

The Ramsey Numbers for Trees of Large Maximum Degree Versus the Wheel Graph *W*₈

Zhi Yee Chng¹ · Thomas Britz¹ · Ta Sheng Tan² · Kok Bin Wong²

Received: 27 November 2023 / Revised: 3 June 2024 / Accepted: 14 June 2024 / Published online: 26 June 2024 © The Author(s) 2024

Abstract

The Ramsey numbers $R(T_n, W_8)$ are determined for each tree graph T_n of order $n \ge 7$ and maximum degree $\Delta(T_n)$ equal to either n - 4 or n - 5. These numbers indicate strong support for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that $R(T_n, W_m) = 2n - 1$ for each tree graph T_n of order $n \ge m - 1$ with $\Delta(T_n) \le n - m + 2$ when $m \ge 4$ is even.

Keywords Ramsey number · Tree · Wheel graph

Mathematics Subject Classification 05C55 · 05D10

1 Introduction

Let *G* and *H* be two simple graphs. The Ramsey number R(G, H) is the smallest integer *n* such that, for any graph of order *n*, either it contains *G* or its complement contains *H* as a subgraph. Chvátal and Harary [7] proved that $R(G, H) \ge (c(G) - 1)(\chi(H) - 1) + 1$ where c(G) is the largest order of any connected component of *G* and where $\chi(H)$ is the chromatic number of *H*. For any tree graph $G = T_n$ of

Communicated by Sanming Zhou.

Zhi Yee Chng zhi_yee.chng@unsw.edu.au

Thomas Britz britz@unsw.edu.au

Ta Sheng Tan tstan@um.edu.my

Kok Bin Wong kbwong@um.edu.my

- ¹ School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052, Australia
- ² Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

order *n* and the wheel graph $H = W_m$ of order m + 1 obtained by connecting a vertex to each vertex of the cycle graph C_m , the Chvátal-Harary bound implies that $R(T_n, W_m) \ge 2n - 1$ when *m* is even and $R(T_n, W_m) \ge 3n - 2$ when *m* is odd.

Chen et al. [12] and Zhang [23] showed that $R(P_n, W_m)$ achieves these Chvátal-Harary bounds for the path graph $T_n = P_n$ of order n when m is odd and $3 \le m \le n+1$ and when m is even and $4 \le m \le n+1$; see also [1, 21]. Baskoro et al. [3] and Surahmat and Baskoro [22] further proved that $R(T_n, W_m)$ achieves the Chvátal-Harary bounds for m = 4, 5 and all tree graphs T_n of order $n \ge 3$, except when m = 4 and T_n is the star graph S_n , in which case $R(S_n, W_4) = 2n + 1$. This led Baskoro et al. [3] to conjecture that $R(T_n, W_m) = 3m - 2$ for all tree graphs T_n of order n when $m \ge 5$ is odd. The conjecture is true for all sufficiently large n, according to a result of Burr et al. [5]. In contrast, the analogous equality $R(T_n, W_m) = 2n - 1$ for even $m \ge 4$ is false since the star graph $T_n = S_n$ does not achieve this bound, as the following combined result of Zhang [24] and Zhang et al. [25, 26] shows; see also [8, 15, 16, 18, 20].

Theorem 1.1 [24–26] *For* $n \ge 5$,

$$R(S_n, W_8) = \begin{cases} 2n+1 & \text{if } n \text{ is odd;} \\ 2n+2 & \text{if } n \text{ is even.} \end{cases}$$

Baskoro et al. [3] therefore conjectured that $R(T_n, W_m) = 2n - 1$ for all non-star tree graphs T_n of order n when $n \ge 4$ is even. This conjecture was disproved by Chen, Zhang and Zhang [9] who showed that $R(T_n, W_6) = 2n$ for certain non-star tree graphs T_n . Zhang [23] further proved the following theorem which shows that the conjecture is false when n is small, even for the path graph P_n ; see also [2, 12, 19, 21].

Theorem 1.2 [23] *If m is even and* $n + 2 \le m \le 2n$ *, then* $R(P_n, W_m) = m + n - 2$ *.*

However, Chen, Zhang and Zhang [9] conjectured that $R(T_n, W_m) = 2n - 1$ for all tree graphs T_n of order $n \ge m - 1$ when m is even and the maximum degree $\Delta(T_n)$ "is not too large"; see also [10, 11, 13]. Hafidh and Baskoro [14] refined this conjecture by specifying the bound $\Delta(T_n) \le n - m + 2$. When n is large compared to $m, \Delta(T_n)$ is not required to be small; indeed, the refined conjecture implies that, for each fixed even integer m, all but a vanishing proportion of the tree graphs $\{T_n : n \ge m - 1\}$ satisfy $R(T_n, W_m) = 2n - 1$.

For m = 8, the bound is $\Delta(T_n) \leq n - 6$. There is exactly one tree graph T_n of order n with maximum degree $\Delta(T_n) = n - 1$, namely the star graph S_n ; see Theorem 1.1. There is exactly one tree graph T_n of order $n \geq m - 1$ with maximum degree $\Delta(T_n) = n - 2$: the graph $S_n(1, 1)$ obtained by subdividing an edge of S_{n-1} . More generally, let $S_n(\ell, m)$ be the tree graph of order n obtained by subdividing m times each of ℓ chosen edges of $S_{n-\ell m}$; see Fig. 1.

By Theorem 1.2, $R(P_4, W_8) = 10$. Hafidh and Baskoro [14] determined the Ramsey number $R(S_n(1, 1), W_8)$ as follows.

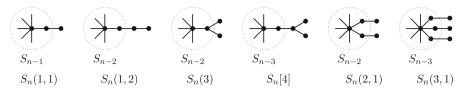


Fig. 1 Examples of $S_n(\ell, m)$, $S_n(\ell)$ and $S_n[\ell]$

Theorem 1.3 [14] *For* $n \ge 5$,

$$R(S_n(1,1), W_8) = \begin{cases} 2n+1 & \text{if } n \text{ is odd,} \\ 2n & \text{if } n \text{ is even.} \end{cases}$$

There are exactly 3 tree graphs T_n of order n with maximum degree n - 3, namely $S_n(1, 2)$, $S_n(3)$ and $S_n(2, 1)$, where $S_n(\ell)$ is the tree graph of order n obtained by adding an edge joining the centers of two star graphs S_ℓ and $S_{n-\ell}$; see Fig. 1. By Theorem 1.2, $R(P_5, W_8) = 11$. Hafidh and Baskoro [14] determined the Ramsey numbers for the three other graphs as follows.

Theorem 1.4 [14] *For* $n \ge 6$,

$$R(S_n(1,2), W_8) = \begin{cases} 2n+1 & \text{if } n \equiv 3 \pmod{4}; \\ 2n & \text{otherwise} \end{cases}$$

$$R(S_n(3), W_8) = \begin{cases} 2n-1 & \text{if n is odd and} n \geq 9; \\ 2n & \text{otherwise} \end{cases}$$

$$R(S_n(2,1), W_8) = \begin{cases} 2n-1 & \text{if n is odd}; \\ 2n & \text{otherwise}. \end{cases}$$

The purpose of the present paper is to determine the Ramsey numbers $R(T_n, W_8)$ for all tree graphs T_n of order $n \ge 6$ with maximal degree $\Delta(T_n) \ge n - 5$; see Theorems 2.1, 2.2 and 3.1 in Sects.2 and 3. These Ramsey numbers show that the proportion of tree graphs T_n that satisfy the equality $R(T_n, W_8) = 2n - 1$ quickly grows as the maximal degree $\Delta(T_n)$ decreases. When $\Delta(T_n) \ge n - 2$, no tree graph T_n satisfies the equality. In contrast, when $\Delta(T_n) = n - 3$, roughly one third of all tree graphs T_n satisfy the equality; see Theorem 1.4. When $\Delta(T_n) = n - 4$, more than 85% of all tree graphs T_n satisfy the equality; see Theorems 2.1 and 2.2. And when $\Delta(T_n) = n - 5$, roughly 94.7% of all tree graphs T_n satisfy the equality; see Theorem 3.1. These results thereby lend strong support for the conjecture described above by Chen, Zhang and Zhang [9] and Hafidh and Baskoro [14].

The contents of the present paper are as follows. Sections 2 and 3 present the main results, namely Theorems 2.1, 2.2 and 3.1 mentioned above. Section 4 provides useful auxiliary results that are used in the proofs of the main results. These proofs are presented in Sects. 5, 6 and 7, respectively.

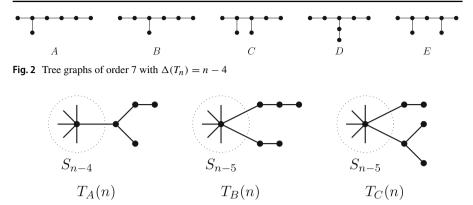


Fig. 3 Three tree graphs with $\Delta(T_n) = n - 4$

2 The Ramsey numbers $R(T_n, W_8)$ for $\Delta(T_n) = n - 4$

This section presents the Ramsey numbers $R(T_n, W_8)$ for all tree graphs T_n of order $n \ge 6$ with $\Delta(T_n) = n - 4$. For n = 6, there is just one such graph, namely the path graph $T_6 = P_6$. Theorem 1.2 provides the Ramsey number $R(P_6, W_8) = 12$. For n = 7, there are five tree graphs with $\Delta(T_n) = n - 4$, namely the graphs A, B, C, D and E shown in Fig. 2.

