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Abstract

The Ramsey numbers R(7;,, Wg) are determined for each tree graph 7, of ordern > 7
and maximum degree A(7},) equal to either n — 4 or n — 5. These numbers indicate
strong support for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and
Baskoro, that R(T,,, W,,) = 2n — 1 for each tree graph 7, of order n > m — 1 with
A(T,) <n—m+2whenm > 4is even.
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1 Introduction

Let G and H be two simple graphs. The Ramsey number R(G, H) is the smallest
integer n such that, for any graph of order n, either it contains G or its complement
contains H as a subgraph. Chvatal and Harary [7] proved that R(G, H) > (c(G) —
D(x(H) — 1) + 1 where c(G) is the largest order of any connected component of
G and where x (H) is the chromatic number of H. For any tree graph G = T, of
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order n and the wheel graph H = W,, of order m + 1 obtained by connecting a
vertex to each vertex of the cycle graph C,,, the Chvatal-Harary bound implies that
R(T,, W,,) > 2n — 1 when m is even and R(T;,, W,,) > 3n — 2 when m is odd.

Chen et al. [12] and Zhang [23] showed that R(P,, W,,) achieves these Chvéital-
Harary bounds for the path graph 7,, = P, of ordern whenm isoddand3 <m < n+1
andwhenm isevenand4 < m < n+1;seealso[1,21]. Baskoroetal. [3] and Surahmat
and Baskoro [22] further proved that R(T,,, W,,,) achieves the Chvatal-Harary bounds
for m = 4,5 and all tree graphs 7, of order n > 3, except when m = 4 and T, is
the star graph S,,, in which case R(S,, W4) = 2n + 1. This led Baskoro et al. [3] to
conjecture that R(7,,, W) = 3m — 2 for all tree graphs 7,, of order n when m > 5
is odd. The conjecture is true for all sufficiently large n, according to a result of Burr
et al. [5]. In contrast, the analogous equality R(7,, W,,) = 2n — 1 for even m > 4
is false since the star graph 7,, = S, does not achieve this bound, as the following
combined result of Zhang [24] and Zhang et al. [25, 26] shows; see also [8, 15, 16,
18, 20].

Theorem 1.1 [24-26] Forn > 5,

2n+1 ifnisodd,
R(Sp, Wg) = f .
2n 42 ifniseven.

Baskoro et al. [3] therefore conjectured that R(7;,, W,;,) = 2n — 1 for all non-star
tree graphs 7, of order n when n > 4 is even. This conjecture was disproved by
Chen, Zhang and Zhang [9] who showed that R(T,, We) = 2n for certain non-star
tree graphs 7},. Zhang [23] further proved the following theorem which shows that the
conjecture is false when 7 is small, even for the path graph P, ; see also [2, 12, 19, 21].

Theorem 1.2 [23] Ifm is evenandn +2 < m < 2n, then R(P,, Wy,) =m +n — 2.

However, Chen, Zhang and Zhang [9] conjectured that R(T,,, W,,,) = 2n — 1 for all
tree graphs 7, of order n > m — 1 when m is even and the maximum degree A(7},) “is
not too large"; see also [10, 11, 13]. Hafidh and Baskoro [14] refined this conjecture
by specifying the bound A(T;,) < n —m + 2. When n is large compared to m, A(T,)
is not required to be small; indeed, the refined conjecture implies that, for each fixed
even integer m, all but a vanishing proportion of the tree graphs {7, : n > m — 1}
satisty R(T,,, W,,,) = 2n — 1.

For m = 8§, the bound is A(7,,) < n — 6. There is exactly one tree graph 7},
of order n with maximum degree A(7,,) = n — 1, namely the star graph S,;; see
Theorem 1.1. There is exactly one tree graph 7,, of order n > m — 1 with maximum
degree A(T,) = n — 2: the graph S,,(1, 1) obtained by subdividing an edge of S,_;.
More generally, let S, (£, m) be the tree graph of order n obtained by subdividing m
times each of £ chosen edges of S, _¢,; see Fig. 1.

By Theorem 1.2, R( P4, Wg) = 10. Hafidh and Baskoro [ 14] determined the Ramsey
number R(S,(1, 1), Wg) as follows.
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e b S b g 4

n—2

Sn(1,1) Sn(1,2) Sn(3) Sn[4] Sn(2,1) Sn(3,1)
Fig.1 Examples of Sy (£, m), S, (£) and Sy [€]

Theorem 1.3 [14] Forn > 5,

2n+1 ifnisodd,
R(Sn(l’ D, WS) = Mm if n is even.

There are exactly 3 tree graphs 7, of order n with maximum degree n — 3, namely
S (1,2), S,(3) and S,(2, 1), where S, (£) is the tree graph of order n obtained by
adding an edge joining the centers of two star graphs S, and S,_¢; see Fig.1. By
Theorem 1.2, R(P5, Wg) = 11. Hafidh and Baskoro [14] determined the Ramsey
numbers for the three other graphs as follows.

Theorem 1.4 [14] Forn > 6,

2n+1 ifn=3 (mod4);

R(S,(1,2), Wg) = .
2n otherwise

2n — 1 ifnis odd andn > 9

R(S,(3), Wg) =
(54(3), We) 2n otherwise

2n—1 ifnisodd;

R(S,(2, 1), Wg) =
(50 (2, 1), Ws) 2n otherwise .

The purpose of the present paper is to determine the Ramsey numbers R(7,,, Wg)
for all tree graphs 7, of order n > 6 with maximal degree A(T,) > n — 5; see
Theorems 2.1, 2.2 and 3.1 in Sects.2 and 3. These Ramsey numbers show that the
proportion of tree graphs 7;, that satisfy the equality R(T,,, Wg) = 2n — 1 quickly
grows as the maximal degree A(7},) decreases. When A(T,,) > n — 2, no tree graph
T, satisfies the equality. In contrast, when A(7;,) = n — 3, roughly one third of all
tree graphs 7, satisfy the equality; see Theorem 1.4. When A(T,) = n — 4, more
than 85% of all tree graphs T, satisfy the equality; see Theorems 2.1 and 2.2. And
when A(T,) = n — 5, roughly 94.7% of all tree graphs 7, satisfy the equality; see
Theorem 3.1. These results thereby lend strong support for the conjecture described
above by Chen, Zhang and Zhang [9] and Hafidh and Baskoro [14].

The contents of the present paper are as follows. Sections 2 and 3 present the main
results, namely Theorems 2.1, 2.2 and 3.1 mentioned above. Section 4 provides useful
auxiliary results that are used in the proofs of the main results. These proofs are
presented in Sects. 5, 6 and 7, respectively.
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A B C D E
Fig.2 Tree graphs of order 7 with A(T;;)) =n — 4
Sn—1 Sn—s
Ta(n) Ts(n)

Fig.3 Three tree graphs with A(7T,) =n —4

2 The Ramsey numbers R(T,,, Wg) for A(T,) =n—4

This section presents the Ramsey numbers R(7},, Wg) for all tree graphs 7, of order
n > 6 with A(T,) = n — 4. For n = 6, there is just one such graph, namely the
path graph Ty = Pg. Theorem 1.2 provides the Ramsey number R(Pg, Wg) = 12. For
n =7, there are five tree graphs with A(T,,) = n — 4, namely the graphs A, B, C, D
and E shown in Fig.2.

The Ramsey numbers R(7;, Wg) for these tree graphs are determined as follows.

Theorem 2.1 R(T,Wg) = 13 for each T € {A,B,C}, R(D,Wg) = 14 and
R(E, Wg) = 15.

For n > 8, there are 7 tree graphs T, of order n with A(7,,) = n — 4, namely
the graphs S, (4), S,[4], S, (1, 3), S, (3, 1), Ta(n), Tp(n) and T¢(n) shown in Figs. 1
and 3, where S, [£] is the tree graph of order n obtained by adding an edge joining the
center of S;,_, to a degree-one vertex of Sy; see Fig. 1.

The Ramsey numbers R(7,, Wg) for these seven tree graphs are determined as
follows.

Theorem 2.2 Ifn > 8, then

2n—1 ifn>29;
R(S,(4), Wg) = -
(Sn(4), Wg) {16 ifn—=8

2n—1 ifn#0 (mod 4);
R(T,, Wg) = J ?é. ( )

2n otherwise

R(T), Wg) =2n —1,

foreach T,, € {S,[4], S, (1,3), Ta(n), Tg(n)} and T, € {Tc(n), S,(3, 1}.

Proofs of Theorems 2.1 and 2.2 are given in Sects. 5 and 6.
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3 The Ramsey numbers R(T,,, Ws) for A(T,) =n—5

This section presents the Ramsey numbers R (7, Wg) for all tree graphs 7, of order
n > 7 with A(T,) = n — 5. For n = 7, there is just one such graph, namely the
path graph 77 = P;. Theorem 1.2 provides the Ramsey number R (P;7, Wg) = 13. For
n = 8, there are 16 tree graphs 7}, of order n with A(7,,) = n — 5, namely S, (1, 4),
S,(2,2) and the tree graphs shown in Fig.4. For n = 9, there are 18 tree graphs T,
of order n with A(T,,) = n — 5, namely S, (1, 4), S,[5], S» (2, 2), S, (4, 1) and the
tree graphs shown in Fig.4. For n > 10, there are 19 tree graphs 7,, of order n with
A(T,) = n — 5, namely S,(1,4), S,(5), S»[5], S»(2, 2), S, (4, 1) and the tree graphs
shown in Fig.4.
The Ramsey numbers R(7,,, Ws) for these tree graphs are determined as follows.

Theorem 3.1 Ifn > 8, then R(T,,, Wg) = 2n — 1 for all
Tn S {Sn(l’ 4)7 Sn(2ﬂ 2)7 TD(ﬂ), R ] TS(”)}

except when T, € {Tg(8),Tr(8), Sy(1,4), S5,(2,2), Tp(n), Tn(n)} and n = 0
(mod 4), in which case R(T,, Wg) = 2n.

Furthermore, if n > 9, then R(T,,, Wg) = 2n — 1 for each T,, € {S,[5], Sn(4, 1)},
and if n > 10, then R(S,(5), Wg) = 2n — 1.

A proof of this theorem is given in Sect. 7.

4 Auxiliary results

To prove the main theorems, the following auxiliary results will be used. For any
simple graph G = (V, E), let §(G) be the minimum degree of any vertex in G, and
let G = (V, (5)\E) be the complement of G.

Lemma 4.1 [4] Let G be a graph of order n. If §(G) > Z, then either G contains Cy
forall3 <f <mn,ornisevenand G = Kn

[N
SR

Lemma4.2 [6] Let G be a graph with §(G) > n — 1. Then G contains all tree graphs
of order n.

O_bservation 4.3 If G = H\ U Hs is the disjoint union of graphs Hy and H,, where
Hy contains Ss and H» is a graph of order at least 4, then G contains Ws.

Lemma 4.4 Let H| be a graph whose complement F_l contains S4, and let Hp be a
graph of order m > 5. If G = Hj U Hj, then either G contains Ws, or Hp is K, or
K, — e, where e is an edge in K,,.

Proof If H has at most one edge, then Hj is the complete graph K, or the graph K, —e
obtained from removing an edge e from K,,. Suppose now that H, has at least two
edges. Consider a star S4 in ‘Hj and let vy be its center and vy, vo, v3 its leaves. Note that
each v; is adjacent to each a € V(H3) in G. Choose 5 vertices a, b, ¢, d, e € V(H,)
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Sn—6

Sn;ﬁ Sn—b
TR(TL) TS (n)

Fig.4 Tree graphs 7, with A(T,) =n —5

such that either ab and cd are independent edges, or abc is a path, in ‘H>. In both cases,
G contains Wg with hub vg. In the former case, viabvycdvsev; forms the Cg rim; in
the latter, viabcvydvsev; forms the Cg rim. m]

The neighbourhood Ng(v) of a vertex v in G is the set of vertices that are adjacent
to vin G and dg(v) = |Ng(v)| is the degree of the vertex v. For X, Y C V, G[X]
is the subgraph induced by X in G and Eg (X, Y) is the set of edges in G with one
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endpoint in X and the other in Y. The following lemma provides sufficient conditions
for a graph or its complement to contain Cg.

Lemma 4.5 Suppose that U = {uy,...,us} and V. = {vy, ..., v4} are two disjoint
subsets of vertices of a graph G for which INGivuuy(u)| < 1 for eachu € U and
INGuupn ()| < 2 for each v € V. Then G[U U V] contains Cg.

Proof Suppose that Ngyuwy(v) < 1 for each v € V. Then G[U U V] contains
a subgraph obtained by removing a matching from K4 4 and therefore contains Cg.
Suppose now that Ng[yuje, )1 (V1) = {u1, u2}, and assume without loss of generality
that v3 ¢ NG[vuius)(3) and v4 ¢ NGvuu,)(#4). Neither uy nor u; is adjacent to
V2, U3 OF V4, SO U U3V3U | VaUavautav] forms Cg in G[U U V1. O

Lemma4.6 [17] Let G(u, v, k) be a simple bipartite graph with bipartition U and
V, where |\U| = u > 2 and |V| = v > k, and where each vertex of U has degree of
atleastk. If u < k and v < 2k — 2, then G(u, v, k) contains a cycle of length 2u.

Corollary 4.7 Suppose that U and V are two disjoint subsets of vertices of a graph G
SJorwhich |[NgvuunW)| < 2foreachu € U.If|U| = 4and |V| > 6, then G[UU V]
contains Cg.

Proof Since |[U| > 4and|V| > 6, we can choose any 4 vertices from U to form U’ and
any 6 vertices from V to form V’. We have that Ng[y/uq,y () < 2 foreachu € U’.
Then each vertex of U’ is adjacent to at least 4 vertices of V' in G and G[U’ U V']
must contain a graph with the properties of G(4, 6, 4) in Lemma 4.6. Hence by that
lemma, G[U U V] must contain Cg. ]

We will also use the following corollary whose proof is almost identical to that of
Corollary 4.7.

Corollary 4.8 Suppose that U and V are two disjoint subsets of vertices of a graph G
Sforwhich |Ngvuuy )| < 3 foreachu € U. If|U| > 4and |V| > 8, then GIU U V]
contains Cg.

5 Proof of Theorem 2.1

The proof of Theorem 2.1 is here proved as three theorems, the first of which is as
follows.

Theorem 5.1 R(T, Wg) = 13 foreach T € {A, B, C}.

Proof Note that G = 2K¢ does not contain A, B or C and that G does not contain
Wg. Therefore, R(T, Wg) > 13forT = A, B, C.

Let G be a graph of order 13 whose complement G does not contain Wg. By
Theorem 1.4, G has a subgraph T = $7(2, 1). Label V(T) as in Fig.5. Set U =
V(G) — V(T);then |U| = 6.

First, suppose that A Q G. Then vy is not adjacent to v, or vg. Similarly, v and vs
are not adjacent.
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U4
U
v Vs V7 Vg V2
® @ @ ®
U3

Fig.5 S7(2,1)and U in G

Case 1a: There is a vertex in U, say u, that is adjacent to v;.

Since A is not contained in G, v; is not adjacent to v3, v4 or any vertex of U other
than u. Let W = {vy, v3, va, vg, Uy, ..., us} for any 4 vertices uy, ..., usg in U other
than u. If §(G[W]) > 4, then G[W] contains Cg by Lemma 4.1 and, together with
v; as hub, forms Wz, a contradiction. Thus, §(G[W]) < 3 and A(G[W]) > 4. Note
that [NGju,,...us,v;1(Vi)| < 1fori =2,3,4,6since G does not contain A. It is now
straightforward to check that v, v3, v4 and ve cannot be the vertex with degree at least
4. Without loss of generality, assume that u# has degree at least 4 in G[W]. Then u;
is adjacent to at least one of v, v3, v4, Vg, SO G contains A, a contradiction.

Case 1b: v; is not adjacent to any vertices in U.

By arguments similar to those in Case la, v, is not adjacent to any vertex in U.
Let W = {v, v} UU. If §(G[W]) > 4, then G[W] contains Cg by Lemma 4.1
which, with v; as hub, forms Wg in G[W], a contradiction. Thus, §(G[W]) < 3
and A(G[W]) > 4. Since v; is not adjacent to any vertex in U, there are only three
subcases to be considered.

Subcase 1b.1: dG[W](v(,) >4,

Label U = {uy, ..., ue} so that ve is adjacent to u1, up and u3 in G[W]. Since
G does not contain A, vertices u1, ua, U3, vz are not adjacent to v3 or v4 in G. Note
that by arguments as in Case la, u1, up and u3 are isolated vertices in G[U]. Then
viugqurv3vousu3ugvy and uq form Wg in E, a contradiction.

Subcase 1b.2: dgw)(ve) < 3 and vg is adjacent to a vertex u € U with dg[w(u) > 4.

The graph G contains A, with u as the vertex of degree 3 in A, a contradiction.
Subcase 1b.3: dgiwj(vs) < 3 and vg is not adjacent to any vertex u € U with

deiwi(w) > 4.
Label V(U) = {uy, ..., ue} so that ug is adjacent to uy, u3, u4 and us in G. Since
A ,¢_ G, none of vy, ..., v7is adjacent in G to any of us, ..., us. If vy is not adjacent

in G to any two of the vertices v3, v4, v7, then G contains W3 by Observation 4.3,
a contradiction. Therefore, NG[v;,v,,07,1(v1) = 2 and, similarly, NG[vs,v,071(V2) = 2.
Hence, one of v3, v4, v7 is adjacent in G to both vy and v,. If v3 or vy is adjacent
to both vy and vy, then G contains A, with v7 as vertex of degree 3, a contradiction.
Finally, if both v and v, are adjacent in G to v7 and each of them is adjacent to a
different vertex in v3 and v4, then G also contains A, where either v or v, is the vertex
of degree 3, a contradiction.

Therefore, R(A, Wg) < 13, s0 R(A, Wg) = 13.

Now, suppose that B Q G. Then vy, v2, vs, vg are not adjacent to v3 or v4 in G,
and vj and v are not adjacent to U in G. Label the vertices U = {uy, ..., ug} and let
W = {v3, v4}UU.If§(G[W]) > 4,then G[W] contains Cg by Lemma 4.1 which, with
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v1 as hub, forms Ws, a contradiction. Therefore, §(G[W]) < 3 and A(G[W]) > 4. If
v3 or vy is adjacent to the vertex of degree at least 4 in G[W], then B is contained in
G, with v7 as the vertex of degree 3. Hence, only two cases need to be considered.
Case 2a: v3 or vy is the vertex of degree at least 4 in G[W].

Without loss of generality, assume that v3 is the vertex of degree at least 4 in G[W].
As previously shown, v3 is not adjacent to v4. Therefore, it may be assumed that v3
is adjacent to u1, u, u3 and u4 in G. Since B Q G,uy,...,uq are independent in G
and are not adjacent to {vq, vy, v4, Vs, Vg}. Also, v] is not adjacent to ve and v; is not
adjacent to vs. Then vjveuzv2v5u3v4u4v1 and u; form Wy in G, a contradiction.
Case 2b: One of the vertices in U, say uy, is the vertex of degree at least 4 in G[W].

