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Abstract
The Ramsey numbers R(Tn,W8) are determined for each tree graph Tn of order n ≥ 7
and maximum degree �(Tn) equal to either n − 4 or n − 5. These numbers indicate
strong support for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and
Baskoro, that R(Tn,Wm) = 2n − 1 for each tree graph Tn of order n ≥ m − 1 with
�(Tn) ≤ n − m + 2 when m ≥ 4 is even.

Keywords Ramsey number · Tree · Wheel graph

Mathematics Subject Classification 05C55 · 05D10

1 Introduction

Let G and H be two simple graphs. The Ramsey number R(G, H) is the smallest
integer n such that, for any graph of order n, either it contains G or its complement
contains H as a subgraph. Chvátal and Harary [7] proved that R(G, H) ≥ (c(G) −
1)(χ(H) − 1) + 1 where c(G) is the largest order of any connected component of
G and where χ(H) is the chromatic number of H . For any tree graph G = Tn of
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order n and the wheel graph H = Wm of order m + 1 obtained by connecting a
vertex to each vertex of the cycle graph Cm , the Chvátal-Harary bound implies that
R(Tn,Wm) ≥ 2n − 1 when m is even and R(Tn,Wm) ≥ 3n − 2 when m is odd.

Chen et al. [12] and Zhang [23] showed that R(Pn,Wm) achieves these Chvátal-
Harary bounds for the path graph Tn = Pn of order nwhenm is odd and 3 ≤ m ≤ n+1
andwhenm is even and 4 ≤ m ≤ n+1; see also [1, 21]. Baskoro et al. [3] andSurahmat
and Baskoro [22] further proved that R(Tn,Wm) achieves the Chvátal-Harary bounds
for m = 4, 5 and all tree graphs Tn of order n ≥ 3, except when m = 4 and Tn is
the star graph Sn , in which case R(Sn,W4) = 2n + 1. This led Baskoro et al. [3] to
conjecture that R(Tn,Wm) = 3m − 2 for all tree graphs Tn of order n when m ≥ 5
is odd. The conjecture is true for all sufficiently large n, according to a result of Burr
et al. [5]. In contrast, the analogous equality R(Tn,Wm) = 2n − 1 for even m ≥ 4
is false since the star graph Tn = Sn does not achieve this bound, as the following
combined result of Zhang [24] and Zhang et al. [25, 26] shows; see also [8, 15, 16,
18, 20].

Theorem 1.1 [24–26] For n ≥ 5,

R(Sn,W8) =
{
2n + 1 if n is odd;
2n + 2 if n is even.

Baskoro et al. [3] therefore conjectured that R(Tn,Wm) = 2n − 1 for all non-star
tree graphs Tn of order n when n ≥ 4 is even. This conjecture was disproved by
Chen, Zhang and Zhang [9] who showed that R(Tn,W6) = 2n for certain non-star
tree graphs Tn . Zhang [23] further proved the following theorem which shows that the
conjecture is false when n is small, even for the path graph Pn ; see also [2, 12, 19, 21].

Theorem 1.2 [23] If m is even and n + 2 ≤ m ≤ 2n, then R(Pn,Wm) = m + n − 2.

However, Chen, Zhang and Zhang [9] conjectured that R(Tn,Wm) = 2n−1 for all
tree graphs Tn of order n ≥ m−1 whenm is even and the maximum degree�(Tn) “is
not too large"; see also [10, 11, 13]. Hafidh and Baskoro [14] refined this conjecture
by specifying the bound �(Tn) ≤ n −m + 2. When n is large compared to m, �(Tn)
is not required to be small; indeed, the refined conjecture implies that, for each fixed
even integer m, all but a vanishing proportion of the tree graphs {Tn : n ≥ m − 1}
satisfy R(Tn,Wm) = 2n − 1.

For m = 8, the bound is �(Tn) ≤ n − 6. There is exactly one tree graph Tn
of order n with maximum degree �(Tn) = n − 1, namely the star graph Sn ; see
Theorem 1.1. There is exactly one tree graph Tn of order n ≥ m − 1 with maximum
degree �(Tn) = n − 2: the graph Sn(1, 1) obtained by subdividing an edge of Sn−1.
More generally, let Sn(�,m) be the tree graph of order n obtained by subdividing m
times each of � chosen edges of Sn−�m ; see Fig. 1.

ByTheorem1.2, R(P4,W8) = 10.HafidhandBaskoro [14] determined theRamsey
number R

(
Sn(1, 1),W8

)
as follows.
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Fig. 1 Examples of Sn(�,m), Sn(�) and Sn [�]

Theorem 1.3 [14] For n ≥ 5,

R
(
Sn(1, 1),W8

) =
{
2n + 1 if n is odd,

2n if n is even.

There are exactly 3 tree graphs Tn of order n with maximum degree n − 3, namely
Sn(1, 2), Sn(3) and Sn(2, 1), where Sn(�) is the tree graph of order n obtained by
adding an edge joining the centers of two star graphs S� and Sn−�; see Fig. 1. By
Theorem 1.2, R(P5,W8) = 11. Hafidh and Baskoro [14] determined the Ramsey
numbers for the three other graphs as follows.

Theorem 1.4 [14] For n ≥ 6,

R(Sn(1, 2),W8) =
{
2n + 1 if n ≡ 3 (mod 4) ;
2n otherwise

R(Sn(3),W8) =
{
2n − 1 ifnis odd andn ≥ 9 ;
2n otherwise

R(Sn(2, 1),W8) =
{
2n − 1 if n is odd ;
2n otherwise .

The purpose of the present paper is to determine the Ramsey numbers R(Tn,W8)

for all tree graphs Tn of order n ≥ 6 with maximal degree �(Tn) ≥ n − 5; see
Theorems 2.1, 2.2 and 3.1 in Sects. 2 and 3. These Ramsey numbers show that the
proportion of tree graphs Tn that satisfy the equality R(Tn,W8) = 2n − 1 quickly
grows as the maximal degree �(Tn) decreases. When �(Tn) ≥ n − 2, no tree graph
Tn satisfies the equality. In contrast, when �(Tn) = n − 3, roughly one third of all
tree graphs Tn satisfy the equality; see Theorem 1.4. When �(Tn) = n − 4, more
than 85% of all tree graphs Tn satisfy the equality; see Theorems 2.1 and 2.2. And
when �(Tn) = n − 5, roughly 94.7% of all tree graphs Tn satisfy the equality; see
Theorem 3.1. These results thereby lend strong support for the conjecture described
above by Chen, Zhang and Zhang [9] and Hafidh and Baskoro [14].

The contents of the present paper are as follows. Sections2 and 3 present the main
results, namely Theorems 2.1, 2.2 and 3.1 mentioned above. Section4 provides useful
auxiliary results that are used in the proofs of the main results. These proofs are
presented in Sects. 5, 6 and 7, respectively.
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Fig. 2 Tree graphs of order 7 with �(Tn) = n − 4

Fig. 3 Three tree graphs with �(Tn) = n − 4

2 The Ramsey numbers R(Tn,W8) for1(Tn) = n− 4

This section presents the Ramsey numbers R(Tn,W8) for all tree graphs Tn of order
n ≥ 6 with �(Tn) = n − 4. For n = 6, there is just one such graph, namely the
path graph T6 = P6. Theorem 1.2 provides the Ramsey number R(P6,W8) = 12. For
n = 7, there are five tree graphs with �(Tn) = n − 4, namely the graphs A, B, C , D
and E shown in Fig. 2.

The Ramsey numbers R(Tn,W8) for these tree graphs are determined as follows.

Theorem 2.1 R(T ,W8) = 13 for each T ∈ {A, B,C}, R(D,W8) = 14 and
R(E,W8) = 15.

For n ≥ 8, there are 7 tree graphs Tn of order n with �(Tn) = n − 4, namely
the graphs Sn(4), Sn[4], Sn(1, 3), Sn(3, 1), TA(n), TB(n) and TC (n) shown in Figs. 1
and 3, where Sn[�] is the tree graph of order n obtained by adding an edge joining the
center of Sn−� to a degree-one vertex of S�; see Fig. 1.

The Ramsey numbers R(Tn,W8) for these seven tree graphs are determined as
follows.

Theorem 2.2 If n ≥ 8, then

R(Sn(4),W8) =
{
2n − 1 if n ≥ 9 ;
16 if n = 8

R(Tn,W8) =
{
2n − 1 if n �≡ 0 (mod 4) ;
2n otherwise

R(T ′
n,W8) = 2n − 1 ,

for each Tn ∈ {Sn[4], Sn(1, 3), TA(n), TB(n)} and T ′
n ∈ {TC (n), Sn(3, 1)}.

Proofs of Theorems 2.1 and 2.2 are given in Sects. 5 and 6.
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3 The Ramsey numbers R(Tn,W8) for1(Tn) = n− 5

This section presents the Ramsey numbers R(Tn,W8) for all tree graphs Tn of order
n ≥ 7 with �(Tn) = n − 5. For n = 7, there is just one such graph, namely the
path graph T7 = P7. Theorem 1.2 provides the Ramsey number R(P7,W8) = 13. For
n = 8, there are 16 tree graphs Tn of order n with �(Tn) = n − 5, namely Sn(1, 4),
Sn(2, 2) and the tree graphs shown in Fig. 4. For n = 9, there are 18 tree graphs Tn
of order n with �(Tn) = n − 5, namely Sn(1, 4), Sn[5], Sn(2, 2), Sn(4, 1) and the
tree graphs shown in Fig. 4. For n ≥ 10, there are 19 tree graphs Tn of order n with
�(Tn) = n − 5, namely Sn(1, 4), Sn(5), Sn[5], Sn(2, 2), Sn(4, 1) and the tree graphs
shown in Fig. 4.

The Ramsey numbers R(Tn,W8) for these tree graphs are determined as follows.

Theorem 3.1 If n ≥ 8, then R(Tn,W8) = 2n − 1 for all

Tn ∈ {Sn(1, 4), Sn(2, 2), TD(n), . . . , TS(n)}

except when Tn ∈ {TE (8), TF (8), Sn(1, 4), Sn(2, 2), TD(n), TN (n)} and n ≡ 0
(mod 4), in which case R(Tn,W8) = 2n.

Furthermore, if n ≥ 9, then R(Tn,W8) = 2n − 1 for each Tn ∈ {Sn[5], Sn(4, 1)},
and if n ≥ 10, then R(Sn(5),W8) = 2n − 1.

A proof of this theorem is given in Sect. 7.

4 Auxiliary results

To prove the main theorems, the following auxiliary results will be used. For any
simple graph G = (V , E), let δ(G) be the minimum degree of any vertex in G, and
let G = (

V ,
(V
2

)\E)
be the complement of G.

Lemma 4.1 [4] Let G be a graph of order n. If δ(G) ≥ n
2 , then either G contains C�

for all 3 ≤ � ≤ n, or n is even and G = K n
2 , n2

.

Lemma 4.2 [6] Let G be a graph with δ(G) ≥ n−1. Then G contains all tree graphs
of order n.

Observation 4.3 If G = H1 ∪ H2 is the disjoint union of graphs H1 and H2, where
H1 contains S5 and H2 is a graph of order at least 4, then G contains W8.

Lemma 4.4 Let H1 be a graph whose complement H1 contains S4, and let H2 be a
graph of order m ≥ 5. If G = H1 ∪ H2, then either G contains W8, or H2 is Km or
Km − e, where e is an edge in Km.

Proof If H2 has atmost one edge, then H2 is the complete graph Km or the graph Km−e
obtained from removing an edge e from Km . Suppose now that H2 has at least two
edges. Consider a star S4 in H1 and let v0 be its center and v1, v2, v3 its leaves. Note that
each vi is adjacent to each a ∈ V (H2) in G. Choose 5 vertices a, b, c, d, e ∈ V (H2)
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Fig. 4 Tree graphs Tn with �(Tn) = n − 5

such that either ab and cd are independent edges, or abc is a path, in H2. In both cases,
G contains W8 with hub v0. In the former case, v1abv2cdv3ev1 forms the C8 rim; in
the latter, v1abcv2dv3ev1 forms the C8 rim. 	


The neighbourhood NG(v) of a vertex v in G is the set of vertices that are adjacent
to v in G and dG(v) = |NG(v)| is the degree of the vertex v. For X ,Y ⊆ V , G[X ]
is the subgraph induced by X in G and EG(X ,Y ) is the set of edges in G with one
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endpoint in X and the other in Y . The following lemma provides sufficient conditions
for a graph or its complement to contain C8.

Lemma 4.5 Suppose that U = {u1, . . . , u4} and V = {v1, . . . , v4} are two disjoint
subsets of vertices of a graph G for which |NG[V∪{u}](u)| ≤ 1 for each u ∈ U and
|NG[U∪{v}](v)| ≤ 2 for each v ∈ V . Then G[U ∪ V ] contains C8.

Proof Suppose that NG[U∪{v}](v) ≤ 1 for each v ∈ V . Then G[U ∪ V ] contains
a subgraph obtained by removing a matching from K4,4 and therefore contains C8.
Suppose now that NG[U∪{v1}](v1) = {u1, u2}, and assume without loss of generality
that v3 /∈ NG[V∪{u3}](u3) and v4 /∈ NG[V∪{u4}](u4). Neither u1 nor u2 is adjacent to
v2, v3 or v4, so v1u3v3u1v2u2v4u4v1 forms C8 in G[U ∪ V ]. 	

Lemma 4.6 [17] Let G(u, v, k) be a simple bipartite graph with bipartition U and
V , where |U | = u ≥ 2 and |V | = v ≥ k, and where each vertex of U has degree of
at least k. If u ≤ k and v ≤ 2k − 2, then G(u, v, k) contains a cycle of length 2u.

Corollary 4.7 Suppose that U and V are two disjoint subsets of vertices of a graph G
for which |NG[V∪{u}](u)| ≤ 2 for each u ∈ U. If |U | ≥ 4 and |V | ≥ 6, then G[U ∪V ]
contains C8.

Proof Since |U | ≥ 4 and |V | ≥ 6, we can choose any 4 vertices fromU to formU ′ and
any 6 vertices from V to form V ′. We have that NG[V ′∪{u}](u) ≤ 2 for each u ∈ U ′.
Then each vertex of U ′ is adjacent to at least 4 vertices of V ′ in G and G[U ′ ∪ V ′]
must contain a graph with the properties of G(4, 6, 4) in Lemma 4.6. Hence by that
lemma, G[U ∪ V ] must contain C8. 	


We will also use the following corollary whose proof is almost identical to that of
Corollary 4.7.

Corollary 4.8 Suppose that U and V are two disjoint subsets of vertices of a graph G
for which |NG[V∪{u}](u)| ≤ 3 for each u ∈ U. If |U | ≥ 4 and |V | ≥ 8, then G[U ∪V ]
contains C8.

5 Proof of Theorem 2.1

The proof of Theorem 2.1 is here proved as three theorems, the first of which is as
follows.

Theorem 5.1 R(T ,W8) = 13 for each T ∈ {A, B,C}.
Proof Note that G = 2K6 does not contain A, B or C and that G does not contain
W8. Therefore, R(T ,W8) ≥ 13 for T = A, B,C .

Let G be a graph of order 13 whose complement G does not contain W8. By
Theorem 1.4, G has a subgraph T = S7(2, 1). Label V (T ) as in Fig. 5. Set U =
V (G) − V (T ); then |U | = 6.

First, suppose that A � G. Then v1 is not adjacent to v2 or v6. Similarly, v2 and v5
are not adjacent.
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Fig. 5 S7(2, 1) and U in G

Case 1a: There is a vertex in U , say u, that is adjacent to v1.
Since A is not contained in G, v1 is not adjacent to v3, v4 or any vertex of U other

than u. Let W = {v2, v3, v4, v6, u1, . . . , u4} for any 4 vertices u1, . . . , u4 in U other
than u. If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 4.1 and, together with
v1 as hub, forms W8, a contradiction. Thus, δ(G[W ]) ≤ 3 and �(G[W ]) ≥ 4. Note
that |NG[{u1,...,u4,vi }](vi )| ≤ 1 for i = 2, 3, 4, 6 since G does not contain A. It is now
straightforward to check that v2, v3, v4 and v6 cannot be the vertex with degree at least
4. Without loss of generality, assume that u1 has degree at least 4 in G[W ]. Then u1
is adjacent to at least one of v2, v3, v4, v6, so G contains A, a contradiction.
Case 1b: v1 is not adjacent to any vertices in U .

By arguments similar to those in Case 1a, v2 is not adjacent to any vertex in U .
Let W = {v2, v6} ∪ U . If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 4.1
which, with v1 as hub, forms W8 in G[W ], a contradiction. Thus, δ(G[W ]) ≤ 3
and �(G[W ]) ≥ 4. Since v2 is not adjacent to any vertex in U , there are only three
subcases to be considered.
Subcase 1b.1: dG[W ](v6) ≥ 4.

Label U = {u1, . . . , u6} so that v6 is adjacent to u1, u2 and u3 in G[W ]. Since
G does not contain A, vertices u1, u2, u3, v2 are not adjacent to v3 or v4 in G. Note
that by arguments as in Case 1a, u1, u2 and u3 are isolated vertices in G[U ]. Then
v1u4u2v3v2u5u3u6v1 and u1 form W8 in G, a contradiction.
Subcase 1b.2: dG[W ](v6) ≤ 3 and v6 is adjacent to a vertex u ∈ U with dG[W ](u) ≥ 4.

The graph G contains A, with u as the vertex of degree 3 in A, a contradiction.
Subcase 1b.3: dG[W ](v6) ≤ 3 and v6 is not adjacent to any vertex u ∈ U with
dG[W ](u) ≥ 4.

Label V (U ) = {u1, . . . , u6} so that u6 is adjacent to u2, u3, u4 and u5 in G. Since
A � G, none of v1, . . . , v7 is adjacent in G to any of u2, . . . , u5. If v1 is not adjacent
in G to any two of the vertices v3, v4, v7, then G contains W8 by Observation 4.3,
a contradiction. Therefore, NG[v3,v4,v7](v1) ≥ 2 and, similarly, NG[v3,v4,v7](v2) ≥ 2.
Hence, one of v3, v4, v7 is adjacent in G to both v1 and v2. If v3 or v4 is adjacent
to both v1 and v2, then G contains A, with v7 as vertex of degree 3, a contradiction.
Finally, if both v1 and v2 are adjacent in G to v7 and each of them is adjacent to a
different vertex in v3 and v4, thenG also contains A, where either v1 or v2 is the vertex
of degree 3, a contradiction.

Therefore, R(A,W8) ≤ 13, so R(A,W8) = 13.
Now, suppose that B � G. Then v1, v2, v5, v6 are not adjacent to v3 or v4 in G,

and v1 and v2 are not adjacent toU in G. Label the verticesU = {u1, . . . , u6} and let
W = {v3, v4}∪U . If δ(G[W ]) ≥ 4, thenG[W ] containsC8 by Lemma 4.1which, with
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v1 as hub, forms W8, a contradiction. Therefore, δ(G[W ]) ≤ 3 and �(G[W ]) ≥ 4. If
v3 or v4 is adjacent to the vertex of degree at least 4 in G[W ], then B is contained in
G, with v7 as the vertex of degree 3. Hence, only two cases need to be considered.
Case 2a: v3 or v4 is the vertex of degree at least 4 in G[W ].

Without loss of generality, assume that v3 is the vertex of degree at least 4 inG[W ].
As previously shown, v3 is not adjacent to v4. Therefore, it may be assumed that v3
is adjacent to u1, u2, u3 and u4 in G. Since B � G, u1, . . . , u4 are independent in G
and are not adjacent to {v1, v2, v4, v5, v6}. Also, v1 is not adjacent to v6 and v2 is not
adjacent to v5. Then v1v6u2v2v5u3v4u4v1 and u1 form W8 in G, a contradiction.
Case 2b: One of the vertices in U , say u1, is the vertex of degree at least 4 in G[W ].