The Ramsey numbers $R(T_n, W_8)$ for these tree graphs are determined as follows.

Theorem 2.1 $R(T, W_8) = 13$ for each $T \in \{A, B, C\}$, $R(D, W_8) = 14$ and $R(E, W_8) = 15$.

For $n \ge 8$, there are 7 tree graphs T_n of order n with $\Delta(T_n) = n - 4$, namely the graphs $S_n(4)$, $S_n[4]$, $S_n(1, 3)$, $S_n(3, 1)$, $T_A(n)$, $T_B(n)$ and $T_C(n)$ shown in Figs. 1 and 3, where $S_n[\ell]$ is the tree graph of order n obtained by adding an edge joining the center of $S_{n-\ell}$ to a degree-one vertex of S_ℓ ; see Fig. 1.

The Ramsey numbers $R(T_n, W_8)$ for these seven tree graphs are determined as follows.

Theorem 2.2 *If* $n \ge 8$, *then*

$$R(S_n(4), W_8) = \begin{cases} 2n - 1 & \text{if } n \ge 9; \\ 16 & \text{if } n = 8 \end{cases}$$
$$R(T_n, W_8) = \begin{cases} 2n - 1 & \text{if } n \ne 0 \pmod{4}; \\ 2n & \text{otherwise} \end{cases}$$
$$R(T'_n, W_8) = 2n - 1,$$

for each $T_n \in \{S_n[4], S_n(1, 3), T_A(n), T_B(n)\}$ and $T'_n \in \{T_C(n), S_n(3, 1)\}$.

Proofs of Theorems 2.1 and 2.2 are given in Sects. 5 and 6.

3 The Ramsey numbers $R(T_n, W_8)$ for $\Delta(T_n) = n - 5$

This section presents the Ramsey numbers $R(T_n, W_8)$ for all tree graphs T_n of order $n \ge 7$ with $\Delta(T_n) = n - 5$. For n = 7, there is just one such graph, namely the path graph $T_7 = P_7$. Theorem 1.2 provides the Ramsey number $R(P_7, W_8) = 13$. For n = 8, there are 16 tree graphs T_n of order n with $\Delta(T_n) = n - 5$, namely $S_n(1, 4)$, $S_n(2, 2)$ and the tree graphs shown in Fig.4. For n = 9, there are 18 tree graphs T_n of order n with $\Delta(T_n) = n - 5$, namely $S_n(1, 4)$, $S_n(2, 2)$ and the tree graphs shown in Fig.4. For n = 9, there are 18 tree graphs T_n of order n with $\Delta(T_n) = n - 5$, namely $S_n(1, 4)$, $S_n[5]$, $S_n(2, 2)$, $S_n(4, 1)$ and the tree graphs shown in Fig.4. For $n \ge 10$, there are 19 tree graphs T_n of order n with $\Delta(T_n) = n - 5$, namely $S_n(1, 4)$, $S_n(5)$, $S_n[5]$, $S_n(2, 2)$, $S_n(4, 1)$ and the tree graphs shown in Fig.4.

The Ramsey numbers $R(T_n, W_8)$ for these tree graphs are determined as follows.

Theorem 3.1 If $n \ge 8$, then $R(T_n, W_8) = 2n - 1$ for all

 $T_n \in \{S_n(1, 4), S_n(2, 2), T_D(n), \dots, T_S(n)\}$

except when $T_n \in \{T_E(8), T_F(8), S_n(1, 4), S_n(2, 2), T_D(n), T_N(n)\}$ and $n \equiv 0 \pmod{4}$, in which case $R(T_n, W_8) = 2n$.

Furthermore, if $n \ge 9$, then $R(T_n, W_8) = 2n - 1$ for each $T_n \in \{S_n[5], S_n(4, 1)\}$, and if $n \ge 10$, then $R(S_n(5), W_8) = 2n - 1$.

A proof of this theorem is given in Sect. 7.

4 Auxiliary results

To prove the main theorems, the following auxiliary results will be used. For any simple graph G = (V, E), let $\delta(G)$ be the minimum degree of any vertex in G, and let $\overline{G} = \left(V, \binom{V}{2} \setminus E\right)$ be the complement of G.

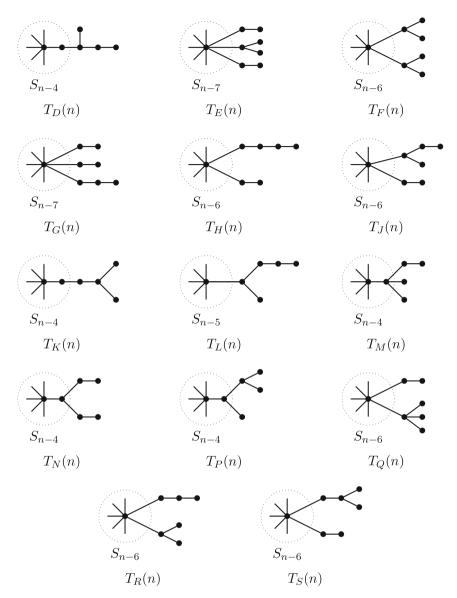
Lemma 4.1 [4] Let G be a graph of order n. If $\delta(G) \ge \frac{n}{2}$, then either G contains C_{ℓ} for all $3 \le \ell \le n$, or n is even and $G = K_{\frac{n}{2}, \frac{n}{2}}$.

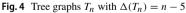
Lemma 4.2 [6] Let G be a graph with $\delta(G) \ge n - 1$. Then G contains all tree graphs of order n.

Observation 4.3 If $G = H_1 \cup H_2$ is the disjoint union of graphs H_1 and H_2 , where $\overline{H_1}$ contains S_5 and H_2 is a graph of order at least 4, then \overline{G} contains W_8 .

Lemma 4.4 Let H_1 be a graph whose complement $\overline{H_1}$ contains S_4 , and let H_2 be a graph of order $m \ge 5$. If $G = H_1 \cup H_2$, then either \overline{G} contains W_8 , or H_2 is K_m or $K_m - e$, where e is an edge in K_m .

Proof If $\overline{H_2}$ has at most one edge, then H_2 is the complete graph K_m or the graph $K_m - e$ obtained from removing an edge e from K_m . Suppose now that $\overline{H_2}$ has at least two edges. Consider a star S_4 in $\overline{H_1}$ and let v_0 be its center and v_1, v_2, v_3 its leaves. Note that each v_i is adjacent to each $a \in V(H_2)$ in \overline{G} . Choose 5 vertices $a, b, c, d, e \in V(H_2)$





such that either ab and cd are independent edges, or abc is a path, in $\overline{H_2}$. In both cases, \overline{G} contains W_8 with hub v_0 . In the former case, $v_1abv_2cdv_3ev_1$ forms the C_8 rim; in the latter, $v_1abcv_2dv_3ev_1$ forms the C_8 rim.

The neighbourhood $N_G(v)$ of a vertex v in G is the set of vertices that are adjacent to v in G and $d_G(v) = |N_G(v)|$ is the degree of the vertex v. For $X, Y \subseteq V, G[X]$ is the subgraph induced by X in G and $E_G(X, Y)$ is the set of edges in G with one endpoint in X and the other in Y. The following lemma provides sufficient conditions for a graph or its complement to contain C_8 .

Lemma 4.5 Suppose that $U = \{u_1, ..., u_4\}$ and $V = \{v_1, ..., v_4\}$ are two disjoint subsets of vertices of a graph G for which $|N_{G[V \cup \{u\}]}(u)| \le 1$ for each $u \in U$ and $|N_{G[U \cup \{v\}]}(v)| \le 2$ for each $v \in V$. Then $\overline{G[U \cup V]}$ contains C_8 .

Proof Suppose that $N_{G[U \cup \{v\}]}(v) \leq 1$ for each $v \in V$. Then $\overline{G}[U \cup V]$ contains a subgraph obtained by removing a matching from $K_{4,4}$ and therefore contains C_8 . Suppose now that $N_{G[U \cup \{v_1\}]}(v_1) = \{u_1, u_2\}$, and assume without loss of generality that $v_3 \notin N_{G[V \cup \{u_3\}]}(u_3)$ and $v_4 \notin N_{G[V \cup \{u_4\}]}(u_4)$. Neither u_1 nor u_2 is adjacent to v_2, v_3 or v_4 , so $v_1u_3v_3u_1v_2u_2v_4u_4v_1$ forms C_8 in $\overline{G}[U \cup V]$.

Lemma 4.6 [17] Let G(u, v, k) be a simple bipartite graph with bipartition U and V, where $|U| = u \ge 2$ and $|V| = v \ge k$, and where each vertex of U has degree of at least k. If $u \le k$ and $v \le 2k - 2$, then G(u, v, k) contains a cycle of length 2u.

Corollary 4.7 Suppose that U and V are two disjoint subsets of vertices of a graph G for which $|N_{G[V \cup \{u\}]}(u)| \le 2$ for each $u \in U$. If $|U| \ge 4$ and $|V| \ge 6$, then $\overline{G}[U \cup V]$ contains C_8 .

Proof Since $|U| \ge 4$ and $|V| \ge 6$, we can choose any 4 vertices from U to form U' and any 6 vertices from V to form V'. We have that $N_{G[V'\cup\{u\}]}(u) \le 2$ for each $u \in U'$. Then each vertex of U' is adjacent to at least 4 vertices of V' in \overline{G} and $\overline{G}[U' \cup V']$ must contain a graph with the properties of G(4, 6, 4) in Lemma 4.6. Hence by that lemma, $\overline{G}[U \cup V]$ must contain C_8 .