As above, u is not adjacent to v3 or v4 in G. It may then be assumed that u is
adjacentto uy, u3, us and us. Since B ;{ G,vq, ..., v7arenotadjacentto {uy, ..., us}.
Note that v3 is not adjacent to {v, v2, vs5, vg}. By Observation 4.3, G contains Ws, a
contradiction.

Therefore, R(B, Wg) < 13.

Lastly, suppose that C ¢ G. Then vs and v are not adjacent in G to each other or to
v3, v4 or U. Furthermore, vs is not adjacent to v and vg is not adjacent to vy. Label the
verticesU = {uy, ..., uc}andlet W = {v3, vq, vg, uy, ..., u5}.If8(E[W]) > 4, then
G[W] contains Cg by Lemma 4.1 which, with vs as hub, forms Wg, a contradiction.
Then §(G[W]) < 3 and A(G[W]) > 4. Note that vg is not adjacent to any other vertex
in G[W], ve is not the vertex of degree at least 4 in G[W]. If v3 or v4 is the vertex of
degree 4, then G contains C, with v3 or v4 and vy as the vertices of degree 3. Thus, one
of the vertices in U, say u1, is the vertex of degree at least 4 in G[W]. Now, consider
the following three cases.

Case 3a: Both v3 and v4 are adjacent to u1 in G[W].

Suppose that u] is also adjacent to u> and u3 in G[W]. Since C g G, v3 is not
adjacent in G to v4 and neither v3 nor vy is adjacent to {vy, v, v5, Vg, U2, ..., Ug}.
Note that |NG[{v;,vy,u; i) < 1fori =2, 3 since C ,@ G. If vy is adjacent to u, and
u3 in G, then viuovsus4v3usveu3 vy and vy form Wy in G, a contradiction. Therefore,
v is adjacent in G to at least one of u7 and u3. Similarly, v; is adjacent to at least one
of up and u3. Since |NG{v;,vy,u;)1(i)| < 1 fori = 2,3, vy is adjacent to us and v
is adjacent to u3, or vice versa. Then neither u> nor u3 is adjacent in G to u4, us, ue,
since C ;(_ G. Therefore, viv3vavsuauausvev; and va form Wy in G, a contradiction.
Case 3b: One of v3 and v4, say v3, is adjacent to u in G[W].

Suppose that u; is adjacent to wup, wu3z and ug in G[W]. Then
U1, V2, V4, V5, V6, U2, U3, U4 & NG (v3) and |NG[{vs,uz,us,us)1(V4)| < 1. Without loss
of generality, assume that v4 is not adjacent to up or u3 in G. Now, suppose that
v4 is adjacent to u4 in G. Since C ;(_ G, uy is not adjacent to vy or v2 in G. Then
VU4V vsuavau3vev| and vy form Wy in G, a contradiction. Otherwise, suppose that
v4 is not adjacent to u4 in G. Then, |NG({u;,v;,v,)1(#i)| < 1fori =2, 3,4 and at least
two of us, uz and u4 are not adjacent to vy or v2 in G. Without loss of generality,
assume that u» and u3 are not adjacent to vy in G. In this case, viuyv4U4V5U5V6U3 V]
and v3 form Wg in G, again a contradiction.

Case 3c: v3 and v4 are both not adjacent in G[W] to u;.
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Fig.6 The graph H

Fig.7 BC G vy U
V1 V2 U3 V4 Vs Vg

Assume that u; is adjacent to each of uj,...,us5 in G[W]. Since C ;(_ G,
INGI{v1,...;v7.u; )W) | < 1fori =2,...,5,and |Ng(u,,..., MSan}](vjN < Iforj =3,4.
Since [NG[jv;,vo,u;)](i)] < 1fori = 2,...,5, one of vy and vy, say vy, satisfies
INGlua,...us.o 1 (V1) < 2. By Lemma 4.5, G[vy, v3, v4, s, ua, ..., us] contains Cg
which, with hub vg, forms Wy in G.

Therefore, R(C, Wg) < 13. This completes the proof of the theorem. O

Theorem 5.2 R(D, W) = 14.

Proof Let G = K¢ U H where H is the graph shown in Fig. 6.

Since G does not contain D and G does not contain Wy, R(D, Wg) > 14.

Now, let G be any graph of order 14. Suppose neither G contains D as a subgraph,
nor G contains Wg as a subgraph. By Theorem 5.1, B C G. Label the vertices of B
as shown in Fig.7 and set U = {uy,...,u7} = V(G) — V(B). Since D SZ G, vy is
non-adjacent to vg and U, and v4 is non-adjacent to v; and v,.

Let W = {v} UU.If §(G[W]) > 4, then G[W] contains Cg by Lemma 4.1 which,
with v7 as hub, forms W, a contradiction. Thus, §(G[W]) < 3 and A(G[W]) > 4.
Three cases will now be considered.

Case 1: vg is the vertex of degree at least 4 in G[W].

Assume that vg is adjacent to u1, u2, u3 and u4 in G[W]. Then vs is adjacent to v
and v; in G and v is adjacent in G to ve, u1, Uy, uz and u4.
Subcase 1.1: Eg({uy, ..., us}, {us, ug, u7}) % 0.

Without loss of generality, assume that u; is adjacent to us in G. Since D ¢ G,
{uz, us, u4} is independent in G and is adjacent to vy, v2, ug and u7 in G; vg 1S
adjacent in G to vy and v3; v4 and vs are adjacent in G to up and us; and v3 is adjacent
in G to us. If vq is adjacent to u; in G, then vs is adjacent in G to u3 and ua, so
V] UsV2U2UGVTUTUSV] and u4 form Wz in G, a contradiction. Thus, v4 is adjacent to
us in G, and v vavauaugv7u7uzv; and us form Wy in G, again a contradiction.

Subcase 1.2: {u1, ..., us} is not adjacent to {us, ug, u7} in G[W1].

Suppose that vs is adjacent in G to v7; then v; is not adjacent to vy or vy. If
ING[{uy,....us,v211(02)| < 2, then Gluy, ..., u7, va] contains Cg by Lemma 4.5 which
with v; forms Wy in G, a contradiction. Thus, ING[{u1,...us,v21(V2)| = 3, s0 vy is
not adjacentto uy, ..., us in G. By Lemma 4.5, Glui, ...,u7, v, v7] contains Wy, a
contradiction.
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Hence, vs is not adjacent to v7 in G. If |NGu,...us,vsh(¥5)| < 2, then
Glui, ..., u7, vs] contains Cg by Lemma 4.5 which with v; forms Wy in G, a con-
tradiction. Thus [NgG({u;,....us,v531(v5)| = 3, s0 v4 is not adjacent to {uy, ..., us} in
G, or else G will contain D with vs be the vertex of degree 3. By Lemma 4.5,
Glui, ..., u7, v1] contains Cg. If vs is not adjacent to v7 in G, then G contains
Ws, a contradiction. Thus, v4 is adjacent to v7, and since D 5Z G, v is not adja-
cent to v7. If [NGu,,...us,on(v1)] < 2, then Gluy, ..., u7,v;] contains Cg by
Lemma 4.5 which with v7 forms Wg, a contradiction. Thus, [NG{u;,....us,v;1(V1)| = 3,
SO ING[{u1,....us,u1}1 (V1) N NGl{uy,....us,vs31(v5)| = 2, and G contains D with vs as the
vertex of degree 3, a contradiction.

Case 2: u is the vertex of degree at least 4 in G[W] and vg is adjacent to u.

Without loss of generality, suppose that u| is adjacent to us, u3 and u4 in G[W]. If
vs is adjacent to u 1, then Case 1 applies with vg replaced by u1. Suppose then that vs
is not adjacent to u;. Since D g G, v; and v, are not adjacent in G to vy, v5 OT vg; U3
is not adjacent to ve, U1, . .., u4; and v4 is not adjacent to uy, ..., u4.

Subcase 2.1: Eg({uz, us, I/l4}, {u5, ue, u7}) ;é @.

Without loss of generality, assume that u, is adjacent to u5 in G. Then u3 and u4
are not adjacent to each other or to vy, v2, ug, u7. Also, u1 is not adjacent to vy or vy,
and neither u, nor us is adjacent to v3, v4, Vs, V6.

Suppose that vy is adjacent to v4 in G. If u; is adjacent to vy, us, ug or u7, then
Case 1 can be applied through a slight adjustment of the vertex labelings. Suppose
that u; is not adjacent to any of these vertices. Since D ¢ G, v7 is not adjacent to
v1. If vg is not adjacent to ug, then viujusveueususuavy and vy form Wy in G, a
contradiction. Similarly, G contains Wy if vg is not adjacent to u7, a contradiction.
Therefore, vg is adjacent to both ug and u7 in G. Since D 52 G, ug is not adjacent to
u7, and neither ug nor u7 is adjacent to uy. Then viujusveurueu7uz vy and vy form
Wy in G, a contradiction.

Suppose now that v7 is not adjacent to v4 in G. If v7 is adjacent to vs, then v7 is not
adjacent to v or vy, and vy is not adjacent to vg, ug or u7. Then viujvouzugVauTU4V]
and vy form Wy in G, a contradiction. Therefore, v7 is not adjacent to vs in G. If vg is
not adjacent to u3, then uzveurvs5usv4usueu3 and vy form Wy in G, a contradiction.
Similarly, G contains Wy if vg is not adjacent to u4, a contradiction. Then vg is adjacent
to both u3 and u4 in G, so vg is not adjacent to ug and u7, or else Case 1 applies. Hence,
V42 VsUsVEUaU3U4V4 and v7 form Wy in G, a contradiction.

Subcase 2.2: {u5, u3, ua} is not adjacent to {us, ug, u7} in G[W].

If ING[{u,u3,14,0611(V6) | = 3 OF ING[{us,ug,u7.v5}](V6)| = 3, then Case 1 applies, so
ING[{uz,u3,u4,06)1(V6)| < 2 and |NG[{us,uq,u7,6)](V6)| < 2. Without loss of generality,
assume that vg is not adjacent in G to u; or us.

Suppose that v4 is not adjacent to v;7 in G. If us is adjacent to ue or uy, say ue,
then vy is not adjacent to us or ug, SO vVaupvVeUusuU3uTUsUgV4 and v7 form Wg in G,a
contradiction. If us is not adjacent to ug or u7, then vauz veusugusuyusv4 and v7 form
Ws in G, a contradiction. Suppose that vy is adjacent to v; in G. By similar arguments
to those in Subcase 2.1, u is not adjacent to vy, us, ug or u7, and vy is not adjacent to
v1. Then vy veususuguzuguvy and vy form Wy in G, a contradiction.

Case 3: 1 is the vertex of degree at least 4 in G[W] and vg is not adjacent to u;.
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Fig.8 S7(3)and U in G U1 V6
(%) V4
U5
U
V3 v7

Assume that u is adjacent to us, u3, us and us in G[W]. Since D Sl G, vz and vy
are not adjacent to uy, uy, u3, uq or us in G. If either vy or vs are adjacent to u; in G,
then Case 1 applies, so suppose that vy and vs are not adjacent to u;. In addition, vy
and vs are not adjacent to ua, u3, uq or us in G, or else Case 2 applies.

Subcase 3.1: NGu,.,....us1(V6) #= 9.

Assume that vg is adjacent to u; in G. Note that v4 is not adjacent to ve, v7, ug Or
u7 in G, and v3 is not adjacent to vs5 in G, or else Case 2 applies by slight adjustment
of vertex labels. Since D Q G, vy and v, are not adjacent in G to vs, v or us, and v3
is not adjacent to vg in G.

If uy and ug are not adjacent in G, then viujvev2urusv7uzv] and vg form Wy in G,
a contradiction. A similar contradiction arises if #» and u7 are not adjacent. Therefore,
uy is adjacent to both ug and u7 in G, and u3, u4 and us are not adjacent to ug or uz
in G since D ;(_ G. Then viujvevauaviueuzv; and vy form Wy in G, a contradiction.
Subcase 3.2: NGu,,....us](vs) = 0.

Suppose that vy is adjacent to v; in G. Then v, is not adjacent to vs, vg
or U since D §Z G. If INGl{us,...us)](6)| < 2, then Lemma 4.5 implies that
Glua, ..., us, va, vs, v, Ug] contains Cg in G which with v, forms Ws, a contra-
diction. Thus, |NG[{u,,...,.us})(#6)| = 3. Similarly, |NG[{u,,....us,u;}1(47)| = 3. By the
Inclusion-exclusion Principle, |NG({u,,....us)1(46) N NG[{us,...,us,u;1®7)| = 2. With-
out loss of generality, ug is adjacent to u;, u3 and u4 in G, and u7 is adjacent to u3
and u4, and Gluy, ..., u7] contains D with u3 or u4 being the vertex of degree 3, a
contradiction.

Now suppose that v is not adjacent to v;7 in G. If v7 is adjacent to v4 in G, then
vy is not adjacent to any of u1, ..., us5 in G, or else either Case 1 or 2 applies. Also,
ING[{vs,v5,0711(v7)] < 1 since D € G. Assume that v7 is not adjacent to v2 in G. If
ING[{us,....usn(U6)| < 2, then Lemma 4.5 implies that Glua, ..., us, v, v, Vg, Ug]
contains Cg which with v7 forms Wg, a contradiction. Thus, |NG({u,,....us)1(6)| = 3.
Similarly, |NG[{us.....us,u})@7)| = 3,50 ING[{us,....us}] U6) VNG {us, ... us,uz}1 ®7) | = 2.
By arguments similar to those in the previous paragraph, G will contain a subgraph
D, a contradiction.

Thus, R(D, Wg) < 14 which completes the proof of the theorem. O

Theorem 5.3 R(E, Wg) = 15.

Proof The graph G = K¢ U K44 does not contain E and G does not contain Ws.
Thus, R(E, Wg) > 15. For the upper bound, let G be any graph of order 15. Suppose
that G does not contain E and that G does not contain Wg. By Theorem 1.4, G
contains a T = $7(3) subgraph. Label the vertices of this subgraph as in Fig.8 and
set U = V(G) — V(T). Note that [U| = 8.

Case 1: Some vertex u in U is adjacent to vg.
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Since E §Z G, vg is not adjacent to vy, vy, v3, v7 or any vertex of U other than
u. Let W = {vy, vp, v3, v7,u1, ..., us}, for any vertices u1, ..., uq in U other than
u. If §(G[W]) > 4, then G[W] contains Cg by Lemma 4.1 which with vg forms
Ws, a contradiction. Therefore, §(G[W]) < 3 and A(G[W]) > 4. Since E Q G,
NGluy,.oua,v,001(07) < 1 and NGy, .ug,v7,0(i) < 1 fori = 1,2,3, so none
of vy, v2, v3, v7 has degree at least 4. Without loss of generality, assume that u has
degree at least 4. If u; is adjacent to v7, then G contains E with u# and vs as the
vertices of degree 3, a contradiction. Similarly, if u is adjacent to vy, vz or v3, then
G contains E with u1 and v4 as the vertices of degree 3, a contradiction. Therefore,
u1 is not adjacent to vy, v, v3 or v7. However, then u1 has degree at most 3 in G[W],
a contradiction.

Case 2: vg is not adjacent to any vertices in U.

If v7 is adjacent to some vertex in U, then Case 1 applies with v; replacing ve,

so suppose that v7 is not adjacent to any vertex in U. Now, if §(G[U]) > 4, then
G[U] contains Cg by Lemma 4.1 which with vg or v; forms Wg, a contradiction.
Thus, §(G[U]) < 3 and A(G[U]) > 4. Let V(U) = {uy, ..., ug}. Without loss of
generality, assume that u| is adjacent to uj, u3, us and us. Since E §Z G, vy4 is not
adjacent in G to any of u1, ..., us; vs is not adjacent to any of vy, va, v3, Uy, ..., Us;
and u; is not adjacent to vy, vy or v3. Furthermore, |NG(u,,... us,v;)1(vi)| < 1 for
i=1,2,3and |NG[{U1,v2,v3,u_,~}](uj)| <lforj=2,...,5.
B Suppose that Ng[{vs,ug,u7,us)1(Vs) = 9. If |ING[us,...usn(e)| < 1, then
Glua, ..., us, vy, v2, v3, ug] contains Cg by Lemma 4.5 which with vs forms Wg, a
contradiction. Therefore, ING[{us,....us)] (U6)| = 2. Similarly, ING[{us,....us,us1®7)] =
2 and |NG[{us,...,us,us}](8)| = 2. By the Inclusion-Exclusion Principle, u2, u3, u4 or
us is adjacent in G to at least two of ug, u7, ug. Without loss of generality, assume
that u, is adjacent to ug and u7. Then u; is not adjacent to u3, u4 or us, Therefore,
Lemma 4.5 implies that Gluy, us, ua, us, vy, v2, v3, up] contains Cg which with vs
forms Wg, a contradiction.

On the other hand, if NGug,u-,u51(v5) 7 ¥, then without loss of generality assume
that ug is adjacent to vs in G. Since E ,@ G, v4 is not adjacent to vg, v7 or ug in G. Also,
{v1, v2, v3} and {ve, v7, ue} are independent in G, and vy, v2, v3, Ve, V7, Ue ¢ N (U;i)
fori =1,...,5,7, 8, orelse Case 1 applies with vertex label adjustments. Now, if u
is not adjacent to both u7 and ug in G, then vj v v3u7V6V7Ucugv and u 1 form Wy in G,
a contradiction. Therefore, NGju,,u7,us}1 (1) # Y. Without loss of generality, assume
that u is adjacent to u7 in G. Note that for E ;(_ G, ING[{vs,vs5,us)1(u8)| < 1. Assume
that ug is not adjacent to v4 in G. If [NG[{u,,...,us,ug)(8)| < 3, then assume without
loss of generality that ug is not adjacent to up or u3 in G. Then vguqv7usuguugu3vg
and v4 form Wg in G, a contradiction. Similar arguments work if ug is not adjacent
to vs in G, by replacing v4 with vs and vg, v7, ug with vy, v, v3, respectively. Hence,
ING[{us,...,us,u7,us}](48)| = 4. However, G then contains E with 1 and ug of degree
3, a contradiction.

Thus, R(E, Wg) < 15. This completes the proof of the theorem. O
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Fig.9 The graphs Hg

6 Proof of Theorem 2.2

Consider the tree graphs 7, of order n > 8 with A(7,,) = n — 4, namely S, (4), S,[4],
Sn(1,3), S,(3, 1), Tao(n), Tp(n) and T¢(n); see Figs. 1 and 3.