As above, u1 is not adjacent to v3 or v4 in G. It may then be assumed that u1 is
adjacent to u2, u3, u4 and u5. Since B � G, v1, . . . , v7 are not adjacent to {u2, . . . , u5}.
Note that v3 is not adjacent to {v1, v2, v5, v6}. By Observation 4.3, G contains W8, a
contradiction.

Therefore, R(B,W8) ≤ 13.
Lastly, suppose thatC � G. Then v5 and v6 are not adjacent inG to each other or to

v3, v4 orU . Furthermore, v5 is not adjacent to v2 and v6 is not adjacent to v1. Label the
verticesU = {u1, . . . , u6} and letW = {v3, v4, v6, u1, . . . , u5}. If δ(G[W ]) ≥ 4, then
G[W ] contains C8 by Lemma 4.1 which, with v5 as hub, forms W8, a contradiction.
Then δ(G[W ]) ≤ 3 and�(G[W ]) ≥ 4. Note that v6 is not adjacent to any other vertex
in G[W ], v6 is not the vertex of degree at least 4 in G[W ]. If v3 or v4 is the vertex of
degree 4, thenG containsC , with v3 or v4 and v7 as the vertices of degree 3. Thus, one
of the vertices in U , say u1, is the vertex of degree at least 4 in G[W ]. Now, consider
the following three cases.
Case 3a: Both v3 and v4 are adjacent to u1 in G[W ].

Suppose that u1 is also adjacent to u2 and u3 in G[W ]. Since C � G, v3 is not
adjacent in G to v4 and neither v3 nor v4 is adjacent to {v1, v2, v5, v6, u2, . . . , u6}.
Note that |NG[{v1,v2,ui }](ui )| ≤ 1 for i = 2, 3 since C � G. If v1 is adjacent to u2 and
u3 in G, then v1u2v5u4v3u5v6u3v1 and v4 form W8 in G, a contradiction. Therefore,
v1 is adjacent in G to at least one of u2 and u3. Similarly, v2 is adjacent to at least one
of u2 and u3. Since |NG[{v1,v2,ui }](ui )| ≤ 1 for i = 2, 3, v1 is adjacent to u2 and v2
is adjacent to u3, or vice versa. Then neither u2 nor u3 is adjacent in G to u4, u5, u6,
since C � G. Therefore, v1v3v2v5u2u4u3v6v1 and v4 form W8 in G, a contradiction.
Case 3b: One of v3 and v4, say v3, is adjacent to u1 in G[W ].

Suppose that u1 is adjacent to u2, u3 and u4 in G[W ]. Then
v1, v2, v4, v5, v6, u2, u3, u4 /∈ NG(v3) and |NG[{v4,u2,u3,u4}](v4)| ≤ 1. Without loss
of generality, assume that v4 is not adjacent to u2 or u3 in G. Now, suppose that
v4 is adjacent to u4 in G. Since C � G, u4 is not adjacent to v1 or v2 in G. Then
v1u4v2v5u2v4u3v6v1 and v3 form W8 in G, a contradiction. Otherwise, suppose that
v4 is not adjacent to u4 in G. Then, |NG[{ui ,v1,v2}](ui )| ≤ 1 for i = 2, 3, 4 and at least
two of u2, u3 and u4 are not adjacent to v1 or v2 in G. Without loss of generality,
assume that u2 and u3 are not adjacent to v1 in G. In this case, v1u2v4u4v5u5v6u3v1
and v3 form W8 in G, again a contradiction.
Case 3c: v3 and v4 are both not adjacent in G[W ] to u1.
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Fig. 6 The graph H

Fig. 7 B ⊆ G

Assume that u1 is adjacent to each of u2, . . . , u5 in G[W ]. Since C � G,
|NG[{v1,...,v7,ui }](ui )| ≤ 1 for i = 2, . . . , 5, and |NG[{u2,...,u5,v j }](v j )| ≤ 1 for j = 3, 4.
Since |NG[{v1,v2,ui }](ui )| ≤ 1 for i = 2, . . . , 5, one of v1 and v2, say v1, satisfies
|NG[{u2,...,u5,v1}](v1)| ≤ 2. By Lemma 4.5, G[v1, v3, v4, v5, u2, . . . , u5] contains C8
which, with hub v6, forms W8 in G.

Therefore, R(C,W8) ≤ 13. This completes the proof of the theorem. 	


Theorem 5.2 R(D,W8) = 14.

Proof Let G = K6 ∪ H where H is the graph shown in Fig. 6.
Since G does not contain D and G does not contain W8, R(D,W8) ≥ 14.
Now, let G be any graph of order 14. Suppose neither G contains D as a subgraph,

nor G contains W8 as a subgraph. By Theorem 5.1, B ⊆ G. Label the vertices of B
as shown in Fig. 7 and set U = {u1, . . . , u7} = V (G) − V (B). Since D � G, v7 is
non-adjacent to v6 and U , and v4 is non-adjacent to v1 and v2.

LetW = {v6}∪U . If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 4.1 which,
with v7 as hub, forms W8, a contradiction. Thus, δ(G[W ]) ≤ 3 and �(G[W ]) ≥ 4.
Three cases will now be considered.
Case 1: v6 is the vertex of degree at least 4 in G[W ].

Assume that v6 is adjacent to u1, u2, u3 and u4 in G[W ]. Then v5 is adjacent to v1
and v2 in G and v3 is adjacent in G to v6, u1, u2, u3 and u4.
Subcase 1.1: EG({u1, . . . , u4}, {u5, u6, u7}) �= ∅.

Without loss of generality, assume that u1 is adjacent to u5 in G. Since D � G,
{u2, u3, u4} is independent in G and is adjacent to v1, v2, u6 and u7 in G; v6 is
adjacent in G to v1 and v2; v4 and v5 are adjacent in G to u1 and u5; and v3 is adjacent
in G to u5. If v4 is adjacent to u2 in G, then v5 is adjacent in G to u3 and u4, so
v1v5v2u2u6v7u7u3v1 and u4 form W8 in G, a contradiction. Thus, v4 is adjacent to
u2 in G, and v1v4v2u4u6v7u7u3v1 and u2 form W8 in G, again a contradiction.
Subcase 1.2: {u1, . . . , u4} is not adjacent to {u5, u6, u7} in G[W ].

Suppose that v5 is adjacent in G to v7; then v7 is not adjacent to v1 or v2. If
|NG[{u1,...,u4,v2}](v2)| ≤ 2, then G[u1, . . . , u7, v2] contains C8 by Lemma 4.5 which
with v7 forms W8 in G, a contradiction. Thus, |NG[{u1,...,u4,v2}](v2)| ≥ 3, so v1 is
not adjacent to u1, . . . , u4 in G. By Lemma 4.5, G[u1, . . . , u7, v1, v7] contains W8, a
contradiction.
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Hence, v5 is not adjacent to v7 in G. If |NG[{u1,...,u4,v5}](v5)| ≤ 2, then
G[u1, . . . , u7, v5] contains C8 by Lemma 4.5 which with v7 forms W8 in G, a con-
tradiction. Thus |NG[{u1,...,u4,v5}](v5)| ≥ 3, so v4 is not adjacent to {u1, . . . , u4} in
G, or else G will contain D with v4 be the vertex of degree 3. By Lemma 4.5,
G[u1, . . . , u7, v1] contains C8. If v4 is not adjacent to v7 in G, then G contains
W8, a contradiction. Thus, v4 is adjacent to v7, and since D � G, v1 is not adja-
cent to v7. If |NG[{u1,...,u4,v1}](v1)| ≤ 2, then G[u1, . . . , u7, v1] contains C8 by
Lemma 4.5 which with v7 formsW8, a contradiction. Thus, |NG[{u1,...,u4,v1}](v1)| ≥ 3,
so |NG[{u1,...,u4,v1}](v1) ∩ NG[{u1,...,u4,v5}](v5)| ≥ 2, and G contains D with v5 as the
vertex of degree 3, a contradiction.
Case 2: u1 is the vertex of degree at least 4 in G[W ] and v6 is adjacent to u1.

Without loss of generality, suppose that u1 is adjacent to u2, u3 and u4 in G[W ]. If
v5 is adjacent to u1, then Case 1 applies with v6 replaced by u1. Suppose then that v5
is not adjacent to u1. Since D � G, v1 and v2 are not adjacent in G to v4, v5 or v6; v3
is not adjacent to v6, u1, . . . , u4; and v4 is not adjacent to u1, . . . , u4.
Subcase 2.1: EG({u2, u3, u4}, {u5, u6, u7}) �= ∅.

Without loss of generality, assume that u2 is adjacent to u5 in G. Then u3 and u4
are not adjacent to each other or to v1, v2, u6, u7. Also, u1 is not adjacent to v1 or v2,
and neither u2 nor u5 is adjacent to v3, v4, v5, v6.

Suppose that v7 is adjacent to v4 in G. If u1 is adjacent to v1, u5, u6 or u7, then
Case 1 can be applied through a slight adjustment of the vertex labelings. Suppose
that u1 is not adjacent to any of these vertices. Since D � G, v7 is not adjacent to
v1. If v6 is not adjacent to u6, then v1u1u5v6u6u3u7u4v1 and v7 form W8 in G, a
contradiction. Similarly, G contains W8 if v6 is not adjacent to u7, a contradiction.
Therefore, v6 is adjacent to both u6 and u7 in G. Since D � G, u6 is not adjacent to
u7, and neither u6 nor u7 is adjacent to u2. Then v1u1u5v6u2u6u7u3v1 and v7 form
W8 in G, a contradiction.

Suppose now that v7 is not adjacent to v4 in G. If v7 is adjacent to v5, then v7 is not
adjacent to v1 or v2, and v4 is not adjacent to v6, u6 or u7. Then v1u1v2u3u6v4u7u4v1
and v7 form W8 in G, a contradiction. Therefore, v7 is not adjacent to v5 in G. If v6 is
not adjacent to u3, then u3v6u2v5u5v4u4u6u3 and v7 form W8 in G, a contradiction.
Similarly,G containsW8 if v6 is not adjacent to u4, a contradiction. Then v6 is adjacent
to both u3 and u4 inG, so v6 is not adjacent to u6 and u7, or else Case 1 applies. Hence,
v4u2v5u5v6u6u3u4v4 and v7 form W8 in G, a contradiction.
Subcase 2.2: {u2, u3, u4} is not adjacent to {u5, u6, u7} in G[W ].

If |NG[{u2,u3,u4,v6}](v6)| ≥ 3 or |NG[{u5,u6,u7,v6}](v6)| ≥ 3, then Case 1 applies, so
|NG[{u2,u3,u4,v6}](v6)| ≤ 2 and |NG[{u5,u6,u7,v6}](v6)| ≤ 2. Without loss of generality,
assume that v6 is not adjacent in G to u2 or u5.

Suppose that v4 is not adjacent to v7 in G. If u5 is adjacent to u6 or u7, say u6,
then v4 is not adjacent to u5 or u6, so v4u2v6u5u3u7u4u6v4 and v7 form W8 in G, a
contradiction. If u5 is not adjacent to u6 or u7, then v4u2v6u5u6u3u7u4v4 and v7 form
W8 in G, a contradiction. Suppose that v4 is adjacent to v7 in G. By similar arguments
to those in Subcase 2.1, u1 is not adjacent to v1, u5, u6 or u7, and v7 is not adjacent to
v1. Then v1v6u5u2u6u3u7u1v1 and v7 form W8 in G, a contradiction.
Case 3: u1 is the vertex of degree at least 4 in G[W ] and v6 is not adjacent to u1.
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Fig. 8 S7(3) and U in G

Assume that u1 is adjacent to u2, u3, u4 and u5 in G[W ]. Since D � G, v3 and v4
are not adjacent to u1, u2, u3, u4 or u5 in G. If either v1 or v5 are adjacent to u1 in G,
then Case 1 applies, so suppose that v1 and v5 are not adjacent to u1. In addition, v1
and v5 are not adjacent to u2, u3, u4 or u5 in G, or else Case 2 applies.
Subcase 3.1: NG[u2,...,u5](v6) �= ∅.

Assume that v6 is adjacent to u2 in G. Note that v4 is not adjacent to v6, v7, u6 or
u7 in G, and v3 is not adjacent to v5 in G, or else Case 2 applies by slight adjustment
of vertex labels. Since D � G, v1 and v2 are not adjacent in G to v5, v6 or u2, and v3
is not adjacent to v6 in G.

If u2 and u6 are not adjacent in G, then v1u1v6v2u2u6v7u3v1 and v4 formW8 in G,
a contradiction. A similar contradiction arises if u2 and u7 are not adjacent. Therefore,
u2 is adjacent to both u6 and u7 in G, and u3, u4 and u5 are not adjacent to u6 or u7
in G since D � G. Then v1u1v6v2u2v7u6u3v1 and v4 form W8 in G, a contradiction.
Subcase 3.2: NG[u2,...,u5](v6) = ∅.

Suppose that v1 is adjacent to v7 in G. Then v2 is not adjacent to v5, v6
or U since D � G. If |NG[{u2,...,u6}](u6)| ≤ 2, then Lemma 4.5 implies that
G[u2, . . . , u5, v4, v5, v6, u6] contains C8 in G which with v2 forms W8, a contra-
diction. Thus, |NG[{u2,...,u6}](u6)| ≥ 3. Similarly, |NG[{u2,...,u5,u7}](u7)| ≥ 3. By the
Inclusion-exclusion Principle, |NG[{u2,...,u6}](u6) ∩ NG[{u2,...,u5,u7}](u7)| ≥ 2. With-
out loss of generality, u6 is adjacent to u2, u3 and u4 in G, and u7 is adjacent to u3
and u4, and G[u1, . . . , u7] contains D with u3 or u4 being the vertex of degree 3, a
contradiction.

Now suppose that v1 is not adjacent to v7 in G. If v7 is adjacent to v4 in G, then
v2 is not adjacent to any of u1, . . . , u5 in G, or else either Case 1 or 2 applies. Also,
|NG[{v2,v5,v7}](v7)| ≤ 1 since D ⊆ G. Assume that v7 is not adjacent to v2 in G. If
|NG[{u2,...,u6}](u6)| ≤ 2, then Lemma 4.5 implies that G[u2, . . . , u5, v1, v2, v6, u6]
contains C8 which with v7 forms W8, a contradiction. Thus, |NG[{u2,...,u6}](u6)| ≥ 3.
Similarly, |NG[{u2,...,u5,u7}](u7)| ≥ 3, so |NG[{u2,...,u6}](u6)∩NG[{u2,...,u5,u7}](u7)| ≥ 2.
By arguments similar to those in the previous paragraph, G will contain a subgraph
D, a contradiction.

Thus, R(D,W8) ≤ 14 which completes the proof of the theorem. 	

Theorem 5.3 R(E,W8) = 15.

Proof The graph G = K6 ∪ K4,4 does not contain E and G does not contain W8.
Thus, R(E,W8) ≥ 15. For the upper bound, let G be any graph of order 15. Suppose
that G does not contain E and that G does not contain W8. By Theorem 1.4, G
contains a T = S7(3) subgraph. Label the vertices of this subgraph as in Fig. 8 and
set U = V (G) − V (T ). Note that |U | = 8.
Case 1: Some vertex u in U is adjacent to v6.
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Since E � G, v6 is not adjacent to v1, v2, v3, v7 or any vertex of U other than
u. Let W = {v1, v2, v3, v7, u1, . . . , u4}, for any vertices u1, . . . , u4 in U other than
u. If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 4.1 which with v6 forms
W8, a contradiction. Therefore, δ(G[W ]) ≤ 3 and �(G[W ]) ≥ 4. Since E � G,
NG[{u1,...,u4,v1,v7}](v7) ≤ 1 and NG[{u1,...,u4,v7,vi }](vi ) ≤ 1 for i = 1, 2, 3, so none
of v1, v2, v3, v7 has degree at least 4. Without loss of generality, assume that u1 has
degree at least 4. If u1 is adjacent to v7, then G contains E with u1 and v5 as the
vertices of degree 3, a contradiction. Similarly, if u1 is adjacent to v1, v2 or v3, then
G contains E with u1 and v4 as the vertices of degree 3, a contradiction. Therefore,
u1 is not adjacent to v1, v2, v3 or v7. However, then u1 has degree at most 3 in G[W ],
a contradiction.
Case 2: v6 is not adjacent to any vertices in U .

If v7 is adjacent to some vertex in U , then Case 1 applies with v7 replacing v6,
so suppose that v7 is not adjacent to any vertex in U . Now, if δ(G[U ]) ≥ 4, then
G[U ] contains C8 by Lemma 4.1 which with v6 or v7 forms W8, a contradiction.
Thus, δ(G[U ]) ≤ 3 and �(G[U ]) ≥ 4. Let V (U ) = {u1, . . . , u8}. Without loss of
generality, assume that u1 is adjacent to u2, u3, u4 and u5. Since E � G, v4 is not
adjacent in G to any of u1, . . . , u5; v5 is not adjacent to any of v1, v2, v3, u1, . . . , u5;
and u1 is not adjacent to v1, v2 or v3. Furthermore, |NG[{u2,...,u5,vi }](vi )| ≤ 1 for
i = 1, 2, 3 and |NG[{v1,v2,v3,u j }](u j )| ≤ 1 for j = 2, . . . , 5.

Suppose that NG[{v5,u6,u7,u8}](v5) = ∅. If |NG[{u2,...,u6}](u6)| ≤ 1, then
G[u2, . . . , u5, v1, v2, v3, u6] contains C8 by Lemma 4.5 which with v5 forms W8, a
contradiction. Therefore, |NG[{u2,...,u6}](u6)| ≥ 2. Similarly, |NG[{u2,...,u5,u7}](u7)| ≥
2 and |NG[{u2,...,u5,u8}](u8)| ≥ 2. By the Inclusion-Exclusion Principle, u2, u3, u4 or
u5 is adjacent in G to at least two of u6, u7, u8. Without loss of generality, assume
that u2 is adjacent to u6 and u7. Then u2 is not adjacent to u3, u4 or u5, Therefore,
Lemma 4.5 implies that G[u1, u3, u4, u5, v1, v2, v3, u2] contains C8 which with v5
forms W8, a contradiction.

On the other hand, if NG[u6,u7,u8](v5) �= ∅, then without loss of generality assume
that u6 is adjacent to v5 inG. Since E � G, v4 is not adjacent to v6, v7 or u6 inG. Also,
{v1, v2, v3} and {v6, v7, u6} are independent in G, and v1, v2, v3, v6, v7, u6 /∈ NG(ui )
for i = 1, . . . , 5, 7, 8, or else Case 1 applies with vertex label adjustments. Now, if u1
is not adjacent to both u7 and u8 inG, then v1v2v3u7v6v7u6u8v1 and u1 formW8 inG,
a contradiction. Therefore, NG[{u1,u7,u8}](u1) �= ∅. Without loss of generality, assume
that u1 is adjacent to u7 in G. Note that for E � G, |NG[{v4,v5,u8}](u8)| ≤ 1. Assume
that u8 is not adjacent to v4 in G. If |NG[{u2,...,u5,u8}](u8)| ≤ 3, then assume without
loss of generality that u8 is not adjacent to u2 or u3 in G. Then v6u4v7u5u6u2u8u3v6
and v4 form W8 in G, a contradiction. Similar arguments work if u8 is not adjacent
to v5 in G, by replacing v4 with v5 and v6, v7, u6 with v1, v2, v3, respectively. Hence,
|NG[{u2,...,u5,u7,u8}](u8)| ≥ 4. However, G then contains E with u1 and u8 of degree
3, a contradiction.

Thus, R(E,W8) ≤ 15. This completes the proof of the theorem. 	
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Fig. 9 The graphs H8

6 Proof of Theorem 2.2

Consider the tree graphs Tn of order n ≥ 8 with �(Tn) = n− 4, namely Sn(4), Sn[4],
Sn(1, 3), Sn(3, 1), TA(n), TB(n) and TC (n); see Figs. 1 and 3.