We will also use the following corollary whose proof is almost identical to that of Corollary 4.7.

Corollary 4.8 Suppose that U and V are two disjoint subsets of vertices of a graph G for which $|N_{G[V \cup \{u\}]}(u)| \le 3$ for each $u \in U$. If $|U| \ge 4$ and $|V| \ge 8$, then $\overline{G}[U \cup V]$ contains C_8 .

5 Proof of Theorem 2.1

The proof of Theorem 2.1 is here proved as three theorems, the first of which is as follows.

Theorem 5.1 $R(T, W_8) = 13$ for each $T \in \{A, B, C\}$.

Proof Note that $G = 2K_6$ does not contain A, B or C and that \overline{G} does not contain W_8 . Therefore, $R(T, W_8) \ge 13$ for T = A, B, C.

Let G be a graph of order 13 whose complement \overline{G} does not contain W_8 . By Theorem 1.4, G has a subgraph $T = S_7(2, 1)$. Label V(T) as in Fig.5. Set U = V(G) - V(T); then |U| = 6.

First, suppose that $A \nsubseteq G$. Then v_1 is not adjacent to v_2 or v_6 . Similarly, v_2 and v_5 are not adjacent.

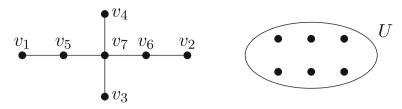


Fig. 5 $S_7(2, 1)$ and U in G

Case 1a: There is a vertex in U, say u, that is adjacent to v_1 .

Since A is not contained in G, v_1 is not adjacent to v_3 , v_4 or any vertex of U other than u. Let $W = \{v_2, v_3, v_4, v_6, u_1, \ldots, u_4\}$ for any 4 vertices u_1, \ldots, u_4 in U other than u. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 and, together with v_1 as hub, forms W_8 , a contradiction. Thus, $\delta(\overline{G}[W]) \le 3$ and $\Delta(G[W]) \ge 4$. Note that $|N_{G[\{u_1,\ldots,u_4,v_i\}]}(v_i)| \le 1$ for i = 2, 3, 4, 6 since G does not contain A. It is now straightforward to check that v_2, v_3, v_4 and v_6 cannot be the vertex with degree at least 4. Without loss of generality, assume that u_1 has degree at least 4 in G[W]. Then u_1 is adjacent to at least one of v_2, v_3, v_4, v_6 , so G contains A, a contradiction.

Case 1b: v_1 is not adjacent to any vertices in U.

By arguments similar to those in Case 1a, v_2 is not adjacent to any vertex in U. Let $W = \{v_2, v_6\} \cup U$. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which, with v_1 as hub, forms W_8 in $\overline{G}[W]$, a contradiction. Thus, $\delta(\overline{G}[W]) \le 3$ and $\Delta(G[W]) \ge 4$. Since v_2 is not adjacent to any vertex in U, there are only three subcases to be considered.

Subcase 1b.1: $d_{G[W]}(v_6) \ge 4$.

Label $U = \{u_1, \ldots, u_6\}$ so that v_6 is adjacent to u_1 , u_2 and u_3 in G[W]. Since G does not contain A, vertices u_1, u_2, u_3, v_2 are not adjacent to v_3 or v_4 in G. Note that by arguments as in Case 1a, u_1, u_2 and u_3 are isolated vertices in G[U]. Then $v_1u_4u_2v_3v_2u_5u_3u_6v_1$ and u_1 form W_8 in \overline{G} , a contradiction.

Subcase 1b.2: $d_{G[W]}(v_6) \le 3$ and v_6 is adjacent to a vertex $u \in U$ with $d_{G[W]}(u) \ge 4$. The graph *G* contains *A*, with *u* as the vertex of degree 3 in *A*, a contradiction.

Subcase 1b.3: $d_{G[W]}(v_6) \leq 3$ and v_6 is not adjacent to any vertex $u \in U$ with $d_{G[W]}(u) \geq 4$.

Label $V(U) = \{u_1, \ldots, u_6\}$ so that u_6 is adjacent to u_2, u_3, u_4 and u_5 in *G*. Since $A \notin G$, none of v_1, \ldots, v_7 is adjacent in *G* to any of u_2, \ldots, u_5 . If v_1 is not adjacent in *G* to any two of the vertices v_3, v_4, v_7 , then \overline{G} contains W_8 by Observation 4.3, a contradiction. Therefore, $N_{G[v_3,v_4,v_7]}(v_1) \ge 2$ and, similarly, $N_{G[v_3,v_4,v_7]}(v_2) \ge 2$. Hence, one of v_3, v_4, v_7 is adjacent in *G* to both v_1 and v_2 . If v_3 or v_4 is adjacent to both v_1 and v_2 , then *G* contains *A*, with v_7 as vertex of degree 3, a contradiction. Finally, if both v_1 and v_2 are adjacent in *G* to v_7 and each of them is adjacent to a different vertex in v_3 and v_4 , then *G* also contains *A*, where either v_1 or v_2 is the vertex of degree 3, a contradiction.

Therefore, $R(A, W_8) \le 13$, so $R(A, W_8) = 13$.

Now, suppose that $B \nsubseteq G$. Then v_1, v_2, v_5, v_6 are not adjacent to v_3 or v_4 in G, and v_1 and v_2 are not adjacent to U in G. Label the vertices $U = \{u_1, \ldots, u_6\}$ and let $W = \{v_3, v_4\} \cup U$. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which, with v_1 as hub, forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. If v_3 or v_4 is adjacent to the vertex of degree at least 4 in G[W], then *B* is contained in *G*, with v_7 as the vertex of degree 3. Hence, only two cases need to be considered. **Case 2a**: v_3 or v_4 is the vertex of degree at least 4 in G[W].

Without loss of generality, assume that v_3 is the vertex of degree at least 4 in G[W]. As previously shown, v_3 is not adjacent to v_4 . Therefore, it may be assumed that v_3 is adjacent to u_1, u_2, u_3 and u_4 in G. Since $B \nsubseteq G, u_1, \ldots, u_4$ are independent in G and are not adjacent to $\{v_1, v_2, v_4, v_5, v_6\}$. Also, v_1 is not adjacent to v_6 and v_2 is not adjacent to v_5 . Then $v_1v_6u_2v_2v_5u_3v_4u_4v_1$ and u_1 form W_8 in \overline{G} , a contradiction.

Case 2b: One of the vertices in U, say u_1 , is the vertex of degree at least 4 in G[W]. As above, u_1 is not adjacent to v_3 or v_4 in G. It may then be assumed that u_1 is adjacent to u_2, u_3, u_4 and u_5 . Since $B \nsubseteq G, v_1, \ldots, v_7$ are not adjacent to $\{u_2, \ldots, u_5\}$. Note that v_3 is not adjacent to $\{v_1, v_2, v_5, v_6\}$. By Observation 4.3, \overline{G} contains W_8 , a contradiction.

Therefore, $R(B, W_8) \leq 13$.

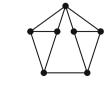
Lastly, suppose that $C \nsubseteq G$. Then v_5 and v_6 are not adjacent in G to each other or to v_3, v_4 or U. Furthermore, v_5 is not adjacent to v_2 and v_6 is not adjacent to v_1 . Label the vertices $U = \{u_1, \ldots, u_6\}$ and let $W = \{v_3, v_4, v_6, u_1, \ldots, u_5\}$. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which, with v_5 as hub, forms W_8 , a contradiction. Then $\delta(\overline{G}[W]) \le 3$ and $\Delta(G[W]) \ge 4$. Note that v_6 is not adjacent to any other vertex in $G[W], v_6$ is not the vertex of degree at least 4 in G[W]. If v_3 or v_4 is the vertex of degree 4, then G contains C, with v_3 or v_4 and v_7 as the vertices of degree 3. Thus, one of the vertices in U, say u_1 , is the vertex of degree at least 4 in G[W]. Now, consider the following three cases.

Case 3a: Both v_3 and v_4 are adjacent to u_1 in G[W].

Suppose that u_1 is also adjacent to u_2 and u_3 in G[W]. Since $C \notin G$, v_3 is not adjacent in G to v_4 and neither v_3 nor v_4 is adjacent to $\{v_1, v_2, v_5, v_6, u_2, \ldots, u_6\}$. Note that $|N_{G[\{v_1, v_2, u_i\}]}(u_i)| \leq 1$ for i = 2, 3 since $C \notin G$. If v_1 is adjacent to u_2 and u_3 in \overline{G} , then $v_1u_2v_5u_4v_3u_5v_6u_3v_1$ and v_4 form W_8 in \overline{G} , a contradiction. Therefore, v_1 is adjacent in G to at least one of u_2 and u_3 . Similarly, v_2 is adjacent to at least one of u_2 and u_3 . Since $|N_{G[\{v_1, v_2, u_i\}]}(u_i)| \leq 1$ for $i = 2, 3, v_1$ is adjacent to u_2 and v_2 is adjacent to u_3 , or vice versa. Then neither u_2 nor u_3 is adjacent in G to u_4, u_5, u_6 , since $C \notin G$. Therefore, $v_1v_3v_2v_5u_2u_4u_3v_6v_1$ and v_4 form W_8 in \overline{G} , a contradiction. **Case 3b**: One of v_3 and v_4 , say v_3 , is adjacent to u_1 in G[W].