Lemmaé6.1 Let n > 8 Then R(T,,Wg) > 2n — 1 for each T, €
{S,4), S, (3, 1), Tc(n)}. Also for each T, € {S,[4],S.(1,3),Ta(n), Tp(n)},
R(T,,, Wg) > 2n — 1 ifn £ 0 (mod 4) and R(T,, Wg) > 2n otherwise.

Proof The graph G = 2K,,_| clearly does not contain any tree graph of order n, and G
does not contain Wg. Finally, if n = 0 (mod 4), then the graph G = K,,_1UK34, .
order 2n— 1 does not contain S, [4], S, (1, 3), T4 (n) or Tp (n); nor does the complement
G contain Wy. O

Theorem 6.2 Ifn > 8, then

R(S,(4), W) = !2” A

16 ifn=28.
Proof By Lemma 6.1, R(S,(4), Ws) > 2n — 1 forn > 8. For n = 8, observe that the
graph G = K7 U Hg, where Hg is the graph of order 8 as shown in Fig.9 does not
contain Sg(4) and its complement G does not contain Wg. Therefore, for n = 8, we
have a better bound of R(Sg(4), Wg) > 16.

For the upper bound, let G be any graph of order 2n — 1 if n > 9, and of order 16
if n = 8. Assume that G does not contain S, (4) and that G does not contain Wg.

If n > 9is odd or n = 8§, then G has a subgraph T = §,,(3) by Theorem 1.4.
Let V(T) = {vog, ..., v,—3, wi, w2} and E(T) = {vgvy, ..., vovy—_3, VW], VW3 }.
Also,let V = {vy,...,v,3}and U = V(G) — V(T); then |[V| = n —4 > 5 and
Ul =n—1=> 8if nisodd, while |[U| = 8 if n = 8. Since §,,(4) g G, v; is not
adjacent to any vertex of U U V in G. Furthermore, foreach2 <i < n — 3, v; is
adjacent to at most two vertices of U in G. By Corollary 4.7, G[U U V] contains Cg,
and together with vy, gives us Wg in G, a contradiction.

For the remaining case when n > 10 is even, S,—1 € G by Theorem 1.1. Let vy
be the center of S,_1 and set L = Ng,_,(vo) = {v1,...,vu—2} and U = V(G) —
V(Sn—1). Then |U| = n. Since G does not contain Sy, (4), each vertex of L is adjacent
to at most two vertices of U. We consider two cases.

Casel: E(L,U) = 0.

If A(G[U]) > 4,thensome vertex u in U is adjacentto at least four vertices in GIU].
These four vertices and any four vertices from L form Cg in G which with u forms Wy,
a contradiction. Therefore, A(G[U]) < 3 and §(G[U]) > n —4. Suppose §(G[U]) =
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n —4 41 for some [ > 0, and let uq be a vertex in U with minimum degree in G[U].
Label the remaining vertices in U as u1, ..., u,—1 suchthat Uy = {uy, ..., up,—a} C
Ng(ug), and let Ugp = {u,,—3, up—3, up—1}. Since S, (4) ;(_ G, each vertex in Uy is
adjacent to at most two vertices in Ug, and so |Eg (U4, Up)| < 2(n —4). On the other
hand, noting that ug is adjacent to exactly / vertices in Up and letting ep < 3 be the
number of edges in G[Ug], we see that | Eg (U4, Up)| > 36(G[U])—[—2ep = 3(n—
4+1)—1—2ep. Therefore,2(n—4) > |Eg(Ua, Up)| = 3n—12+2] —2ep, implying
that n + 2/ < 4 + 2ep < 10, which is only possible when n = 10,/ = 0, ep = 3,
and |Eg(Uya, Up)| = 2(n —4) = 12. For such scenario where n = 10, noting that ug
was an arbitrary vertex with minimum degree in G[U], it is straightforward to deduce
that the only possible edge set of G[U] (up to isomorphism) with S19(4) 5Z G[U] is
{uouy, ..., uouetU{uruy, ..., uqur}J{uug, urug, usug, uegug}J{usuog, ..., ugug}U
{uruz, uzua, usue} Uuruz, uius, uzus} Ulusug, usue, usuet U {ugusg, ugug, uguo}.
Observe now that G[U] contains Cg which forms Wg in G with any vertex in L as
hub, a contradiction.
Case2: E(L,U) # 0.

Without loss of generality, assume that v is adjacent to u1 in G. Since S, (4) §Z G,
v1 is adjacent to at most one vertex of U U L\{u1} in G. Therefore, we can find a
4-vertex set V' C V\{v;}and an 8-vertex set U’ C U\{u} such that v; is not adjacent
in G to any vertex of U’ U V’. Note that each vertex of V' is adjacent to at most two
vertices of U’ in G, so |[E(V’, U’)| < 8. This implies that there are four vertices in
U’ that are each adjacent in G to at most one vertex of V’, and so G contains Cg by
Lemma 4.5 which with v; forms Wy, a contradiction.

Thus, R(S,(4), Wg) <2n — 1 whenn > 9 and R(S,,(4), Wg) < 16 whenn = 8.
This completes the proof of the theorem. O

Lemma 6.3 Let H be a graph of order n > 8 with minimum degree §(H) > n — 4.
Then either H contains S, [4]_and Ta(n), orn = 0 (mod 4) and H is the disjoint
union of % copies of Ky, i.e., H = 7K.

Proof Let V(H) = {ug, ..., u,_1}. First, consider the case where H has a vertex of
degree at least n — 3, say ug, and that {u1, ..., u,—3} € Ny (up).

Suppose u,_» is adjacent to u,_1 in H. Since §(H) > n — 4, u,_; is adjacent to
atleastn — 6 > 2 vertices of {uy, ..., u,—3}, say u; and u;, and so H contains S, [4].
Furthermore by the minimum degree condition, u; is adjacent to at leastn — 7 > 1
vertices of {uy, ..., u,—3}, and so H contains T4 (n).

Suppose now that u,_» is not adjacent to u,—; in H. Then by the minimum
degree condition, there is a vertex in {uy, ..., u,—3}, say u1, that is adjacent to both
up—p and u,_1. The vertices u; and u,_» must also each be adjacent to a vertex of
{us, ..., u,_3}, and so H contains both S,,[4] and T4 (n).

For the remaining case, suppose that H is (n — 4)-regular and that Ny (ug) =
{ur, ..., up—a}.LetU = {u,_3, uy—2, up—1} and suppose that H[U] has an edge, say
Un—3uUy—2. Since u,_3 must be adjacent in H to some vertex of Ny (1), it follows
that H contains S,[4] if u,_3 or u,_» is adjacent to u,_1. Suppose then that neither
uy—3 nor u,_» is adjacent to u,_1. Then u,,_1 is adjacent to every vertex of Ny (u9).
Note that d g [ny (ug)Ufu,_3)1(Mn—3) = n — 5 and let u be the vertex of Ny (ug) that is
not adjacent in H to u,_3. Since dy (u) = n — 4, u is adjacent in H to some vertex in
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Npg(u,—3),s0 H contains S, [4]. Also, note that u,_3 is adjacent in H to atleastn — 6
vertices of Ny (uo). If u,_1 is adjacent to some vertex of Ngny (ug)Ufun_3}1 Un—3),
then H contains T4 (n). Note that this will always happen for n > 9. For n = 8§,
there is a case where [NH Ny uo)U{u,—311 (Un-3)| = INH[Ng uo)U{uy—1 11 Un-1)| = 2
and NH{Ny (o) Utin—3)1Un=3) N NH[Ny (o)Ulun_1}]Un—1) = ¥, s0 u,_1 is adjacent to
up—3 and u,_», giving T4 (n) in H.

Now, suppose that H[U] contains no edge. Then U; = U U {uy} is an independent
set in H. Furthermore, N H(u) {uy, ..., u,—4} for every u € U, as every vertex has
degree n — 4. Therefore, H[U]is a K4 component in H. Repeating the above proof
for each vertex u of H shows that either u is contained in a K4 component of H,or H
contains both S, [4] or T4 (n). In other words, either H contains both S,[4] and T4 (1),
or H is the disjoint union of 7 copies of K4, and son =0 (mod 4). O

Theorem 6.4 Ifn > 8, then

RS, Wa) {Zn I ifn£0 (mod 4)
2n otherwise.

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.

Now let G be a graph that does not contain S, [4] and assume that G does not contain

Ws.

First, suppose that G has order 2n if n = 0 (mod 4) and G has order 2n — 1
if n is odd. By Theorem 1.4, G has a subgraph T = S§,(3). Let V(T) =
{vo, ..., vy—3, wi, wy} and E(T) = {vovy, ..., vovy—3} U {viw, viwy}. Set U =
V(G) —V(T)and V = {vp,...,v,-3}. Then |U| = n — j,for j =0ifn =0
(mod 4) and j = 1 if nis odd, and |V | = n — 4. Since G does not contain S, [4], v;
is not adjacent to any vertex of V in G, and each vertex of V is adjacent to at most
n — 6 vertices of U U V in G. Noting also that w; and w; each is adjacent to at most
one vertex of {wi, wp} U U in G, we consider two cases.

Case 1: At least one of w; and wj is not an isolated vertex in G[{w;, wy} U U].

Without loss of generality, assume that w; is adjacent to some vertex u € {w2}UU
inG.LetZ = (V UuUu {wz})\{u} and note that |Z| = 2n —4 — j. Since S,[4] SZ G,
wy is not adjacent to any vertex of Z in G. If §(G[Z]) > [2”747" 1, then G[Z]
contains Cg bg Lemma 4.1 which with wq, forms Wy in G, a contradiction. Therefore,
8(GIZ]) < [2571] — 1and A(GIZ]) = 254 ] = n —2 — j. Since each v of
V is adjacent to at most n — 6 vertices of U U V in G, and wy is adjacent to at most
one vertex of U in G, a vertex with maximum degree in G[Z] must be a vertex of
U\{u}. So let up be a vertex of U with dg[z)(u2) > n — 2. As §,[4] Q G, observe
that Ng[z)(u2) € U; each vertex of V is adjacent to at most one vertex of Ng(z)(u2)
in G; and each vertex of Ng[zj(u2) is adjacent to at most one vertex of V in G. Then
by Lemma 4.5, any four vertices from V and any four vertices from Ng[z](u2) form
Cs in G which with w; forms Wg in G, a contradiction.

Case 2: L Wy and wy are isolated vertices in G[{w, wp} U U].
If §(G[U]) > % J , then G[U] contains Cg by Lemma 4.1 which with w; forms

Wy, acontradlctlon Thus, 8(G[U]) < "7 — 1, and A(G[U)]) > "; .Letuj be a
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vertex of U with dg[y) > ";—’ Since S, [4] Q G, v is not adjacent to any vertex of
Ngiyj(u1) in G. Now, if vy is adjacent to some vertex u of Ngy(#1) in G, then apply
Case 1 with w; and u interchanged. So assume that v is not adjacent to any vertex of
Ngyy(u1) in G.

If E(V, Ngjyj(u1)) = @ in G, then any four vertices of V and any four vertices of
Ngu)(u1) form Cg in G, and with vy, form Wg in G, a contradiction. So without loss
of generality, assume that vy is adjacent to some vertex uy of Ngy(u1) in G. Since
S, [4] §Z G, u» is not adjacent to any vertex of U\{u1}. Then vg, v1, wi, wy and any
four vertices from U\{u1, u>}, at least three of which are from Ng(y(u1)\{u2}, form
Cs in G and, with u,, form Wy in G, a contradiction.

In either case, R(S,[4], Wg) < 2n forn =0 (mod 4) and R(S,[4], Wg) <2n—1
for odd n.

Next, suppose that n = 2 (mod 4) and G has order 2n — 1. If G contains a
subgraph S, (3), then the previous arguments show that R(S,[4], Ws) < 2n — 1.
Hence, we only need to consider the case where G does not contain S, (3). Now, by
Theorem 6.2, G has a subgraph T = S,,(4). Let V(T) = {vo, ..., vy—4, w1, wa, w3}
and E(T) = {vgvy, ..., voUy—g, V1w, V1w, Viw3}. Let U = V(G) — V(T); then
|U| = n — 1. Since G does not contain S, (3) and S, [4], vg is not adjacent in G to wy,
w2, w3 or U. Now, set U' = Nguugw, )] (w1) U NGuupw, 1 (w2) U NGuuqws)(ws).
Then |U’| < 3 and w, wy and w3 are not adjacent in G to any vertex of U\U’. By
Lemma 4.4, GIU\U'] is either K,,_j_y| or K,_1_jy — e. If dE[U\U’](”/) > 2 for
some vertex u’ in U’, then at least two vertices of U\U’ are not adjacent to ¢’ in G.
Let X be a set containing these two vertices and any other two vertices in U\U’, and
set Y = {wq, wy, w3, u’}. Note that G[X U Y] contains Cg by Lemma 4.5 which with
vo forms Wg, a contradiction. Therefore, every vertex of U’ is adjacent in G to at
leastn — 2 — |U’| vertices of U\U’. Hence, §(G[U]) > n — 5, and since S,[4] € G,
EG(T,U) = ¥.Now, if G[V (T)] contains Ss, then G contains Wg by Observation 4.3,
a contradiction. Therefore, §(G[V(T)]) > n — 4. By Lemma 6.3, G contains S,[4],
a contradiction. Thus, R(S,[4], W) <2n — 1 forn =2 (mod 4). O

Theorem 6.5 Ifn > 8, then

RS, (1.3). Wy) = 2n—1 ifn ;éO (mod 4);
2n otherwise.
Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.
Let G be any graph of order 2n if n = 0 (mod 4) and of order 2n — 1 ifn # 0
(mod 4). Assume that G does not contain S, (1, 3) and that G does not contain Ws. By
Theorem 6.4, G has a subgraph T = S,[4]. Let V(T) = {vo, ..., Vp—4, w1, wa, w3}
and E(T) = {vovy, ..., VoUp—4, w1V, wiwz, wiws}. Set V.= {va, ..., v,—4} and
U =V(G)—V(T).Since S, (1, 3) Q G, wy and w3 are not adjacent to each other, or
to any vertex in U U V. Since Cs ¢ G[U U V] as Wy ¢ G, Lemma 4.1 implies that
G[U U V] has a vertex u of degree at least n» — 3 in G[U U V]. Since S, (1, 3) Q G,
u € U and u is not adjacent to any vertices in V. Furthermore, E(V, Ng[y(1)) = 9.
Finally, note that w3, any 3 vertices in V and any 4 vertices in Ng[y](#) form Cg in
G which, with w, as hub, form Wg, a contradiction. O
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Theorem 6.6 Ifn > 8, then

2n—1 ifn#£0 (mod 4);
R(Ta(n), Wg) = / 7_é.
2n otherwise.
Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.
Let G be any graph of order 2n if n = 0 (mod 4) and of order 2n — 1 if n # 0
(mod 4). Assume that G does not contain 74 (n) and that G does not contain Wyg.

Suppose first that G hasasubgraph T = S,(3).Let V(T) = {vo, ..., vp—3, w1, w2}
and E(T) = {vgvy, ..., vv,—3, viwy, viwy}. Set V.= {vy, ..., v,-3} and U =
V(G) — V(T). Since G does not contain T4 (n), w; and w, are not adjacent to any
vertex of UUV in G.Let V' be the set of any n—5 vertices in V, and U’ be the set of any
n—1verticesin U.If §(G[U'UV’]) > n—3,then G[U'UV’'] contains Cg by Lemma 4.1
which, with w; as hub, form Ws, a contradiction. Therefore, s(G[U' U V']) <n — 4
and A(G[U'UV']) > n—3.Since Ta(n) € G,dguy(v) <n—6foreachv € V'.
Hence, some vertex u € U’ satisfies dgyruy/(u) > n — 3, which also implies that u
is adjacent to at least two vertices of U.

Since T4 (n) g G, each vertex of V is adjacent to at most one vertex of Ng[/)(u).
If |ING[y1(u)| = n — 4, then each vertex of Ng[y)(u) is adjacent to at most one vertex
of V,and so G[V U Ngruy(u)] contains Cg by Lemma 4.1 which with wy forms Wg,
a contradiction. Thus, at least three vertices of V' (and so of V), say vy, v3, v4, are
adjacent to # in G. Let a and b be any two vertices in Ng[y(u). As Ta (n) Q G, each
of vz, v3, v4 is not adjacent to any vertex of V(G)\{u, vo}. Then wivswyvzavibvaw,
and v, form Wg in G, a contradiction.

By Theorem 1.4, R(S,(3), Wg) < 2n for n = 0 (mod 4). So now assume that
G has order 2n — 1 with n #% 0 (mod 4) and that G does not contain S,(3). By
Theorem 6.2, G has a subgraph T = S,,(4). Let V(T) = {vo, ..., vy—4, w1, wa, w3}
and E(T) = {vgvy, ..., voUy—4, V1w, Vw2, viw3}. Then U = V(G) — V(T) and
|[U| =n — 1. Since T4 (n) g G, wi, wy, w3 are not adjacent to each other in G or to
any vertex of U. Since S3(n) g G, vg is not adjacent to any vertex of U U{w1, wa, w3}.
By Lemma 4.4, G[U]is K,,—1 or K,,_1 — e. Since T4 (n) ,¢_ G, each vertex of T is not
adjacent to any vertex of U in G, and so §(G[V(T)]) > n — 4 by Observation 4.3,
which in turn implies that G[V (T")] contains T4 (n) by Lemma 6.3, a contradiction.

This completes the proof of the theorem. O

Theorem 6.7 Ifn > 8, then

R(Tg(n). Wy) = 2n—1 ifn ;éO (mod 4);
2n otherwise.

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds.

Let G be a graph with no T (1) subgraph whose complement G does not contain Ws.

Suppose that n = 0 (mod 4) and that G has order 2n. By Theorem 6.4, G

has a subgraph T = §,[4]. Let V(T) = {vo, ..., Vp—a, w1, w2, w3} and E(T) =

{vovy, ..., VoUy—4, VIW], wiwo, wiw3}. Set V = {vy,...,vp—4}and U = V(G) —
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V(T);then |V| =n — 5 and |U| = n. Since Tp(n) Q G, Eg(U, V) = ¢ and neither
wy nor w3 is adjacent in G to V. Suppose that n > 12. If w; is non-adjacent to some
4 vertices from U, then these 4 vertices and any 4 vertices from V form Cg in G
that with w, forms Wg, a contradiction. Otherwise, w, must be adjacent to at least
n — 3 vertices of U in G. Since Tg(n) ¢ G, w3 must not be adjacent to these n — 3
vertices; then any 4 vertices from these n — 3 vertices and 4 vertices from V form Cg
in G and with w3 forms Wg, again a contradiction. Forn = 8§, [V| =3 and |U| = 8.
If w» is not adjacent to any vertex of U in G, then by Lemma 4.4, G[U] is Kg or
Kg — e which contains T3 (8), a contradiction. Otherwise, suppose that w» is adjacent
tou € U. Since Tp(8) ¢ G, w; must not be adjacent to (U U V)\{u} in G. Now, if w3
is not adjacent to vg in G, then by Observation 4.3, G contains Ws, a contradiction.
Otherwise, u is not adjacent to V U {w3}, and again by Observation 4.3, G contains
Ws, another contradiction. Thus, R(Tg(n), Wg) < 2n forn =0 (mod 4).