Lemma 6.1 Let n ≥ 8. Then R(Tn,W8) ≥ 2n − 1 for each Tn ∈
{Sn(4), Sn(3, 1), TC (n)}. Also for each Tn ∈ {Sn[4], Sn(1, 3), TA(n), TB(n)},
R(Tn,W8) ≥ 2n − 1 if n �≡ 0 (mod 4) and R(Tn,W8) ≥ 2n otherwise.

Proof The graphG = 2Kn−1 clearly does not contain any tree graph of order n, andG
does not containW8. Finally, if n ≡ 0 (mod 4), then the graphG = Kn−1∪K4,...,4 of
order 2n−1 does not contain Sn[4], Sn(1, 3), TA(n) or TB(n); nor does the complement
G contain W8. 	

Theorem 6.2 If n ≥ 8, then

R(Sn(4),W8) =
{
2n − 1 if n ≥ 9;
16 if n = 8.

Proof By Lemma 6.1, R(Sn(4),W8) ≥ 2n − 1 for n ≥ 8. For n = 8, observe that the
graph G = K7 ∪ H8, where H8 is the graph of order 8 as shown in Fig. 9 does not
contain S8(4) and its complement G does not contain W8. Therefore, for n = 8, we
have a better bound of R(S8(4),W8) ≥ 16.

For the upper bound, let G be any graph of order 2n − 1 if n ≥ 9, and of order 16
if n = 8. Assume that G does not contain Sn(4) and that G does not contain W8.

If n ≥ 9 is odd or n = 8, then G has a subgraph T = Sn(3) by Theorem 1.4.
Let V (T ) = {v0, . . . , vn−3, w1, w2} and E(T ) = {v0v1, . . . , v0vn−3, v1w1, v1w2}.
Also, let V = {v2, . . . , vn−3} and U = V (G) − V (T ); then |V | = n − 4 ≥ 5 and
|U | = n − 1 ≥ 8 if n is odd, while |U | = 8 if n = 8. Since Sn(4) � G, v1 is not
adjacent to any vertex of U ∪ V in G. Furthermore, for each 2 ≤ i ≤ n − 3, vi is
adjacent to at most two vertices of U in G. By Corollary 4.7, G[U ∪ V ] contains C8,
and together with v1, gives us W8 in G, a contradiction.

For the remaining case when n ≥ 10 is even, Sn−1 ⊆ G by Theorem 1.1. Let v0
be the center of Sn−1 and set L = NSn−1(v0) = {v1, . . . , vn−2} and U = V (G) −
V (Sn−1). Then |U | = n. Since G does not contain Sn(4), each vertex of L is adjacent
to at most two vertices of U . We consider two cases.
Case 1: E(L,U ) = ∅.

If�(G[U ]) ≥ 4, then somevertexu inU is adjacent to at least four vertices inG[U ].
These four vertices and any four vertices from L formC8 inG which with u formsW8,
a contradiction. Therefore, �(G[U ]) ≤ 3 and δ(G[U ]) ≥ n−4. Suppose δ(G[U ]) =
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n − 4 + l for some l ≥ 0, and let u0 be a vertex in U with minimum degree in G[U ].
Label the remaining vertices in U as u1, . . . , un−1 such that UA = {u1, . . . , un−4} ⊆
NG(u0), and let UB = {un−3, un−2, un−1}. Since Sn(4) � G, each vertex in UA is
adjacent to at most two vertices inUB , and so |EG(UA,UB)| ≤ 2(n−4). On the other
hand, noting that u0 is adjacent to exactly l vertices in UB and letting eB ≤ 3 be the
number of edges inG[UB], we see that |EG(UA,UB)| ≥ 3δ(G[U ])−l−2eB = 3(n−
4+l)−l−2eB . Therefore, 2(n−4) ≥ |EG(UA,UB)| ≥ 3n−12+2l−2eB , implying
that n + 2l ≤ 4 + 2eB ≤ 10, which is only possible when n = 10, l = 0, eB = 3,
and |EG(UA,UB)| = 2(n − 4) = 12. For such scenario where n = 10, noting that u0
was an arbitrary vertex with minimum degree in G[U ], it is straightforward to deduce
that the only possible edge set of G[U ] (up to isomorphism) with S10(4) � G[U ] is
{u0u1, . . . , u0u6}∪{u1u7, . . . , u4u7}∪{u1u8, u2u8, u5u8, u6u8}∪{u3u9, . . . , u6u9}∪
{u1u2, u3u4, u5u6} ∪ {u1u3, u1u5, u3u5} ∪ {u2u4, u2u6, u4u6} ∪ {u7u8, u7u9, u8u9}.
Observe now that G[U ] contains C8 which forms W8 in G with any vertex in L as
hub, a contradiction.
Case 2: E(L,U ) �= ∅.

Without loss of generality, assume that v1 is adjacent to u1 in G. Since Sn(4) � G,
v1 is adjacent to at most one vertex of U ∪ L\{u1} in G. Therefore, we can find a
4-vertex set V ′ ⊆ V \{v1} and an 8-vertex setU ′ ⊆ U\{u1} such that v1 is not adjacent
in G to any vertex of U ′ ∪ V ′. Note that each vertex of V ′ is adjacent to at most two
vertices of U ′ in G, so |E(V ′,U ′)| ≤ 8. This implies that there are four vertices in
U ′ that are each adjacent in G to at most one vertex of V ′, and so G contains C8 by
Lemma 4.5 which with v1 forms W8, a contradiction.

Thus, R(Sn(4),W8) ≤ 2n − 1 when n ≥ 9 and R(Sn(4),W8) ≤ 16 when n = 8.
This completes the proof of the theorem. 	

Lemma 6.3 Let H be a graph of order n ≥ 8 with minimum degree δ(H) ≥ n − 4.
Then either H contains Sn[4] and TA(n), or n ≡ 0 (mod 4) and H is the disjoint
union of n

4 copies of K4, i.e., H = n
4K4.

Proof Let V (H) = {u0, . . . , un−1}. First, consider the case where H has a vertex of
degree at least n − 3, say u0, and that {u1, . . . , un−3} ⊆ NH (u0).

Suppose un−2 is adjacent to un−1 in H . Since δ(H) ≥ n − 4, un−2 is adjacent to
at least n − 6 ≥ 2 vertices of {u1, . . . , un−3}, say u1 and u2, and so H contains Sn[4].
Furthermore by the minimum degree condition, u1 is adjacent to at least n − 7 ≥ 1
vertices of {u1, . . . , un−3}, and so H contains TA(n).

Suppose now that un−2 is not adjacent to un−1 in H . Then by the minimum
degree condition, there is a vertex in {u1, . . . , un−3}, say u1, that is adjacent to both
un−2 and un−1. The vertices u1 and un−2 must also each be adjacent to a vertex of
{u2, . . . , un−3}, and so H contains both Sn[4] and TA(n).

For the remaining case, suppose that H is (n − 4)-regular and that NH (u0) =
{u1, . . . , un−4}. LetU = {un−3, un−2, un−1} and suppose that H [U ] has an edge, say
un−3un−2. Since un−3 must be adjacent in H to some vertex of NH (u0), it follows
that H contains Sn[4] if un−3 or un−2 is adjacent to un−1. Suppose then that neither
un−3 nor un−2 is adjacent to un−1. Then un−1 is adjacent to every vertex of NH (u0).
Note that dH [NH (u0)∪{un−3}](un−3) = n − 5 and let u be the vertex of NH (u0) that is
not adjacent in H to un−3. Since dH (u) = n − 4, u is adjacent in H to some vertex in
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NH (un−3), so H contains Sn[4]. Also, note that un−3 is adjacent in H to at least n−6
vertices of NH (u0). If un−1 is adjacent to some vertex of NH [NH (u0)∪{un−3}](un−3),
then H contains TA(n). Note that this will always happen for n ≥ 9. For n = 8,
there is a case where |NH [NH (u0)∪{un−3}](un−3)| = |NH [NH (u0)∪{un−1}](un−1)| = 2
and NH [NH (u0)∪{un−3}](un−3) ∩ NH [NH (u0)∪{un−1}](un−1) = ∅, so un−1 is adjacent to
un−3 and un−2, giving TA(n) in H .

Now, suppose that H [U ] contains no edge. ThenU1 = U ∪ {u0} is an independent
set in H . Furthermore, NH (u) = {u1, . . . , un−4} for every u ∈ U , as every vertex has
degree n − 4. Therefore, H [U1] is a K4 component in H . Repeating the above proof
for each vertex u of H shows that either u is contained in a K4 component of H , or H
contains both Sn[4] or TA(n). In other words, either H contains both Sn[4] and TA(n),
or H is the disjoint union of n

4 copies of K4, and so n ≡ 0 (mod 4). 	

Theorem 6.4 If n ≥ 8, then

R(Sn[4],W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.
Now let G be a graph that does not contain Sn[4] and assume that G does not contain
W8.

First, suppose that G has order 2n if n ≡ 0 (mod 4) and G has order 2n − 1
if n is odd. By Theorem 1.4, G has a subgraph T = Sn(3). Let V (T ) =
{v0, . . . , vn−3, w1, w2} and E(T ) = {v0v1, . . . , v0vn−3} ∪ {v1w1, v1w2}. Set U =
V (G) − V (T ) and V = {v2, . . . , vn−3}. Then |U | = n − j , for j = 0 if n ≡ 0
(mod 4) and j = 1 if n is odd, and |V | = n − 4. Since G does not contain Sn[4], v1
is not adjacent to any vertex of V in G, and each vertex of V is adjacent to at most
n − 6 vertices of U ∪ V in G. Noting also that w1 and w2 each is adjacent to at most
one vertex of {w1, w2} ∪U in G, we consider two cases.
Case 1: At least one of w1 and w2 is not an isolated vertex in G[{w1, w2} ∪U ].

Without loss of generality, assume that w1 is adjacent to some vertex u ∈ {w2}∪U
in G. Let Z = (

V ∪U ∪{w2}
)\{u} and note that |Z | = 2n− 4− j . Since Sn[4] � G,

w1 is not adjacent to any vertex of Z in G. If δ(G[Z ]) ≥ � 2n−4− j
2 �, then G[Z ]

contains C8 by Lemma 4.1 which withw1, formsW8 in G, a contradiction. Therefore,
δ(G[Z ]) ≤ � 2n−4− j

2 � − 1 and �(G[Z ]) ≥ � 2n−4− j
2 � = n − 2 − j . Since each v of

V is adjacent to at most n − 6 vertices of U ∪ V in G, and w2 is adjacent to at most
one vertex of U in G, a vertex with maximum degree in G[Z ] must be a vertex of
U\{u}. So let u2 be a vertex of U with dG[Z ](u2) ≥ n − 2. As Sn[4] � G, observe
that NG[Z ](u2) ⊆ U ; each vertex of V is adjacent to at most one vertex of NG[Z ](u2)
in G; and each vertex of NG[Z ](u2) is adjacent to at most one vertex of V in G. Then
by Lemma 4.5, any four vertices from V and any four vertices from NG[Z ](u2) form
C8 in G which with w1 forms W8 in G, a contradiction.
Case 2: w1 and w2 are isolated vertices in G[{w1, w2} ∪U ].

If δ(G[U ]) ≥ n− j
2 , then G[U ] contains C8 by Lemma 4.1 which with w1 forms

W8, a contradiction. Thus, δ(G[U ]) ≤ n− j
2 − 1, and �(G[U ]) ≥ n− j

2 . Let u1 be a
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vertex of U with dG[U ] ≥ n− j
2 . Since Sn[4] � G, v0 is not adjacent to any vertex of

NG[U ](u1) inG. Now, if v1 is adjacent to some vertex u of NG[U ](u1) inG, then apply
Case 1 with w1 and u interchanged. So assume that v1 is not adjacent to any vertex of
NG[U ](u1) in G.

If E(V , NG[U ](u1)) = ∅ in G, then any four vertices of V and any four vertices of
NG[U ](u1) form C8 in G, and with v1, formW8 in G, a contradiction. So without loss
of generality, assume that v2 is adjacent to some vertex u2 of NG[U ](u1) in G. Since
Sn[4] � G, u2 is not adjacent to any vertex of U\{u1}. Then v0, v1, w1, w2 and any
four vertices fromU\{u1, u2}, at least three of which are from NG[U ](u1)\{u2}, form
C8 in G and, with u2, form W8 in G, a contradiction.

In either case, R(Sn[4],W8) ≤ 2n for n ≡ 0 (mod 4) and R(Sn[4],W8) ≤ 2n − 1
for odd n.

Next, suppose that n ≡ 2 (mod 4) and G has order 2n − 1. If G contains a
subgraph Sn(3), then the previous arguments show that R(Sn[4],W8) ≤ 2n − 1.
Hence, we only need to consider the case where G does not contain Sn(3). Now, by
Theorem 6.2, G has a subgraph T = Sn(4). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Let U = V (G) − V (T ); then
|U | = n − 1. Since G does not contain Sn(3) and Sn[4], v0 is not adjacent in G to w1,
w2, w3 or U . Now, set U ′ = NG[U∪{w1}](w1) ∪ NG[U∪{w2}](w2) ∪ NG[U∪{w3}](w3).
Then |U ′| ≤ 3 and w1, w2 and w3 are not adjacent in G to any vertex of U\U ′. By
Lemma 4.4, G[U\U ′] is either Kn−1−|U ′| or Kn−1−|U ′| − e. If dG[U\U ′](u′) ≥ 2 for
some vertex u′ in U ′, then at least two vertices of U\U ′ are not adjacent to u′ in G.
Let X be a set containing these two vertices and any other two vertices in U\U ′, and
set Y = {w1, w2, w3, u′}. Note that G[X ∪ Y ] contains C8 by Lemma 4.5 which with
v0 forms W8, a contradiction. Therefore, every vertex of U ′ is adjacent in G to at
least n − 2 − |U ′| vertices of U\U ′. Hence, δ(G[U ]) ≥ n − 5, and since Sn[4] � G,
EG(T ,U ) = ∅. Now, ifG[V (T )] contains S5, thenG containsW8 byObservation 4.3,
a contradiction. Therefore, δ(G[V (T )]) ≥ n − 4. By Lemma 6.3, G contains Sn[4],
a contradiction. Thus, R(Sn[4],W8) ≤ 2n − 1 for n ≡ 2 (mod 4). 	

Theorem 6.5 If n ≥ 8, then

R(Sn(1, 3),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.
Let G be any graph of order 2n if n ≡ 0 (mod 4) and of order 2n − 1 if n �≡ 0
(mod 4). Assume thatG does not contain Sn(1, 3) and thatG does not containW8. By
Theorem 6.4, G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, w1v1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and
U = V (G)−V (T ). Since Sn(1, 3) � G, w2 and w3 are not adjacent to each other, or
to any vertex in U ∪ V . Since C8 � G[U ∪ V ] as W8 � G, Lemma 4.1 implies that
G[U ∪ V ] has a vertex u of degree at least n − 3 in G[U ∪ V ]. Since Sn(1, 3) � G,
u ∈ U and u is not adjacent to any vertices in V . Furthermore, E(V , NG[U ](u)) = ∅.
Finally, note that w3, any 3 vertices in V and any 4 vertices in NG[U ](u) form C8 in
G which, with w2 as hub, form W8, a contradiction. 	
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Theorem 6.6 If n ≥ 8, then

R(TA(n),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.
Let G be any graph of order 2n if n ≡ 0 (mod 4) and of order 2n − 1 if n �≡ 0
(mod 4). Assume that G does not contain TA(n) and that G does not contain W8.

Supposefirst thatG has a subgraphT = Sn(3). LetV (T ) = {v0, . . . , vn−3, w1, w2}
and E(T ) = {v0v1, . . . , v0vn−3, v1w1, v1w2}. Set V = {v2, . . . , vn−3} and U =
V (G) − V (T ). Since G does not contain TA(n), w1 and w2 are not adjacent to any
vertex ofU∪V inG. Let V ′ be the set of any n−5 vertices in V , andU ′ be the set of any
n−1vertices inU . If δ(G[U ′∪V ′]) ≥ n−3, thenG[U ′∪V ′] containsC8 byLemma4.1
which, with w1 as hub, form W8, a contradiction. Therefore, δ(G[U ′ ∪ V ′]) ≤ n − 4
and�(G[U ′ ∪V ′]) ≥ n−3. Since TA(n) � G, dG[U ′∪V ′](v) ≤ n−6 for each v ∈ V ′.
Hence, some vertex u ∈ U ′ satisfies dG[U ′∪V ′](u) ≥ n − 3, which also implies that u
is adjacent to at least two vertices of U .

Since TA(n) � G, each vertex of V is adjacent to at most one vertex of NG[U ](u).
If |NG[U ](u)| ≥ n − 4, then each vertex of NG[U ](u) is adjacent to at most one vertex
of V , and so G[V ∪ NG[U ](u)] contains C8 by Lemma 4.1 which with w1 forms W8,
a contradiction. Thus, at least three vertices of V ′ (and so of V ), say v2, v3, v4, are
adjacent to u in G. Let a and b be any two vertices in NG[U ](u). As TA(n) � G, each
of v2, v3, v4 is not adjacent to any vertex of V (G)\{u, v0}. Then w1v5w2v3av1bv4w1
and v2 form W8 in G, a contradiction.

By Theorem 1.4, R(Sn(3),W8) ≤ 2n for n ≡ 0 (mod 4). So now assume that
G has order 2n − 1 with n �≡ 0 (mod 4) and that G does not contain Sn(3). By
Theorem 6.2, G has a subgraph T = Sn(4). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Then U = V (G) − V (T ) and
|U | = n − 1. Since TA(n) � G, w1, w2, w3 are not adjacent to each other in G or to
any vertex ofU . Since S3(n) � G, v0 is not adjacent to any vertex ofU∪{w1, w2, w3}.
By Lemma 4.4, G[U ] is Kn−1 or Kn−1 − e. Since TA(n) � G, each vertex of T is not
adjacent to any vertex of U in G, and so δ(G[V (T )]) ≥ n − 4 by Observation 4.3,
which in turn implies that G[V (T )] contains TA(n) by Lemma 6.3, a contradiction.

This completes the proof of the theorem. 	

Theorem 6.7 If n ≥ 8, then

R(TB(n),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.
Let G be a graph with no TB(n) subgraph whose complement G does not containW8.

Suppose that n ≡ 0 (mod 4) and that G has order 2n. By Theorem 6.4, G
has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U = V (G) −
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V (T ); then |V | = n − 5 and |U | = n. Since TB(n) � G, EG(U , V ) = ∅ and neither
w2 nor w3 is adjacent in G to V . Suppose that n ≥ 12. If w2 is non-adjacent to some
4 vertices from U , then these 4 vertices and any 4 vertices from V form C8 in G
that with w2 forms W8, a contradiction. Otherwise, w2 must be adjacent to at least
n − 3 vertices of U in G. Since TB(n) � G, w3 must not be adjacent to these n − 3
vertices; then any 4 vertices from these n − 3 vertices and 4 vertices from V form C8
in G and with w3 forms W8, again a contradiction. For n = 8, |V | = 3 and |U | = 8.
If w2 is not adjacent to any vertex of U in G, then by Lemma 4.4, G[U ] is K8 or
K8 − e which contains TB(8), a contradiction. Otherwise, suppose that w2 is adjacent
to u ∈ U . Since TB(8) � G,w1 must not be adjacent to (U ∪V )\{u} in G. Now, ifw3

is not adjacent to v0 in G, then by Observation 4.3, G contains W8, a contradiction.
Otherwise, u is not adjacent to V ∪ {w3}, and again by Observation 4.3, G contains
W8, another contradiction. Thus, R(TB(n),W8) ≤ 2n for n ≡ 0 (mod 4).