Suppose that u_1 is adjacent to u_2 , u_3 and u_4 in G[W]. Then $v_1, v_2, v_4, v_5, v_6, u_2, u_3, u_4 \notin N_G(v_3)$ and $|N_{G[\{v_4, u_2, u_3, u_4\}]}(v_4)| \leq 1$. Without loss of generality, assume that v_4 is not adjacent to u_2 or u_3 in G. Now, suppose that v_4 is adjacent to u_4 in G. Since $C \notin G$, u_4 is not adjacent to v_1 or v_2 in G. Then $v_1u_4v_2v_5u_2v_4u_3v_6v_1$ and v_3 form W_8 in \overline{G} , a contradiction. Otherwise, suppose that v_4 is not adjacent to u_4 in G. Then, $|N_{G[\{u_i, v_1, v_2\}]}(u_i)| \leq 1$ for i = 2, 3, 4 and at least two of u_2 , u_3 and u_4 are not adjacent to v_1 or v_2 in G. Without loss of generality, assume that u_2 and u_3 are not adjacent to v_1 in G. In this case, $v_1u_2v_4u_4v_5u_5v_6u_3v_1$ and v_3 form W_8 in \overline{G} , again a contradiction.

Case 3c: v_3 and v_4 are both not adjacent in G[W] to u_1 .



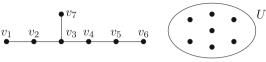


Fig. 7 $B \subseteq G$

Assume that u_1 is adjacent to each of u_2, \ldots, u_5 in G[W]. Since $C \notin G$, $|N_{G[\{v_1,\ldots,v_7,u_i\}]}(u_i)| \leq 1$ for $i = 2, \ldots, 5$, and $|N_{G[\{u_2,\ldots,u_5,v_j\}]}(v_j)| \leq 1$ for j = 3, 4. Since $|N_{G[\{v_1,v_2,u_i\}]}(u_i)| \leq 1$ for $i = 2, \ldots, 5$, one of v_1 and v_2 , say v_1 , satisfies $|N_{G[\{u_2,\ldots,u_5,v_1\}]}(v_1)| \leq 2$. By Lemma 4.5, $\overline{G}[v_1, v_3, v_4, v_5, u_2, \ldots, u_5]$ contains C_8 which, with hub v_6 , forms W_8 in \overline{G} .

Therefore, $R(C, W_8) \le 13$. This completes the proof of the theorem.

Theorem 5.2 $R(D, W_8) = 14$.

Proof Let $G = K_6 \cup H$ where H is the graph shown in Fig. 6.

Since G does not contain D and \overline{G} does not contain W_8 , $R(D, W_8) \ge 14$.

Now, let *G* be any graph of order 14. Suppose neither *G* contains *D* as a subgraph, nor \overline{G} contains W_8 as a subgraph. By Theorem 5.1, $B \subseteq G$. Label the vertices of *B* as shown in Fig. 7 and set $U = \{u_1, \ldots, u_7\} = V(G) - V(B)$. Since $D \nsubseteq G$, v_7 is non-adjacent to v_6 and *U*, and v_4 is non-adjacent to v_1 and v_2 .

Let $W = \{v_6\} \cup U$. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which, with v_7 as hub, forms W_8 , a contradiction. Thus, $\delta(\overline{G}[W]) \le 3$ and $\Delta(G[W]) \ge 4$. Three cases will now be considered.

Case 1: v_6 is the vertex of degree at least 4 in G[W].

Assume that v_6 is adjacent to u_1, u_2, u_3 and u_4 in G[W]. Then v_5 is adjacent to v_1 and v_2 in \overline{G} and v_3 is adjacent in \overline{G} to v_6, u_1, u_2, u_3 and u_4 .

Subcase 1.1: $E_G(\{u_1, \ldots, u_4\}, \{u_5, u_6, u_7\}) \neq \emptyset$.

Without loss of generality, assume that u_1 is adjacent to u_5 in G. Since $D \notin G$, { u_2, u_3, u_4 } is independent in G and is adjacent to v_1, v_2, u_6 and u_7 in \overline{G} ; v_6 is adjacent in \overline{G} to v_1 and v_2 ; v_4 and v_5 are adjacent in \overline{G} to u_1 and u_5 ; and v_3 is adjacent in \overline{G} to u_5 . If v_4 is adjacent to u_2 in G, then v_5 is adjacent in \overline{G} to u_3 and u_4 , so $v_1v_5v_2u_2u_6v_7u_7u_3v_1$ and u_4 form W_8 in \overline{G} , a contradiction. Thus, v_4 is adjacent to u_2 in \overline{G} , and $v_1v_4v_2u_4u_6v_7u_7u_3v_1$ and u_2 form W_8 in \overline{G} , again a contradiction.

Subcase 1.2: $\{u_1, ..., u_4\}$ is not adjacent to $\{u_5, u_6, u_7\}$ in G[W].

Suppose that v_5 is adjacent in G to v_7 ; then v_7 is not adjacent to v_1 or v_2 . If $|N_{G[\{u_1,\ldots,u_4,v_2\}]}(v_2)| \leq 2$, then $\overline{G}[u_1,\ldots,u_7,v_2]$ contains C_8 by Lemma 4.5 which with v_7 forms W_8 in \overline{G} , a contradiction. Thus, $|N_{G[\{u_1,\ldots,u_4,v_2\}]}(v_2)| \geq 3$, so v_1 is not adjacent to u_1,\ldots,u_4 in G. By Lemma 4.5, $\overline{G}[u_1,\ldots,u_7,v_1,v_7]$ contains W_8 , a contradiction.

Hence, v_5 is not adjacent to v_7 in G. If $|N_{G[\{u_1,...,u_4,v_5\}]}(v_5)| \leq 2$, then $\overline{G}[u_1, \ldots, u_7, v_5]$ contains C_8 by Lemma 4.5 which with v_7 forms W_8 in \overline{G} , a contradiction. Thus $|N_{G[\{u_1,...,u_4,v_5\}]}(v_5)| \geq 3$, so v_4 is not adjacent to $\{u_1, \ldots, u_4\}$ in G, or else G will contain D with v_4 be the vertex of degree 3. By Lemma 4.5, $\overline{G}[u_1, \ldots, u_7, v_1]$ contains C_8 . If v_4 is not adjacent to v_7 in G, then \overline{G} contains W_8 , a contradiction. Thus, v_4 is adjacent to v_7 , and since $D \nsubseteq G$, v_1 is not adjacent to v_7 . If $|N_{G[\{u_1,\ldots,u_4,v_1\}]}(v_1)| \leq 2$, then $\overline{G}[u_1,\ldots,u_7,v_1]$ contains C_8 by Lemma 4.5 which with v_7 forms W_8 , a contradiction. Thus, $|N_{G[\{u_1,\ldots,u_4,v_1\}]}(v_1)| \geq 3$, so $|N_{G[\{u_1,\ldots,u_4,v_1\}]}(v_1) \cap N_{G[\{u_1,\ldots,u_4,v_5\}]}(v_5)| \geq 2$, and G contains D with v_5 as the vertex of degree 3, a contradiction.

Case 2: u_1 is the vertex of degree at least 4 in G[W] and v_6 is adjacent to u_1 .

Without loss of generality, suppose that u_1 is adjacent to u_2 , u_3 and u_4 in G[W]. If v_5 is adjacent to u_1 , then Case 1 applies with v_6 replaced by u_1 . Suppose then that v_5 is not adjacent to u_1 . Since $D \notin G$, v_1 and v_2 are not adjacent in G to v_4 , v_5 or v_6 ; v_3 is not adjacent to v_6 , u_1 , ..., u_4 ; and v_4 is not adjacent to u_1 , ..., u_4 . **Subcase 2.1**: $E_G(\{u_2, u_3, u_4\}, \{u_5, u_6, u_7\}) \neq \emptyset$.

Without loss of generality, assume that u_2 is adjacent to u_5 in G. Then u_3 and u_4 are not adjacent to each other or to v_1 , v_2 , u_6 , u_7 . Also, u_1 is not adjacent to v_1 or v_2 , and neither u_2 nor u_5 is adjacent to v_3 , v_4 , v_5 , v_6 .

Suppose that v_7 is adjacent to v_4 in G. If u_1 is adjacent to v_1 , u_5 , u_6 or u_7 , then Case 1 can be applied through a slight adjustment of the vertex labelings. Suppose that u_1 is not adjacent to any of these vertices. Since $D \nsubseteq G$, v_7 is not adjacent to v_1 . If v_6 is not adjacent to u_6 , then $v_1u_1u_5v_6u_6u_3u_7u_4v_1$ and v_7 form W_8 in \overline{G} , a contradiction. Similarly, \overline{G} contains W_8 if v_6 is not adjacent to u_7 , a contradiction. Therefore, v_6 is adjacent to both u_6 and u_7 in G. Since $D \nsubseteq G$, u_6 is not adjacent to u_7 , and neither u_6 nor u_7 is adjacent to u_2 . Then $v_1u_1u_5v_6u_2u_6u_7u_3v_1$ and v_7 form W_8 in \overline{G} , a contradiction.