Next, suppose that n # 0 (mod 4) and that G has order 2n — 1. By Theorem 6.4,
G has a subgraph T = S,[4]. Let V(T) = {vo, ..., vp—4, w1, w2, w3} and E(T) =
{vovy, ..., VoUy—4, VIW], wiwo, wiws}. Set V = {vy,...,vp—4}and U = V(G) —
V(T);then |V| =n—5and |U| =n — 1. Since Tp(n) Q G,EgU,V)=0and
neither wy nor w3 is adjacent in G to V. For n > 9, if w, is non-adjacent to some 4
vertices from U, then these 4 vertices and any 4 vertices from V form Cg in G and
with w, form Wg, a contradiction. Otherwise, w; is adjacent to at least n — 4 vertices
of U in G. Since Tg(n) 5; G, w3 is not adjacent to these n — 4 vertices, so any 4
vertices from these n — 4 vertices and 4 vertices from V form Cg in G which with
w3 form Wg, again a contradiction. Therefore, R(Ts(n), W) < 2n — 1 forn # 0
(mod 4).

This completes the proof. O

Theorem 6.8 Forn > 8, R(T¢(n), Wg) =2n — 1.

Proof Lemma 6.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1 and assume that G does not contain 7¢(n) and
that G does not contain Wg.

Suppose first that there is a subset X € V(G) of size n with §(G[X]) > n — 4.
If §(G[X]) = n — 4, then let x € X be such that dg[x(x) = n — 4, and set ¥ =
X\({x} U Ng[xj(x)) where |Y| = 3. Noting that 3(n — 6) > n — 4 forn > 8, there
must be two vertices of Y that are adjacent to a common vertex of Ng[x(x) in G,
say to x € Ngpx](x). Then the remaining vertex of Y is not adjacent to any vertex
of Ngx)(x)\{x'}, as Tc(n) gZ G, contradicting 6 (G[X]) = n — 4. So 6(G[X]) >
n — 3. Pick any vertex x € X and any subset X' C Ngpxj(x) of size n — 3. Set
Y = X\({x} U X’) where |Y| = 2. As2(n — 5) > n — 3 for n > 8, the two vertices
of Y must be adjacent to a common vertex of X" in G, say x’. Then G[X'\{x'}] is an
empty graph as T¢ (n) SZ G, contradicting §(G[X]) > n — 3.

Now assume that §(G[X]) < n — 5 whenever X C V(G) is of size n. By The-
orem 1.4, G has a subgraph T = S,_1(3). Let V(T) = {vo, ..., vy—a, w1, w}
and E(T) = {vovy, ..., voVu—4q, viwy, viwa}. Set V. = {vo,v3,...,v,_4} and
U=V(G)—V(T);then|V|=n—5and|U| = n.Since Tc(n) £ G,Eg(U, V) = 0.

For the case n = 8 such that v; is not adjacent to any vertex of U in G, or the case
n > 9, there are four vertices of V(T') that are not adjacent to any vertex of U in G.
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Since §(G[U]) < n—5, G[U] contains Ss, and so G contains Wg by Observation 4.3,
a contradiction.

For the final case n = 8 with vy adjacent to some vertex u of U in G, observe that
since T¢ (8) {CZ G, the vertex u is not adjacent to any vertex of {vy, v3, v4} U U. By
Lemma 4.4, G[U\{u}] is K7 or K7 — e, which implies that no vertex of V (T') U {u} is
adjacent to any vertex of U\{u}in G, as T¢ (8) §Z G.Since §(G[V(T)U{u}]) <n-5,
G[V(T)U{u}] contains S5, and so G contains Wg by Observation 4.3, a contradiction.

This completes the proof of the theorem. O

Theorem 6.9 Forn > 8, R(S,(3, 1), Wg) = 2n — 1.

Proof Lemma 6.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain S, (3, 1) and that
G does not contain Ws.

Suppose first that there is a subset X C V(G) of size n with §(G[X]) > n — 4.
Let xo be any vertex of X, and pick a subset X’ C Ngx](xo) of size n — 4. Set
Y = X\({xo} U X’), and so |Y| = 3. Since §(G[X]) > n — 4, each vertex of Y is
adjacent to at least n — 7 vertices of X’ in G. For n > 10, it is straightforward to see
that there is a matching from Y to X’ in G; hence, G contains S, (3, 1), a contradiction.
Forn =9, if dg[x)(x0) = n —4 =5, then we can similarly deduce the contradiction
that G contains S9(3, 1), since in this case, each vertex of Y is adjacent to at least
n — 6 = 3 vertices of X" in G. As x( was arbitrary, we may assume for the case when
n = 9 that §(G[X]) > n — 3 = 6, which again leads to the contradiction that G
contains So(3, 1).

Now for n = 8, suppose dgixj(x0) = 4. Let X' = {x;,x2,x3,x4} and ¥ =
{xs, x6, x7}. Since 6 (G[X]) > n — 4 and Sg(3, 1) 5Z G, G[Y]is K3; all three vertices
of Y are adjacent to exactly two common vertices of X’ in G, say to x| and xj;
and neither x3 nor x4 are adjacent to any vertex of ¥ in G. By the minimum degree
condition, x3 and x4 are then adjacent in G, and each is also adjacent to both x; and
x3. This implies that G contains Sg(3, 1), with x| being the vertex with degree four, a
contradiction. As xo was arbitrary, assume for the case when n = 8 that §(G[X]) > 5,
which again leads to the contradiction that G contains Sg(3, 1).

Now assume that §(G[X]) < n — 5 whenever X C V(G) is of size n. Recall that
G has order 2n — 1, and so by Theorem 1.4, G has a subgraph 7' = S,,_1(2, 1). Let
V(T) = {vg, ..., v—4, wi, w2} and E(T) = {vgvy, ..., VoUy_4, Vw1, Vawr}. Set
V ={v3,v4,...,v,4}and U = V(G) — V(T); then |V| = n — 6 and |U| = n.
Since S,,(3, 1) ;(_ G, Eg(U,V) = @. Now as 8(G[U]) < n — 5, G[U] contains Ss,
and so for n > 10, G contains W3 by Observation 4.3, a contradiction.

Forn = 9, Theorem 1.4 shows that G has a subgraph T = Sg9(2, 1), so without loss
of generality assume that vg is adjacent to some vertex u in U. Since S9(3, 1) gé G,
G[V U {u}] is an empty graph and « is not adjacent to any vertex of U in G. By
Lemma 4.4, G[U\{u}] is Kg or Kg — e, which implies that no vertex of V (T) U {u} is
adjacentto any vertex of U\{u}in G, as Sy (3, 1) §Z G.Since §(G[V(TH)U{u}]) < n-5,
G[V(T)U{u}] contains S5, and so G contains Wg by Observation 4.3, a contradiction.

Finally for n = 8, recall that G has order 15, and so G has a subgraph 7’ = $;
by Theorem 1.1. Let V(T') = {vy, ..., vg} and E(T") = {vjv}, ..., vyvg). Set V' =
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{v],...,v5} and U" = V(G) — V(T"), then |U’| = 8. Suppose that v}, and v} are
adjacent to a common vertex u of U’ in G, while v] is adjacent to another vertex u’ # u
of U"in G. Thenas S3(3, 1) € G, no vertex of {v}, v§, vg} U (U"\{u, u'}) is adjacent
to any vertex of V/\{v{}in G. Now G[V'\{v}}] contains S5 and |U"\{u, u'}| = 6, and
so G contains Wg by Observation 4.3, a contradiction. Similar arguments lead to the
same contradiction when the roles of v{, v}, and v} are replaced by any three vertices
of V. So assume that it is not the case that two vertices of V/ are adjacent to a common
vertex of U’ in G while a third vertex of V' is adjacent to another vertex of U’ in G.

Forl <i <6,letd;, = |Eg({vlf}, U)| be the number of vertices of U’ that are
adjacent to vl(. Without loss of generality, assume that d; > d» > - - - > dg. Recalling
that §(G[U']) < 3 and so S5 € G[U’], Observation 4.3 implies that d3 > 1. If
dy > 3 and d» > 2, then it is trivial that G contains Sg(3, 1), a contradiction. By our
assumption on the adjacencies of vertices in V' to vertices of U’ in G, it is clear that
when (di, da, d3) is of the form (> 3, 1, 1), (2, 2, 2), or (2, 2, 1), there is a matching
from {v}, v}, vj} to U’ in G, as v} and v} are adjacent to different vertices of U’ in G.
This implies that G contains Sg(3, 1), a contradiction. If (d, d», d3) = (2, 1, 1), then,
similarly, vj and v} are adjacent to different vertices of U’ in G, say to u and u’,
respectively, which in turn implies that v} is adjacent to two vertices in U"\{u, u'}. So
G contains S3(3, 1), again a contradiction.

For the final case when di = d» = d3 = 1, our assumption implies that v/l,
v5 and v; must be adjacent to a common vertex u of U’ in G to avoid a matching
from {v], v3, v3} to U’ in G. Furthermore, no vertex of {v}, vy, vg} is adjacent to any
vertex of U'\{u} in G. Now if S5 C G[V'], then G contains Wg by Observation 4.3,
a contradiction. So §(G[V']) > 2, and in particular, v"1 is adjacent to some vertex
of V/ in G. Without loss of generality, v4 is adjacent to either v; or vs in G. Since
33, 1) € G, 5[{1);, v}, V5, vg}] contains Sy if v) is adjacent to v} in G, while
6[{1}6, v}, vy, v3}] contains Sy if v} is adjacent to v5 in G. By Lemma 4.4, G[U"\ {u}]
is K7 or K7 —e, which implies that no vertex of V (T”)U{u} is adjacent to any vertex of
U'\{u}in G, as Sg(3, 1) ;(_ G. Since §(G[V(T")U{u}]) < 3, G[V(T) U{u}] contains
Ss, and so G contains Wg by Observation 4.3, a contradiction.

Thus, R(S,(3, 1), Wg) <2n — 1 for n > 8 which completes the proof. O

7 Proof of Theorem 3.1
Lemma 7.1 Letn > 8. If the tree graph T, exists, then R(T,, Wg) > 2n — 1 for each
T, € {8, (1,4), $,(5), Suld], $,(2,2), Su(4, 1), Tp(n), ..., Ts(n)}.

Also, R(T,, Ws) > 2nifn =0 (mod 4) and T, € {Sn(1,4), Sy (2,2), Tp(n), Ty (n)}
orif T, € {TE(8), Tr(8)}.

Proof The graph G = 2K,_; clearly does not contain any tree graph of order n,

and G does not contain Ws. Furthermore, if n = 0 (mod 4), then the graph G =
Kn,—1 UKy, . 4 of order 2n — 1 does not contain S, (1, 4), Tp(n) or S, (2, 2); nor does
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the complement G contain Ws. Finally, the graph G = K7 U K4 4 does not contain
Tg(8) or Tr(8) and G does not contain Wy. O

Theorem 7.2 Ifn > 8, then

R(S, (1 4), Wy = 12071 Fn 20 mod 4
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no S, (1, 4) subgraph whose complement G does not contain
Ws. Suppose that G has order 2n if n = 0 (mod 4) and that G has order 2n — 1 if
n # 0 (mod 4). By Theorem 6.5, G has a subgraph T = S,(1,3). Let V(T) =
{vo, ..., Vy—4, w1, w2, w3} and E(T) = {vovy,..., VoUp—4g, V1W], WL W7, WrW3}.
SetV ={va,...,vy—a}and U = V(G)—V(T);then |V| =n—5and |U| = j where
j=nifn=0 (mod 4)and j =n —1ifn # 0 (mod 4). Since S, (1, 4) ;( G, w3 is
not adjacent in G to any vertex of U UV and dg[yuv)(v;) < n—7foreachv; € V. If
S(GIUU V) > f#] > #, then G[U U V] contains Cg by Lemma 4.1 and
thus Wy with w3 as hub, a contradiction. Therefore, §(G[U U V]) < f#] — 1l and
AGIUUVY) = n—5+j —["3H7 = |31 | > n—3. Since dgruuvy(vi) < n—7
foreach v; € V, dgyuv(u) > n — 3 for some vertex u € U. Since S, (1, 4) QZ G, no
vertex of V is adjacent to {u} U Ngiyuvi(#) in G.

For n > 9, any 4 vertices from V and any 4 vertices from {u} U Ng[yuv)(u) form
Cs in G and, with w3 as hub, form Wg, a contradiction. Suppose thatn = 8;then V =
{v2, v3, va). Let {uy, ..., us} be 4 vertices in Ngryuv(u). Since Sg(1, 4) gé G, w; is
not adjacent to Ngyuv(u). If wy is not adjacent to w3, then wiujvaurv3U3V4U4WY
and w3 form Wy in G, a contradiction. Therefore, w; is adjacent to w3 in G. Then
wy is not adjacent to any vertex of U U V in G. Since dgv(v;) < 1fori =2,3,4,
one of the vertices of V, say v, is not adjacent to the other two vertices of V. Then
uiwourwiu3v3uav4u and vo form Wg in G, acontradiction. Thus, R(S,(1,4), Wg) <
2n forn =0 (mod 4) and R(S,(1,4), Wg) <2n — 1forn £ 0 (mod 4).

This completes the proof. O

Theorem 7.3 Ifn > 10, then R(S,(5), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain S, (5) and that
G does not contain Wg. By Theorem 6.2, G has a subgraph T = S,,(4). Let V(T) =
{vo, ..., vy—a, wi, wy, w3} and E(T) = {vovy, ..., VoUy—4, VW1, V1W2, Viw3}. Set
V=A{va,v3,...,9p—4}and U = V(G) — V(T);then |V|=n—5and |U| =n — 1.
Since S, (5) g G, v is not adjacent to any vertex of U U V in G. Furthermore, for
each v; in V, v; is adjacent to at most three vertices of U in G.

Forn > 10,|V| > 5 > 4and |U| > 9 > 8. By Corollary 4.8, G[U UV contains Cg
which together with v| gives Wy in G, a contradiction. Thus, R(S,(5), Wg) < 2n — 1
which completes the proof. O

Theorem7.4 Ifn > 9, then R(S,[5], Wg) = 2n — 1.
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Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain S,[5] and that
G does not contain Wg. By Theorem 7.3, G has a subgraph T = §,,(5). Let V(T) =

{vo, ..., vy—5, wy, ..., wq} and E(T) = {vgvy, ..., voVy—5, VIW], ..., V1Wa}. Set
V={va,...,vp—5tand U = V(G) — V(T); then |V| =n—6and |U| =n — 1.
Since S,[5] 3Z G, vg is not adjacent to wy, ..., ws in G and wy, ..., wy are each

adjacent to at most two vertices of U in G. Now, suppose that vy is non-adjacent to
at least six vertices of U in G. By Corollary 4.7, six of these vertices together with
wi, ..., w4 contain Cg in G which with vg gives Wy in G a contradiction. Then,
suppose that vy is adjacent to at least n — 6 vertices of U in G. Choose a set U’
of n — 6 of these vertices. Since S,[5] ,@ G, v; is not adjacent to any vertex of
VUU' inG.If8(G[VUU’ ]) > n — 6, then by Lemma 4.1, G[V U U’] contains Cg
which with vy gives Wy in G, a contradiction. Therefore, §(G[V UU’]) <n —7 and
A(G[V UU']) > n — 6. However, this gives S,[5] in G with u and v; as the center of
Sn—5 and Ss, respectively, where u is a vertex in V U U’ with dgiyuy/(u) > n —6,a
contradiction. Thus, R(S,[5], Wg) < 2n — 1 which completes the proof. O

Theorem 7.5 Ifn > 8, then

RS, (2.2). Wy) = 2n—1 ifn 7—é0 (mod 4);
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Assume that G is a graph with no S,,(2, 2) subgraph whose complement G does not
contain Wg. Suppose that n = 0 (mod 4) and that G has order 2n. By Theorem 6.7,
G has a subgraph T = Tg(n). Let V(T) = {vo, . .., Vy—4, w1, w2, w3} and E(T) =
{vovy, ..., VoUp—4, VIW], Wiw2, LW3}. Set V = {v3, ..., v,—4}and U = V(G) —
V(T); then |V| = n — 6 and |U| = n. Since §,,(2, 2) 52 G, w3 is not adjacent in
G to U UV and v, is not adjacent to V. If §(G[U U V]) > Z”T_6 = n — 3, then
G[U U V] contains Cg by Lemma 4.1 which with w, forms Wg, a contradiction.
Therefore, S(E[U UV]) <n—4,and A(G[U U V]) > n — 3. Now, there are two
cases to be considered.

Case 1a: One of the vertices of V, say v3, is a vertex of degree at least n — 3 in
G[UUV].

Note that in this case, there are at least 4 vertices from U, say uy, ..., ug, that are
adjacent to v3 in G. Since S,(2,2) € G, these 4 vertices are independent and are not
adjacent to any other vertices of U. Since n > 8, U contains at least 4 other vertices,
say us, ..., ug, so ujususueusuyusugu and wz forms Wg in G, a contradiction.
Case 1b: Some vertex u € U has degree at leastn — 3 in G[U U V1.

Since S,(2,2) ¢ G, u is not adjacent to any vertex of V in G. Therefore, u
must be adjacent to at least n — 3 vertices of U in G. Without loss of generality,
suppose that uy, ..., u,—3 € Ng[yj(u). Note that V is not adjacent to Ngy(u), or
else there will be S, (2, 2) in G, a contradiction. If n > 12, then any 4 vertices from

v1(u) and any 4 vertices from V form Cg in G which, with w3 as hub, forms
Wg, a contradiction. Suppose that n = 8 and let the remaining two vertices be ug
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and u7. If ING[{u;,....us,u;) @i)] <1 fcgi = 6,7, then let X = {uy,...,uq} and
Y = {vs, v4, U, u7}. By Lemma 4.5, G[X U Y] contains Cg and, with w3 as hub,
forms Wg in G, a contradiction. Therefore, one of ug and u7, say ue, is adjacent to

at least two of uy, ..., us, say u1 and u>. Since Sg(2, 2) {CZ G, u7 is adjacent in G
to at least two of u3, uy, us, say u3 and uy4, and vy, ..., v4, wy are not adjacent in
Gtou,uy,...,us Now, if ws is not adjacent to some vertex a € {vg, v, w1}, then

uv3upvauzuuaau; and ws form Wy in G, a contradiction. Hence, w3 is adjacent to
vo, v1 and wy in G. Similarly, v, is not adjacent to u7 and v; is adjacent to v and wj.
Since Sg(2, 2) ¢_ G, w» is not adjacent to U U V, and w is not adjacent to V. Then
uivaurwiuzwouqwsu and vz forms Wg in G, a contradiction.