Next, suppose that n �≡ 0 (mod 4) and that G has order 2n − 1. By Theorem 6.4,
G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n − 5 and |U | = n − 1. Since TB(n) � G, EG(U , V ) = ∅ and
neither w2 nor w3 is adjacent in G to V . For n ≥ 9, if w2 is non-adjacent to some 4
vertices from U , then these 4 vertices and any 4 vertices from V form C8 in G and
with w2 form W8, a contradiction. Otherwise, w2 is adjacent to at least n − 4 vertices
of U in G. Since TB(n) � G, w3 is not adjacent to these n − 4 vertices, so any 4
vertices from these n − 4 vertices and 4 vertices from V form C8 in G which with
w3 form W8, again a contradiction. Therefore, R(TB(n),W8) ≤ 2n − 1 for n �≡ 0
(mod 4).

This completes the proof. 	

Theorem 6.8 For n ≥ 8, R(TC (n),W8) = 2n − 1.

Proof Lemma 6.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1 and assume that G does not contain TC (n) and
that G does not contain W8.

Suppose first that there is a subset X ⊆ V (G) of size n with δ(G[X ]) ≥ n − 4.
If δ(G[X ]) = n − 4, then let x ∈ X be such that dG[X ](x) = n − 4, and set Y =
X\({x} ∪ NG[X ](x)) where |Y | = 3. Noting that 3(n − 6) > n − 4 for n ≥ 8, there
must be two vertices of Y that are adjacent to a common vertex of NG[X ](x) in G,
say to x ′ ∈ NG[X ](x). Then the remaining vertex of Y is not adjacent to any vertex
of NG[X ](x)\{x ′}, as TC (n) � G, contradicting δ(G[X ]) ≥ n − 4. So δ(G[X ]) ≥
n − 3. Pick any vertex x ∈ X and any subset X ′ ⊆ NG[X ](x) of size n − 3. Set
Y = X\({x} ∪ X ′) where |Y | = 2. As 2(n − 5) > n − 3 for n ≥ 8, the two vertices
of Y must be adjacent to a common vertex of X ′ in G, say x ′. Then G[X ′\{x ′}] is an
empty graph as TC (n) � G, contradicting δ(G[X ]) ≥ n − 3.

Now assume that δ(G[X ]) ≤ n − 5 whenever X ⊆ V (G) is of size n. By The-
orem 1.4, G has a subgraph T = Sn−1(3). Let V (T ) = {v0, . . . , vn−4, w1, w2}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2}. Set V = {v2, v3, . . . , vn−4} and
U = V (G)−V (T ); then |V | = n−5 and |U | = n. Since TC (n) � G, EG(U , V ) = ∅.

For the case n = 8 such that v1 is not adjacent to any vertex of U in G, or the case
n ≥ 9, there are four vertices of V (T ) that are not adjacent to any vertex of U in G.
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Since δ(G[U ]) ≤ n−5, G[U ] contains S5, and so G containsW8 by Observation 4.3,
a contradiction.

For the final case n = 8 with v1 adjacent to some vertex u of U in G, observe that
since TC (8) � G, the vertex u is not adjacent to any vertex of {v2, v3, v4} ∪ U . By
Lemma 4.4, G[U\{u}] is K7 or K7 − e, which implies that no vertex of V (T )∪ {u} is
adjacent to any vertex ofU\{u} inG, as TC (8) � G. Since δ(G[V (T )∪{u}]) ≤ n−5,
G[V (T )∪{u}] contains S5, and soG containsW8 by Observation 4.3, a contradiction.

This completes the proof of the theorem. 	

Theorem 6.9 For n ≥ 8, R(Sn(3, 1),W8) = 2n − 1.

Proof Lemma 6.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n− 1. Assume that G does not contain Sn(3, 1) and that
G does not contain W8.

Suppose first that there is a subset X ⊆ V (G) of size n with δ(G[X ]) ≥ n − 4.
Let x0 be any vertex of X , and pick a subset X ′ ⊆ NG[X ](x0) of size n − 4. Set
Y = X\({x0} ∪ X ′), and so |Y | = 3. Since δ(G[X ]) ≥ n − 4, each vertex of Y is
adjacent to at least n − 7 vertices of X ′ in G. For n ≥ 10, it is straightforward to see
that there is a matching from Y to X ′ inG; hence,G contains Sn(3, 1), a contradiction.
For n = 9, if dG[X ](x0) = n − 4 = 5, then we can similarly deduce the contradiction
that G contains S9(3, 1), since in this case, each vertex of Y is adjacent to at least
n − 6 = 3 vertices of X ′ in G. As x0 was arbitrary, we may assume for the case when
n = 9 that δ(G[X ]) ≥ n − 3 = 6, which again leads to the contradiction that G
contains S9(3, 1).

Now for n = 8, suppose dG[X ](x0) = 4. Let X ′ = {x1, x2, x3, x4} and Y =
{x5, x6, x7}. Since δ(G[X ]) ≥ n − 4 and S8(3, 1) � G, G[Y ] is K3; all three vertices
of Y are adjacent to exactly two common vertices of X ′ in G, say to x1 and x2;
and neither x3 nor x4 are adjacent to any vertex of Y in G. By the minimum degree
condition, x3 and x4 are then adjacent in G, and each is also adjacent to both x1 and
x2. This implies that G contains S8(3, 1), with x1 being the vertex with degree four, a
contradiction. As x0 was arbitrary, assume for the case when n = 8 that δ(G[X ]) ≥ 5,
which again leads to the contradiction that G contains S8(3, 1).

Now assume that δ(G[X ]) ≤ n − 5 whenever X ⊆ V (G) is of size n. Recall that
G has order 2n − 1, and so by Theorem 1.4, G has a subgraph T = Sn−1(2, 1). Let
V (T ) = {v0, . . . , vn−4, w1, w2} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2}. Set
V = {v3, v4, . . . , vn−4} and U = V (G) − V (T ); then |V | = n − 6 and |U | = n.
Since Sn(3, 1) � G, EG(U , V ) = ∅. Now as δ(G[U ]) ≤ n − 5, G[U ] contains S5,
and so for n ≥ 10, G contains W8 by Observation 4.3, a contradiction.

For n = 9, Theorem 1.4 shows that G has a subgraph T = S9(2, 1), so without loss
of generality assume that v0 is adjacent to some vertex u in U . Since S9(3, 1) � G,
G[V ∪ {u}] is an empty graph and u is not adjacent to any vertex of U in G. By
Lemma 4.4, G[U\{u}] is K8 or K8 − e, which implies that no vertex of V (T )∪ {u} is
adjacent to anyvertex ofU\{u} inG, as S9(3, 1) � G. Since δ(G[V (T )∪{u}]) ≤ n−5,
G[V (T )∪{u}] contains S5, and soG containsW8 by Observation 4.3, a contradiction.

Finally for n = 8, recall that G has order 15, and so G has a subgraph T ′ = S7
by Theorem 1.1. Let V (T ′) = {v′

0, . . . , v
′
6} and E(T ′) = {v′

0v
′
1, . . . , v

′
0v

′
6}. Set V ′ =
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{v′
1, . . . , v

′
6} and U ′ = V (G) − V (T ′), then |U ′| = 8. Suppose that v′

2 and v′
3 are

adjacent to a common vertex u ofU ′ inG, while v′
1 is adjacent to another vertex u

′ �= u
of U ′ in G. Then as S8(3, 1) � G, no vertex of {v′

4, v
′
5, v

′
6} ∪ (U ′\{u, u′}) is adjacent

to any vertex of V ′\{v′
1} in G. Now G[V ′\{v′

1}] contains S5 and |U ′\{u, u′}| = 6, and
so G contains W8 by Observation 4.3, a contradiction. Similar arguments lead to the
same contradiction when the roles of v′

1, v
′
2, and v′

3 are replaced by any three vertices
of V ′. So assume that it is not the case that two vertices of V ′ are adjacent to a common
vertex of U ′ in G while a third vertex of V ′ is adjacent to another vertex of U ′ in G.

For 1 ≤ i ≤ 6, let di = |EG({v′
i },U )| be the number of vertices of U ′ that are

adjacent to v′
i . Without loss of generality, assume that d1 ≥ d2 ≥ · · · ≥ d6. Recalling

that δ(G[U ′]) ≤ 3 and so S5 ⊆ G[U ′], Observation 4.3 implies that d3 ≥ 1. If
d1 ≥ 3 and d2 ≥ 2, then it is trivial that G contains S8(3, 1), a contradiction. By our
assumption on the adjacencies of vertices in V ′ to vertices of U ′ in G, it is clear that
when (d1, d2, d3) is of the form (≥ 3, 1, 1), (2, 2, 2), or (2, 2, 1), there is a matching
from {v′

1, v
′
2, v

′
3} toU ′ in G, as v′

2 and v′
3 are adjacent to different vertices ofU

′ in G.
This implies that G contains S8(3, 1), a contradiction. If (d1, d2, d3) = (2, 1, 1), then,
similarly, v′

2 and v′
3 are adjacent to different vertices of U ′ in G, say to u and u′,

respectively, which in turn implies that v′
1 is adjacent to two vertices inU

′\{u, u′}. So
G contains S8(3, 1), again a contradiction.

For the final case when d1 = d2 = d3 = 1, our assumption implies that v′
1,

v′
2 and v′

3 must be adjacent to a common vertex u of U ′ in G to avoid a matching
from {v′

1, v
′
2, v

′
3} to U ′ in G. Furthermore, no vertex of {v′

4, v
′
5, v

′
6} is adjacent to any

vertex of U ′\{u} in G. Now if S5 ⊆ G[V ′], then G contains W8 by Observation 4.3,
a contradiction. So δ(G[V ′]) ≥ 2, and in particular, v′

4 is adjacent to some vertex
of V ′ in G. Without loss of generality, v4 is adjacent to either v1 or v5 in G. Since
S8(3, 1) � G, G[{v′

5, v
′
2, v

′
3, v

′
6}] contains S4 if v′

4 is adjacent to v′
1 in G, while

G[{v′
6, v

′
1, v

′
2, v

′
3}] contains S4 if v′

4 is adjacent to v′
5 in G. By Lemma 4.4, G[U ′\{u}]

is K7 or K7−e, which implies that no vertex of V (T ′)∪{u} is adjacent to any vertex of
U ′\{u} in G, as S8(3, 1) � G. Since δ(G[V (T ′)∪{u}]) ≤ 3, G[V (T )∪{u}] contains
S5, and so G contains W8 by Observation 4.3, a contradiction.

Thus, R(Sn(3, 1),W8) ≤ 2n − 1 for n ≥ 8 which completes the proof. 	


7 Proof of Theorem 3.1

Lemma 7.1 Let n ≥ 8. If the tree graph Tn exists, then R(Tn,W8) ≥ 2n − 1 for each

Tn ∈ {Sn(1, 4), Sn(5), Sn[5], Sn(2, 2), Sn(4, 1), TD(n), . . . , TS(n)}.

Also, R(Tn,W8) ≥ 2n if n ≡ 0 (mod 4) and Tn ∈ {Sn(1, 4), Sn(2, 2), TD(n), TN (n)}
or if Tn ∈ {TE (8), TF (8)}.

Proof The graph G = 2Kn−1 clearly does not contain any tree graph of order n,
and G does not contain W8. Furthermore, if n ≡ 0 (mod 4), then the graph G =
Kn−1 ∪ K4,...,4 of order 2n − 1 does not contain Sn(1, 4), TD(n) or Sn(2, 2); nor does
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the complement G contain W8. Finally, the graph G = K7 ∪ K4,4 does not contain
TE (8) or TF (8) and G does not contain W8. 	

Theorem 7.2 If n ≥ 8, then

R(Sn(1, 4),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no Sn(1, 4) subgraph whose complement G does not contain
W8. Suppose that G has order 2n if n ≡ 0 (mod 4) and that G has order 2n − 1 if
n �≡ 0 (mod 4). By Theorem 6.5, G has a subgraph T = Sn(1, 3). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w2w3}.
Set V = {v2, . . . , vn−4} andU = V (G)−V (T ); then |V | = n−5 and |U | = j where
j = n if n ≡ 0 (mod 4) and j = n − 1 if n �≡ 0 (mod 4). Since Sn(1, 4) � G, w3 is
not adjacent in G to any vertex ofU ∪V and dG[U∪V ](vi ) ≤ n− 7 for each vi ∈ V . If
δ(G[U ∪ V ]) ≥ � n−5+ j

2 � ≥ n−5+ j
2 , then G[U ∪ V ] contains C8 by Lemma 4.1 and

thusW8 with w3 as hub, a contradiction. Therefore, δ(G[U ∪V ]) ≤ � n−5+ j
2 �−1 and

�(G[U∪V ]) ≥ n−5+ j−� n−5+ j
2 � = � n−5+ j

2 � ≥ n−3. Since dG[U∪V ](vi ) ≤ n−7
for each vi ∈ V , dG[U∪V ](u) ≥ n − 3 for some vertex u ∈ U . Since Sn(1, 4) � G, no
vertex of V is adjacent to {u} ∪ NG[U∪V ](u) in G.

For n ≥ 9, any 4 vertices from V and any 4 vertices from {u} ∪ NG[U∪V ](u) form
C8 in G and, with w3 as hub, formW8, a contradiction. Suppose that n = 8; then V =
{v2, v3, v4}. Let {u1, . . . , u4} be 4 vertices in NG[U∪V ](u). Since S8(1, 4) � G, w1 is
not adjacent to NG[U∪V ](u). If w1 is not adjacent to w3, then w1u1v2u2v3u3v4u4w1
and w3 form W8 in G, a contradiction. Therefore, w1 is adjacent to w3 in G. Then
w2 is not adjacent to any vertex of U ∪ V in G. Since dG[V ](vi ) ≤ 1 for i = 2, 3, 4,
one of the vertices of V , say v2, is not adjacent to the other two vertices of V . Then
u1w2u2w3u3v3u4v4u1 and v2 formW8 inG, a contradiction. Thus, R(Sn(1, 4),W8) ≤
2n for n ≡ 0 (mod 4) and R(Sn(1, 4),W8) ≤ 2n − 1 for n �≡ 0 (mod 4).

This completes the proof. 	

Theorem 7.3 If n ≥ 10, then R(Sn(5),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1. Assume that G does not contain Sn(5) and that
G does not contain W8. By Theorem 6.2, G has a subgraph T = Sn(4). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Set
V = {v2, v3, . . . , vn−4} and U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1.
Since Sn(5) � G, v1 is not adjacent to any vertex of U ∪ V in G. Furthermore, for
each vi in V , vi is adjacent to at most three vertices of U in G.

For n ≥ 10, |V | ≥ 5 > 4 and |U | ≥ 9 > 8. ByCorollary 4.8,G[U∪V ] containsC8
which together with v1 gives W8 in G, a contradiction. Thus, R(Sn(5),W8) ≤ 2n − 1
which completes the proof. 	

Theorem 7.4 If n ≥ 9, then R(Sn[5],W8) = 2n − 1.
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Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1. Assume that G does not contain Sn[5] and that
G does not contain W8. By Theorem 7.3, G has a subgraph T = Sn(5). Let V (T ) =
{v0, . . . , vn−5, w1, . . . , w4} and E(T ) = {v0v1, . . . , v0vn−5, v1w1, . . . , v1w4}. Set
V = {v2, . . . , vn−5} and U = V (G) − V (T ); then |V | = n − 6 and |U | = n − 1.
Since Sn[5] � G, v0 is not adjacent to w1, . . . , w4 in G and w1, . . . , w4 are each
adjacent to at most two vertices of U in G. Now, suppose that v0 is non-adjacent to
at least six vertices of U in G. By Corollary 4.7, six of these vertices together with
w1, . . . , w4 contain C8 in G which with v0 gives W8 in G, a contradiction. Then,
suppose that v0 is adjacent to at least n − 6 vertices of U in G. Choose a set U ′
of n − 6 of these vertices. Since Sn[5] � G, v1 is not adjacent to any vertex of
V ∪U ′ in G. If δ(G[V ∪U ′]) ≥ n − 6, then by Lemma 4.1, G[V ∪U ′] contains C8
which with v1 gives W8 in G, a contradiction. Therefore, δ(G[V ∪U ′]) ≤ n − 7 and
�(G[V ∪U ′]) ≥ n − 6. However, this gives Sn[5] in G with u and v1 as the center of
Sn−5 and S5, respectively, where u is a vertex in V ∪U ′ with dG[V∪U ′](u) ≥ n − 6, a
contradiction. Thus, R(Sn[5],W8) ≤ 2n − 1 which completes the proof. 	

Theorem 7.5 If n ≥ 8, then

R(Sn(2, 2),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Assume that G is a graph with no Sn(2, 2) subgraph whose complement G does not
contain W8. Suppose that n ≡ 0 (mod 4) and that G has order 2n. By Theorem 6.7,
G has a subgraph T = TB(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, v2w3}. Set V = {v3, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n − 6 and |U | = n. Since Sn(2, 2) � G, w3 is not adjacent in
G to U ∪ V and v2 is not adjacent to V . If δ(G[U ∪ V ]) ≥ 2n−6

2 = n − 3, then
G[U ∪ V ] contains C8 by Lemma 4.1 which with w2 forms W8, a contradiction.
Therefore, δ(G[U ∪ V ]) ≤ n − 4, and �(G[U ∪ V ]) ≥ n − 3. Now, there are two
cases to be considered.
Case 1a: One of the vertices of V , say v3, is a vertex of degree at least n − 3 in
G[U ∪ V ].

Note that in this case, there are at least 4 vertices from U , say u1, . . . , u4, that are
adjacent to v3 in G. Since Sn(2, 2) � G, these 4 vertices are independent and are not
adjacent to any other vertices of U . Since n ≥ 8, U contains at least 4 other vertices,
say u5, . . . , u8, so u1u5u2u6u3u7u4u8u1 and w3 forms W8 in G, a contradiction.
Case 1b: Some vertex u ∈ U has degree at least n − 3 in G[U ∪ V ].

Since Sn(2, 2) � G, u is not adjacent to any vertex of V in G. Therefore, u
must be adjacent to at least n − 3 vertices of U in G. Without loss of generality,
suppose that u1, . . . , un−3 ∈ NG[U ](u). Note that V is not adjacent to NG[U ](u), or
else there will be Sn(2, 2) in G, a contradiction. If n ≥ 12, then any 4 vertices from
NG[U ](u) and any 4 vertices from V form C8 in G which, with w3 as hub, forms
W8, a contradiction. Suppose that n = 8 and let the remaining two vertices be u6
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and u7. If |NG[{u1,...,u5,ui }(ui )| ≤ 1 for i = 6, 7, then let X = {u1, . . . , u4} and
Y = {v3, v4, u6, u7}. By Lemma 4.5, G[X ∪ Y ] contains C8 and, with w3 as hub,
forms W8 in G, a contradiction. Therefore, one of u6 and u7, say u6, is adjacent to
at least two of u1, . . . , u5, say u1 and u2. Since S8(2, 2) � G, u7 is adjacent in G
to at least two of u3, u4, u5, say u3 and u4, and v0, . . . , v4, w1 are not adjacent in
G to u, u1, . . . , u6. Now, if w3 is not adjacent to some vertex a ∈ {v0, v1, w1}, then
u1v3u2v4u3u7u4au1 and w3 form W8 in G, a contradiction. Hence, w3 is adjacent to
v0, v1 and w1 in G. Similarly, v2 is not adjacent to u7 and v2 is adjacent to v1 and w1.
Since S8(2, 2) � G, w2 is not adjacent to U ∪ V , and w1 is not adjacent to V . Then
u1v2u2w1u3w2u4w3u1 and v3 forms W8 in G, a contradiction.

