem 1 is still possible, which provides a way
to construct algebraic equations for geometric Holditch curves of two initial algebraic
curves by using a resultant.

Theorem 2 If C1 and C2 are irreducible real algebraic curves and Hp is a geometric
p-Holditch curve of C1 and C2, then there exists a real algebraic curve that contains
Hp.

Proof The proof is analogous to that of Theorem 1. In this case, if f (x, y) = 0 and
g(x, y) = 0 are the polynomial equations that describe C1 and C2, respectively, we
must consider the polynomials

g1(x, y, u) := (
1 + u2

)k1 f

(
x − p �

1 − u2

1 + u2
, y − p �

2 u

1 + u2

)
= 0,

g2(x, y, u) := (
1 + u2

)k2 g
(
x + (1 − p) �

1 − u2

1 + u2
, y + (1 − p) �

2 u

1 + u2

)
= 0,

where k1 and k2 are the minimum integers that make g1 and g2, respectively, polyno-
mials in u. ��
Example 5 The most famous example of a Holditch curve for two initial curves is
that of two line segments orthogonal at their midpoint, which corresponds to the
device known as the Trammel of Archimedes [15] used to construct ellipses. A similar
construction can also be done for two line segments which make a non-right angle at
their midpoint (sometimes also known as Da Vinci’s ellipsograph [16]), see Fig. 10.

Fig. 10 A 1
3 -Holditch curve of

two secant lines, which is an
ellipse
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By the definition of a geometric p-Holditch curve, it suffices if we consider as
initial curves the two straight lines:

f (x, y) = y, and g(x, y) = m x − y,

where m ∈ R. We have

g1(x, y, u) = −2 � p u + u2 y + y,

g2(x, y, u) = � (1 − p)
(
m

(
1 − u2

) − 2 u
)

+ (
1 + u2

)
(m x − y).

The resultant of g1 and g2 with respect to u is

4 �2
(
−�2m2(1 − p)2 p2 + m2(p2x2 + (1 − p)2y2

) − 2m p x y + y2
)
.

From this we get the implicit equation of the p-Holditch curve for a chord length �,

m2 p2x2 − 2m p x y + (
1 + m2(1 − p)2

)
y2 − �2m2(1 − p)2 p2 = 0,

which represents a conic. The discriminant of the quadratic equation is

� = −4m4(1 − p)2 p2 < 0,

so that the p-Holditch curve is an ellipse.

5 Explicit Parameterization of the p-Holditch Curve of an Ellipse

In Example 3, we found the implicit equation of the p-Holditch curve of an ellipse

f (x, y) = x2

a2
+ y2

b2
− 1,

for a chord length 0 < � ≤ max(2a, 2b) and p = 1/2. Thanks to this implicit
equation, the first observation is that we can easily parameterize the 1

2 -Holditch curve
through polar coordinates as

H(t) = ρ(t)(cos t, sin t), (7)

where

ρ(t) =
a b

√
a2

(
4 a2 − �2

)
sin2(t) + b2

(
4 b2 − �2

)
cos2(t)

2
√(

a2 sin2(t) + b2 cos2(t)
) (
a4 sin2(t) + b4 cos2(t)

) ,
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if � is less than or equal to the minor axis of the ellipse. This expression is found by
simply substituting (7) in the implicit equation and solving it for ρ(t).

Now, we are going to find a parameterization of the p-Holditch curve for any value
of p ∈ [0, 1]. The implicit equation is quite more difficult in the case p �= 1/2, but we
don’t need it. Themain remark is that the case p = 1/2 suffices to know themovement
of the chord of constant length and this will allow us to parameterize its endpoints.

To ease a simplification, let H(t) = (
x(t), y(t)

)
. The endpoints of the moving

chord, which can be written as

α1(t, u) = H(t) − �

2
(cos u, sin u),

α2(t, u) = H(t) + �

2
(cos u, sin u),

must lie in the ellipse and so must satisfy its implicit equation. Thus, we have two
equations

g1(t, u) := f
(
α1(t, u)

) = 0 and g2(t, u) := f
(
α2(t, u)

) = 0.

A great simplification can be done if we consider

1

2

(
g2(t, u) − g1(t, u)

) = � cos(u) x(t)

a2
+ � sin(u) y(t)

b2
= 0.