In either case, R(S,(2,2), Wg) < 2n.

Suppose that n # 0 (mod 4) and that G has order 2n — 1. By Theorem 6.7, G
has a subgraph T = Tp(n). Let V(T) = {vo, ..., vy—4, wi, wp, w3} and E(T) =
{vovy, ..., VoUy—4, VIW], Wiw2, wW3}. Set V = {v3,...,v,—4}and U = V(G) —
V(T);then |V|=n—6and |U| = n—1.Since S, (2, 2) §Z G, wz isnot adjacentin G

to UUV.If§(GIUUV]) > [2572], then G[U U V] contains Cs by Lemma 4.1 which

with w3 forms Wg, a contradiction. Therefore, § (E[U uv)] < [2”7_51 —1=n-23,
and A(G[U U V]) > n — 3. Again, there are two cases to be considered.

Case 2a: A vertex of V, say v3, has degree at leastn — 3 in G[U U V].

There must be at least 4 vertices from U, say uy, ..., us that are adjacent to v3
in G. Since S,(2,2) ¢ G, ui, ..., us are independent and are not adjacent to any
other vertex of U. Since n > 9, there are at least 4 other vertices of U, say us, ..., ug,
and ujususuguzuguausu; and wz form Wy in G, a contradiction.

Case 2b: A vertex u € U has degree at least n — 3 in G[U U V.

Since S,(2,2) Q G, no vertex of V is adjacent to u or to Ng[yj(u). Then u is
adjacent to at least n — 3 vertices of U in G; suppose without loss of generality
that uy, ..., u,—3 € Ngyj(u). If n > 10, then any 4 vertices from Ng[y(u), any 4
vertices from V and w3 form Wyg in G, a contradiction. Suppose that n = 9 and let u7 be
the vertex in U\{u, uy, ..., u,—3}. If u7 is adjacent in G to at least two of uy, ..., Uue,
say u1 and up, then ujujuvzuzvaugvsu; and wz form Wg in G, a contradiction.
Therefore, u7 is adjacent in G to at least 5 of the vertices uy, ..., ug, say uy, ..., us.
Since S9(2, 2) g G, U is not adjacent in G to {vg, vy, v2, w1} U V and wy is not
adjacent to u or u7. If w3 is not adjacent to some vertex a € {vg, vi, wi, wa}, then
uv3uvaurvsugau and ws form Wy in G, a contradiction. Hence, w3 is adjacent to vy,
vy, wy and wy in G. Similarly, v, is adjacent to v{, w; and wy. Since S9(2, 2) ¢_ G,
wy is non-adjacent to at least one of v3, v4, vs5, say vz without loss of generality.
If vy is also not adjacent to v3, then uwsru7viuv2urw3u and wi form Wy in G, a
contradiction. Thus, v is adjacent to v3, then v3 is not adjacent to both v4 and vs, or
else G contains S9(2, 2). Without loss of generality, assume that v3 is not adjacent to
vg in G. Then uwouyv4uivourwiu and wi form Wg in G, a contradiction.

In either case, R(S,(2,2), W) < 2n —1forn % 0 (mod 4), which completes the
proof. O

Theorem 7.6 Ifn > 9, then R(S,(4, 1), Wg) =2n — 1.
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Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain S, (4, 1) and that
G does not contain Wg.

Suppose first that there is a subset X € V(G) of size n with §(G[X]) > n — 4.
Let xo be any vertex of X, and pick a subset X' C Ngpxj(xo) of size n — 5. Set
Y = X\({xo} U X’), and so |Y| = 4. Since §(G[X]) > n — 4, each vertex of Y is
adjacent to at least n — 8 vertices of X’ in G and each vertex of X’ is adjacent to at
least one vertex of Y in G. Hence, for n > 11, it is straightforward to see that there is
a matching from Y to X’ in G; hence, G contains S, (4, 1), a contradiction.

Forn = 10 and §(G[X]) > n —4 =6,let X = {x¢,...,x9} and {x, ..., x6} C
Ngix)(xo). Since §(G[X]) > 6, vertices x7, xg and x9 must each be adjacent to at
least 3 vertices of xi, ..., xg. It is straightforward to see that there is a matching
from {x7, x3, x9} to {x1, ..., x¢} in G; without loss of generality, assume that x; is
adjacent to x;4¢ in G fori = 1, 2, 3. Now, if there is any edge in G[{x4, x5, x6}], then
S10(4, 1) € G, a contradiction. Otherwise, G[{x4, x5, X¢}] must be independent and
each of x4, x5, x¢ must be adjacent to at least two vertices of x7, xg, x9 in G. Without
loss of generality, assume that x4 is adjacent to x7 and xg in G. Since S10(4, 1) Q G,
x5 cannot be adjacent to x; and x» in G, but this is impossible since §(G[X]) > 6.

Now forn = 9, suppose that dg[x](x0) = n—4 = 5.Let Ng[x)(x0) = {x1, ..., x5}
and Y = {x¢, x7, xg}. Then, three vertices of Y are each adjacent to at leastn — 6 = 3
vertices of Ng[x](xo) in G. Without loss of generality, assume that x; is adjacent to
X6, X2 18 adjacent to x7 and x3 is adjacent to xg, respectively. Now, if x4 is adjacent
to x5, then G contains Sy9(4, 1), a contradiction. Otherwise, x4 and x5 must each be
adjacent to at least one of xg, x7 and xg. Assume that x4 is adjacent to x¢. Then x5
is not adjacent to x1 and x4 in G, or else G contains So(4, 1). If x5 is adjacent to xg,
then x1, x4, x5 must be independent in G, and they are each adjacent to x7 or xg in G;
assume that x; is adjacent to x7. Then, x4 and x5 are not adjacent to x, in G, and
since 6 (G[X]) > 5, they are adjacent to x7 and xg in G, and G contains So(4, 1), a
contradiction. If x5 is not adjacent to x¢, then since dgx](vo) > 3, x5 is adjacent to
X2, X3, x7 and xg in G. Then, x4 is not adjacent to x; and x3 in G, and x4 is adjacent
to x1, Xe, X7 and xg in G, and this gives us S9(4, 1) in G, a contradiction. As xy was
arbitrary, assume for the case when n = 9 that §(G[X]) > n — 3 = 6, which again
leads to the contradiction that G contains Sy (4, 1).

Now assume that §(G[X]) < n — 5 whenever X C V(G) is of size n. Recall that
G has order 2n — 1, and so by Theorem 6.9, G has a subgraph S, (3, 1) and thus
asubgraph T = S,_1(3,1). Let V(T) = {vo, ..., vy—5, w1, w2, w3} and E(T) =
{vovy, ..., VoUn—5, VIW1, V2w3, V3w3}. Set V = {v4,...,v,—s}and U = V(G) —
V(T) ={uy,...,uy};then |V| =n — 8 and |U| = n. Since S,,(4, 1) Q G, V is not
adjacent to any vertex of U in G. Now as §(G[U]) <n — 5, G[U] contains Ss, and
so forn > 12, G contains Wg by Observation 4.3, a contradiction.

Suppose that n = 11. If vy is not adjacent to any vertex of U in G, then G contains
Wg by Observation 4.3, a contradiction. Assume that vg is adjacent to some vertex
u € U.Since S11(4, 1) € G, G[V U{u}] is an empty graph and u is not adjacent to any
vertex of U in G. By Lemma4.4, G[U\{u}]is K19 or K19o—e, sono vertex of V (T)U{u}
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is adjacent to any vertex of U\{u} in G, as S11(4, 1) SZ G.Since §(G[V(T)U{u}]) <
n—>5,G[V (T)U{u}] contains Ss, so G contains Wg by Observation 4.3, a contradiction.

Now, suppose that » = 10. Then G has order 19, and by Theorem 2.2,
G has a subgraph T’ = S;o(3, 1) Let V(T = {vo, .. v6, w}, wh, wy} and
E(T) = {vyv], ..., vyvs, viw], vjw), vjws). Set V' = {v4, vs, v} and U’ =
V(G) — V(T = {ul, .. u9} Since Si0(4, 1) Q G, V' must be independent in
G and is not adjacent to any vertex of U’ in G. If v, is adjacent to some vertices in U’
in G, say u. Since Sio(4, 1) ¢ G, u’, is not adjacent to any vertex of V' or U’\{u’l}
in G. Then, by Lemma 4.4, G[U’ \{”1}] is Kg or Kg — e, so no vertex of V(T') is
adjacent to any vertex of U’ \{”1} in G, as Sjo(4, 1) ;(_ G. Since §(G[V(TH] <5,
G[V(T")] contains S5, so G contains Wg by Observation 4.3, a contradiction. Now,
suppose that v, is not adjacent to any vertex of U’ in G. Note that U’ U {w}}| = n;
therefore, §(G[U'U{w}}]) < 5,and so G[U'U {w]}] contains Ss. If w is not adjacent
to any vertex from V' U {v;}, then by Observation 4.3, G contains W, a contradiction.
Otherwise, there are two cases to be considered.

Case 1a: w] is adjacent to some vertices of V' in G.

Without loss of generality, assume that w] is adjacent to v} in G. In this case, v}
is not adjacent to U’ U {vg, vg}. Then by Lemma 4.4, G[U'] is K9 or K9 — e, so
no vertex of V(7’) is adjacent to any vertex of U’ in G, as Sjo(4,1) ¢ G. Since
S(GLV(T")]) <5, G[V(T")] contains Ss, and so G contains Wg by Observation 4.3,
a contradiction.

Case 1b: w is non-adjacent to each vertex of V' in G.

In this case, wj is adjacent to v, in G. Note that w) is not adjacent to U’, since
this would revert to the case where v, is adjacent to some vertex of U’. Then again by
Lemma 4.4, G[U'] is Kg or K9 — e, so no vertex of V(T’) is adjacent to any vertex
of U'in G, as S04, 1) € G. Since §(G[V(T)]) <5, G[V(T")] contains S5, and so
G contains W3 by Observation 4.3, a contradiction.

Finally, suppose that n = 9. Then G has order 17, and so G has a subgraph
T'" = S9(2,1) by Theorem 1.4. Let V(T') = {v, ..., v, wi, wy} and E(T') =
{vgv], ..., vyug, Viwy, vows}. Set V! = {v], ..., v} and U = V(G) — V(T') =
{u, ..., ugh

Now, suppose that Eg(V', U’) # ). Without loss of generality, assume that v} is
adjacent to u} in G. Since S9(4, 1) € G, v}, vg, vg are independent and not adjacent
to any vertex of U'\{u} in G.

Suppose that v, is adjacent to some vertex of U’\{u}, say u}. Then u) is non-
adjacent to {v}, vg, vg} UU'\{u}, u5} in G. Since 8(G[{w], wy} U U \{u5}]) < n—35,
5[{w/1, wj} U U"\{u}}] contains Ss. If v, v, vg and u, are not adjacent to w}, w or
”/1 in G, then G contains Wg by Observation 4.3, a contradiction. Assume that v"L is
adjacent to w} in G. In this case, v} is not adjacent to {v5, vg} U U'\{u} in G, and
vijusvyuyveususuguy and vg form Wy in G, a contradiction. Similar contradictions
occur if we assume that vg, vg or u, are adjacent to w/, wj or u) in G.

Thus, v; is not adjacent to any vertex of U’\{u} in G. Since §(G[{w], w)} U
U\{u}}]) <n =35, G[{w], wh} U U'\{u}}] contains Ss. If v, v}, v§ and v} are not
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adjacent to u/l or wé in G, then G contains Wg by Observation 4.3, a contradiction.
There are two cases to be considered.
Case 2a: v is adjacent to w} or w5 in G.

Without loss of generality, assume that v, is adjacent to w} in G. Note that v} and
w) are not adjacent to U"\ {u }, since this would revert to the case where v, is adjacent
to some vertex of U’\{u}}. Again, since §(G[{w3} UU']) < n —5, 6[{w’2} UU'Y
contains Ss. If v, v}, vy and vy are not adjacent to w5 and u} in G, then G contains
W3 by Observation 4.3, a contradiction.

Suppose that v} is adjacent to w) or u/, say w), in G. If w] is not adjacent to
vy, vs or vg, then by Lemma 4.4, G[U'\{u}}] is K7 or K7 — e, so no vertex of
V(T') U {u}} is adjacent to any vertex of U'\{u} in G, as So(4,1) ¢ G. Since
S(GLV(T")]) < n—>5,G[V(T")] contains S5, and so G contains Wg by Observation4.3,
acontradiction. Otherwise, w] is adjacent to atleast one of vy, v5, vg in G, say v},. Then,
v} is not adjacent to {v, vg} U U'\{u/}, since G does not contain So(4, 1). Similarly,
by Lemma 4.4, G[U'\{u}}]is K7 or K7 — e, so no vertex of V(T") U {u}} is adjacent
to any vertex of U'\{u}} in G, as So(4, 1) € G. Again, since §(G[V(T")]) <n —5,
G[V(T")] contains Ss, and so G contains Wg by Observation 4.3, a contradiction.

Now suppose that v/ is non-adjacent to both w5, and u} in G. Then, one of vy, v§, vg
is adjacent to w), or u) in G. Without loss of generality, assume that v} is adjacent
to wj in G. In this case, v is not adjacent to {v;, vg} U U’\{u}}. Then, again, by
Lemma 4.4, G[U'\{u}] is K7 or K7 — e, so no vertex of V(T") U {u}} is adjacent to
any vertex of U'\{u}}in G, as S9(4, 1) € G. Since §(G[V(T")]) <n —35, G[V(TH]
contains Ss, and so G contains Wy by Observation 4.3, a contradiction.

Case 2b: v, is non-adjacent to both w} and w} in G.

In this case, one of v}, vg, vg is adjacent to w} or wj in G, say vy to w] in G.
Since So(4,1) € G, v} is not adjacent to {v%, vg} U U'\{u}} in G. By Lemma 4.4,
G[U"\{u}}]is K7 or K7 — e, so no vertex of V(T") U {u} is adjacent to any vertex of
U\{u|}in G, as So(4,1) € G. Since §(G[V(T")]) <n —35, G[V(T")] contains Ss,
and so G contains W3 by Observation 4.3, a contradiction.

Now suppose that Eg(V', U") = @. If §(G[V’]) = 0, then by Lemma 4.4, G[U’]
is Kg or Kg — e, and no vertex of V(T’) is adjacent to any vertex of U’ in G, as
So(4,1) € G. Since §(G[V(T)]) <n -5, G[V(T")] contains S5, and so G contains
Ws by Observation 4.3, a contradiction. Hence, §(G[V']) > 1, and since S9(4, 1) ;(_ G,
one of the vertices in V' is adjacent to other three in G. Without loss of generality,
assume that v} is adjacent to v}, v and vg in G. Since G does not contain So(4, 1),
vy, V5, vg are independent in G. Furthermore, v is not adjacent to U’ in G or else
this reverts to the case where v} is adjacent to « and vy, is adjacent to any vertex of
U'\{u}}. Since § (G[{w}}UU']) < n—5, 5[{10’1 }UU'] contains Ss. If vy, v}, v5 and vg
are non-adjacent to w’1 in G, then G contains Wy by Observation 4.3, a contradiction.
Again, there are two cases to be considered.

Case 3a: v is adjacent to w} in G.

Note that v} and w) are not adjacent to U’, or else this reverts to the case where v}

is adjacent to u/ and v is adjacent to any vertex of U"\{u/}. Now, since 8§(G[{w}} U
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Ul <n-35, E[{wé} U U'}] contains Ss. If v, vy, v5 and vg are non-adjacent to w,
in G, then G contains W3 by Observation 4.3, a contradiction.

Suppose that vy, is adjacent to w5 in G. Again, v, and w/, are non-adjacent to U’,
or else else this reverts to the case where v} is adjacent to u} and v, is adjacent to
any vertex of U'\{u}}. Now, Eg(V(T"),U’) = @, and since §(G[V(T")]) < n — 5,
G[V(T")] contains Ss, and so G contains Wg by Observation 4.3, a contradiction.

Therefore, w} is adjacent to at least one of v}, v5 and vy in G, say vj. Then, v} is not
adjacent to vy, vg or U', as So(4, 1) ¢ G,acontradiction. By Lemma 4.4, G[U'] is K3
or Kg — e, so no vertex of V(T") is adjacent to any vertex of U’ in G, as So(4, 1)  G.
Again, since 8(G[V(T")]) <n — 5, G[V(T")] contains Ss, and so G contains Wg by
Observation 4.3, a contradiction.

Case 3b: v, is not adjacent to w} in G.

In this case, one of v}, v§, vg is adjacent to w} in G, say vj. Since So(4, 1) 7 G,
v} is not adjacent to v, v; or U’ in G. By Lemma 4.4, G[U'] is Kg or Kg — e, so no
vertex of V(T") U {u/} is adjacent to any vertex of U’ in G, as S9(4, 1) € G. Since
S(G[V(T")]) < n—5,G[V(T")] contains S5, and so G contains Wg by Observation4.3,
a contradiction.

Thus, R(S,(4, 1), Wg) < 2n — 1 for n > 9 which completes the proof. O

Theorem 7.7 Ifn > 8, then

2n—1 ifn#0 (mod 4);

R(Tp(n), Wg) = .
2n otherwise.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no Tp(n) subgraph whose complement G does not contain
Wg. Suppose that n = 0 (mod 4) and that G has order 2n. By Theorem 6.2, G
has a subgraph T = S,[4]. Let V(T) = {vo, ..., Uy—4, wy, w2, w3} and E(T) =
{vovy, ..., VoUy—4, VIw], wiwo, wiw3}. Set V = {vy, ..., vy4}and U = V(G) —
V(T);then |V| =n—5and |U| = n. Since Tp(n) ,d_ G, neither wy nor w3 is adjacent
inGtoUUYV.

Suppose that n = 8. Since G does not contain Tp(n), V must be independent and
non-adjacent to U in G. Then for any vertices uy, ..., ug in U, v3uvaurwou3zwinqv3
and v, form Wy in G, a contradiction. Suppose that n > 12. Then [U U V| = 2n — 5.
If §(GIU U V]) > [2272], then G[U U V] contains Cg by Lemma 4.1 which with
wy forms Wg, a contradiction. Thus, S(E[U uv) < f#} —1 =n-3, and
A(G[U U V]) = n — 3. Now, there are two cases to consider.

Case 1: One of the vertices of V, say vy, is a vertex of degree atleastn —3in G[UUV].