In either case, R(Sn(2, 2),W8) ≤ 2n.
Suppose that n �≡ 0 (mod 4) and that G has order 2n − 1. By Theorem 6.7, G

has a subgraph T = TB(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, v2w3}. Set V = {v3, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n−6 and |U | = n−1. Since Sn(2, 2) � G,w3 is not adjacent in G
toU ∪V . If δ(G[U ∪V ]) ≥ � 2n−5

2 �, thenG[U ∪V ] containsC8 by Lemma 4.1 which
with w3 forms W8, a contradiction. Therefore, δ(G[U ∪ V ]) ≤ � 2n−5

2 � − 1 = n − 3,
and �(G[U ∪ V ]) ≥ n − 3. Again, there are two cases to be considered.

Case 2a: A vertex of V , say v3, has degree at least n − 3 in G[U ∪ V ].
There must be at least 4 vertices from U , say u1, . . . , u4 that are adjacent to v3

in G. Since Sn(2, 2) � G, u1, . . . , u4 are independent and are not adjacent to any
other vertex ofU . Since n ≥ 9, there are at least 4 other vertices ofU , say u5, . . . , u8,
and u1u5u2u6u3u7u4u8u1 and w3 form W8 in G, a contradiction.
Case 2b: A vertex u ∈ U has degree at least n − 3 in G[U ∪ V ].

Since Sn(2, 2) � G, no vertex of V is adjacent to u or to NG[U ](u). Then u is
adjacent to at least n − 3 vertices of U in G; suppose without loss of generality
that u1, . . . , un−3 ⊆ NG[U ](u). If n ≥ 10, then any 4 vertices from NG[U ](u), any 4
vertices from V andw3 formW8 inG, a contradiction. Suppose that n = 9 and let u7 be
the vertex inU\{u, u1, . . . , un−3}. If u7 is adjacent in G to at least two of u1, . . . , u6,
say u1 and u2, then u1u7u2v3u3v4u4v5u1 and w3 form W8 in G, a contradiction.
Therefore, u7 is adjacent in G to at least 5 of the vertices u1, . . . , u6, say u1, . . . , u5.
Since S9(2, 2) � G, U is not adjacent in G to {v0, v1, v2, w1} ∪ V and w2 is not
adjacent to u or u7. If w3 is not adjacent to some vertex a ∈ {v0, v1, w1, w2}, then
uv3u1v4u2v5u7au and w3 formW8 in G, a contradiction. Hence, w3 is adjacent to v0,
v1, w1 and w2 in G. Similarly, v2 is adjacent to v1, w1 and w2. Since S9(2, 2) � G,
w2 is non-adjacent to at least one of v3, v4, v5, say v3 without loss of generality.
If v1 is also not adjacent to v3, then uw2u7v1u1v2u2w3u and w3 form W8 in G, a
contradiction. Thus, v1 is adjacent to v3, then v3 is not adjacent to both v4 and v5, or
else G contains S9(2, 2). Without loss of generality, assume that v3 is not adjacent to
v4 in G. Then uw2u7v4u1v2u2w3u and w3 form W8 in G, a contradiction.

In either case, R(Sn(2, 2),W8) ≤ 2n − 1 for n �≡ 0 (mod 4), which completes the
proof. 	


Theorem 7.6 If n ≥ 9, then R(Sn(4, 1),W8) = 2n − 1.
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Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n− 1. Assume that G does not contain Sn(4, 1) and that
G does not contain W8.

Suppose first that there is a subset X ⊆ V (G) of size n with δ(G[X ]) ≥ n − 4.
Let x0 be any vertex of X , and pick a subset X ′ ⊆ NG[X ](x0) of size n − 5. Set
Y = X\({x0} ∪ X ′), and so |Y | = 4. Since δ(G[X ]) ≥ n − 4, each vertex of Y is
adjacent to at least n − 8 vertices of X ′ in G and each vertex of X ′ is adjacent to at
least one vertex of Y in G. Hence, for n ≥ 11, it is straightforward to see that there is
a matching from Y to X ′ in G; hence, G contains Sn(4, 1), a contradiction.

For n = 10 and δ(G[X ]) ≥ n − 4 = 6, let X = {x0, . . . , x9} and {x1, . . . , x6} ⊆
NG[X ](x0). Since δ(G[X ]) ≥ 6, vertices x7, x8 and x9 must each be adjacent to at
least 3 vertices of x1, . . . , x6. It is straightforward to see that there is a matching
from {x7, x8, x9} to {x1, . . . , x6} in G; without loss of generality, assume that xi is
adjacent to xi+6 in G for i = 1, 2, 3. Now, if there is any edge in G[{x4, x5, x6}], then
S10(4, 1) ⊆ G, a contradiction. Otherwise, G[{x4, x5, x6}] must be independent and
each of x4, x5, x6 must be adjacent to at least two vertices of x7, x8, x9 in G. Without
loss of generality, assume that x4 is adjacent to x7 and x8 in G. Since S10(4, 1) � G,
x5 cannot be adjacent to x1 and x2 in G, but this is impossible since δ(G[X ]) ≥ 6.

Now for n = 9, suppose that dG[X ](x0) = n−4 = 5. Let NG[X ](x0) = {x1, . . . , x5}
and Y = {x6, x7, x8}. Then, three vertices of Y are each adjacent to at least n − 6 = 3
vertices of NG[X ](x0) in G. Without loss of generality, assume that x1 is adjacent to
x6, x2 is adjacent to x7 and x3 is adjacent to x8, respectively. Now, if x4 is adjacent
to x5, then G contains S9(4, 1), a contradiction. Otherwise, x4 and x5 must each be
adjacent to at least one of x6, x7 and x8. Assume that x4 is adjacent to x6. Then x5
is not adjacent to x1 and x4 in G, or else G contains S9(4, 1). If x5 is adjacent to x6,
then x1, x4, x5 must be independent in G, and they are each adjacent to x7 or x8 in G;
assume that x1 is adjacent to x7. Then, x4 and x5 are not adjacent to x2 in G, and
since δ(G[X ]) ≥ 5, they are adjacent to x7 and x8 in G, and G contains S9(4, 1), a
contradiction. If x5 is not adjacent to x6, then since dG[X ](v0) ≥ 5, x5 is adjacent to
x2, x3, x7 and x8 in G. Then, x4 is not adjacent to x2 and x3 in G, and x4 is adjacent
to x1, x6, x7 and x8 in G, and this gives us S9(4, 1) in G, a contradiction. As x0 was
arbitrary, assume for the case when n = 9 that δ(G[X ]) ≥ n − 3 = 6, which again
leads to the contradiction that G contains S9(4, 1).

Now assume that δ(G[X ]) ≤ n − 5 whenever X ⊆ V (G) is of size n. Recall that
G has order 2n − 1, and so by Theorem 6.9, G has a subgraph Sn(3, 1) and thus
a subgraph T = Sn−1(3, 1). Let V (T ) = {v0, . . . , vn−5, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, v2w2, v3w3}. Set V = {v4, . . . , vn−5} and U = V (G) −
V (T ) = {u1, . . . , un}; then |V | = n − 8 and |U | = n. Since Sn(4, 1) � G, V is not
adjacent to any vertex of U in G. Now as δ(G[U ]) ≤ n − 5, G[U ] contains S5, and
so for n ≥ 12, G contains W8 by Observation 4.3, a contradiction.

Suppose that n = 11. If v0 is not adjacent to any vertex ofU in G, then G contains
W8 by Observation 4.3, a contradiction. Assume that v0 is adjacent to some vertex
u ∈ U . Since S11(4, 1) � G,G[V ∪{u}] is an empty graph and u is not adjacent to any
vertex ofU inG. ByLemma4.4,G[U\{u}] is K10 or K10−e, so novertex ofV (T )∪{u}
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is adjacent to any vertex ofU\{u} in G, as S11(4, 1) � G. Since δ(G[V (T )∪ {u}]) ≤
n−5,G[V (T )∪{u}] contains S5, soG containsW8 byObservation 4.3, a contradiction.

Now, suppose that n = 10. Then G has order 19, and by Theorem 2.2,
G has a subgraph T ′ = S10(3, 1). Let V (T ′) = {v′

0, . . . , v
′
6, w

′
1, w

′
2, w

′
3} and

E(T ′) = {v′
0v

′
1, . . . , v

′
0v

′
6, v

′
1w

′
1, v

′
2w

′
2, v

′
3w

′
3}. Set V ′ = {v′

4, v
′
5, v

′
6} and U ′ =

V (G) − V (T ′) = {u′
1, . . . , u

′
9}. Since S10(4, 1) � G, V ′ must be independent in

G and is not adjacent to any vertex ofU ′ in G. If v′
0 is adjacent to some vertices inU ′

in G, say u′
1. Since S10(4, 1) � G, u′

1 is not adjacent to any vertex of V ′ or U ′\{u′
1}

in G. Then, by Lemma 4.4, G[U ′\{u′
1}] is K8 or K8 − e, so no vertex of V (T ′) is

adjacent to any vertex of U ′\{u′
1} in G, as S10(4, 1) � G. Since δ(G[V (T ′)]) ≤ 5,

G[V (T ′)] contains S5, so G contains W8 by Observation 4.3, a contradiction. Now,
suppose that v′

0 is not adjacent to any vertex of U ′ in G. Note that |U ′ ∪ {w′
1}| = n;

therefore, δ(G[U ′ ∪{w′
1}]) ≤ 5, and soG[U ′ ∪{w′

1}] contains S5. Ifw′
1 is not adjacent

to any vertex from V ′ ∪ {v′
0}, then by Observation 4.3, G containsW8, a contradiction.

Otherwise, there are two cases to be considered.
Case 1a: w′

1 is adjacent to some vertices of V ′ in G.
Without loss of generality, assume that w′

1 is adjacent to v′
4 in G. In this case, v′

1
is not adjacent to U ′ ∪ {v′

5, v
′
6}. Then by Lemma 4.4, G[U ′] is K9 or K9 − e, so

no vertex of V (T ′) is adjacent to any vertex of U ′ in G, as S10(4, 1) � G. Since
δ(G[V (T ′)]) ≤ 5, G[V (T ′)] contains S5, and so G contains W8 by Observation 4.3,
a contradiction.
Case 1b: w′

1 is non-adjacent to each vertex of V ′ in G.
In this case, w′

1 is adjacent to v′
0 in G. Note that w′

1 is not adjacent to U ′, since
this would revert to the case where v′

0 is adjacent to some vertex ofU ′. Then again by
Lemma 4.4, G[U ′] is K9 or K9 − e, so no vertex of V (T ′) is adjacent to any vertex
of U ′ in G, as S10(4, 1) � G. Since δ(G[V (T ′)]) ≤ 5, G[V (T ′)] contains S5, and so
G contains W8 by Observation 4.3, a contradiction.

Finally, suppose that n = 9. Then G has order 17, and so G has a subgraph
T ′ = S9(2, 1) by Theorem 1.4. Let V (T ′) = {v′

0, . . . , v
′
6, w

′
1, w

′
2} and E(T ′) =

{v′
0v

′
1, . . . , v

′
0v

′
6, v

′
1w

′
1, v

′
2w

′
2}. Set V ′ = {v′

3, . . . , v
′
6} and U ′ = V (G) − V (T ′) =

{u′
1, . . . , u

′
8}.

Now, suppose that EG(V ′,U ′) �= ∅. Without loss of generality, assume that v′
3 is

adjacent to u′
1 in G. Since S9(4, 1) � G, v′

4, v
′
5, v

′
6 are independent and not adjacent

to any vertex of U ′\{u′
1} in G.

Suppose that v′
0 is adjacent to some vertex of U ′\{u′

1}, say u′
2. Then u′

2 is non-
adjacent to {v′

4, v
′
5, v

′
6}∪U ′\{u′

1, u
′
2} in G. Since δ(G[{w′

1, w
′
2}∪U ′\{u′

2}]) ≤ n−5,
G[{w′

1, w
′
2} ∪U ′\{u′

2}] contains S5. If v′
4, v

′
5, v

′
6 and u

′
2 are not adjacent to w′

1, w
′
2 or

u′
1 in G, then G contains W8 by Observation 4.3, a contradiction. Assume that v′

4 is
adjacent to w′

1 in G. In this case, v′
1 is not adjacent to {v′

5, v
′
6} ∪ U ′\{u′

1} in G, and
v′
1u

′
3v

′
4u

′
4v

′
6u

′
7u

′
2u

′
8v

′
1 and v′

5 form W8 in G, a contradiction. Similar contradictions
occur if we assume that v′

5, v
′
6 or u

′
2 are adjacent to w′

1, w
′
2 or u

′
1 in G.

Thus, v′
0 is not adjacent to any vertex of U ′\{u′

1} in G. Since δ(G[{w′
1, w

′
2} ∪

U ′\{u′
1}]) ≤ n − 5, G[{w′

1, w
′
2} ∪ U ′\{u′

1}] contains S5. If v′
0, v

′
4, v

′
5 and v′

6 are not
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adjacent to w′
1 or w′

2 in G, then G contains W8 by Observation 4.3, a contradiction.
There are two cases to be considered.
Case 2a: v′

0 is adjacent to w′
1 or w′

2 in G.
Without loss of generality, assume that v′

0 is adjacent to w′
1 in G. Note that v′

1 and
w′
1 are not adjacent toU

′\{u′
1}, since this would revert to the case where v′

0 is adjacent
to some vertex of U ′\{u′

1}. Again, since δ(G[{w′
2} ∪ U ′]) ≤ n − 5, G[{w′

2} ∪ U ′}]
contains S5. If v′

1, v
′
4, v

′
5 and v′

6 are not adjacent to w′
2 and u′

1 in G, then G contains
W8 by Observation 4.3, a contradiction.

Suppose that v′
1 is adjacent to w′

2 or u′
1, say w′

2, in G. If w′
1 is not adjacent to

v′
4, v′

5 or v′
6, then by Lemma 4.4, G[U ′\{u′

1}] is K7 or K7 − e, so no vertex of
V (T ′) ∪ {u′

1} is adjacent to any vertex of U ′\{u′
1} in G, as S9(4, 1) � G. Since

δ(G[V (T ′)]) ≤ n−5,G[V (T ′)] contains S5, and soG containsW8 byObservation4.3,
a contradiction.Otherwise,w′

1 is adjacent to at least one of v
′
4, v

′
5, v

′
6 inG, say v′

4. Then,
v′
2 is not adjacent to {v′

5, v
′
6} ∪U ′\{u′

1}, since G does not contain S9(4, 1). Similarly,
by Lemma 4.4, G[U ′\{u′

1}] is K7 or K7 − e, so no vertex of V (T ′) ∪ {u′
1} is adjacent

to any vertex of U ′\{u′
1} in G, as S9(4, 1) � G. Again, since δ(G[V (T ′)]) ≤ n − 5,

G[V (T ′)] contains S5, and so G contains W8 by Observation 4.3, a contradiction.
Now suppose that v′

1 is non-adjacent to bothw′
2 and u

′
1 inG. Then, one of v′

4, v
′
5, v

′
6

is adjacent to w′
2 or u′

1 in G. Without loss of generality, assume that v′
4 is adjacent

to w′
2 in G. In this case, v′

2 is not adjacent to {v′
5, v

′
6} ∪ U ′\{u′

1}. Then, again, by
Lemma 4.4, G[U ′\{u′

1}] is K7 or K7 − e, so no vertex of V (T ′) ∪ {u′
1} is adjacent to

any vertex of U ′\{u′
1} in G, as S9(4, 1) � G. Since δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)]

contains S5, and so G contains W8 by Observation 4.3, a contradiction.
Case 2b: v′

0 is non-adjacent to both w′
1 and w′

2 in G.
In this case, one of v′

4, v
′
5, v

′
6 is adjacent to w′

1 or w′
2 in G, say v′

4 to w′
1 in G.

Since S9(4, 1) � G, v′
1 is not adjacent to {v′

5, v
′
6} ∪ U ′\{u′

1} in G. By Lemma 4.4,
G[U ′\{u′

1}] is K7 or K7 − e, so no vertex of V (T ′) ∪ {u′
1} is adjacent to any vertex of

U\{u′
1} in G, as S9(4, 1) � G. Since δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)] contains S5,

and so G contains W8 by Observation 4.3, a contradiction.
Now suppose that EG(V ′,U ′) = ∅. If δ(G[V ′]) = 0, then by Lemma 4.4, G[U ′]

is K8 or K8 − e, and no vertex of V (T ′) is adjacent to any vertex of U ′ in G, as
S9(4, 1) � G. Since δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)] contains S5, and so G contains
W8 byObservation 4.3, a contradiction.Hence, δ(G[V ′]) ≥ 1, and since S9(4, 1) � G,
one of the vertices in V ′ is adjacent to other three in G. Without loss of generality,
assume that v′

3 is adjacent to v′
4, v

′
5 and v′

6 in G. Since G does not contain S9(4, 1),
v′
4, v

′
5, v

′
6 are independent in G. Furthermore, v′

0 is not adjacent to U ′ in G or else
this reverts to the case where v′

3 is adjacent to u′
1 and v′

0 is adjacent to any vertex of
U ′\{u′

1}. Since δ(G[{w′
1}∪U ′]) ≤ n−5,G[{w′

1}∪U ′] contains S5. If v′
0, v

′
4, v

′
5 and v′

6
are non-adjacent to w′

1 in G, then G contains W8 by Observation 4.3, a contradiction.
Again, there are two cases to be considered.
Case 3a: v′

0 is adjacent to w′
1 in G.

Note that v′
1 and w′

1 are not adjacent to U
′, or else this reverts to the case where v′

3
is adjacent to u′

1 and v′
0 is adjacent to any vertex of U ′\{u′

1}. Now, since δ(G[{w′
2} ∪
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U ′]) ≤ n − 5, G[{w′
2} ∪U ′}] contains S5. If v′

0, v
′
4, v

′
5 and v′

6 are non-adjacent to w′
2

in G, then G contains W8 by Observation 4.3, a contradiction.
Suppose that v′

0 is adjacent to w′
2 in G. Again, v′

2 and w′
2 are non-adjacent to U ′,

or else else this reverts to the case where v′
3 is adjacent to u′

1 and v′
0 is adjacent to

any vertex of U ′\{u′
1}. Now, EG(V (T ′),U ′) = ∅, and since δ(G[V (T ′)]) ≤ n − 5,

G[V (T ′)] contains S5, and so G contains W8 by Observation 4.3, a contradiction.
Therefore,w′

2 is adjacent to at least one of v
′
4, v

′
5 and v′

6 inG, say v′
4. Then, v

′
2 is not

adjacent to v′
5, v

′
6 orU

′, as S9(4, 1) � G, a contradiction. By Lemma 4.4,G[U ′] is K8
or K8 −e, so no vertex of V (T ′) is adjacent to any vertex ofU ′ in G, as S9(4, 1) � G.
Again, since δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)] contains S5, and so G contains W8 by
Observation 4.3, a contradiction.
Case 3b: v′

0 is not adjacent to w′
1 in G.

In this case, one of v′
4, v

′
5, v

′
6 is adjacent to w′

1 in G, say v′
4. Since S9(4, 1) � G,

v′
1 is not adjacent to v′

5, v
′
6 or U

′ in G. By Lemma 4.4, G[U ′] is K8 or K8 − e, so no
vertex of V (T ′) ∪ {u′

1} is adjacent to any vertex of U ′ in G, as S9(4, 1) � G. Since
δ(G[V (T ′)]) ≤ n−5,G[V (T ′)] contains S5, and soG containsW8 byObservation4.3,
a contradiction.

Thus, R(Sn(4, 1),W8) ≤ 2n − 1 for n ≥ 9 which completes the proof. 	


Theorem 7.7 If n ≥ 8, then

R(TD(n),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no TD(n) subgraph whose complement G does not contain
W8. Suppose that n ≡ 0 (mod 4) and that G has order 2n. By Theorem 6.2, G
has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n−5 and |U | = n. Since TD(n) � G, neitherw2 norw3 is adjacent
in G to U ∪ V .