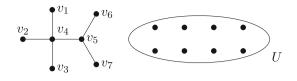
Suppose now that v_7 is not adjacent to v_4 in G. If v_7 is adjacent to v_5 , then v_7 is not adjacent to v_1 or v_2 , and v_4 is not adjacent to v_6 , u_6 or u_7 . Then $v_1u_1v_2u_3u_6v_4u_7u_4v_1$ and v_7 form W_8 in \overline{G} , a contradiction. Therefore, v_7 is not adjacent to v_5 in G. If v_6 is not adjacent to u_3 , then $u_3v_6u_2v_5u_5v_4u_4u_6u_3$ and v_7 form W_8 in \overline{G} , a contradiction. Similarly, \overline{G} contains W_8 if v_6 is not adjacent to u_4 , a contradiction. Then v_6 is adjacent to both u_3 and u_4 in G, so v_6 is not adjacent to u_6 and u_7 , or else Case 1 applies. Hence, $v_4u_2v_5u_5v_6u_6u_3u_4v_4$ and v_7 form W_8 in \overline{G} , a contradiction.

Subcase 2.2: $\{u_2, u_3, u_4\}$ is not adjacent to $\{u_5, u_6, u_7\}$ in G[W].

If $|N_{G[\{u_2, u_3, u_4, v_6\}]}(v_6)| \ge 3$ or $|N_{G[\{u_5, u_6, u_7, v_6\}]}(v_6)| \ge 3$, then Case 1 applies, so $|N_{G[\{u_2, u_3, u_4, v_6\}]}(v_6)| \le 2$ and $|N_{G[\{u_5, u_6, u_7, v_6\}]}(v_6)| \le 2$. Without loss of generality, assume that v_6 is not adjacent in G to u_2 or u_5 .

Suppose that v_4 is not adjacent to v_7 in G. If u_5 is adjacent to u_6 or u_7 , say u_6 , then v_4 is not adjacent to u_5 or u_6 , so $v_4u_2v_6u_5u_3u_7u_4u_6v_4$ and v_7 form W_8 in \overline{G} , a contradiction. If u_5 is not adjacent to u_6 or u_7 , then $v_4u_2v_6u_5u_6u_3u_7u_4v_4$ and v_7 form W_8 in \overline{G} , a contradiction. Suppose that v_4 is adjacent to v_7 in G. By similar arguments to those in Subcase 2.1, u_1 is not adjacent to v_1 , u_5 , u_6 or u_7 , and v_7 is not adjacent to v_1 . Then $v_1v_6u_5u_2u_6u_3u_7u_1v_1$ and v_7 form W_8 in \overline{G} , a contradiction.

Case 3: u_1 is the vertex of degree at least 4 in G[W] and v_6 is not adjacent to u_1 .



Assume that u_1 is adjacent to u_2 , u_3 , u_4 and u_5 in G[W]. Since $D \notin G$, v_3 and v_4 are not adjacent to u_1 , u_2 , u_3 , u_4 or u_5 in G. If either v_1 or v_5 are adjacent to u_1 in G, then Case 1 applies, so suppose that v_1 and v_5 are not adjacent to u_1 . In addition, v_1 and v_5 are not adjacent to u_2 , u_3 , u_4 or u_5 in G, or else Case 2 applies. **Subcase 3.1**: $N_{G[u_2,...,u_5]}(v_6) \neq \emptyset$.

Assume that v_6 is adjacent to u_2 in G. Note that v_4 is not adjacent to v_6 , v_7 , u_6 or u_7 in G, and v_3 is not adjacent to v_5 in G, or else Case 2 applies by slight adjustment of vertex labels. Since $D \nsubseteq G$, v_1 and v_2 are not adjacent in G to v_5 , v_6 or u_2 , and v_3 is not adjacent to v_6 in G.

If u_2 and u_6 are not adjacent in G, then $v_1u_1v_6v_2u_2u_6v_7u_3v_1$ and v_4 form W_8 in \overline{G} , a contradiction. A similar contradiction arises if u_2 and u_7 are not adjacent. Therefore, u_2 is adjacent to both u_6 and u_7 in G, and u_3 , u_4 and u_5 are not adjacent to u_6 or u_7 in G since $D \nsubseteq G$. Then $v_1u_1v_6v_2u_2v_7u_6u_3v_1$ and v_4 form W_8 in \overline{G} , a contradiction. **Subcase 3.2**: $N_{G[u_2,...,u_5]}(v_6) = \emptyset$.

Suppose that v_1 is adjacent to v_7 in G. Then v_2 is not adjacent to v_5 , v_6 or U since $D \notin G$. If $|N_{G[\{u_2,\ldots,u_6\}]}(u_6)| \leq 2$, then Lemma 4.5 implies that $\overline{G}[u_2,\ldots,u_5,v_4,v_5,v_6,u_6]$ contains C_8 in \overline{G} which with v_2 forms W_8 , a contradiction. Thus, $|N_{G[\{u_2,\ldots,u_6\}]}(u_6)| \geq 3$. Similarly, $|N_{G[\{u_2,\ldots,u_5,u_7\}]}(u_7)| \geq 3$. By the Inclusion-exclusion Principle, $|N_{G[\{u_2,\ldots,u_6\}]}(u_6) \cap N_{G[\{u_2,\ldots,u_5,u_7\}]}(u_7)| \geq 2$. Without loss of generality, u_6 is adjacent to u_2 , u_3 and u_4 in G, and u_7 is adjacent to u_3 and u_4 , and $G[u_1,\ldots,u_7]$ contains D with u_3 or u_4 being the vertex of degree 3, a contradiction.

Now suppose that v_1 is not adjacent to v_7 in G. If v_7 is adjacent to v_4 in G, then v_2 is not adjacent to any of u_1, \ldots, u_5 in G, or else either Case 1 or 2 applies. Also, $|N_{G[\{v_2, v_5, v_7\}]}(v_7)| \leq 1$ since $D \subseteq G$. Assume that v_7 is not adjacent to v_2 in G. If $|N_{G[\{u_2, \ldots, u_6\}]}(u_6)| \leq 2$, then Lemma 4.5 implies that $\overline{G}[u_2, \ldots, u_5, v_1, v_2, v_6, u_6]$ contains C_8 which with v_7 forms W_8 , a contradiction. Thus, $|N_{G[\{u_2, \ldots, u_6\}]}(u_6)| \geq 3$. Similarly, $|N_{G[\{u_2, \ldots, u_5, u_7\}]}(u_7)| \geq 3$, so $|N_{G[\{u_2, \ldots, u_6\}]}(u_6) \cap N_{G[\{u_2, \ldots, u_5, u_7\}]}(u_7)| \geq 2$. By arguments similar to those in the previous paragraph, G will contain a subgraph D, a contradiction.

Thus, $R(D, W_8) \le 14$ which completes the proof of the theorem.

Theorem 5.3 $R(E, W_8) = 15$.

Proof The graph $G = K_6 \cup K_{4,4}$ does not contain E and \overline{G} does not contain W_8 . Thus, $R(E, W_8) \ge 15$. For the upper bound, let G be any graph of order 15. Suppose that G does not contain E and that \overline{G} does not contain W_8 . By Theorem 1.4, G contains a $T = S_7(3)$ subgraph. Label the vertices of this subgraph as in Fig.8 and set U = V(G) - V(T). Note that |U| = 8.

Case 1: Some vertex u in U is adjacent to v_6 .

Since $E \nsubseteq G$, v_6 is not adjacent to v_1 , v_2 , v_3 , v_7 or any vertex of U other than u. Let $W = \{v_1, v_2, v_3, v_7, u_1, \ldots, u_4\}$, for any vertices u_1, \ldots, u_4 in U other than u. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which with v_6 forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[W]) \le 3$ and $\Delta(G[W]) \ge 4$. Since $E \nsubseteq G$, $N_{G[\{u_1,\ldots,u_4,v_1,v_7\}]}(v_7) \le 1$ and $N_{G[\{u_1,\ldots,u_4,v_7,v_i\}]}(v_i) \le 1$ for i = 1, 2, 3, so none of v_1, v_2, v_3, v_7 has degree at least 4. Without loss of generality, assume that u_1 has degree at least 4. If u_1 is adjacent to v_7 , then G contains E with u_1 and v_5 as the vertices of degree 3, a contradiction. Similarly, if u_1 is adjacent to v_1, v_2 or v_3 , then G contains E with u_1 and v_4 as the vertices of degree 3, a contradiction. Therefore, u_1 is not adjacent to v_1, v_2, v_3 or v_7 . However, then u_1 has degree at most 3 in G[W], a contradiction.

Case 2: v_6 is not adjacent to any vertices in U.

If v_7 is adjacent to some vertex in U, then Case 1 applies with v_7 replacing v_6 , so suppose that v_7 is not adjacent to any vertex in U. Now, if $\delta(\overline{G}[U]) \ge 4$, then $\overline{G}[U]$ contains C_8 by Lemma 4.1 which with v_6 or v_7 forms W_8 , a contradiction. Thus, $\delta(\overline{G}[U]) \le 3$ and $\Delta(G[U]) \ge 4$. Let $V(U) = \{u_1, \ldots, u_8\}$. Without loss of generality, assume that u_1 is adjacent to u_2, u_3, u_4 and u_5 . Since $E \nsubseteq G, v_4$ is not adjacent in G to any of $u_1, \ldots, u_5; v_5$ is not adjacent to any of $v_1, v_2, v_3, u_1, \ldots, u_5;$ and u_1 is not adjacent to v_1, v_2 or v_3 . Furthermore, $|N_{G[\{u_2, \ldots, u_5, v_i\}]}(v_i)| \le 1$ for i = 1, 2, 3 and $|N_{G[\{v_1, v_2, v_3, u_i\}]}(u_j)| \le 1$ for $j = 2, \ldots, 5$.