Since Tp(n) Q G, vy is not adjacent in G to wy, w3 or U U V\{vy}. Let U’ =
{w2, w3} UU U V\{}; then |U’| = 2n — 4. Now, if §(G[U']) > 252 = n — 2, then
G[U'] contains Cg by Lemma 4.1 which with v; forms Wjs, a contradiction. Hence,
8(G[U']) <n —3,and A(G[U']) > n — 2. Note that neither w, nor w3 have degree
A(G[U']). Therefore, dgiy (') > n — 2 for some vertex u’ € U U V\{vz}. By the
Inclusion-Exclusion Principle, some vertex a € U U V\{v;} is adjacent in G to both
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1’ and vy. Then G has a subgraph T () in which u’ is the vertex of degree n — 5 and
vy is the vertex of degree 3, a contradiction.
Case 2: Some vertex u € U has degree at least n — 3 in G[U U V.

Suppose that there is at least one vertex in V that is adjacent to u in G, say va. Then
G has a subgraph Tp(n) in which u is the vertex of degree n — 5 and vy is the vertex
of degree 3, a contradiction. Similarly, no other vertex of V is adjacent to u. Now,
since Tp(n) € G, dGNgi v (v) < 1 and dgyugy(x) < 1, forany v € V and
x € Ngpy)(u). Then, by Lemma 4.5, G[V U NGy (u)] must contain Cg, which with
w» as hub, forms Wy in G, a contradiction.

Now, suppose that n # 0 (mod 4) and that G has order 2n — 1. By Theorem 6.4,
G has a subgraph T = §,[4]. Let V(T) = {vo, ..., Vp—4, w1, w2, w3} and E(T) =
{vovy, ..., VoUp—4, Viw], wiwo, wiw3}. Set V = {vy, ..., vy4}and U = V(G) —
V(T);then |V| = n —5and |U| = n — 1. Since Tp(n) Q G, neither wy nor w3
is adjacent to U U V in G. If §(G[U U V]) = 2% = n — 3, then G[U U V]
contains Cg, by Lemma 4.1, which with w, forms Wy in G, a contradiction. Thus,
§(GIUU VY] <n —4,and A(G[U U V]) > n — 3. The arguments of the preceding
cases then lead to contradictions.

Thus, R(Tp(n), Wg) < 2n, which completes the proof. O

Lemma 7.8 Each graph H of order n > 8 with minimal degree at least n — 4 contains
Te(n) unlessn = 8 and H = K4 4.

Proof Let V(H) = {uy, ..., u,—1}. First, suppose that A(H) > n — 3 and assume
without loss of generality that uy, ..., u,—3 € Ny (up). Suppose that u,,_» and u,_
are adjacentin H. Since §(H) > n—4, Ny (uo) N Ny (1,,—2) # ¥, so assume without
loss of generality that u; is adjacent to u,,_, in H. Furthermore, x| must be adjacent
to at least n — 7 vertices from {u5, . .., u,—3} in H. Without loss of generality, assume
that u is adjacent to u», ..., u,—¢ in H. Now, if any vertex of {us, ..., u,—¢} is
adjacent to uy,_s, uy—4 or u,—3 in H, then we have Tg(n) in H. Suppose that is not
the case; then each vertex of {us, ..., u,_q} must be adjacent to each other and to ug,
uy, uy—p and u,_1 in H. Since dg (u,—3) > n — 4, u,_3 is adjacent to at least one of
uy, uy—o and u,_1 in H, so H contains Tg(n), a contradiction.

Suppose that u, > is not adjacent to u,— in H. Since §(H) > n — 4, u,_» and
u,—1 are each adjacent to at least n — 5 vertices in Ny (ugp), so at least one vertex
of Ny (uo), say ui, is adjacent in H to both u,_> and u,_1. If H[{uo, ..., uy,—3}]
contains subgraph 2K», then H contains subgraph Tg (n). Note that this will always
happens for n > 11, since 6(H) > n — 4.

Suppose that n = 10. Since §(H) > 6, u, must be adjacent in H to at least two
vertices of u3, ..., u7, without loss of generality say u3 and u4. If H[{ua4, ..., u7}]
contains any edge, then H contains Tg(10). Otherwise, {ua, ..., u7} must be inde-
pendent in H and each of these vertices must be adjacent to ug, uy, uy, u3, ug and uog;
this also gives a subgraph Tg(10) in H.

Similarly, for n = 9, u» must be adjacent to at least one of us, ..., ug, say u3,in H.
If H[{u4, us, ue}] contains any edge, then H contains Tg(9). Otherwise, {ua4, us, ug}
is independent in H and since 6(H) > 5, u4 is adjacent to at least one of u; and us,
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and us is adjacent to at least one of u7 and ug. Again, this gives a subgraph Tg(9) in
H.

Forn = 8, if us, ..., us are independent in H, then they are each adjacent to uo,
u1, ug and u7 in H, which gives Tg(8) in H. Otherwise, we can assume that uy is
adjacent to us in H. If uy is adjacent to us in H, we will have Tg (8) in H; otherwise,
assume that u4 is not adjacent to us5. Now, suppose that u4 is adjacent to u or u3 in
H. If us is adjacent to ug or u7 in H, then H contains Tg (8). Otherwise, us must be
adjacent to uq, u, up and us since 6(H) > 4. However, this also gives Tg(8) in H.
On the other hand, suppose that u4 is adjacent to neither u, nor u3 in H. Similarly, us
is not adjacent to u> or to u3 in H. Since 6 (H) > 4, both u4 and u5 must be adjacent
to ug, u1, ue and u7 in H, and this also gives Tg(8) in H.

Suppose that H is (n — 4)-regular and that Ny (uo) = {uy, ..., uy—4}. By the
Handshaking Lemma, this only happens when # is even.

Suppose that n > 10. Note that u,_3, u,— and u,_ are each adjacent to at least
n — 6 vertices of Ny (uo) in H. By the Inclusion—-Exclusion Principle, at least one of
ui, ..., uy—q is adjacent to two of u,_3, u,_», u,—1 in H, say uy to u,_3 and u,_s,
and there must be another vertex, say u2, that is adjacent to u,,_ in H. Now, if there is
any edgein H[{us, ..., uy—a}],then Tg(n) € H, and this always happens forn > 12.
For n = 10, since dy (u1) = 6, u; is non-adjacent in H to at least one of u3, ..., ue,
say u3. Since dy (u3) = 6, u3 is adjacent to one of uq, us, ug, giving Tg(10) in H.

Now suppose that n = 8. If us, ug and u7 are independent in H, then H = Ky 4.
Otherwise, we can assume that u5 is adjacent to ug in H. If us is also adjacent to u7
in H, then us is adjacent in H to two vertices of Ny (uo), say u1 and u,. Suppose
that ug is adjacent to uy or up, say uy, in H. Since dy (ug) = 4, ug is also adjacent
to at least one of us, u3, ua, u7, so Tg(8) € H. Otherwise, suppose that neither ug
nor u7 is adjacent to u or up in H. Since H is a 4-regular graph, ue and u7 are both
adjacent to u3 and u4 in H, and u is adjacent to at least one of u3 and u4 in H. This
gives Tg(8) in H. On the other hand, suppose that 5 is not adjacent to #7 in H. Then,
similarly, ue is not adjacent to u7 in H, so u7 is adjacent to u1, up, u3 and u4 in H,
and H contains Tg (8). ]

Theorem 7.9 Forn > 8,

2n—1 ifn>09;

R(Te(n), W) = 16 ifn =8

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1 if n > 9 and of order 16 if n = 8. Assume that G
does not contain Tg (n) and that G does not contain Wy.

By Theorem 6.9, G has a subgraph T = §,(3,1). Let V(T) =
{vo, ..., Vy—4, wy, w2, w3} and E(T) = {vgv1, ..., VoUy—4, V1W], V2W2, V3W3}. Set
V=Av4,...,vy4}and U = V(G) — V(T). Then |V| =n —Tand |U| > n — 1.
Since Tk (n) Q G, each of vy, va, v3 is not adjacent to any vertex of V U U in G,
and each vertex of V is adjacent to at most one vertex of U in G. Let W be a set of
n — 2 vertices of U that are not adjacent to v4 in G. By Lemma 4.4, G[W] is K,,_»
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or K,,_» —e. Since Tg(n) SZ G, no vertex of T is adjacent to any vertex of W, and so
8(G[V(T)]) = n — 4 by Observation 4.3.

Lemma 7.8 implies that G[V (T)] contains Tg (n) if n > 9, a contradiction, and so
n =8and G[V(T)] = K44. Note that |U| = &, and as T£(8) SZ G, no vertex of U is
adjacent to any vertex of G[V(T')]. By Lemma 4.4, G[U] is Kg or K3 — e, and thus
contains Tg (8), a contradiction.

Therefore, R(Trg(n), Wg) < 2n — 1 whenn > 9 and R(Tg(n), Wg) < 16 when
n=28. O

Lemma 7.10 Each graph H of order n > 8 with minimal degree at least n —4 contains
Tr(n) unlessn = 8 and H = K4 4.

Proof Let V(H) = {ug,ui...,u,—1} so that d(ug) = 6(H) and V =
{ur, ..., un—a} € N(up). Set U = {uy—3,upn—3, uy—1}. By the minimum degree
condition, every vertex of U is adjacent to at least n — 6 vertices of V. It is straightfor-
ward to see that some pair of vertices in U have a common neighbour in V. Moreover,
for n > 9, every pair of vertices in U has a common neighbour in V.

Assume without loss of generality that u; is adjacent to both u,_3 and u,_;, and
that u; is adjacent to u,_1. If u; is adjacent to a vertex of V\{u1}, which is the case
when n > 10, then H contains Tr(n). Assume now that n < 9 and that u, is not
adjacent to any vertex of V\{u}.

For the case whenn = 9, u,,_ is adjacent to at least n — 6 = 3 vertices of V, and so
it is adjacent to another vertex, say to #3. As above, assume that u3 is not adjacent to
any vertex of V\{u}. By the minimum degree condition, each of u» and u3 is adjacent
to every vertex of {u1} U U, giving Tr(9) in H.

For the final case when n = 8, the minimum degree condition implies that u; is
adjacent to at least two vertices of {u1, us, ue}. If us is adjacent to u1, then H contains
Tr(8). Remaining is the case when u; is not adjacent to u but is adjacent to both us
and ug. Exchanging the roles of u and uy, we may assume that u is adjacent to u7;
but not adjacent to any vertex of V. From the minimum degree condition on u3 and
u4, it is easy to see that either H contains 7r(8) or H = K4 4. O

Theorem 7.11 Forn > §,

2n—1 ifn>09;
R(T , Wg) = -
(Tr(n), Ws) 16 ifn=8.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no Tr(n) subgraph whose complement G does not con-
tain Wg. Suppose that n = 8 and that G has order 16. By Theorem 6.8, G
has a subgraph T = T¢(8). Let V(T) = {vo, ..., vs, w1, w2, w3} and E(T) =
{vovy, ..., vovg, Viwy, Vowo, Vyw3}. Set U = V(G) — V(T) = {ui, ..., ug}; then
|U| = 8. Since Tr(8) Q G, v is not adjacent in G to vy, v3, v4 or any vertex of U,
and dgyj(v) < 1for v = v3, v4, wo, w3.

Suppose that v is adjacent to wy or w3, without loss of generality say w;. Since
Tr(8) Q G, vy isnotadjacentto {v3, v4}UU. If neither v3 nor v4 are adjacent to U, then
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by Lemma4.4, G[U]is Kg or Kg—e,so G[U] contains Tr (8), acontradiction. Suppose
that only one of the vertices v3 and v4 is adjacent to U in G, say v3. By Lemma 4.4,
G[U\{u1}]is K7 or K7 — e, and G[V(T) U {u1}] is not adjacent to G[U \{u}]. By
Observation 4.3, §(G[V(T) U {u1}]) = 5, and by Lemma 7.10, G[V(T) U {u1}]
contains Tr(9) and hence TFr(8), a contradiction. Suppose that both v3 and v4 are
adjacent to U in G and assume that v3 is adjacent to u; and that v4 is adjacent
to up. By Lemma 4.4, G[U\{u1, uz}] is K¢ or K¢ — e. At most one vertex from
GV (T)U{uy, uz}lisadjacentto G[U\{u1, uz}] orelse G contains Tr (8). Therefore, 9
vertices from G[V (T)U{u1, un}] form a vertex set W thatis notadjacentto U \{u1, u>}.
By Observation 4.3, §(G[W]) > 5, and by Lemma 7.10, G[W] contains Tr(9) and
hence Tr(8), a contradiction.

Suppose then that vy is not adjacent to wy or w3. Since dg[yj(v) < 1 forv =
v3, V4, W2, w3, there are 4 vertices from U that are not adjacent to {v3, v4, wo, w3}.
These 8 vertices form Cs in G and thus, with v; as hub, Wg, a contradiction.

Thus, R(TF(8), Wg) < 16.

Now, suppose that n > 9 and that G has order 2n — 1. By Theorem 6.8, G has
a subgraph T = T¢(n). Let V(T) = {vo, ..., Vp—4, V4, wi, wp, w3} and E(T) =
{vovy, ..., VoUy—4, VIW], V2wy, V2w3}. Set V = {v3,...,vy—4}and U = V(G) —
V(T) = {uy,...,up—1}; then |V = n— 6 and |U| = n — 1. Since Tr(n) g G,
vy is not adjacent in G to any vertex of U U V, and dg[y1(v) < 1 for v € V. Since
n > 10, there are 4 vertices from U, 4 vertices from V and v; that form Wg in G, a
contradiction. Thus, R(Tr(n), Wg) < 2n — 1 forn > 10.

Suppose that n = 9 and let m be the number of vertices of U that are adjacent
in G to at least one vertex of V. Since dg[yj(v) < lforv e V,0 <m < 3. If
m = 0, then G[U] is Kg or K§ — e by Lemma 4.4, so G[V(T)] is not adjacent
to G[U]. By Observation 4.3, §(G[V(T)]) > 5, and G[V(T)] contains Tr(9) by
Lemma 7.10, a contradiction. Suppose that m = 1. Assume without loss of generality
that 1 is adjacent to some vertex of V, and that Eg(V, U\{u1}) = . By Lemma 4.4,
G[U\{u1}] is K7 or K7 — e, and at most one vertex from G[V (T) U {u}] is adjacent
to G[U\{u1}] or else G contains Tr(9). There are then 9 vertices from G[V (T) U
{u1}] that form a vertex set W that is not adjacent to U\{u}. By Observation 4.3,
3(G[W1]) = 5, and G[W/] contains Tr(9) by Lemma 7.10, a contradiction. Suppose
that m = 2. Assume that u; and uy are adjacent to some vertices of V and that
Eg(V,U\{u1,u2}) = #. By Lemma 4.4, G[U\{u1,uz}] is K¢ or K¢ — e. If at
least three vertices in U\{u, up} are adjacent to V(T) U {u1}, then Tr(9) € G.
If at most two vertices in U\{u1, u,} are adjacent to V(T') U {u1}, then there are
4 vertices in U\{u1, uy} that are not adjacent to V(7). Then Observation 4.3 gives
3(G[V(T)]) = 5, and G[V(T)] contains Tr(9) by Lemma 7.10, a contradiction.
Suppose that m = 3. Assume that u1, us, u3 are each adjacent to some vertex of V
and that Eg(V, U\{u1, uz, u3}) = @. Without loss of generality, assume that u; is
adjacent to v;4o fori = 1,2,3. By Lemma 4.4, G[U\{u1, uz, u3}] is Ks or K5 — e.
Since Tr(9) Q G, {v1, v3, v4, v5} is independent and V (T)\{w;} is not adjacent
to U\{u1, uz, u3}. Then by Observation 4.3, §(G[V (T)\{wi}]) > 4, and vy, v3, v4
and vs are each adjacent to vy, wy and w3 in G. This gives TF(9) in G. Therefore,
Tr(9) <17 =2n-—1. m]
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Theorem 7.12 Ifn > 8, then R(Tg(n), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 21 — 1. Assume that G does not contain 7 (1) and that G
does not contain Wg. By Theorem 6.9, G has a subgraph T = S,,(3, 1). Let V(T) =
{vo, ..., Vy—a, wi, wy, w3} and E(T) = {vovy, ..., VoUy—4, VW1, VW2, V3W3}. Set
V ={v4,v5,...,0p—4}and U = V(G) — V(T);then |V|=n—Tand |U| =n — 1.
Since T (n) SZ G, wi, wy, w3z are not adjacent to U U V in G, and vy, vz, v3 are not
adjacentto V.

Suppose that n > 9; then |U| > 8. If §(G[U]) > %, then G[U] contains
Cg by Lemma 4.1 which, with wy as hub, forms Wg, a contradiction. Therefore,
S(GIU) < %, and A(G[UUV]) > % > 4. Therefore, some vertex u € U satis-
fies [NGg[u1(u)| > 4. Since T (n) 7,@ G, Ngu1(u) isnotadjacentin G to Ng[v (1)) (Vo).
Hence, 4 vertices from Ng[y)(u), vi, v2, v3, wi and any vertex from V form Wy in
G, a contradiction. Thus, R(Tg(n), W) <2n — 1 forn > 9.

Suppose that n = 8 and let U = {ujy,...,u7} and W = {vg} U U. If
S(E[W]) > 4, then G contains Cg by Lemma 4.1 and thus Wg, with w; as hub,
a contradiction. Therefore, 5(6[W]) < 3, and A(G[W]) = 4. Now, suppose that
dgiwi(vs) > 4. Then without loss of generality, assume that uy, ..., us € Ng(vs).
Then uy, ..., usq, wi, wo, wz are independent and are not adjacent to us, ug or u7,
giving Wg, a contradiction. On the other hand, suppose that some vertex in U,
say up, satisfies dgwy(u1) > 4. Then vy4 is not adjacent to u; therefore, assume

that up,...,us € Ng(up). Then vy, ..., v4 are not adjacent to {uy, ..., us}, so
viuvaupyvzuswiugvy and vg form Wy in G, a contradiction. Thus, R(T7(8), Wg) <
15. O

Lemma 7.13 Each graph H of order n > 8 with minimal degree at least n —4 contains
Ty (n), Tk (n) and T (n).

Proof Let V(H) = {ug,...,un—1} where uy,...,un—4 € Ng(ug). Suppose that
Up—3, Up—3 OF Uy_1, SAY U,—3, 1S adjacent in H to the two others.

Since 6(H) > n — 4, u,—3 is adjacent to at least one of uy, ..., up—a, say uy. lf u;
is adjacent to another vertex in {us, ..., u,—4}, then H contains Tk (n). Note that this
always happens for n > 9. Suppose that n = 8 and that u is not adjacent to any of
uz, usz, us. Then ug is adjacent to ug and u7. Since §(H) > n — 4, u; is adjacent to at
least one of us, ug, u7, giving Tx (n) in H.