Suppose that n = 8. Since G does not contain TD(n), V must be independent and
non-adjacent toU inG. Then for any vertices u1, . . . , u4 inU , v3u1v4u2w2u3w3u4v3
and v2 form W8 in G, a contradiction. Suppose that n ≥ 12. Then |U ∪ V | = 2n − 5.
If δ(G[U ∪ V ]) ≥ � 2n−5

2 �, then G[U ∪ V ] contains C8 by Lemma 4.1 which with
w2 forms W8, a contradiction. Thus, δ(G[U ∪ V ]) ≤ � 2n−5

2 � − 1 = n − 3, and
�(G[U ∪ V ]) ≥ n − 3. Now, there are two cases to consider.
Case 1: One of the vertices of V , say v2, is a vertex of degree at least n−3 inG[U∪V ].

Since TD(n) � G, v1 is not adjacent in G to w2, w3 or U ∪ V \{v2}. Let U ′ =
{w2, w3} ∪U ∪ V \{v2}; then |U ′| = 2n − 4. Now, if δ(G[U ′]) ≥ 2n−4

2 = n − 2, then
G[U ′] contains C8 by Lemma 4.1 which with v1 forms W8, a contradiction. Hence,
δ(G[U ′]) ≤ n − 3, and �(G[U ′]) ≥ n − 2. Note that neither w2 nor w3 have degree
�(G[U ′]). Therefore, dG[U ′](u′) ≥ n − 2 for some vertex u′ ∈ U ∪ V \{v2}. By the
Inclusion–Exclusion Principle, some vertex a ∈ U ∪ V \{v2} is adjacent in G to both
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u′ and v2. Then G has a subgraph TD(n) in which u′ is the vertex of degree n − 5 and
v2 is the vertex of degree 3, a contradiction.
Case 2: Some vertex u ∈ U has degree at least n − 3 in G[U ∪ V ].

Suppose that there is at least one vertex in V that is adjacent to u in G, say v2. Then
G has a subgraph TD(n) in which u is the vertex of degree n − 5 and v0 is the vertex
of degree 3, a contradiction. Similarly, no other vertex of V is adjacent to u. Now,
since TD(n) � G, dG[NG[U ](u)∪{v}](v) ≤ 1 and dG[V∪{x}](x) ≤ 1, for any v ∈ V and
x ∈ NG[U ](u). Then, by Lemma 4.5, G[V ∪ NG[U ](u)] must contain C8, which with
w2 as hub, forms W8 in G, a contradiction.

Now, suppose that n �≡ 0 (mod 4) and that G has order 2n − 1. By Theorem 6.4,
G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n − 5 and |U | = n − 1. Since TD(n) � G, neither w2 nor w3

is adjacent to U ∪ V in G. If δ(G[U ∪ V ]) ≥ 2n−6
2 = n − 3, then G[U ∪ V ]

contains C8, by Lemma 4.1, which with w2 forms W8 in G, a contradiction. Thus,
δ(G[U ∪ V ]) ≤ n − 4, and �(G[U ∪ V ]) ≥ n − 3. The arguments of the preceding
cases then lead to contradictions.

Thus, R(TD(n),W8) ≤ 2n, which completes the proof. 	


Lemma 7.8 Each graph H of order n ≥ 8 with minimal degree at least n−4 contains
TE (n) unless n = 8 and H = K4,4.

Proof Let V (H) = {u0, . . . , un−1}. First, suppose that �(H) ≥ n − 3 and assume
without loss of generality that u1, . . . , un−3 ∈ NH (u0). Suppose that un−2 and un−1
are adjacent in H . Since δ(H) ≥ n−4, NH (u0)∩ NH (un−2) �= ∅, so assume without
loss of generality that u1 is adjacent to un−2 in H . Furthermore, u1 must be adjacent
to at least n−7 vertices from {u2, . . . , un−3} in H . Without loss of generality, assume
that u1 is adjacent to u2, . . . , un−6 in H . Now, if any vertex of {u2, . . . , un−6} is
adjacent to un−5, un−4 or un−3 in H , then we have TE (n) in H . Suppose that is not
the case; then each vertex of {u2, . . . , un−6} must be adjacent to each other and to u0,
u1, un−2 and un−1 in H . Since dH (un−3) ≥ n − 4, un−3 is adjacent to at least one of
u1, un−2 and un−1 in H , so H contains TE (n), a contradiction.

Suppose that un−2 is not adjacent to un−1 in H . Since δ(H) ≥ n − 4, un−2 and
un−1 are each adjacent to at least n − 5 vertices in NH (u0), so at least one vertex
of NH (u0), say u1, is adjacent in H to both un−2 and un−1. If H [{u2, . . . , un−3}]
contains subgraph 2K2, then H contains subgraph TE (n). Note that this will always
happens for n ≥ 11, since δ(H) ≥ n − 4.

Suppose that n = 10. Since δ(H) ≥ 6, u2 must be adjacent in H to at least two
vertices of u3, . . . , u7, without loss of generality say u3 and u4. If H [{u4, . . . , u7}]
contains any edge, then H contains TE (10). Otherwise, {u4, . . . , u7} must be inde-
pendent in H and each of these vertices must be adjacent to u0, u1, u2, u3, u8 and u9;
this also gives a subgraph TE (10) in H .

Similarly, for n = 9, u2 must be adjacent to at least one of u3, . . . , u6, say u3, in H .
If H [{u4, u5, u6}] contains any edge, then H contains TE (9). Otherwise, {u4, u5, u6}
is independent in H and since δ(H) ≥ 5, u4 is adjacent to at least one of u2 and u3,

123



134 Page 30 of 44 Z. Y. Chng et al.

and u5 is adjacent to at least one of u7 and u8. Again, this gives a subgraph TE (9) in
H .

For n = 8, if u2, . . . , u5 are independent in H , then they are each adjacent to u0,
u1, u6 and u7 in H , which gives TE (8) in H . Otherwise, we can assume that u2 is
adjacent to u3 in H . If u4 is adjacent to u5 in H , we will have TE (8) in H ; otherwise,
assume that u4 is not adjacent to u5. Now, suppose that u4 is adjacent to u2 or u3 in
H . If u5 is adjacent to u6 or u7 in H , then H contains TE (8). Otherwise, u5 must be
adjacent to u0, u1, u2 and u3 since δ(H) ≥ 4. However, this also gives TE (8) in H .
On the other hand, suppose that u4 is adjacent to neither u2 nor u3 in H . Similarly, u5
is not adjacent to u2 or to u3 in H . Since δ(H) ≥ 4, both u4 and u5 must be adjacent
to u0, u1, u6 and u7 in H , and this also gives TE (8) in H .

Suppose that H is (n − 4)-regular and that NH (u0) = {u1, . . . , un−4}. By the
Handshaking Lemma, this only happens when n is even.

Suppose that n ≥ 10. Note that un−3, un−2 and un−1 are each adjacent to at least
n − 6 vertices of NH (u0) in H . By the Inclusion–Exclusion Principle, at least one of
u1, . . . , un−4 is adjacent to two of un−3, un−2, un−1 in H , say u1 to un−3 and un−2,
and there must be another vertex, say u2, that is adjacent to un−1 in H . Now, if there is
any edge in H [{u3, . . . , un−4}], then TE (n) ⊆ H , and this always happens for n ≥ 12.
For n = 10, since dH (u1) = 6, u1 is non-adjacent in H to at least one of u3, . . . , u6,
say u3. Since dH (u3) = 6, u3 is adjacent to one of u4, u5, u6, giving TE (10) in H .

Now suppose that n = 8. If u5, u6 and u7 are independent in H , then H = K4,4.
Otherwise, we can assume that u5 is adjacent to u6 in H . If u5 is also adjacent to u7
in H , then u5 is adjacent in H to two vertices of NH (u0), say u1 and u2. Suppose
that u6 is adjacent to u1 or u2, say u1, in H . Since dH (u6) = 4, u6 is also adjacent
to at least one of u2, u3, u4, u7, so TE (8) ⊆ H . Otherwise, suppose that neither u6
nor u7 is adjacent to u1 or u2 in H . Since H is a 4-regular graph, u6 and u7 are both
adjacent to u3 and u4 in H , and u1 is adjacent to at least one of u3 and u4 in H . This
gives TE (8) in H . On the other hand, suppose that u5 is not adjacent to u7 in H . Then,
similarly, u6 is not adjacent to u7 in H , so u7 is adjacent to u1, u2, u3 and u4 in H ,
and H contains TE (8). 	


Theorem 7.9 For n ≥ 8,

R(TE (n),W8) =
{
2n − 1 if n ≥ 9;
16 if n = 8.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1 if n ≥ 9 and of order 16 if n = 8. Assume that G
does not contain TE (n) and that G does not contain W8.

By Theorem 6.9, G has a subgraph T = Sn(3, 1). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2, v3w3}. Set
V = {v4, . . . , vn−4} and U = V (G) − V (T ). Then |V | = n − 7 and |U | ≥ n − 1.
Since TE (n) � G, each of v1, v2, v3 is not adjacent to any vertex of V ∪ U in G,
and each vertex of V is adjacent to at most one vertex of U in G. Let W be a set of
n − 2 vertices of U that are not adjacent to v4 in G. By Lemma 4.4, G[W ] is Kn−2
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or Kn−2 − e. Since TE (n) � G, no vertex of T is adjacent to any vertex of W , and so
δ(G[V (T )]) ≥ n − 4 by Observation 4.3.

Lemma 7.8 implies that G[V (T )] contains TE (n) if n ≥ 9, a contradiction, and so
n = 8 and G[V (T )] = K4,4. Note that |U | = 8, and as TE (8) � G, no vertex of U is
adjacent to any vertex of G[V (T )]. By Lemma 4.4, G[U ] is K8 or K8 − e, and thus
contains TE (8), a contradiction.

Therefore, R(TE (n),W8) ≤ 2n − 1 when n ≥ 9 and R(TE (n),W8) ≤ 16 when
n = 8. 	

Lemma 7.10 Each graph H of order n ≥ 8with minimal degree at least n−4 contains
TF (n) unless n = 8 and H = K4,4.

Proof Let V (H) = {u0, u1 . . . , un−1} so that d(u0) = δ(H) and V =
{u1, . . . , un−4} ⊆ N (u0). Set U = {un−3, un−2, un−1}. By the minimum degree
condition, every vertex ofU is adjacent to at least n−6 vertices of V . It is straightfor-
ward to see that some pair of vertices inU have a common neighbour in V . Moreover,
for n ≥ 9, every pair of vertices in U has a common neighbour in V .

Assume without loss of generality that u1 is adjacent to both un−3 and un−2, and
that u2 is adjacent to un−1. If u2 is adjacent to a vertex of V \{u1}, which is the case
when n ≥ 10, then H contains TF (n). Assume now that n ≤ 9 and that u2 is not
adjacent to any vertex of V \{u1}.

For the case when n = 9, un−1 is adjacent to at least n−6 = 3 vertices of V , and so
it is adjacent to another vertex, say to u3. As above, assume that u3 is not adjacent to
any vertex of V \{u1}. By the minimum degree condition, each of u2 and u3 is adjacent
to every vertex of {u1} ∪U , giving TF (9) in H .

For the final case when n = 8, the minimum degree condition implies that u2 is
adjacent to at least two vertices of {u1, u5, u6}. If u2 is adjacent to u1, then H contains
TF (8). Remaining is the case when u2 is not adjacent to u1 but is adjacent to both u5
and u6. Exchanging the roles of u1 and u2, we may assume that u1 is adjacent to u7
but not adjacent to any vertex of V . From the minimum degree condition on u3 and
u4, it is easy to see that either H contains TF (8) or H = K4,4. 	

Theorem 7.11 For n ≥ 8,

R(TF (n),W8) =
{
2n − 1 if n ≥ 9;
16 if n = 8.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no TF (n) subgraph whose complement G does not con-
tain W8. Suppose that n = 8 and that G has order 16. By Theorem 6.8, G
has a subgraph T = TC (8). Let V (T ) = {v0, . . . , v4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0v4, v1w1, v2w2, v2w3}. Set U = V (G) − V (T ) = {u1, . . . , u8}; then
|U | = 8. Since TF (8) � G, v1 is not adjacent in G to v2, v3, v4 or any vertex of U ,
and dG[U ](v) ≤ 1 for v = v3, v4, w2, w3.

Suppose that v1 is adjacent to w2 or w3, without loss of generality say w2. Since
TF (8) � G, v2 is not adjacent to {v3, v4}∪U . If neither v3 nor v4 are adjacent toU , then
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byLemma4.4,G[U ] is K8 or K8−e, soG[U ] contains TF (8), a contradiction. Suppose
that only one of the vertices v3 and v4 is adjacent to U in G, say v3. By Lemma 4.4,
G[U\{u1}] is K7 or K7 − e, and G[V (T ) ∪ {u1}] is not adjacent to G[U\{u1}]. By
Observation 4.3, δ(G[V (T ) ∪ {u1}]) ≥ 5, and by Lemma 7.10, G[V (T ) ∪ {u1}]
contains TF (9) and hence TF (8), a contradiction. Suppose that both v3 and v4 are
adjacent to U in G and assume that v3 is adjacent to u1 and that v4 is adjacent
to u2. By Lemma 4.4, G[U\{u1, u2}] is K6 or K6 − e. At most one vertex from
G[V (T )∪{u1, u2}] is adjacent toG[U\{u1, u2}]or elseG contains TF (8). Therefore, 9
vertices fromG[V (T )∪{u1, u2}] formavertex setW that is not adjacent toU\{u1, u2}.
By Observation 4.3, δ(G[W ]) ≥ 5, and by Lemma 7.10, G[W ] contains TF (9) and
hence TF (8), a contradiction.

Suppose then that v1 is not adjacent to w2 or w3. Since dG[U ](v) ≤ 1 for v =
v3, v4, w2, w3, there are 4 vertices from U that are not adjacent to {v3, v4, w2, w3}.
These 8 vertices form C8 in G and thus, with v1 as hub, W8, a contradiction.

Thus, R(TF (8),W8) ≤ 16.
Now, suppose that n ≥ 9 and that G has order 2n − 1. By Theorem 6.8, G has

a subgraph T = TC (n). Let V (T ) = {v0, . . . , vn−4, v4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, v2w2, v2w3}. Set V = {v3, . . . , vn−4} and U = V (G) −
V (T ) = {u1, . . . , un−1}; then |V | = n − 6 and |U | = n − 1. Since TF (n) � G,
v1 is not adjacent in G to any vertex of U ∪ V , and dG[U ](v) ≤ 1 for v ∈ V . Since
n ≥ 10, there are 4 vertices from U , 4 vertices from V and v1 that form W8 in G, a
contradiction. Thus, R(TF (n),W8) ≤ 2n − 1 for n ≥ 10.

Suppose that n = 9 and let m be the number of vertices of U that are adjacent
in G to at least one vertex of V . Since dG[U ](v) ≤ 1 for v ∈ V , 0 ≤ m ≤ 3. If
m = 0, then G[U ] is K8 or K8 − e by Lemma 4.4, so G[V (T )] is not adjacent
to G[U ]. By Observation 4.3, δ(G[V (T )]) ≥ 5, and G[V (T )] contains TF (9) by
Lemma 7.10, a contradiction. Suppose that m = 1. Assume without loss of generality
that u1 is adjacent to some vertex of V , and that EG(V ,U\{u1}) = ∅. By Lemma 4.4,
G[U\{u1}] is K7 or K7 − e, and at most one vertex from G[V (T ) ∪ {u1}] is adjacent
to G[U\{u1}] or else G contains TF (9). There are then 9 vertices from G[V (T ) ∪
{u1}] that form a vertex set W1 that is not adjacent to U\{u1}. By Observation 4.3,
δ(G[W1]) ≥ 5, and G[W1] contains TF (9) by Lemma 7.10, a contradiction. Suppose
that m = 2. Assume that u1 and u2 are adjacent to some vertices of V and that
EG(V ,U\{u1, u2}) = ∅. By Lemma 4.4, G[U\{u1, u2}] is K6 or K6 − e. If at
least three vertices in U\{u1, u2} are adjacent to V (T ) ∪ {u1}, then TF (9) ⊆ G.
If at most two vertices in U\{u1, u2} are adjacent to V (T ) ∪ {u1}, then there are
4 vertices in U\{u1, u2} that are not adjacent to V (T ). Then Observation 4.3 gives
δ(G[V (T )]) ≥ 5, and G[V (T )] contains TF (9) by Lemma 7.10, a contradiction.
Suppose that m = 3. Assume that u1, u2, u3 are each adjacent to some vertex of V
and that EG(V ,U\{u1, u2, u3}) = ∅. Without loss of generality, assume that ui is
adjacent to vi+2 for i = 1, 2, 3. By Lemma 4.4, G[U\{u1, u2, u3}] is K5 or K5 − e.
Since TF (9) � G, {v1, v3, v4, v5} is independent and V (T )\{w1} is not adjacent
to U\{u1, u2, u3}. Then by Observation 4.3, δ(G[V (T )\{w1}]) ≥ 4, and v1, v3, v4
and v5 are each adjacent to v2, w2 and w3 in G. This gives TF (9) in G. Therefore,
TF (9) ≤ 17 = 2n − 1. 	
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Theorem 7.12 If n ≥ 8, then R(TG(n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n−1. Assume that G does not contain TG(n) and that G
does not contain W8. By Theorem 6.9, G has a subgraph T = Sn(3, 1). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2, v3w3}. Set
V = {v4, v5, . . . , vn−4} and U = V (G) − V (T ); then |V | = n − 7 and |U | = n − 1.
Since TG(n) � G, w1, w2, w3 are not adjacent to U ∪ V in G, and v1, v2, v3 are not
adjacent to V .

Suppose that n ≥ 9; then |U | ≥ 8. If δ(G[U ]) ≥ n−1
2 , then G[U ] contains

C8 by Lemma 4.1 which, with w2 as hub, forms W8, a contradiction. Therefore,
δ(G[U ]) < n−1

2 , and �(G[U ∪ V ]) ≥ n−1
2 ≥ 4. Therefore, some vertex u ∈ U satis-

fies |NG[U ](u)| ≥ 4. Since TG(n) � G, NG[U ](u) is not adjacent inG to NG[V (T )](v0).
Hence, 4 vertices from NG[U ](u), v1, v2, v3, w1 and any vertex from V form W8 in
G, a contradiction. Thus, R(TG(n),W8) ≤ 2n − 1 for n ≥ 9.

Suppose that n = 8 and let U = {u1, . . . , u7} and W = {v4} ∪ U . If
δ(G[W ]) ≥ 4, then G contains C8 by Lemma 4.1 and thus W8, with w1 as hub,
a contradiction. Therefore, δ(G[W ]) ≤ 3, and �(G[W ]) ≥ 4. Now, suppose that
dG[W ](v4) ≥ 4. Then without loss of generality, assume that u1, . . . , u4 ∈ NG(v4).
Then u1, . . . , u4, w1, w2, w3 are independent and are not adjacent to u5, u6 or u7,
giving W8, a contradiction. On the other hand, suppose that some vertex in U ,
say u1, satisfies dG[W ](u1) ≥ 4. Then v4 is not adjacent to u1; therefore, assume
that u2, . . . , u5 ∈ NG(u1). Then v1, . . . , v4 are not adjacent to {u1, . . . , u5}, so
v1u1v2u2v3u3w1u4v1 and v4 form W8 in G, a contradiction. Thus, R(TL(8),W8) ≤
15. 	

Lemma 7.13 Each graph H of order n ≥ 8with minimal degree at least n−4 contains
TH (n), TK (n) and TL(n).

Proof Let V (H) = {u0, . . . , un−1} where u1, . . . , un−4 ∈ NH (u0). Suppose that
un−3, un−2 or un−1, say un−3, is adjacent in H to the two others.