Suppose that $N_{G[\{v_5, u_6, u_7, u_8\}]}(v_5) = \emptyset$. If $|N_{G[\{u_2, \dots, u_6\}]}(u_6)| \leq 1$, then $\overline{G}[u_2, \dots, u_5, v_1, v_2, v_3, u_6]$ contains C_8 by Lemma 4.5 which with v_5 forms W_8 , a contradiction. Therefore, $|N_{G[\{u_2, \dots, u_6\}]}(u_6)| \geq 2$. Similarly, $|N_{G[\{u_2, \dots, u_5, u_7\}]}(u_7)| \geq 2$ and $|N_{G[\{u_2, \dots, u_5, u_8\}]}(u_8)| \geq 2$. By the Inclusion-Exclusion Principle, u_2, u_3, u_4 or u_5 is adjacent in G to at least two of u_6, u_7, u_8 . Without loss of generality, assume that u_2 is adjacent to u_6 and u_7 . Then u_2 is not adjacent to u_3, u_4 or u_5 , Therefore, Lemma 4.5 implies that $\overline{G}[u_1, u_3, u_4, u_5, v_1, v_2, v_3, u_2]$ contains C_8 which with v_5 forms W_8 , a contradiction.

On the other hand, if $N_{G[u_6,u_7,u_8]}(v_5) \neq \emptyset$, then without loss of generality assume that u_6 is adjacent to v_5 in G. Since $E \nsubseteq G$, v_4 is not adjacent to v_6 , v_7 or u_6 in G. Also, $\{v_1, v_2, v_3\}$ and $\{v_6, v_7, u_6\}$ are independent in G, and $v_1, v_2, v_3, v_6, v_7, u_6 \notin N_G(u_i)$ for i = 1, ..., 5, 7, 8, or else Case 1 applies with vertex label adjustments. Now, if u_1 is not adjacent to both u_7 and u_8 in G, then $v_1v_2v_3u_7v_6v_7u_6u_8v_1$ and u_1 form W_8 in \overline{G} , a contradiction. Therefore, $N_{G[\{u_1,u_7,u_8\}]}(u_1) \neq \emptyset$. Without loss of generality, assume that u_1 is adjacent to u_7 in G. Note that for $E \nsubseteq G$, $|N_{G[\{v_4,v_5,u_8\}]}(u_8)| \leq 1$. Assume that u_8 is not adjacent to v_4 in G. If $|N_{G[\{u_2,...,u_5,u_8\}]}(u_8)| \leq 3$, then assume without loss of generality that u_8 is not adjacent to u_2 or u_3 in G. Then $v_6u_4v_7u_5u_6u_2u_8u_3v_6$ and v_4 form W_8 in \overline{G} , a contradiction. Similar arguments work if u_8 is not adjacent to v_5 in G, by replacing v_4 with v_5 and v_6, v_7, u_6 with v_1, v_2, v_3 , respectively. Hence, $|N_{G[\{u_2,...,u_5,u_7,u_8\}]}(u_8)| \geq 4$. However, G then contains E with u_1 and u_8 of degree 3, a contradiction.

Thus, $R(E, W_8) \le 15$. This completes the proof of the theorem.

Fig. 9 The graphs H_8

6 Proof of Theorem 2.2

Consider the tree graphs T_n of order $n \ge 8$ with $\Delta(T_n) = n - 4$, namely $S_n(4)$, $S_n[4]$, $S_n(1, 3)$, $S_n(3, 1)$, $T_A(n)$, $T_B(n)$ and $T_C(n)$; see Figs. 1 and 3.

Lemma 6.1 Let $n \ge 8$. Then $R(T_n, W_8) \ge 2n - 1$ for each $T_n \in \{S_n(4), S_n(3, 1), T_C(n)\}$. Also for each $T_n \in \{S_n[4], S_n(1, 3), T_A(n), T_B(n)\}$, $R(T_n, W_8) \ge 2n - 1$ if $n \ne 0 \pmod{4}$ and $R(T_n, W_8) \ge 2n$ otherwise.

Proof The graph $G = 2K_{n-1}$ clearly does not contain any tree graph of order n, and \overline{G} does not contain W_8 . Finally, if $n \equiv 0 \pmod{4}$, then the graph $G = K_{n-1} \cup K_{4,...,4}$ of order 2n-1 does not contain $S_n[4], S_n(1, 3), T_A(n)$ or $T_B(n)$; nor does the complement \overline{G} contain W_8 .

Theorem 6.2 *If* $n \ge 8$, *then*

$$R(S_n(4), W_8) = \begin{cases} 2n-1 & \text{if } n \ge 9; \\ 16 & \text{if } n = 8. \end{cases}$$

Proof By Lemma 6.1, $R(S_n(4), W_8) \ge 2n - 1$ for $n \ge 8$. For n = 8, observe that the graph $G = K_7 \cup H_8$, where H_8 is the graph of order 8 as shown in Fig. 9 does not contain $S_8(4)$ and its complement \overline{G} does not contain W_8 . Therefore, for n = 8, we have a better bound of $R(S_8(4), W_8) \ge 16$.

For the upper bound, let *G* be any graph of order 2n - 1 if $n \ge 9$, and of order 16 if n = 8. Assume that *G* does not contain $S_n(4)$ and that \overline{G} does not contain W_8 .

If $n \ge 9$ is odd or n = 8, then *G* has a subgraph $T = S_n(3)$ by Theorem 1.4. Let $V(T) = \{v_0, \ldots, v_{n-3}, w_1, w_2\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-3}, v_1w_1, v_1w_2\}$. Also, let $V = \{v_2, \ldots, v_{n-3}\}$ and U = V(G) - V(T); then $|V| = n - 4 \ge 5$ and $|U| = n - 1 \ge 8$ if *n* is odd, while |U| = 8 if n = 8. Since $S_n(4) \nsubseteq G$, v_1 is not adjacent to any vertex of $U \cup V$ in *G*. Furthermore, for each $2 \le i \le n - 3$, v_i is adjacent to at most two vertices of *U* in *G*. By Corollary 4.7, $\overline{G}[U \cup V]$ contains C_8 , and together with v_1 , gives us W_8 in \overline{G} , a contradiction.

For the remaining case when $n \ge 10$ is even, $S_{n-1} \subseteq G$ by Theorem 1.1. Let v_0 be the center of S_{n-1} and set $L = N_{S_{n-1}}(v_0) = \{v_1, \ldots, v_{n-2}\}$ and $U = V(G) - V(S_{n-1})$. Then |U| = n. Since G does not contain $S_n(4)$, each vertex of L is adjacent to at most two vertices of U. We consider two cases.

Case 1: $E(L, U) = \emptyset$.

If $\Delta(G[U]) \ge 4$, then some vertex u in U is adjacent to at least four vertices in G[U]. These four vertices and any four vertices from L form C_8 in \overline{G} which with u forms W_8 , a contradiction. Therefore, $\Delta(\overline{G}[U]) \le 3$ and $\delta(G[U]) \ge n - 4$. Suppose $\delta(G[U]) =$ n-4+l for some $l \ge 0$, and let u_0 be a vertex in U with minimum degree in G[U]. Label the remaining vertices in U as u_1, \ldots, u_{n-1} such that $U_A = \{u_1, \ldots, u_{n-4}\} \subseteq N_G(u_0)$, and let $U_B = \{u_{n-3}, u_{n-2}, u_{n-1}\}$. Since $S_n(4) \notin G$, each vertex in U_A is adjacent to at most two vertices in U_B , and so $|E_G(U_A, U_B)| \le 2(n-4)$. On the other hand, noting that u_0 is adjacent to exactly l vertices in U_B and letting $e_B \le 3$ be the number of edges in $G[U_B]$, we see that $|E_G(U_A, U_B)| \ge 3\delta(G[U]) - l - 2e_B = 3(n - 4+l) - l - 2e_B$. Therefore, $2(n-4) \ge |E_G(U_A, U_B)| \ge 3n - 12 + 2l - 2e_B$, implying that $n + 2l \le 4 + 2e_B \le 10$, which is only possible when n = 10, l = 0, $e_B = 3$, and $|E_G(U_A, U_B)| = 2(n-4) = 12$. For such scenario where n = 10, noting that u_0 was an arbitrary vertex with minimum degree in G[U], it is straightforward to deduce that the only possible edge set of G[U] (up to isomorphism) with $S_{10}(4) \notin G[U]$ is $\{u_0u_1, \ldots, u_0u_6\} \cup \{u_1u_3, u_1u_5, u_3u_5\} \cup \{u_2u_4, u_2u_6, u_4u_6\} \cup \{u_7u_8, u_7u_9, u_8u_9\}$. Observe now that $\overline{G}[U]$ contains C_8 which forms W_8 in \overline{G} with any vertex in L as hub, a contradiction.

Case 2: $E(L, U) \neq \emptyset$.