Substituting the values of x(t) and y(t), this equation implies that

a2 sin(t) sin(u) + b2 cos(t) cos(u) = 0.

A continuous solution of this equation for u satisfies

cos(u) = − a2 sin(t)
√
a4 sin2(t) + b4 cos2(t)

,

sin(u) = b2 cos(t)
√
a4 sin2(t) + b4 cos2(t)

.

Fig. 11 A p-Holditch curve h p
of an ellipse with a = 2, b = 1,
� = 3/2 and p = 1/3
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Therefore, we can directly obtain the parameterization of the p-Holditch curve as
follows:

h p(t) = (1 − p) α1(t, u) + p α2(t, u) = H(t) + �

2
(2 p − 1)

(
cos(u), sin(u)

)

= H(t)+ �

2
(2 p−1)

(

− a2 sin(t)
√
a4 sin2(t)+b4 cos2(t)

,
b2 cos(t)

√
a4 sin2(t)+b4 cos2(t)

)

,

for t ∈ [0, 2π ]. See an example in Fig. 11.
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3. Cieślak, W., Martini, H., Mozgawa, W.: On Holditch’s theorem. J. Geom. 111(2), 24 (2020). https://

doi.org/10.1007/s00022-020-00536-5
4. Monterde, J., Rochera, D.: Holditch’s ellipse unveiled. Amer. Math. Mon. 124(5), 403–421 (2017).

https://doi.org/10.4169/amer.math.monthly.124.5.403
5. Monterde, J., Rochera, D.: Holditch’s theorem in 3D space. Results Math. 74(3), 110 (2019). https://

doi.org/10.1007/s00025-019-1035-6. (13 pp.)
6. Monterde, J., Rochera, D.: Onmoving chords in constant curvature 2-manifolds. J. ConvexAnal. 27(4),

1137–1156 (2020)
7. Proppe, H., Stancu, A., Stern, R.J.: On Holditch’s theorem and Holditch curves. J. Convex Anal. 24(1),

239–259 (2017)
8. Hoffmann, C.M.: Implicit curves and surfaces in CAGD. IEEE Comput. Graph. Appl. 13(1), 79–88

(1993)
9. Farouki, R.T., Neff, C.A.: Algebraic properties of plane offset curves. Comput. Aided Geom. Des. 7(1–

4), 101–127 (1990). https://doi.org/10.1016/0167-8396(90)90024-L. (Curves and surfaces in CAGD
&apos;89 (Oberwolfach, 1989))

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/2689793
https://doi.org/10.1007/s00022-020-00536-5
https://doi.org/10.1007/s00022-020-00536-5
https://doi.org/10.4169/amer.math.monthly.124.5.403
https://doi.org/10.1007/s00025-019-1035-6
https://doi.org/10.1007/s00025-019-1035-6
https://doi.org/10.1016/0167-8396(90)90024-L


135 Page 20 of 20 J. Monterde, D. Rochera

10. Farouki, R.T.: Pythagorean-hodograph Curves: Algebra and Geometry Inseparable. Geometry and
Computing, vol. 1, p. 728. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-73398-0

11. Sendra, J.R., Winkler, F., Pérez-Díaz, S.: Rational algebraic curves. Algorithms Comput. Math. 22,
267 (2008)

12. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An introduction to computational
algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics, 4th edn., p. 646.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

13. Woolhouse, W.S.B. (ed.): The Lady’s and Gentleman’s Diary, for the Year of Our Lord 1858. The
Company of Stationers, London (1858)

14. Cooker, M.J.: An extension of Holditch’s theorem on the area within a closed curve. Math. Gaz.
82(494), 183–188 (1998)

15. Cundy, H.M., Rollett, A.P.: Mathematical Models, 2nd edn., p. 286. Clarendon Press, Oxford (1961)
16. Wells, D.: The Penguin Dictionary of Curious and Interesting Geometry, p. 285. Penguin Books, New

York (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-540-73398-0
https://doi.org/10.1007/978-3-319-16721-3

	The Implicit Equation of a Holditch Curve
	Abstract
	1 Introduction
	2 The Geometric Holditch Curve
	3 Geometric Holditch Curve of an Algebraic Curve
	4 An Extension to Two Initial Curves
	5 Explicit Parameterization of the p-Holditch Curve of an Ellipse
	Acknowledgements
	References