Since δ(H) ≥ n − 4, un−3 is adjacent to at least one of u1, . . . , un−4, say u1. If u1
is adjacent to another vertex in {u2, . . . , un−4}, then H contains TK (n). Note that this
always happens for n ≥ 9. Suppose that n = 8 and that u1 is not adjacent to any of
u2, u3, u4. Then u1 is adjacent to u6 and u7. Since δ(H) ≥ n − 4, u2 is adjacent to at
least one of u5, u6, u7, giving TK (n) in H .

Similarly, since δ(H) ≥ n − 4, un−2 is adjacent to at least n − 7 vertices of
{u1, . . . , un−4}. Suppose that un−2 is adjacent to u1. If n ≥ 10, then at least two of
u2, . . . , un−4 are adjacent, so H contains TH (n). If n ≥ 9, then u1 is adjacent to at
least one of u2, . . . , un−4, so H contains TL(n). Now suppose that n = 9. If any of
u2, . . . , u5 are adjacent to each other, then H contains TH (9). Otherwise, u2, . . . , u5
are each adjacent to u6, u7 and u8, and so H contains TH (9). Finally, suppose that
n = 8. If any two of u2, u3, u4 are adjacent, then H contains TH (8); otherwise, they
are each adjacent to u6 or u7. Now, if u1 is adjacent to any of u2, u3, u4, then H
contains TH (8). Otherwise, u1, . . . , u4 are each adjacent to u5, u6 and u7, and H also
contains TH (8). Furthermore, if u1 is adjacent to u2, u3 or u4, then H contains TL(8).
If u1 is not adjacent to u2, u3 or u4, then u6, u7, u8 are adjacent to u2, u3, u4, and then
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H contains TL(8). Now if un−2 is adjacent to some u2, . . . , un−4, say u2, then similar
arguments apply by interchanging u1 and u2.

Suppose now that neither un−3, un−2 nor un−1 is adjacent to both of the others. Then
one of these, say un−3, is adjacent to neither of the others. Since δ(H) ≥ n − 4, un−3
is adjacent to at least n − 5 of the vertices u1, . . . , un−4. Without loss of generality,
assume that u1, . . . , un−5 ∈ NH (un−3). Then un−2 is adjacent to at least n − 7 of
the vertices u1, . . . , un−5 including, without loss of generality, the vertex u1. Also,
un−1 is adjacent to at least one of u2, . . . , un−4, so H contains TH (n). If un−2 is
adjacent to un−1, then H also contains TL(n). If un−2 is not adjacent to un−1, then
un−2 is adjacent to at least n− 6 vertices of u1, . . . , un−5, so H contains TL(n). Now,
suppose that n ≥ 9. Then un−2 and un−1 are each adjacent to at least 3 of u1, . . . , u5,
and one of those vertices must be adjacent to both un−2 and un−1; thus, H contains
TK (n). Finally, suppose that n = 8. If u6 and u7 are each adjacent to at least two of
the vertices u1, u2, u3, then one of those vertices must be adjacent to both u6 and u7;
thus, H contains TK (8). Otherwise, u6 or u7, say u6, is non-adjacent to at least two of
u1, u2, u3, say u1 and u2. Then u6 is adjacent to u0, u3, u4 and u7, and so H contains
TK (8). 	

Theorem 7.14 If n ≥ 8, then R(TH (n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1 and assume that G does not
contain TH (n) and that G does not contain W8. By Theorem 7.12, G has a
subgraph T = TG(n). Let V (T ) = {v0, . . . , vn−5, w1, . . . , w4} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, v2w2, v3w3, w3w4}. Set U = {u1, . . . , un−1} = V (G) −
V (T ); then |U | = n − 1. Since TG(n) � G, EG({w1, w2}, {w3, w4}) = ∅ and w4 is
not adjacent to U . Now, let W = {w1} ∪ U ; then |W | = n. If δ(G[W ]) ≥ n

2 , then
G[W ] contains C8 by Lemma 4.1 which, with w4 as hub, forms W8, a contradiction.
Therefore, δ(G[W ]) < n

2 , and �(G[W ]) ≥ � n
2 � ≥ 4.

First, suppose that w1 is a vertex with degree at least n
2 in G[W ]. Assume without

loss of generality that u1, . . . , u4 ∈ NG[W ](w1). Since TH (n) � G, u1, . . . , u4 are
independent and are not adjacent to {w2, u5, . . . , un−1} inG. Thenw2, u1, . . . , u4, w4
and any 3 vertices from {u5, . . . , un−1} form W8 in G, a contradiction. Hence,
dG[W ](u′) ≥ n

2 for some vertex u′ ∈ U , say u′ = u1. Note that w1 is not adja-
cent to u1, or else G contains TH (n). Without loss of generality, suppose that
u2, . . . , u5 ∈ NG[W ](u1). Since TH (n) � G, u2, . . . , u5 are not adjacent toV (T )\{v0}
in G. Now, if v0 is not adjacent to {u2, . . . , u5} in G, then by Observation 4.3,
δ(G[V (T )]) ≥ n − 4, or else G contains W8. By Lemma 7.13, G[V (T )] contains
TH (n), a contradiction. On the other hand, suppose that v0 is adjacent to at least one
of u2, . . . , u5, say u2. Then u3, u4, u5 are independent in G and are not adjacent to u6
and u7 in G. Furthermore, w4 is not adjacent to v1 or v2. Then v1u3v2u4u6w1u7u5v1
and w4 form W8 in G, a contradiction. Thus, R(TH (n),W8) ≤ 2n − 1. 	

Theorem 7.15 If n ≥ 8, then R(TJ (n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n−1 and assume that G does not contain TJ (n) and that
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G does not contain W8. By Theorem 6.8, G has a subgraph T = TC (n). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v2w3}. Set
V = {v3, . . . , vn−4} and U = V (G) − V (T ); then |U | = n − 1. Let U =
{u1, . . . , un−1}. Since TJ (n) � G, neither w1 nor w2 is adjacent in G to any vertex
from U ∪ V .

Let W = {v3} ∪ U ; then |W | = n. If δ(G[W ]) ≥ � n
2 � ≥ n

2 , then G[W ] contains
C8 by Lemma 4.1 which with w1 forms W8, a contradiction. Thus, δ(G[W ]) < � n

2 �,
and �(G[W ]) ≥ � n

2 � ≥ 4.
Suppose that dG[W ](v3) ≥ � n

2 � ≥ 4. Without loss of generality, assume that
u1, . . . , u4 ∈ NG(v3). Since TJ (n) � G, u1, . . . , u4 is independent in G and is
not adjacent to any remaining vertices fromU in G. Then u2w1u3u5u4u6w2u7u2 and
u1 form W8 in G, a contradiction. Hence, there is a vertex in U , say u1, such that
dG[W ](u1) ≥ � n

2 � ≥ 4.
Now, suppose that v3 is adjacent to u1 in G[W ]. Then u1 is adjacent to at least 3

other vertices of U in G, say u2, u3 and u4. Since TJ (n) � G, v3 is not adjacent to
v1, v2, v4, . . . , vn−4, w1, w2, w3, u2, u3, u4 and neither v1 nor v2 is adjacent to u2, u3
or u4 in G. Then v2u2v1u3w1v4w2u4v2 and v3 form W8 in G, a contradiction.

Thus, v3 is not adjacent to u1 in G. Note that u1 is not adjacent to any other vertices
of V in G or else previous arguments apply. Similarly, v0 is not adjacent to NG[W ](u1)
in G. Since TJ (n) � G, neither v1 nor v2 is adjacent to u1 or NG[W ](u1) in G, and so
dNG[W ](u1)(v) ≤ 1 for all v ∈ V .

Suppose that n ≥ 10; then |V | ≥ 4 and |NG[W ](u1)| ≥ 5. If dG[V ](u) ≤ 2 for
each u ∈ NG[W ](u1), then G[V ∪ NG[W ](u1)] contains C8 by Lemma 4.5 which,
with w1 as hub, forms W8 in G, a contradiction. Thus, dV (u′) ≥ 3 for some vertex
u′ ∈ NG[W ](u1). Then any 4 vertices from V , of which at least 3 are in NG[V ](u′), and
any 4 vertices from NG[W ](u1)\{u′} satisfy the condition in Lemma 4.5, so G[V ∪
NG[W ](u1)] contains C8 which with w1 forms W8, a contradiction.

Suppose that n = 9; then V = {v3, v4, v5}. Assume that u2, . . . , u5 ∈ NG[W ](u1).
Suppose that w1 is not adjacent to w2 in G. Let X = {v3, v4, v5, w2} and Y =
{u2, . . . , u5} and note that dG[Y ](x) ≤ 1 for each x ∈ X . If dG[X ](y) ≤ 2 for each
y ∈ Y , then G[X ∪Y ] contains C8 by Lemma 4.5 which, with w1 as hub, formsW8, a
contradiction. Thus, dG[X ](u′) ≥ 3 for some u′ ∈ Y , say u′ = u2, so X is not adjacent
to Y\{u2}. Hence, v3u1v4u3v5u4w2u5v3 and w1 form W8 in G, a contradiction.

Thus,w1 is adjacent tow2 inG. Then v1 is not adjacent to {v3, v4, v5}∪U . Suppose
that v1 is not adjacent to v2. Then set X = {v2, . . . , v5} and Y = {u2, . . . , u5}. If
dG[X ](y) ≤ 2 for each y ∈ Y , then G[X ∪ Y ] contains C8 by Lemma 4.5 which,
with v1 as hub, forms W8, a contradiction. Thus, dG[X ](u′) ≥ 3 for some u′ ∈ Y , say
u′ = u2, so X is not adjacent to Y\{u2}, and v2u1v3u3v4u4v5u5v2 and v1 form W8
in G, a contradiction. Thus, v1 is adjacent to v2 in G. Then V is independent and is
not adjacent to U in G. Since W8 � G, G[U ] is Kn−1 or Kn−1 − e by Lemma 4.4.
Since TJ (9) � G, T is not adjacent to U and, by Observation 4.3, δ(G[V (T )]) ≥ 5.
However, this is impossible since V is independent and is not adjacent to v1, w1 or
w2.

Finally, suppose that n = 8; then V = {v3, v4}. Assume that u2, . . . , u5 ∈
NG[W ](u1). If v3 is adjacent to any vertex of {u2, . . . , u5}, say u2, then v3 is not
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adjacent to {v1, v2, v4, w3} ∪ U\{u2}, so v1u1v2u3w1u4w2u5v1 and v3 form W8 in
G, a contradiction. Thus, v3 is not adjacent to {u2, . . . , u5}. Similarly, v4 is not adja-
cent to {u2, . . . , u5}. Now, if w3 is adjacent to any of the vertices u2, . . . , u5, say u2,
then v2 is not adjacent to {w1, w2, v3, v4}, so v3u1v4u2w1u3w2u4v3 and v2 form W8
in G, a contradiction. Thus, w3 is not adjacent to {u2, . . . , u5}. By Observation 4.3,
δ(G[V (T )]) ≥ 4. Suppose that v2 is adjacent to w1. Since TJ (8) � G, neither v3
nor v4 is adjacent to w3. Since δ(G[V (T )]) ≥ 4, v3 and v4 are adjacent to v1 and
v2, and {w1, w2, w3} is not independent. However, then TJ (8) ⊆ G[V (T )], a contra-
diction. Thus, v2 is not adjacent to w1 and, similarly, v2 is not adjacent to w2. Since
δ(G[V (T )]) ≥ 4, w1 and w2 are adjacent to each other and to w3. Since TJ (8) � G,
neither v3 nor v4 is adjacent to v1 or v2; however, this contradicts δ(G[V (T )]) ≥ 4.

In each case, R(TJ (8),W8) ≤ 2n − 1, which completes the proof of the theorem.
	


Theorem 7.16 If n ≥ 8, then R(TK (n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph of order 2n − 1 and assume that G does not contain TK (n) and that
G does not contain W8.

Suppose that n �≡ 0 (mod 4). By Theorem 6.5, G has a subgraph
T = Sn(1, 3). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w2w3}. Set V = {v2, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n−5 and |U | = n−1. Since TK (n) � G,w2 is not adjacent inG to
any vertex of U ∪ V . Now, if δ(G[U ]) ≥ n−1

2 , then G[U ] contains C8 by Lemma 4.1
which, with v1 as hub, forms W8, a contradiction. Therefore, δ(G[U ]) < n−1

2 , and
�(G[U ]) ≥ � n−1

2 �. Let U = {u1, . . . , un−1} and assume without loss of generality
that dG[U ](u1) ≥ � n−1

2 � ≥ 4. Since TK (n) � G, EG(V , NG[U ](u1)) = ∅, so any 4
vertices from V , any 4 vertices from NG[U ](u1) andw2 formW8 inG, a contradiction.
Therefore, R(TK (n),W8) ≤ 2n − 1 for n �≡ 0 (mod 4).

Let n = 8. By Theorem 7.14, G has a subgraph T =
TH (8). Let V (T ) = {v0, v1, v2, v3, w1, . . . , w4} and E(T ) =
{v0v1, . . . , v0v3, v1w1, w1w2, w2w3, v2w4}. SetU = V (G)−V (T ) = {u1, . . . , u7};
then |U | = 7. Since TK (8) � G, w2 is not adjacent to {w4} ∪U . Let W = {w4} ∪U .
Then |W | = 8. If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 4.1 which, with
w2 as hub, forms W8, a contradiction. Therefore, δ(G[W ]) < 3, and �(G[W ]) ≥ 4.

Now, suppose that dG[W ](w4) ≥ 4 and assume without loss of generality that
w4 is adjacent to u1, u2, u3 and u4. Then v1 is not adjacent to {v3, w2, w3} ∪ U
and neither v2 nor v3 is adjacent to {u1, . . . , u4}, since TK (8) � G. Now, suppose
that EG({u1, . . . , u4}, {u5, u6, u7}) �= ∅ and assume that u1 is adjacent to u5. Then
u1 is not adjacent to {w1, w2, w3, u2, . . . , u7} in G, and v1u2v2u3v3u4w2u6v1 and
u1 form W8 in G, a contradiction. Thus, EG({u1, . . . , u4}, {u5, u6, u7}) = ∅, so
u1u5u2u6u3u7u4v3u1 and v1 form W8 in G, a contradiction.

Now suppose that dG[W ](u′) ≥ 4 for some vertex u′ ∈ U , say u′ = u1. Since,
TK (8) � G, w4 is not adjacent to u1. Then without loss of generality, suppose that
u2, . . . , u5 ∈ NG(u1). Since TK (8) � G, EG({v1, v2, v3}, {u2, . . . , u5}) = ∅. If u2
is adjacent to w1, then u2 is not adjacent to {u3, . . . , u7} and v1 is not adjacent to u6.
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Then w2u3v2u4v3u5v1u6w2 and u2 form W8 in G, a contradiction. Thus, u2 is not
adjacent to w1. Similarly, u3, u4 and u5 are not adjacent to w1. If u2 is adjacent to v0,
then v2 is not adjacent to {v1, v3, w1, w2, w3, u2, . . . , u7}, and v1u2v3u3w1u4w2u5v1
and v2 form W8 in G, a contradiction. Thus, u2 is not adjacent to v0. Similarly, u3, u4
and u5 are not adjacent to v0. By similar arguments, u3, u4 and u5 are not adjacent to
w3 or w4.

Hence, u2, . . . , u5 are not adjacent to V (T ) in G, so δ(G[V (T )]) ≥ 4 by
Observation 4.3. By Lemma 7.13, G[V (T )] contains TK (8), a contradiction. Thus,
R(TK (8),W8) ≤ 15.

Now suppose that n ≡ 0 (mod 4) and that n ≥ 12. If G has an
Sn(1, 3) subgraph, then the arguments above lead to contradictions. Thus, G
does not contain Sn(1, 3) as a subgraph. Now, by Theorem 7.14, G has a sub-
graph T = TH (n). Let V (T ) = {v0, . . . , vn−5, w1, . . . , w4} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, w1w2, w2w3, v2w4}. Set V = {v3, . . . , vn−5} and let U =
V (G)−V (T ) = {u1, . . . , un−1}. Then |V | = n−7and |U | = n−1. SinceTK (n) � G,
w2 is not adjacent inG to {w4}∪U . Since Sn(1, 3) � G, v0 is not adjacent to {w4}∪U .

If δ(G[U ]) ≥ n−1
2 , then G[U ] contains C8 by Lemma 4.1 which, with w2, forms

W8, a contradiction. Thus, δ(G[U ]) < n−1
2 , and �(G[U ]) ≥ � n−1

2 � ≥ 5. Without
loss of generality, assume that u2, . . . , u6 ∈ NG(u1). Since TK (n) � G, v1, v2 and V
are not adjacent to {u2, . . . , u6}, and w1 and w2 are not adjacent to u1.

Now, if u2 is adjacent to w1, then u2 is not adjacent to {w3, w4} ∪ U\{u1}, since
TK (n) � G, so v0u3v1u4v2u5v3u6v0 and u2 form W8 in G, a contradiction. Thus, u2
is not adjacent to w1. Similarly, u3, . . . , u6 are not adjacent to w1. If u2 is adjacent
to w3 in G, then v0 is not adjacent to w1, w2, w3, and dG[U\{u1,u2}](ui ) ≤ n − 6 for
i = 3, . . . , 6, since Sn(1, 3) � G. Since TK (n) � G, w3 is not adjacent to w1 or w4.
Since dG[U\{u1,u2}](u3) ≤ n−6 and dG[U\{u1,u2}](u4) ≤ n−6, u3 and u4 are adjacent
in G to at least 2 vertices in {u7, . . . , un−1}. Without loss of generality, assume that u3
is adjacent in G to u7 and that u4 is adjacent to u8. Then u3u7w2u8u4w1w3w4u3 and
v0 formW8 in G, a contradiction. Thus, u2 is not adjacent tow3. Similarly, u3, . . . , u6
are not adjacent to w4.

Hence, u2, . . . , u6 are not adjacent to V (T ). By Observation 4.3, δ(G[V (T )]) ≥ 4,
so G[V (T )] contains TK (n) by Lemma 7.13, a contradiction. Thus, R(TK (n),W8) ≤
2n − 1 for n ≡ 0 (mod 4). This completes the proof. 	


Theorem 7.17 If n ≥ 8, then R(TL(n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no TL(n) subgraph whose complement G does not contain
W8. Suppose that n �≡ 0 (mod 4) and that G has order 2n − 1. By Theorem 6.5, G
has a subgraph T = Sn(1, 3). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w2w3}. Set V = {v2, . . . , vn−4} and U = V (G) −
V (T ); then |V | = n − 5 and |U | = n − 1. Since TL(n) � G, v1 is not adjacent
to U ∪ V , and dG[U ](vi ) ≤ n − 7 for each vi ∈ V . Now, if δ(G[U ]) ≥ n−1

2 , then
G[U ] contains C8 by Lemma 4.1 which, with v1, forms W8, a contradiction. Thus,
δ(G[U ]) < n−1

2 , and �(G[U ]) ≥ � n−1
2 �.
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Let U = {u1, . . . , un−1} and without loss of generality assume that dG[U ](u1) ≥
� n−1

2 � ≥ 4 and that u2, . . . , u5 ∈ NG[U ](u1). Now if EG(V , NG[U ](u1)) = ∅, then
4 vertices from V , 4 vertices from NG[U ](u1) and v1 form W8 in G, a contradiction.
Thus, EG(V , NG[U ](u1)) �= ∅. Assume without loss of generality that v2 is adjacent
to u2. Since TL(n) � G, v2 is not adjacent to U\{u1, u2}. Since dG[U ](vi ) ≤ n − 7
for each vi ∈ V , v5 is non-adjacent to at least one of u6, . . . , un−1, say u6. Now if
EG({v3, v4, v5}, {u3, u4, u5}) = ∅, then v2u3v3u4v4u5v5u6v2 and v1 formW8 in G, a
contradiction. Thus assume, say, that v3 is adjacent to u3 in G; then v3 is not adjacent
to U\{u1, u3}. Again, if EG({v4, v5}, {u4, u5}) = ∅, then v2u7v3u4v4u5v5u6v2 and
v1 form W8 in G, a contradiction. Thus assume, say, that v4 is adjacent to u4, then v4
is not adjacent to U\{u1, u4}. If v5 is not adjacent to u5, then v2u7v3u2v4u5v5u6v2
and v1 form W8 in G, a contradiction. Thus, v5 is adjacent to u5, so v5 is not adjacent
to U\{u1, u5}, and v2u7v3u2v4u3v5u6v2 and v1 form W8 in G, a contradiction.