Similarly, since §(H) > n — 4, u,—> is adjacent to at least n — 7 vertices of

{ur, ..., u,—a}. Suppose that u, _5 is adjacent to u;. If n > 10, then at least two of
uz, ..., u—qa are adjacent, so H contains Ty (n). If n > 9, then u; is adjacent to at
least one of uy, ..., u,—_4, so H contains 7z (n). Now suppose that n = 9. If any of
uz, ..., us are adjacent to each other, then H contains Ty (9). Otherwise, us, ..., us

are each adjacent to ug, u7 and ug, and so H contains Ty (9). Finally, suppose that
n = 8. If any two of us, u3, us are adjacent, then H contains Ty (8); otherwise, they
are each adjacent to ug or u7. Now, if u; is adjacent to any of uj, u3, us, then H
contains Ty (8). Otherwise, uy, ..., usq are each adjacent to us, ug and u7, and H also
contains Ty (8). Furthermore, if u| is adjacent to uy, u3 or u4, then H contains 77, (8).
If u is not adjacent to u», u3 or ug, then ug, u7, ug are adjacent to us, us, u4, and then
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H contains T7,(8). Now if u,,_» is adjacent to some u2, .. ., u,_4, say uz, then similar
arguments apply by interchanging 1 and u5.

Suppose now that neither u,,_3, u,_7 nor u, _ is adjacent to both of the others. Then
one of these, say u;_3, is adjacent to neither of the others. Since §(H) > n —4, u,_3

is adjacent to at least n — 5 of the vertices uy, ..., u,—4. Without loss of generality,
assume that uq,...,u,—5 € Ng(u,—3). Then u,_; is adjacent to at least n — 7 of
the vertices uq, ..., u,—5 including, without loss of generality, the vertex u;. Also,
u,—1 is adjacent to at least one of us, ..., u,—a, So H contains Ty (n). If u,_» is
adjacent to u,_1, then H also contains 77, (n). If u,_; is not adjacent to u,_1, then
u,—7 is adjacent to at least n — 6 vertices of uy, ..., u,_s, so H contains 7 (n). Now,
suppose that n > 9. Then u,,_, and u,,_| are each adjacent to atleast 3 of uy, ..., us,

and one of those vertices must be adjacent to both u,_» and u,_1; thus, H contains
Tk (n). Finally, suppose that n = 8. If ug and u7 are each adjacent to at least two of
the vertices u1, uz, u3, then one of those vertices must be adjacent to both ug and u7;
thus, H contains Tk (8). Otherwise, ug or u7, say ue, is non-adjacent to at least two of
uy, ug, u3, say uj and us. Then ug is adjacent to ug, u3, u4 and u7, and so H contains
Tk (8). m]

Theorem7.14 Ifn > 8, then R(Ty(n), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1 and assume that G does not
contain Ty (n) and that G does not contain Wg. By Theorem 7.12, G has a
subgraph T = Tg(n). Let V(T) = {vo,...,vp—5, w1,...,wa} and E(T) =
{vovy, ..., VoUs—5, VIWT, V2W3, V3W3, wW3wg}. Set U = {uy,...,up—1} = V(G) —
V(T); then |U| = n — 1. Since T (n) gZ G, Eg({wy, wa}, {ws, wa}) = @ and wy is
not adjacent to U. Now, let W = {w;} U U; then |W| = n. If §(G[W]) > 5, then
G[W] contains Cg by Lemma 4.1 which, with w4 as hub, forms Wg, a contradiction.
Therefore, §(G[W]) < 5.and A(G[W]) > |5] = 4.

First, suppose that wy is a vertex with degree at least 5 in G[W]. Assume without

loss of generality that uy, ..., us € Ngiw)(wy). Since Ty (n) ,d_ G, uy,...,uq4 are
independent and are not adjacent to {wy, us, ..., uy,—1}in G. Then wy, uy, ..., us, wa
and any 3 vertices from {us,...,u,—1} form Wg in G, a contradiction. Hence,

dgiw)(u') > % for some vertex u’ € U, say u’ = wuj. Note that w; is not adja-
cent to uy, or else G contains Ty (n). Without loss of generality, suppose that
uz,...,us € Ngwi(ur).Since Ty (n) ;{ G,us, ..., usarenotadjacentto V(T)\{vp}
in G. Now, if vg is not adjacent to {u»,...,us} in G, then by Observation 4.3,
S(G[V(T)]) > n — 4, or else G contains Ws. By Lemma 7.13, G[V(T)] contains
Ty (n), a contradiction. On the other hand, suppose that vy is adjacent to at least one
of us, ..., us,say up. Then us, us, us are independent in G and are not adjacent to ug
and u7 in G. Furthermore, wy is not adjacent to vy or vy. Then viuzvousugwu7UsV]
and w4 form Wy in G, a contradiction. Thus, R(Ty (n), Wg) < 2n — 1. O

Theorem 7.15 Ifn > 8, then R(T;j(n), Wg) =2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1 and assume that G does not contain 7 (n) and that
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G does not contain Wg. By Theorem 6.8, G has a subgraph T = T¢(n). Let V(T) =

{vo, ..., vy—a, wy, wy, w3} and E(T) = {vgvy, ..., VoUy—4, VW1, VW2, V2w3}. Set
V = {v3,...,vu4q}and U = V(G) — V(T); then Ul = n — 1. Let U =
{uy, ..., u,—1}. Since Ty (n) g_ G, neither w; nor w, is adjacent in G to any vertex
fromU U V.

Let W = {v3} U U; then |W| = n. If §(G[W]) = [4] > 4, then G[W] contains
Cg by Lemma 4.1 which with w| forms Wg, a contradiction. Thus, S§(G[W)) < [%1,
and AGIW]) > |3] > 4.

Suppose that dgiwi(vs) > [5] > 4. Without loss of generality, assume that
Ui, ...,us € Ng(v3). Since T;(n) SZ G, ui,...,uq is independent in G and is
not adjacent to any remaining vertices from U in G. Then upwiusususugworu7uy and
u1 form Wg in G, a contradiction. Hence, there is a vertex in U, say u1, such that
dgiwi(u1) = 5] = 4.

Now, suppose that vz is adjacent to u1 in G[W]. Then u; is adjacent to at least 3
other vertices of U in G, say uy, uz and u4. Since Tj(n) 5Z G, v3 is not adjacent to
V1, V2, U4, ..., Un—4, W1, W2, W3, U2, U3, g and neither vy nor vy is adjacent to uy, u3
or uy in G. Then vouprviuzwivswrugvy and vz form Wy in G, a contradiction.

Thus, v3 is not adjacent to #; in G. Note that 1 is not adjacent to any other vertices
of V in G or else previous arguments apply. Similarly, v is not adjacent to Ngw1 (1)
in G. Since Ty (n) g G, neither v| nor v; is adjacent to u; or Ngywj(#1) in G, and so
dNG[W](ul)(U) <l1forallveV.

Suppose that n > 10; then |V| > 4 and |Ngwy(u1)| > 5. If dgpv () < 2 for
each u € Ng[wj(u1), then G[V U Ngiwi(u1)] contains Cg by Lemma 4.5 which,
with w as hub, forms Ws in G, a contradiction. Thus, dy (u") > 3 for some vertex
u' € Ngpwi(u1). Then any 4 vertices from V, of which at least 3 are in Ngpv(u'), and
any 4 vertices from Ngpwi(u1)\{u'} satisfy the condition in Lemma 4.5, so G[V U
Ngw)(u1)] contains Cg which with w; forms Wg, a contradiction.

Suppose that n = 9; then V = {v3, v4, vs}. Assume that us, ..., us € Ngwj(u1).
Suppose that w; is not adjacent to wy in G. Let X = {v3, v4,vs5, wp} and ¥ =
{uz, ..., us} and note that dg[y)(x) < 1 for each x € X. If dg[x)(y) < 2 for each
y € Y, then G[X U Y] contains Cg by Lemma 4.5 which, with w1 as hub, forms Ws, a
contradiction. Thus, dgx](u’) > 3 for some u’ € Y, say u’ = u, so X is not adjacent
to Y\{us}. Hence, v3ujviuzvsuqworusvz and wi form Wg in G, a contradiction.

Thus, wy is adjacent to w; in G. Then vy is not adjacent to {v3, v4, v5}UU. Suppose
that v; is not adjacent to vy. Then set X = {vy,...,vs} and ¥ = {ua, ..., us}. If
dgix1(y) < 2 foreach y € Y, then G[X U Y] contains Cg by Lemma 4.5 which,
with vy as hub, forms Wg, a contradiction. Thus, dgxj(#’) > 3 for some u’ € Y, say
u' = up, so X is not adjacent to Y\{us}, and voujvsuzvqusvsusvy and vy form Wy
in G, a contradiction. Thus, v; is adjacent to vy in G. Then V is independent and is
not adjacent to U in G. Since Wg Q G,G[Ulis Ky_jor K,_| —e by Lemma 4.4.
Since T;(9) z G, T is not adjacent to U and, by Observation 4.3, 5(G[V(T)]) > 5.
However, this is impossible since V is independent and is not adjacent to vy, w; or
wy.

Finally, suppose that n = 8; then V = {v3, v4}. Assume that us,...,us €
Ngiwi(u1). If vs is adjacent to any vertex of {uy, ..., us}, say uz, then v3 is not
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adjacent to {v1, v2, v4, w3} U U\{uz}, so viujvouzwiugswrusvi and vz form Wg in
G, a contradiction. Thus, v3 is not adjacent to {us, ..., us}. Similarly, v4 is not adja-
cent to {uy, ..., us}. Now, if w3 is adjacent to any of the vertices uy, ..., us, say u»,
then v, is not adjacent to {w1, wa, v3, v4}, SO V3UVaUr W U3WoU4V3 and vy form Wy
in G, a contradiction. Thus, w3 is not adjacent to {u», ..., us}. By Observation 4.3,
3(G[V(T)]) = 4. Suppose that v is adjacent to wj. Since T (8) SZ G, neither v3
nor vy is adjacent to w3. Since §(G[V(T)]) > 4, v3 and v4 are adjacent to vy and
v2, and {w1, wy, w3} is not independent. However, then 7;(8) € G[V(T)], a contra-
diction. Thus, v; is not adjacent to w and, similarly, v, is not adjacent to w,. Since
8(G[V(T)]) = 4, wy and w; are adjacent to each other and to w3. Since T;(8) ¢ G,
neither v3 nor vy is adjacent to vy or vy; however, this contradicts §(G[V (T)]) > 4.
In each case, R(T;(8), Wg) < 2n — 1, which completes the proof of the theorem.
O

Theorem 7.16 Ifn > 8, then R(Tx (n), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph of order 2n — 1 and assume that G does not contain Tk (n) and that
G does not contain Wg.

Suppose that n £ 0 (mod 4). By Theorem 6.5, G has a subgraph
T = 8,(1,3). Let V(T) = {vo,...,vy—4,wi,wp, w3} and E(T) =
{vovy, ..., VoUy—4, VIW], Wiw2, wow3}. Set V = {vy, ..., vy} and U = V(G) —
V(T);then|V| =n—S5and |U| = n—1. Since Tk (n) g_ G, wy is not adjacent in G to
any vertex of U U V. Now, if §(G[U]) > %, then G[U] contains Cg by Lemma 4.1

which, with v; as hub, forms Wg, a contradiction. Therefore, S(E[U D < %, and

A(G[U)) = L%J. Let U = {uy,...,u,—1} and assume without loss of generality
that dgy(u1) > L%J > 4. Since Tk (n) /@ G, Eg(V, Ngy1(u1)) = @, so any 4
vertices from V, any 4 vertices from Ng(¢7(u1) and wy form Wy in G, a contradiction.
Therefore, R(Tk (n), Wg) <2n — 1 forn £ 0 (mod 4).

Let n = 8. By Theorem 7.14, G has a subgraph T =
Ty(8). Let V(T) = {vo, vi, v2,v3, wy, ..., wg} and E(T) =
{vovi, ..., vovs, viwy, wiwa, waws, vowa}. SetU = V(G)—=V(T) = {uy, ..., uz};

then |U| = 7. Since Tk (8) g G, wy is not adjacent to {w4} U U.Let W = {wa} U U.
Then |W| = 8. If §(G[W]) > 4, then G[W] contains Cg by Lemma 4.1 which, with
w as hub, forms Ws, a contradiction. Therefore, §(G[W]) < 3, and A(G[W]) > 4.

Now, suppose that dgwj(ws) > 4 and assume without loss of generality that
wyq is adjacent to uy, up, u3 and u4. Then vy is not adjacent to {v3, wp, w3} U U
and neither vy nor v3 is adjacent to {uy, ..., us}, since Tx(8) SZ G. Now, suppose
that Eg({u1, ..., ua}, {us, ue, u7}) # ¥ and assume that u; is adjacent to us. Then
u1 is not adjacent to {wi, wp, w3, Uz, ..., u7} in G, and viurvruzvVIU4WoU6V] and
u; form Wz in G, a contradiction. Thus, Ec({uy, ..., us}, {us, ug, u7}) = 0, so
uiusuruguzususvzu] and vy form Wg in G, a contradiction.

Now suppose that dgpwy(u’) > 4 for some vertex u’ € U, say u’ = u;. Since,
Tk (8) € G, wy is not adjacent to u;. Then without loss of generality, suppose that
uz,...,us € Ng(uy). Since Tx (8) g G, Eg{vi, v2,v3}, {up,...,us}) = 0. If up
is adjacent to wy, then u; is not adjacent to {us, ..., u7} and v; is not adjacent to ue.
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Then wausvausviusviugws and up form Wy in G, a contradiction. Thus, uy is not
adjacent to wy. Similarly, u3, u4 and us are not adjacent to wi. If u; is adjacent to vy,
then vy is not adjacent to {vy, v3, wi, w2, W3, U2, ..., U7}, and ViU VIUIW UL W U5V
and vy form Wy in G, a contradiction. Thus, u5 is not adjacent to vg. Similarly, u3, us4
and us are not adjacent to vg. By similar arguments, u3, u4 and us are not adjacent to
w3 Or Wy.

Hence, uy,...,us5 are not adjacent to V(T) in G, so §(G[V(T)]) = 4 by
Observation 4.3. By Lemma 7.13, G[V (T)] contains Tk (8), a contradiction. Thus,
R(Tk (8), Wg) < 15.

Now suppose that n = 0 (mod 4) and that n > 12. If G has an
Sn(1,3) subgraph, then the arguments above lead to contradictions. Thus, G
does not contain S,(1,3) as a subgraph. Now, by Theorem 7.14, G has a sub-
graph T = Ty(n). Let V(T) = {vo,..., -5, w1,...,ws} and E(T) =
{vovy, ..., VoUu—5, VIW], WiW2, Waw3, VoW4}. Set V = {vs3, ..., v,—5}and let U =
V(G)=V(T) ={ui,...,up—1}.Then|V| = n—T7and |U| = n—1.Since Tx (n) G,
wy is notadjacentin G to {w4}UU. Since S, (1, 3) € G, vp is not adjacent to {ws}UU.

If (G[U]) > "5, then G[U] contains Cs by Lemma 4.1 which, with w, forms
Ws, a contradiction. Thus, §(G[U]) < "5, and A(G[U]) > |“51] > 5. Without
loss of generality, assume that uy, ..., ue¢ € Ng(u1). Since Tk (n) g G,vj,vpand V
are not adjacent to {u», ..., ug}, and w; and wy are not adjacent to u;.

Now, if u; is adjacent to wy, then u» is not adjacent to {w3, wa} U U\{u}, since
Tk (n) SZ G, S0 vou3v1Usv2usv3UeVo and up form Wy in G, a contradiction. Thus, u>
is not adjacent to wi. Similarly, u3, ..., ue are not adjacent to wy. If u, is adjacent
to w3 in G, then vy is not adjacent to w1, wy, w3, and dG[U\{u;,u)] (i) < n — 6 for
i =3,...,6,since S,(1,3) € G. Since Tx (n) € G, w3 is not adjacent to w; or wy.
Since dG[U\{u|,u2}] (u3) <n—6and dG[U\{u|,u2}](u4) <n—6,us3and u4 are adjacent
in G to at least 2 vertices in {u7, ..., u,—1}. Without loss of generality, assume that u3
is adjacent in G to u7 and that uy is adjacent to ug. Then uzuywouguswiwzwausz and
vo form Wy in G, a contradiction. Thus, u» is not adjacent to w3. Similarly, u3, ..., ug
are not adjacent to wy.

Hence, u», . .., ug are not adjacent to V (T). By Observation 4.3, § (G[V (T)]) > 4,
so G[V (T)] contains Tk (n) by Lemma 7.13, a contradiction. Thus, R(Tk (n), Wg) <
2n — 1 forn = 0 (mod 4). This completes the proof. O

Theorem 7.17 Ifn > 8, then R(Tr(n), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be a graph with no 77 (n) subgraph whose complement G does not contain
Ws. Suppose that n % 0 (mod 4) and that G has order 2n — 1. By Theorem 6.5, G
has a subgraph T = S, (1, 3). Let V(T) = {vo, ..., Uy—a, w1, w2, w3} and E(T) =
{vovy, ..., VoUn—4, VIW], Wiwy, waw3}. Set V ={vy,...,v,—4}and U = V(G) —
V(T); then |V| = n —5and |U| = n — 1. Since Tz (n) ¢ G, v; is not adjacent
to U UV, and dg[y)(vi) < n — 7 for each v; € V. Now, if §(G[U]) > %, then
G[U] contains Cg by Lemma 4.1 which, with vy, forms Wz, a contradiction. Thus,
$(GIU)) < "5, and A(GIU]) > |5 ].
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Let U = {uy, ..., u,—1} and without loss of generality assume that dg[y(u1) >
|“51 ] > 4 and that us, ..., us € Ngu)(u1). Now if EG(V, NGuj(u1)) = @, then
4 vertices from V, 4 vertices from Ng[y)(u1) and v; form Wg in G, a contradiction.
Thus, Eg(V, Ngiuj(u1)) # 9. Assume without loss of generality that v is adjacent
to up. Since Ty (n) §Z G, vy is not adjacent to U\{uy, uz}. Since dgyj(vi) < n —7
for each v; € V, vs is non-adjacent to at least one of ug, ..., u,_1, say ue. Now if
Eg({v3, va, vs}, {us, ug, us}) = 0, then vauszvyugvausvsugvy and vy form Wy in G,a
contradiction. Thus assume, say, that v3 is adjacent to u3 in G; then v3 is not adjacent
to U\{u1, uz}. Again, if Eg({va, vs}, {usq, us}) = @, then vaujvugvsusvsugvy and
v form Wyg in G, a contradiction. Thus assume, say, that v4 is adjacent to u4, then vy
is not adjacent to U\{u1, u4}. If vs is not adjacent to us, then vou;v3uUrvV4U5V5U6V2
and vy form Wy in G, a contradiction. Thus, vs is adjacent to us, so vs is not adjacent
to U\{u1, us}, and vouyv3uzvauszvsugvy and vy form Wg in G, a contradiction.

Hence, R(Ty(n), W) <2n — 1 forn #0 (mod 4).