Without loss of generality, assume that v_1 is adjacent to u_1 in G. Since $S_n(4) \not\subseteq G$, v_1 is adjacent to at most one vertex of $U \cup L \setminus \{u_1\}$ in G. Therefore, we can find a 4-vertex set $V' \subseteq V \setminus \{v_1\}$ and an 8-vertex set $U' \subseteq U \setminus \{u_1\}$ such that v_1 is not adjacent in G to any vertex of $U' \cup V'$. Note that each vertex of V' is adjacent to at most two vertices of U' in G, so $|E(V', U')| \leq 8$. This implies that there are four vertices in U' that are each adjacent in G to at most one vertex of V', and so \overline{G} contains C_8 by Lemma 4.5 which with v_1 forms W_8 , a contradiction.

Thus, $R(S_n(4), W_8) \le 2n - 1$ when $n \ge 9$ and $R(S_n(4), W_8) \le 16$ when n = 8. This completes the proof of the theorem.

Lemma 6.3 Let *H* be a graph of order $n \ge 8$ with minimum degree $\delta(H) \ge n - 4$. Then either *H* contains $S_n[4]$ and $T_A(n)$, or $n \equiv 0 \pmod{4}$ and \overline{H} is the disjoint union of $\frac{n}{4}$ copies of K_4 , i.e., $\overline{H} = \frac{n}{4}K_4$.

Proof Let $V(H) = \{u_0, \ldots, u_{n-1}\}$. First, consider the case where *H* has a vertex of degree at least n - 3, say u_0 , and that $\{u_1, \ldots, u_{n-3}\} \subseteq N_H(u_0)$.

Suppose u_{n-2} is adjacent to u_{n-1} in H. Since $\delta(H) \ge n - 4$, u_{n-2} is adjacent to at least $n - 6 \ge 2$ vertices of $\{u_1, \ldots, u_{n-3}\}$, say u_1 and u_2 , and so H contains $S_n[4]$. Furthermore by the minimum degree condition, u_1 is adjacent to at least $n - 7 \ge 1$ vertices of $\{u_1, \ldots, u_{n-3}\}$, and so H contains $T_A(n)$.

Suppose now that u_{n-2} is not adjacent to u_{n-1} in H. Then by the minimum degree condition, there is a vertex in $\{u_1, \ldots, u_{n-3}\}$, say u_1 , that is adjacent to both u_{n-2} and u_{n-1} . The vertices u_1 and u_{n-2} must also each be adjacent to a vertex of $\{u_2, \ldots, u_{n-3}\}$, and so H contains both $S_n[4]$ and $T_A(n)$.

For the remaining case, suppose that *H* is (n - 4)-regular and that $N_H(u_0) = \{u_1, \ldots, u_{n-4}\}$. Let $U = \{u_{n-3}, u_{n-2}, u_{n-1}\}$ and suppose that H[U] has an edge, say $u_{n-3}u_{n-2}$. Since u_{n-3} must be adjacent in *H* to some vertex of $N_H(u_0)$, it follows that *H* contains $S_n[4]$ if u_{n-3} or u_{n-2} is adjacent to u_{n-1} . Suppose then that neither u_{n-3} nor u_{n-2} is adjacent to u_{n-1} . Then u_{n-1} is adjacent to every vertex of $N_H(u_0)$. Note that $d_{H[N_H(u_0)\cup\{u_{n-3}\}]}(u_{n-3}) = n - 5$ and let *u* be the vertex of $N_H(u_0)$ that is not adjacent in *H* to u_{n-3} . Since $d_H(u) = n - 4$, *u* is adjacent in *H* to some vertex in

 $N_H(u_{n-3})$, so H contains $S_n[4]$. Also, note that u_{n-3} is adjacent in H to at least n-6 vertices of $N_H(u_0)$. If u_{n-1} is adjacent to some vertex of $N_{H[N_H(u_0)\cup\{u_{n-3}\}]}(u_{n-3})$, then H contains $T_A(n)$. Note that this will always happen for $n \ge 9$. For n = 8, there is a case where $|N_{H[N_H(u_0)\cup\{u_{n-3}\}]}(u_{n-3})| = |N_{H[N_H(u_0)\cup\{u_{n-1}\}]}(u_{n-1})| = 2$ and $N_{H[N_H(u_0)\cup\{u_{n-3}\}]}(u_{n-3}) \cap N_{H[N_H(u_0)\cup\{u_{n-1}\}]}(u_{n-1}) = \emptyset$, so u_{n-1} is adjacent to u_{n-3} and u_{n-2} , giving $T_A(n)$ in H.

Now, suppose that H[U] contains no edge. Then $U_1 = U \cup \{u_0\}$ is an independent set in H. Furthermore, $N_H(u) = \{u_1, \ldots, u_{n-4}\}$ for every $u \in U$, as every vertex has degree n - 4. Therefore, $\overline{H}[U_1]$ is a K_4 component in \overline{H} . Repeating the above proof for each vertex u of H shows that either u is contained in a K_4 component of \overline{H} , or Hcontains both $S_n[4]$ or $T_A(n)$. In other words, either H contains both $S_n[4]$ and $T_A(n)$, or \overline{H} is the disjoint union of $\frac{n}{4}$ copies of K_4 , and so $n \equiv 0 \pmod{4}$.

Theorem 6.4 *If* $n \ge 8$, *then*

$$R(S_n[4], W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4};\\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds. Now let G be a graph that does not contain $S_n[4]$ and assume that \overline{G} does not contain W_8 .

First, suppose that G has order 2n if $n \equiv 0 \pmod{4}$ and G has order 2n - 1if n is odd. By Theorem 1.4, G has a subgraph $T = S_n(3)$. Let $V(T) = \{v_0, \ldots, v_{n-3}, w_1, w_2\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-3}\} \cup \{v_1w_1, v_1w_2\}$. Set U = V(G) - V(T) and $V = \{v_2, \ldots, v_{n-3}\}$. Then |U| = n - j, for j = 0 if $n \equiv 0 \pmod{4}$ and j = 1 if n is odd, and |V| = n - 4. Since G does not contain $S_n[4], v_1$ is not adjacent to any vertex of V in G, and each vertex of V is adjacent to at most n - 6 vertices of $U \cup V$ in G. Noting also that w_1 and w_2 each is adjacent to at most one vertex of $\{w_1, w_2\} \cup U$ in G, we consider two cases.

Case 1: At least one of w_1 and w_2 is not an isolated vertex in $G[\{w_1, w_2\} \cup U]$.

Without loss of generality, assume that w_1 is adjacent to some vertex $u \in \{w_2\} \cup U$ in *G*. Let $Z = (V \cup U \cup \{w_2\}) \setminus \{u\}$ and note that |Z| = 2n - 4 - j. Since $S_n[4] \nsubseteq G$, w_1 is not adjacent to any vertex of *Z* in *G*. If $\delta(\overline{G}[Z]) \ge \lceil \frac{2n-4-j}{2} \rceil$, then $\overline{G}[Z]$ contains C_8 by Lemma 4.1 which with w_1 , forms W_8 in \overline{G} , a contradiction. Therefore, $\delta(\overline{G}[Z]) \le \lceil \frac{2n-4-j}{2} \rceil - 1$ and $\Delta(G[Z]) \ge \lfloor \frac{2n-4-j}{2} \rfloor = n - 2 - j$. Since each *v* of *V* is adjacent to at most n - 6 vertices of $U \cup V$ in *G*, and w_2 is adjacent to at most one vertex of *U* in *G*, a vertex with maximum degree in G[Z] must be a vertex of $U \setminus \{u\}$. So let u_2 be a vertex of *U* with $d_{G[Z]}(u_2) \ge n - 2$. As $S_n[4] \nsubseteq G$, observe that $N_{G[Z]}(u_2) \subseteq U$; each vertex of *V* is adjacent to at most one vertex of $N_{G[Z]}(u_2)$ in *G*; and each vertex of $N_{G[Z]}(u_2)$ is adjacent to at most one vertex of *V* in *G*. Then by Lemma 4.5, any four vertices from *V* and any four vertices from $N_{G[Z]}(u_2)$ form C_8 in \overline{G} which with w_1 forms W_8 in \overline{G} , a contradiction.

Case 2: w_1 and w_2 are isolated vertices in $G[\{w_1, w_2\} \cup U]$.

If $\delta(\overline{G}[U]) \geq \frac{n-j}{2}$, then $\overline{G}[U]$ contains C_8 by Lemma 4.1 which with w_1 forms W_8 , a contradiction. Thus, $\delta(\overline{G}[U]) \leq \frac{n-j}{2} - 1$, and $\Delta(G[U]) \geq \frac{n-j}{2}$. Let u_1 be a

vertex of U with $d_{G[U]} \ge \frac{n-j}{2}$. Since $S_n[4] \nsubseteq G$, v_0 is not adjacent to any vertex of $N_{G[U]}(u_1)$ in G. Now, if v_1 is adjacent to some vertex u of $N_{G[U]}(u_1)$ in G, then apply Case 1 with w_1 and u interchanged. So assume that v_1 is not adjacent to any vertex of $N_{G[U]}(u_1)$ in G.

If $E(V, N_{G[U]}(u_1)) = \emptyset$ in \overline{G} , then any four vertices of V and any four vertices of $N_{G[U]}(u_1)$ form C_8 in \overline{G} , and with v_1 , form W_8 in \overline{G} , a contradiction. So without loss of generality, assume that v_2 is adjacent to some vertex u_2 of $N_{G[U]}(u_1)$ in \overline{G} . Since $S_n[4] \notin G$, u_2 is not adjacent to any vertex of $U \setminus \{u_1\}$. Then v_0, v_1, w_1, w_2 and any four vertices from $U \setminus \{u_1, u_2\}$, at least three of which are from $N_{G[U]}(u_1) \setminus \{u_2\}$, form C_8 in \overline{G} and, with u_2 , form W_8 in \overline{G} , a contradiction.