Hence, R(TL(n),W8) ≤ 2n − 1 for n �≡ 0 (mod 4).
Now, suppose that n ≡ 0 (mod 4) and that G has order 2n − 1. Suppose first

that n = 8. By Theorem 7.14, G has a subgraph T = TH (8). Let V (T ) =
{v0, . . . , v3, w1, . . . , w4} and E(T ) = {v0v1, . . . , v0v3, v1w1, w1w2, w2w3, v2w4}.
Set U = V (G) − V (T ) = {u1, . . . , u7}; then |U | = 7. Since TL(8) � G, neither v1
nor v2 are adjacent to U , and dG[U ](v3) ≤ 1. Furthermore, v1 is not adjacent to w4,
and v2 is not adjacent tow1 orw3. LetW = {w4}∪U ; then |W | = 8. If δ(G[W ]) ≥ 4,
thenG[W ] containsC8 by Lemma 4.1 which with v1 formsW8, a contradiction. Thus,
δ(G[W ]) < 3 and �(G[W ]) ≥ 4.

Now, suppose that dG[W ](w4) ≥ 4 and assume without loss of generality that
u1, . . . , u4 ∈ NG(w4). Then v2 is not adjacent to v1, v3, w1, w2 and dG[U ](ui ) ≤
1 for 1 ≤ i ≤ 4, since TL(8) � G. Since dG[U ](v3) ≤ 1, assume with-
out loss of generality that v3 is not adjacent to u3 or u4. Now, suppose that
EG({u1, . . . , u4}, {u5, u6, u7}) �= ∅ and assume, say, that u1 is adjacent to u5. Then
u1 is not adjacent to {v3, w1, w2, w3, u2, . . . , u7}. Since TL(8) � G, at least one of
w1 and w2 is adjacent in G to u2, u3 and u4, say w1, so v1u2w1u3v3u4v2u6v1 and
u1 form W8 in G, a contradiction. Thus, EG({u1, . . . , u4}, {u5, u6, u7}) = ∅. Then
u1u5u2u6u3u7u4v2u1 and v1 formW8 inG, a contradiction. Therefore, dG[W ](u′) ≥ 4
for some vertex of u′ ∈ U , say u′ = u1.

Suppose that w4 is adjacent to u1. Then without loss of generality, assume
that u1 is adjacent to u2, u3 and u4. Since TL(8) � G, neither v0 nor
w4 is adjacent to w1 or w2, and w4 is not adjacent to {v1, v3} ∪ U\{u1}. If
EG({u2, u3, u4}, {u5, u6, u7}) �= ∅, then, say, u2 is adjacent to u5 and is thus
not adjacent to {v0, v3, w1, w2, w3, u3, u4, u6, u7}, so w1v0w2w4u3v1u4v2w1 and
u2 form W8 in G, a contradiction. Thus EG({u1, . . . , u4}, {u5, u6, u7} = ∅. Let
X = {v1, u2, u3, u4} and Y = {v3, u5, u6, u7}. Since dG[U ](v3) ≤ 1, G[X ∪ Y ]
contains C8 by Lemma 4.5 which, with w4, forms W8, a contradiction.

Thus, u1 is not adjacent tow4 so assumewithout loss of generality that u2, . . . , u5 ∈
NG(u1). Since G does not contain TL(8), dG[V (T )](ui ) ≤ 1 for 2 ≤ i ≤ 5. If u2 is
adjacent to w4, then u2 is not adjacent to V (G)\{u1, w4} in G. Since dG[U ](v3) ≤ 1,
that v3 is not adjacent to, say, u3 or u4. Since dG[V (T )](ui ) ≤ 1 for 2 ≤ i ≤ 5, u4
and u5 are each adjacent in G to at least 2 of w1, w2, w3, so some wi ∈ {w1, w2, w3}
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is adjacent in G to both u4 and u5. Therefore, u3v3u4wi u5v2u6v1u3 and u2 form W8
in G, a contradiction. Thus, u2 is not adjacent to w4. Similarly, u3, u4, u5 are not
adjacent to w4. Similar arguments show that u2, . . . , u5 are not adjacent to w1 or w2.

Now, if u2 is adjacent to any other vertex of V (T ), then u2 is not adjacent to
{u3, u4, u5}, sou3w1u4w4u5v2u6v1u3 andu2 formW8 inG, a contradiction.Hence,u2
is not adjacent to V (T ) and, similarly, u3, u4, u5 are not adjacent to V (T ). Therefore,
by Observation 4.3, δ(G[V (T )]) ≥ 4. By Lemma 7.13, G[V (T )] contains TL(8), a
contradiction. Thus, R(TL(8),W8) ≤ 15.

Now suppose that n ≥ 12. If G contains Sn(1, 3), then the previous arguments
above lead to contradictions. Thus, G does not contain Sn(1, 3). By Theorem 6.8, G
has a subgraph T = TC (n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, v2w2, v2w3}. Set U = V (G) − V (T ) = {u1, . . . , un−1};
then |U | = n − 1.

Suppose that w2 is not adjacent to U . If δ(G[U ]) ≥ n−1
2 , then G contains C8 by

Lemma4.1 and,withw2 as hub, formsW8, a contradiction. Therefore, δ(G[U ]) < n−1
2

and so �(G[U ]) ≥ � n−1
2 � ≥ 5. Without loss of generality, assume that u2, . . . , u6 ∈

NG(u1). Since Sn(1, 3) � G, u2, . . . , u6 are not adjacent to V (T )\{v0}. If u2 is
adjacent to v0, then since Sn(1, 3) � G, u3, . . . , u6 are not adjacent to {u7, . . . , un−1},
so u3u7u4u8u5u9u6u10u3 and w2 form W8 in G, a contradiction. Thus, u2 is not
adjacent to v0 and, similarly, u3, . . . , u6 are also not adjacent to v0. Hence, u2, . . . , u6
are not adjacent to V (T ). Therefore, by Observation 4.3, δ(G[V (T )]) ≥ n − 4, so
G[V (T )] contains TL(n) by Lemma 7.13, a contradiction.

Thus somevertex ofU , sayun−1, is adjacent tow2. SetU ′ = U\{un−1}; then |U ′| =
n−2. Since TL(n) � G, un−1 is not adjacent toU ′ inG. Now, if δ(G[U ′]) ≥ n−2

2 , then
G[U ′] contains C8 by Lemma 4.1 which, with un−1, formsW8, a contradiction. Thus,
δ(G[U ′]) ≤ n−2

2 − 1, and �(G[U ′]) ≥ n−2
2 ≥ 5. Without loss of generality, assume

that u2, . . . , u6 ∈ NG(u1) and repeat the above arguments to prove that u2, . . . , u6
are not adjacent to V (T ). Therefore, δ(G[V (T )]) ≥ n − 4 by Observation 4.3, so
G[V (T )] contains TL(n) by Lemma 7.13, a contradiction.

Therefore, R(TL(n),W8) ≤ 2n−1 for n ≡ 0 (mod 4), which completes the proof.
	


Theorem 7.18 If n ≥ 9, then R(TM (n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1. Assume that G does not contain TM (n) and that
G does not contain W8. By Theorem 6.4, G has a subgraph T = Sn(4). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Set
V = {v2, v3, . . . , vn−4} andU = V (G)− V (T ) = {u1, . . . , un−1}; then |V | = n− 5
and |U | = n − 1. Since TM (n) � G, w1, w2 and w3 are not adjacent to any vertex of
U ∪ V in G.

Now, suppose that some vertex in V is adjacent to at least 4 vertices of U in G,
say v2 to u1, . . . , u4. Then u1, . . . , u4 are not adjacent to other vertices in U . Then
u1u5u2u6u3u7u4u8u1 and w1 form W8 in G, a contradiction. Therefore, each vertex
in V is adjacent to at most three vertices of U in G. Choose any 8 vertices of U .
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By Corollary 4.8, G[U ∪ V ] contains C8 which together with w1 gives W8 in G, a
contradiction.

Thus, R(TM (n),W8) ≤ 2n − 1 for n ≥ 9. This completes the proof. 	

Theorem 7.19 If n ≥ 9, then

R(TN (n),W8) =
{
2n − 1 if n �≡ 0 (mod 4);
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n if n ≡ 0 (mod 4) and of order 2n − 1 if n �≡ 0
(mod 4). Assume that G does not contain TN (n) and that G does not contain W8. By
Theorem 6.6, G has a subgraph T = TA(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, w1w3}. Set V = {v2, v3, . . . , vn−4} and
U = V (G) − V (T ) = {u1, . . . , u j }, where j = n − 1 if n �≡ 0 (mod 4) and j = n
otherwise. Since TN (n) � G, w2 is not adjacent to U ∪ V in G. If each vi ∈ V is
adjacent to at most three vertices ofU in G, then by Corollary 4.8, G[U ∪V ] contains
C8 which with w2 gives W8 in G, a contradiction. Therefore, some vertex in V , say
v2, is adjacent to at least four vertices of U in G, say u1, . . . , u4. If none of these is
adjacent to other vertices of U in G, then u1u5u2u6u3u7u4u8u1 and w2 form W8 in
G, a contradiction.

Therefore, assume that u1 is adjacent to u5 in G. Since TN (n) � G, u2, u3, u4
are not adjacent to {u6, . . . , u j } in G. For n = 9 and n = 10, {v3, . . . , vn−4} is not
adjacent to {u5, . . . , un−1} or else G will contain TN (n) with v2 and v0 being the
vertices of degree n − 5 and 3, respectively. However, v3u5v4u6u2u7u3u8v3 and w2
form W8 in G, a contradiction. For n ≥ 11, if v2 is not adjacent to {u6, . . . , u j }
in G, then v2u6u2u7u3u8u4u9v2 and w2 form W8 in G, a contradiction. Therefore,
assume that v2 is adjacent to u6 in G. Then u6 is not adjacent to {u7, . . . , u j } in G,
and u2u7u3u8u4u9u6u10u2 and w2 form W8 in G, again a contradiction.

Thus, R(TN (n),W8) ≤ 2n for n ≡ 0 (mod 4) and R(TN (n),W8) ≤ 2n − 1 for
n �≡ 0 (mod 4). 	

Theorem 7.20 If n ≥ 9, then R(TP (n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1. Assume that G does not contain
TP (n) and that G does not contain W8. Suppose n �≡ 0 (mod 4). By Theo-
rem 6.6, G has a subgraph T = TA(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, w1w3}. Set V = {v2, v3, . . . , vn−4}
and U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1. Since TP (n) � G, w1
is not adjacent to any vertex of U ∪ V in G. If each vi in V is adjacent to at most
three vertices ofU in G, then by Corollary 4.8, G[U ∪ V ] contains C8 which with w1
gives W8 in G, a contradiction. Therefore, some vertex in V , say v2, is adjacent to at
least four vertices of U in G, say u1, . . . , u4. For n = 9 and n = 10, G contains
TP (9) and TP (10) with edge set {u1v2, u2v2, u3v2, v2v0, v0v1, v0v3, v1w1, v1w2}
and {u1v2, u2v2, u3v2, u4v2, v2v0, v0v1, v0v3, v1w1, v1w2}, respectively. For n ≥ 11,
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each of u1, . . . , u4 is adjacent to at most two remaining vertices in U . Then by
Corollary 4.7, G[U ] contains C8 which with w1 gives W8 in G, a contradiction.

Suppose that n ≡ 0 (mod 4). By Theorem 7.18, G contains a sub-
graph T = TM (n). Let V (T ) = {v0, . . . , vn−5, w1, . . . , w4} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, v1w2, v1w3, w1w4}. Let V = {v2, v3, . . . , vn−5} and U =
V (G)−V (T ); then |V | = n−6 and |U | = n−1. Since TP (n) � G,w1 is not adjacent
to {v0, w2, w3}∪U inG, and so dG[U ](w2) ≤ 1, dG[U ](w3) ≤ 1 and dG[U ](v) ≤ n−7
for any vertex v ∈ V . Now, if G contains a subgraph TA(n), then arguments similar
to those used for the case n �≡ 0 (mod 4) above can be used. Therefore, G contains
no TA(n). Then v0 is not adjacent to {w2, w3} ∪U in G.

Suppose that some vertex v ∈ V is not adjacent to w1 in G. Let X be any four
vertices inU that are not adjacent to v inG and setY = {v, v0, w2, w3}. ByLemma4.5,
G[X ∪Y ] contains C8 which with w1 givesW8 in G, a contradiction. Therefore, each
vertex of V is adjacent to w1 in G. Since TP (n) � G, w4 is adjacent to at most
n − 7 vertices of U in G. Since TA(n) � G, w2 and w3 are not adjacent in G. Now,
if w4 is adjacent to both w2 and w3 in G, then w4 is not adjacent to v0 in G since
TP (n) � G. Let X be any four vertices of U that are not adjacent to w4 in G and let
V = {w1, . . . , w4}. By Lemma 4.5, G[X ∪ Y ] contains C8 which with w1 gives W8
in G, a contradiction. Therefore, w4 is non-adjacent to either w2 or w3 in G, say w2.
Since dG[U ](w2) ≤ 1 and dG[U ](w4) ≤ n−7, there is a set X of four vertices inU that
are not adjacent to both w2 and w4 in G. Let Y = {v0, w1, w3, w4}. By Lemma 4.5,
G[X ∪ Y ] contains C8 which with w1 gives W8 in G, again a contradiction.

In either case, R(TP (n),W8) ≤ 2n − 1 for n ≥ 9 and this completes the proof. 	

Theorem 7.21 If n ≥ 9, then R(TQ(n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1. Assume that G does not contain TQ(n) and that
G does not contain W8. By Theorem 6.4, G has a subgraph T = Sn(4). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Set
V = {v2, v3, . . . , vn−4} and U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1.
Since TQ(n) � G, G[V ] are independent vertices and not adjacent to U .

Suppose that n ≥ 10. Then |V | ≥ 5 and |U | ≥ 9, so by Observation 4.3, G
contains W8, a contradiction. If n = 9, then |V | = 4 and |U | = 8. By Lemma 4.4,
G[U ] is K8 or K8−e. Since TQ(9) � G, T is not adjacent toU , and δ(G[V (T )] ≥ 5.
As v2, . . . , v5 are independent in G, they are each adjacent to all other vertices in
G[V (T )]. Therefore,G[V (T )] contains TQ(9)with v2 and v0 as the vertices of degree
4, a contradiction.

Thus, R(TQ(n),W8) ≤ 2n − 1 for n ≥ 9, which completes the proof. 	

Theorem 7.22 If n ≥ 9, then R(TR(n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n − 1. Assume that G does not contain TR(n) and that
G does not contain W8. By Theorem 6.8, G has a subgraph T = TC (n). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2, v2w3}. Set
V = {v3, . . . , vn−4} and U = V (G) − V (T ) = {u1, . . . , un−1}; then |V | = n − 6
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and |U | = n − 1. Since TR(n) � G, w1 is not adjacent in G to any vertex of
U ∪ V . If δ(G[U ∪ V ]) ≥ � 2n−7

2 �, then G[U ∪ V ] contains C8 by Lemma 4.1 which
with w3 forms W8, a contradiction. Therefore, δ(G[U ∪ V ]) ≤ � 2n−7

2 � − 1, and
�(G[U ∪ V ]) ≥ � 2n−7

2 � = n − 4. Now, there are two cases to be considered.

Case 1: One of the vertices of V , say v3, is a vertex of degree at least n−4 inG[U∪V ].
Note that in this case, there are at least 3 vertices from U , say u1, u2, u3, that are

adjacent to v3 in G. Suppose that v3 is also adjacent to a in G, where a is a vertex in
U ∪V . Since TR(n) � G, these 4 vertices are independent and are not adjacent to any
other vertices of U . Since n ≥ 9, U contains at least 4 other vertices, say u5, . . . , u8,
so u1u5u2u6u3u7au8u1 and w3 form W8 in G, a contradiction.

Case 2: Some vertex u ∈ U has degree at least n − 4 in G[U ∪ V ].
Since TR(n) � G, u is not adjacent to any vertex of V in G. Therefore, u must

be adjacent to at least n − 4 vertices of U in G. Without loss of generality, suppose
that u1, . . . , un−4 ∈ NG[U ](u). Note that V is not adjacent to NG[U ](u), or else it
will form TR(n) in G, a contradiction. If n ≥ 10, then any 4 vertices from NG[U ](u)

and any 4 vertices from V form C8 in G which with w3 forms W8, a contradiction.
Suppose that n = 9 and let the remaining two vertices be u6 and u7. If either u6 or u7 is
non-adjacent to any two vertices of {u1, . . . , u5} in G, say u6 is not adjacent to u1 and
u2 in G, then u1u6u2v3u3v4u4v5u1 and w3 form W8 in G, a contradiction. So, both
u6 and u7 are adjacent to at least 4 vertices of {u1, . . . , u5} in G. Since TR(9) � G, T
cannot be adjacent to U , and δ(G[V (T )] ≥ 5. As both v2 and w3 are not adjacent to
v3, v4 or v5 in G, they are adjacent to all other vertices in G[V (T )]. Similarly, since
v3 is not adjacent to v2 or w3 in G, v3 is adjacent to w1 or w2 in G. Without loss of
generality, assume that v3 is adjacent to w1. Then G[V (T )] contains TR(9) with edge
set {v2w2, v2v1, v2v0, v0v4, v0v5, v2w3, v2w1, w1v3}, a contradiction.

In either case, R(TR(n),W8) ≤ 2n − 1. 	

Theorem 7.23 If n ≥ 9, then R(TS(n),W8) = 2n − 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1. Assume that G does not contain
TS(n) and that G does not contain W8. Suppose n �≡ 0 (mod 4). By Theo-
rem 6.4, G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and
U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1. Since TS(n) � G, G[V ] are
independent vertices and are not adjacent to U . If n ≥ 10, then |V | ≥ 5 and |U | ≥ 9,
so by Observation 4.3, G contains W8, a contradiction. Suppose that n = 9. Then
|V | = 4 and |U | = 8. By Lemma 4.4, G[U ] is K8 or K8 − e. Since TS(9) � G, T is
not adjacent to U , and δ(G[V (T )] ≥ 5. As v2, . . . , v5 are independent in G, they are
adjacent to all other vertices in G[V (T )], and so G[V (T )] contains TS(9) with edge
set {v0v1, v0v2, v1v4, v1v5, v2w1, v2w2, v2w3, v3w1}.

Now suppose that n ≡ 0 (mod 4). By Theorem 6.4, G has a sub-
graph T = Sn−1[4]. Let V (T ) = {v0, . . . , vn−5, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−5} and U = V (G) −
V (T ); then |V | = n − 6 and |U | = n. Since TS(n) � G, G[V ] is not adjacent to U .
Since |V | = n−6 > 4, by Observation 4.3,�(G[U ]) ≤ 3 and δ(G[U ]) ≥ n−4 since
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W8 � G. By Lemma 6.3, either G[U ] is K4,...,4 and contains TS(n) or G[U ] contains
Sn[4] and the arguments from the n �≡ 0 (mod 4) case above lead to a contradiction.

Thus, R(TS(n),W8) ≤ 2n − 1 for n ≥ 9, which completes the proof. 	
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