Now, suppose that n = 0 (mod 4) and that G has order 2n — 1. Suppose first
that n = 8. By Theorem 7.14, G has a subgraph T = Ty(8). Let V(T) =
{vo, ..., v3,wy,...,wa} and E(T) = {vovy, ..., Vov3, VW], W W2, WrW3, V2W4}.
SetU = V(G) — V(T) = {uy, ..., u7}; then [U| = 7. Since T1.(8) € G, neither v;
nor vy are adjacent to U, and dg[yj(v3) < 1. Furthermore, v; is not adjacent to wy,
and v; is not adjacent to wy or w3. Let W = {w4}UU; then |W| = 8. Ich(E[W]) >4,
then G[W] contains Cg by Lemma 4.1 which with v; forms Wy, a contradiction. Thus,
8(G[W]) < 3 and A(G[W]) > 4.

Now, suppose that dgjwj(w4) > 4 and assume without loss of generality that
ui,...,us € Ng(ws). Then vy is not adjacent to vy, v3, wi, wa and dgy(u;) <
1 for1 < i < 4, since Tr(8) Q G. Since dgyj(vz) < 1, assume with-
out loss of generality that vz is not adjacent to u3 or us4. Now, suppose that
Eg({uy, ..., ua}, {us, ue, u7}) # ¥ and assume, say, that u is adjacent to us5. Then
u1 is not adjacent to {v3, wi, wa, w3, Uz, ..., u7}. Since T (8) g G, at least one of
w1 and w» is adjacent in G to us, u3 and u4, say wi, SO ViU WU3V3IU4V2UEV] and
uy form Wy in G, a contradiction. Thus, Eg({u1, ..., us}, {us, ug, u7}) = @. Then
uususuguiuTusvau and vy form Wz in G, a contradiction. Therefore, derwi(u') > 4
for some vertex of u’ € U, say u’' = uj.

Suppose that ws is adjacent to u;. Then without loss of generality, assume
that u; is adjacent to up, u3z and wus. Since T.(8) g_ G, neither vy nor
wy is adjacent to w; or wp, and wy is not adjacent to {vi,v3} U U\{u}. If
Eg({uz, us, us}, {us, ug, u7}) # 0, then, say, ur is adjacent to us and is thus
not adjacent to {vg, v3, wy, w2, W3, U3, U4, Ue, U7}, SO WVQW2W4U3VIU4V2W] and
uy form Wy in G, a contradiction. Thus Eg({u1, ..., us}, {us, us, u7} = 9. Let
X = {vi,uz,u3, us} and Y = {vs, us, ue, u7}. Since dgyj(vz) < 1, E[X UY]
contains Cg by Lemma 4.5 which, with w4, forms Wg, a contradiction.

Thus, u is not adjacent to w4 so assume without loss of generality thatus, ..., us €
Ng(uy1). Since G does not contain 77 (8), dgjv(r)(u;) < 1for2 <i <5.If uy is
adjacent to wy, then u» is not adjacent to V(G)\{u1, w4} in G. Since dg[y)(v3) < 1,
that v3 is not adjacent to, say, u3 or u4. Since dgjy () (u;) < 1for2 <i <5, uy4
and us are each adjacent in G to at least 2 of wy, wa, w3, so some w; € {wy, wa, w3}
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is adjacent in G to both uy and us. Therefore, uzviugw;usvougviuz and uy form Wy
in G, a contradiction. Thus, u; is not adjacent to w4. Similarly, us, us4, us are not
adjacent to w4. Similar arguments show that uy, ..., us5 are not adjacent to wj or w.

Now, if uy is adjacent to any other vertex of V(T'), then u, is not adjacent to
(U3, ug, us}), souzwuswausvruev us and ur form Wy in G, a contradiction. Hence, u»
is not adjacent to V(T') and, similarly, u3, u4, us are not adjacent to V (T'). Therefore,
by Observation 4.3, §(G[V(T)]) > 4. By Lemma 7.13, G[V (T)] contains 77,(8), a
contradiction. Thus, R(T7(8), Wg) < 15.

Now suppose that n > 12. If G contains S, (1, 3), then the previous arguments
above lead to contradictions. Thus, G does not contain S, (1, 3). By Theorem 6.8, G
has a subgraph T = T¢(n). Let V(T) = {vo, ..., vy—4, w1, wy, w3} and E(T) =
{vovi, ..., VoUy—4, VIW], 2wy, V2w3}. Set U = V(G) — V(T) = {uy, ..., un—1};
then |U| =n — 1.

Suppose that w is not adjacent to U. If S(GIU)) > ﬂ, then G contains Cg by

2
Lemma4.1 and, with w, as hub, forms Wg, a contradiction. Therefore, § (G[U]) < %

and so A(G[U]) > L%J > 5. Without loss of generality, assume that us, ..., ue €
Ng(uy). Since S, (1, 3) g_ G, uy, ..., ue are not adjacent to V(T)\{vo}. If us is
adjacent to vg, then since S, (1, 3) gé G,us, ..., ucarenotadjacentto {u7, ..., u,_1},
SO uzugusugusuoueuious and wo form Wg in G, a contradiction. Thus, u» is not
adjacent to vg and, similarly, u3, . . ., ug are also not adjacent to vg. Hence, us, . . ., ug
are not adjacent to V(7). Therefore, by Observation 4.3, §(G[V(T)]) = n — 4, so
G[V(T)] contains Ty (n) by Lemma 7.13, a contradiction.

Thus some vertex of U, say u,_1,is adjacentto w;. Set U’ = U\{u,,—}; then |U’| =
n—2.Since T, (n) € G, u,—1 isnotadjacentto U’ in G. Now, if §(G[U']) > % then
G[U’] contains Cg by Lemma 4.1 which, with u,,_1, forms Wg, a contradiction. Thus,
8(GIU') < '12;2 —1,and A(G[U')) > % > 5. Without loss of generality, assume
that us, ..., us € Ng(u1) and repeat the above arguments to prove that us, ..., ug
are not adjacent to V (T'). Therefore, §(G[V(T)]) > n — 4 by Observation 4.3, so
G[V(T)] contains T7 (n) by Lemma 7.13, a contradiction.

Therefore, R(T (n), Wg) < 2n—1forn =0 (mod 4), which completes the proof.

O

Theorem 7.18 Ifn > 9, then R(Ty(n), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain 7 (n) and that
G does not contain Wg. By Theorem 6.4, G has a subgraph T = S,,(4). Let V(T) =
{vo, ..., vy—a, wy, wy, w3z} and E(T) = {vovy, ..., VoUy—_4, VW1, VW2, V1w3}. Set
V={vy,v3,...,vp4}and U = V(G)—=V(T) ={uy,...,up—1};then|V|=n-5
and |U| = n — 1. Since Ty (n) Q G, wi, wy and w3 are not adjacent to any vertex of
UUuVingG.

Now, suppose that some vertex in V is adjacent to at least 4 vertices of U in G,
say vp to uy, ..., us. Then uy, ..., us are not adjacent to other vertices in U. Then
u usupugusususugu; and w; form Wy in G, a contradiction. Therefore, each vertex
in V is adjacent to at most three vertices of U in G. Choose any 8 vertices of U.
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By Corollary 4.8, G[U U V] contains Cg which together with w; gives Wg in G, a
contradiction.
Thus, R(Ty(n), Wg) < 2n — 1 for n > 9. This completes the proof. O

Theorem7.19 Ifn > 9, then

R(Tw(n). Wy) = 2n—1 ifn ;éO (mod 4);

2n otherwise.
Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n if n = 0 (mod 4) and of order 2n — 1 if n £ 0
(mod 4). Assume that G does not contain Ty (r) and that G does not contain Wg. By
Theorem 6.6, G has a subgraph T = T4 (n). Let V(T) = {vo, ..., vp—4, w1, w2, w3}
and E(T) = {vgv1, ..., voVy—4, V1w, Vw2, wiws}. SetV = {vy, v3, ..., v,—4} and
U=V(G)—V(T)={uy,...,uj},where j=n—1ifn £ 0 (mod 4) and j =n
otherwise. Since Ty (1) ;{ G, wy is not adjacent to U U V in G. If each v; € V is
adjacent to at most three vertices of U in G, then by Corollary 4.8, G[U U V] contains
Cg which with w, gives Wy in G, a contradiction. Therefore, some vertex in V, say
v, is adjacent to at least four vertices of U in G, say uy, ..., us. If none of these is
adjacent to other vertices of U in G, then ujusuyueusujusugu; and wo form Wg in
G, a contradiction.

Therefore, assume that u is adjacent to us in G. Since Ty (n) SZ G, us, us3, u4
are not adjacent to {u¢, ..., u;}in G. Forn =9 and n = 10, {v3, ..., v,_4} is not
adjacent to {us,...,u,—1} or else G will contain Ty (rn) with vy and vy being the
vertices of degree n — 5 and 3, respectively. However, vausviueuruyuzugvs and wy
form Wg in G, a contradiction. For n > 11, if vy is not adjacent to {ug, ..., u;}
in G, then vouguyuyusugusugvr and wyp form Wg in G, a contradiction. Therefore,
assume that v; is adjacent to ug in G. Then ug is not adjacent to {u7, ..., u;}in G,
and uouguzugusuoueu o and wo form Wy in G, again a contradiction.

Thus, R(Tn(n), Wg) < 2n forn = 0 (mod 4) and R(Tn(n), Wg) < 2n — 1 for
n # 0 (mod 4). ]

Theorem 7.20 Ifn > 9, then R(Tp(n), Wg) =2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G does not contain
Tp(n) and that G does not contain Wj. Suppose n % 0 (mod 4). By Theo-
rem 6.6, G has a subgraph T = T4(n). Let V(T) = {vo, ..., vy—4, wy, wa, w3}
and E(T) = {vgvy, ..., voUy—4q, V1w, V1w, wiw3s}. Set V. = {vo, v3,..., vy_4}
andU = V(G) — V(T);then |V|=n —5and |U| =n — 1. Since Tp(n) ;(_ G, w;
is not adjacent to any vertex of U U V in G. If each v; in V is adjacent to at most
three vertices of U in G, then by Corollary 4.8, G[U U V] contains C g which with wq
gives Wg in G, a contradiction. Therefore, some vertex in V, say vy, is adjacent to at
least four vertices of U in G, say uy,...,us4. For n = 9 and n = 10, G contains
Tp(9) and Tp(10) with edge set {ujva, upva, uzva, V2vg, VoU1, VoU3, VW1, V1 W2}
and {uqv2, urvy, u3v2, U432, V209, Vo1, Vo3, V1 W1, V] W3}, respectively. Forn > 11,
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each of uy, ..., us is adjacent to at most two remaining vertices in U. Then by
Corollary 4.7, G[U] contains Cg which with w; gives Wg in G, a contradiction.

Suppose that n = 0 (mod 4). By Theorem 7.18, G contains a sub-
graph T = Ty@n). Let V(T) = {vo,...,Vp—5,W1,...,ws} and E(T) =
{vovi, ..., VoUy—5, VIW], VIWy, VIW3, wiwg}. Let V = {vy, v3,...,v,—5}and U =
V(G)—V(T);then|V| =n—6and |U| = n—1. Since Tp(n) gz G, w is not adjacent
to {vo, w2, w3}UU in G, and so dg[y)(w2) < 1,dgy)(w3) < landdgy)(v) <n—7
for any vertex v € V. Now, if G contains a subgraph T4 (n), then arguments similar
to those used for the case n % 0 (mod 4) above can be used. Therefore, G contains
no T4 (n). Then vy is not adjacent to {w,, w3} U U in G.

Suppose that some vertex v € V is not adjacent to w; in G. Let X be any four
vertices in U that are notadjacenttovin G andsetY = {v, vy, wa, w3}. By Lemma4.5,
G[X U Y] contains Cg which with w gives Wy in G, a contradiction. Therefore, each
vertex of V is adjacent to w; in G. Since Tp(n) g G, wq is adjacent to at most
n — 7 vertices of U in G. Since T4 (n) Q G, wy and w3 are not adjacent in G. Now,
if wy is adjacent to both wy and w3 in G, then wy is not adjacent to vy in G since
Tp(n) € G. Let X be any four vertices of U that are not adjacent to w4 in G and let

= {wy, ..., ws}. By Lemma 4.5, G[X U Y] contains Cg which with w gives Wy
in G, a contradiction. Therefore, wy is non-adjacent to either wy or w3 in G, say ws.
Since dg[y1(w2) < l and dg[y)(ws) < n—7, thereis aset X of four vertices in U that
are not adjacent to both wy and w4 in G. Let Y = {vo, w1, w3, wa}. By Lemma 4.5,
G[X U Y] contains Cg which with w; gives Wy in G, again a contradiction.

In either case, R(Tp(n), Wg) < 2n — 1 for n > 9 and this completes the proof. O

Theorem 7.21 Ifn > 9, then R(Tg(n), Wg) =2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain T (n) and that
G does not contain Wg. By Theorem 6.4, G has a subgraph T = S,,(4). Let V(T) =
{vo, ..., vy—a, w1, wy, w3} and E(T) = {vovy, ..., VoUy—4, VW1, V1W2, ViwW3}. Set
V={vy,v3,...,vp—4}and U = V(G) — V(T);then |V|=n—5and |U| =n — 1.
Since Tp(n) ¢ G, G[V] are independent vertices and not adjacent to U.

Suppose that n > 10. Then |V| > 5 and |U| > 9, so by Observation 4.3, G
contains Wy, a contradiction. If n = 9, then |V| = 4 and |U| = 8. By Lemma 4.4,
G[U]is Kg or Kg —e. Since Tg(9) SZ G, T isnot adjacent to U, and § (G[V (T)] = 5.
As vy, ..., vs are independent in G, they are each adjacent to all other vertices in
G[V(T)]. Therefore, G[V (T')] contains T (9) with v, and vy as the vertices of degree
4, a contradiction.

Thus, R(Tg(n), Wg) < 2n — 1 for n > 9, which completes the proof. O

Theorem7.22 Ifn > 9, then R(Tr(n), Wg) =2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound.
Let G be any graph of order 2n — 1. Assume that G does not contain Tg(n) and that
G does not contain Wg. By Theorem 6.8, G has a subgraph T = T¢(n). Let V(T) =
{vo, ..., vy—4, wi, wy, w3} and E(T) = {vovy, ..., VoUy—4, VW1, VW2, V2w3}. Set
V={v,...,vpgtand U = V(G) = V(T) = {uy,...,up—1}; then |V| =n -6
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and [U| = n — 1. Since Tr(n) gz G, w; is not adjacent in G to any vertex of
UUV.If§(G[U UV]) = [, then G[U U V] contains Cs by Lemma 4.1 which
with w3 forms Wg, a contradiction. Therefore, S(E[U uv) < [2"—2_71 — 1, and
AGIUU V] > L%J = n — 4. Now, there are two cases to be considered.

Case 1: One of the vertices of V, say v3, is a vertex of degree atleastn —4in GIlUU V.
Note that in this case, there are at least 3 vertices from U, say u1, ua, us, that are

adjacent to v3 in G. Suppose that v3 is also adjacent to a in G, where a is a vertex in

U UV.Since Tg(n) ¢ G, these 4 vertices are independent and are not adjacent to any

other vertices of U. Since n > 9, U contains at least 4 other vertices, say us, ..., us,

0 uususuguzurausu; and ws form Wy in G, a contradiction.

Case 2: Some vertex u € U has degree at least n — 4 in G[U U V].

Since Tg(n) ,@ G, u is not adjacent to any vertex of V in G. Therefore, u must
be adjacent to at least n — 4 vertices of U in G. Without loss of generality, suppose
that u1,...,u,—4 € Nguj(u). Note that V is not adjacent to Ngy(u), or else it
will form Tz (n) in G, a contradiction. If n > 10, then any 4 vertices from Ng[y(u)
and any 4 vertices from V form Cg in G which with w3 forms Wg, a contradiction.
Suppose that n = 9 and let the remaining two vertices be ug and u7. If either ug or u7 is
non-adjacent to any two vertices of {uy, ..., us}in G, say ue is not adjacent to | and
uz in G, then uugusrv3uzvausvsu; and ws form Wy in G, a contradiction. So, both
ug and u7 are adjacent to at least 4 vertices of {u1, ..., us} in G. Since Tr(9) g G, T
cannot be adjacent to U, and § (G[V(T')] > 5. As both v, and w3 are not adjacent to
v3, V4 Or v5 in G, they are adjacent to all other vertices in G[V (T)]. Similarly, since
v3 is not adjacent to v, or w3 in G, v3 is adjacent to w; or wy in G. Without loss of
generality, assume that v3 is adjacent to wy. Then G[V (T')] contains Tg(9) with edge
set {vowy, VoV, V2V, Vo4, VU5, VW3, V2W], W V3}, a contradiction.

In either case, R(Tg(n), Wg) < 2n — 1. O

Theorem7.23 Ifn > 9, then R(Ts(n), Wg) = 2n — 1.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G does not contain
Ts(n) and that G does not contain Ws. Suppose n #% 0 (mod 4). By Theo-
rem 6.4, G has a subgraph T = S,[4]. Let V(T) = {vo,..., vp—4, wy, w2, w3}
and E(T) = {vovy, ..., VoUp—4, V1w, wiw2, wiws}. Set V.= {vy, ..., v,—4} and
U=V(G)—V(T);then |V|=n—5and |U| =n — 1. Since Ts(n) ¢ G, G[V] are
independent vertices and are not adjacent to U. If n > 10, then |V| > 5 and |U| > 9,
so by Observation 4.3, G contains Wg, a contradiction. Suppose that n = 9. Then
|Vl =4 and |U| = 8. By Lemma 4.4, G[U] is Kg or Kg — e. Since T5(9) Q G, Tis
not adjacent to U, and 6 (G[V(T)] > 5. As vy, ..., vs are independent in G, they are
adjacent to all other vertices in G[V (T)], and so G[V (T)] contains Ts(9) with edge
set {vgv1, Vo2, V1 V4, V1V5, VW], VW2, VW3, V3W]}.

Now suppose that » = 0 (mod 4). By Theorem 6.4, G has a sub-
graph T = S§,_1[4]. Let V(T) = {vo,...,vy—5, w1, w2, w3} and E(T) =
{vovy, ..., vVoUu—5, Viw], wiwo, wiw3}. Set V = {vy,...,v,—5tand U = V(G) —

V(T); then |V| =n — 6 and |U| = n. Since Ts(n) g G, G[V]is not adjacent to U.
Since |V| = n—6 > 4, by Observation 4.3, A(GIU]) < 3and §(G[U]) > n—4since
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Wg SZ G. By Lemma 6.3, either G[U] is K4, .. 4 and contains Ts(n) or G[U] contains
Sn[4] and the arguments from the n #% 0 (mod 4) case above lead to a contradiction.
Thus, R(Ts(n), Wg) < 2n — 1 for n > 9, which completes the proof. O
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