In either case, $R(S_n[4], W_8) \le 2n$ for $n \equiv 0 \pmod{4}$ and $R(S_n[4], W_8) \le 2n - 1$ for odd n.

Next, suppose that $n \equiv 2 \pmod{4}$ and G has order 2n - 1. If G contains a subgraph $S_n(3)$, then the previous arguments show that $R(S_n[4], W_8) \leq 2n - 1$. Hence, we only need to consider the case where G does not contain $S_n(3)$. Now, by Theorem 6.2, G has a subgraph $T = S_n(4)$. Let $V(T) = \{v_0, \dots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \dots, v_0v_{n-4}, v_1w_1, v_1w_2, v_1w_3\}$. Let U = V(G) - V(T); then |U| = n - 1. Since G does not contain $S_n(3)$ and $S_n[4]$, v_0 is not adjacent in G to w_1 , w_2, w_3 or U. Now, set $U' = N_{G[U \cup \{w_1\}]}(w_1) \cup N_{G[U \cup \{w_2\}]}(w_2) \cup N_{G[U \cup \{w_3\}]}(w_3)$. Then $|U'| \leq 3$ and w_1 , w_2 and w_3 are not adjacent in G to any vertex of $U \setminus U'$. By Lemma 4.4, $G[U \setminus U']$ is either $K_{n-1-|U'|}$ or $K_{n-1-|U'|} - e$. If $d_{\overline{G}[U \setminus U']}(u') \ge 2$ for some vertex u' in U', then at least two vertices of $U \setminus U'$ are not adjacent to u' in G. Let X be a set containing these two vertices and any other two vertices in $U \setminus U'$, and set $Y = \{w_1, w_2, w_3, u'\}$. Note that $\overline{G}[X \cup Y]$ contains C_8 by Lemma 4.5 which with v_0 forms W_8 , a contradiction. Therefore, every vertex of U' is adjacent in G to at least n - 2 - |U'| vertices of $U \setminus U'$. Hence, $\delta(G[U]) \ge n - 5$, and since $S_n[4] \nsubseteq G$, $E_G(T, U) = \emptyset$. Now, if $\overline{G}[V(T)]$ contains S_5 , then \overline{G} contains W_8 by Observation 4.3, a contradiction. Therefore, $\delta(G[V(T)]) \ge n - 4$. By Lemma 6.3, G contains $S_n[4]$, a contradiction. Thus, $R(S_n[4], W_8) \le 2n - 1$ for $n \equiv 2 \pmod{4}$.

Theorem 6.5 *If* $n \ge 8$ *, then*

$$R(S_n(1,3), W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4};\\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds. Let *G* be any graph of order 2*n* if $n \equiv 0 \pmod{4}$ and of order 2n - 1 if $n \neq 0 \pmod{4}$. Assume that *G* does not contain $S_n(1, 3)$ and that \overline{G} does not contain W_8 . By Theorem 6.4, *G* has a subgraph $T = S_n[4]$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, w_1v_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T). Since $S_n(1, 3) \nsubseteq G$, w_2 and w_3 are not adjacent to each other, or to any vertex in $U \cup V$. Since $C_8 \nsubseteq \overline{G}[U \cup V]$ as $W_8 \nsubseteq \overline{G}$, Lemma 4.1 implies that $G[U \cup V]$ has a vertex *u* of degree at least n - 3 in $G[U \cup V]$. Since $S_n(1, 3) \nsubseteq G$, $u \in U$ and *u* is not adjacent to any vertices in *V*. Furthermore, $E(V, N_{G[U]}(u)) = \emptyset$. Finally, note that w_3 , any 3 vertices in *V* and any 4 vertices in $N_{G[U]}(u)$ form C_8 in \overline{G} which, with w_2 as hub, form W_8 , a contradiction. **Theorem 6.6** *If* $n \ge 8$, *then*

$$R(T_A(n), W_8) = \begin{cases} 2n-1 & \text{if } n \not\equiv 0 \pmod{4}; \\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds. Let *G* be any graph of order 2n if $n \equiv 0 \pmod{4}$ and of order 2n - 1 if $n \not\equiv 0 \pmod{4}$. Assume that *G* does not contain $T_A(n)$ and that \overline{G} does not contain W_8 .

Suppose first that *G* has a subgraph $T = S_n(3)$. Let $V(T) = \{v_0, \ldots, v_{n-3}, w_1, w_2\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-3}, v_1w_1, v_1w_2\}$. Set $V = \{v_2, \ldots, v_{n-3}\}$ and U = V(G) - V(T). Since *G* does not contain $T_A(n)$, w_1 and w_2 are not adjacent to any vertex of $U \cup V$ in *G*. Let *V'* be the set of any n-5 vertices in *V*, and *U'* be the set of any n-1 vertices in *U*. If $\delta(\overline{G}[U' \cup V']) \ge n-3$, then $\overline{G}[U' \cup V']$ contains C_8 by Lemma 4.1 which, with w_1 as hub, form W_8 , a contradiction. Therefore, $\delta(\overline{G}[U' \cup V']) \le n-4$ and $\Delta(G[U' \cup V']) \ge n-3$. Since $T_A(n) \nsubseteq G$, $d_{G[U' \cup V']}(v) \le n-6$ for each $v \in V'$. Hence, some vertex $u \in U'$ satisfies $d_{G[U' \cup V']}(u) \ge n-3$, which also implies that *u* is adjacent to at least two vertices of *U*.

Since $T_A(n) \nsubseteq G$, each vertex of V is adjacent to at most one vertex of $N_{G[U]}(u)$. If $|N_{G[U]}(u)| \ge n - 4$, then each vertex of $N_{G[U]}(u)$ is adjacent to at most one vertex of V, and so $\overline{G}[V \cup N_{G[U]}(u)]$ contains C_8 by Lemma 4.1 which with w_1 forms W_8 , a contradiction. Thus, at least three vertices of V' (and so of V), say v_2 , v_3 , v_4 , are adjacent to u in G. Let a and b be any two vertices in $N_{G[U]}(u)$. As $T_A(n) \nsubseteq G$, each of v_2 , v_3 , v_4 is not adjacent to any vertex of $V(G) \setminus \{u, v_0\}$. Then $w_1v_5w_2v_3av_1bv_4w_1$ and v_2 form W_8 in \overline{G} , a contradiction.

By Theorem 1.4, $R(S_n(3), W_8) \leq 2n$ for $n \equiv 0 \pmod{4}$. So now assume that *G* has order 2n - 1 with $n \neq 0 \pmod{4}$ and that *G* does not contain $S_n(3)$. By Theorem 6.2, *G* has a subgraph $T = S_n(4)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, v_1w_3\}$. Then U = V(G) - V(T) and |U| = n - 1. Since $T_A(n) \notin G$, w_1, w_2, w_3 are not adjacent to each other in *G* or to any vertex of *U*. Since $S_3(n) \notin G$, v_0 is not adjacent to any vertex of $U \cup \{w_1, w_2, w_3\}$. By Lemma 4.4, G[U] is K_{n-1} or $K_{n-1} - e$. Since $T_A(n) \notin G$, each vertex of *T* is not adjacent to any vertex of *U* in *G*, and so $\delta(G[V(T)]) \geq n - 4$ by Observation 4.3, which in turn implies that G[V(T)] contains $T_A(n)$ by Lemma 6.3, a contradiction.

This completes the proof of the theorem.

Theorem 6.7 *If* $n \ge 8$, *then*

$$R(T_B(n), W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4};\\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 6.1 provides the lower bounds, so it remains to prove the upper bounds. Let G be a graph with no $T_B(n)$ subgraph whose complement \overline{G} does not contain W_8 .

Suppose that $n \equiv 0 \pmod{4}$ and that *G* has order 2*n*. By Theorem 6.4, *G* has a subgraph $T = S_n[4]$. Let $V(T) = \{v_0, ..., v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, ..., v_0v_{n-4}, v_1w_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, ..., v_{n-4}\}$ and $U = V(G) - \{v_0v_1, ..., v_{n-4}\}$ and $U = V(G) - \{v_0v_1, ..., v_{n-4}\}$.

V(T); then |V| = n - 5 and |U| = n. Since $T_B(n) \nsubseteq G$, $E_G(U, V) = \emptyset$ and neither w_2 nor w_3 is adjacent in *G* to *V*. Suppose that $n \ge 12$. If w_2 is non-adjacent to some 4 vertices from *U*, then these 4 vertices and any 4 vertices from *V* form C_8 in \overline{G} that with w_2 forms W_8 , a contradiction. Otherwise, w_2 must be adjacent to at least n - 3 vertices of *U* in *G*. Since $T_B(n) \nsubseteq G$, w_3 must not be adjacent to these n - 3 vertices; then any 4 vertices from these n - 3 vertices and 4 vertices from *V* form C_8 in \overline{G} and with w_3 forms W_8 , again a contradiction. For n = 8, |V| = 3 and |U| = 8. If w_2 is not adjacent to any vertex of *U* in *G*, then by Lemma 4.4, G[U] is K_8 or $K_8 - e$ which contains $T_B(8)$, a contradiction. Otherwise, suppose that w_2 is adjacent to $u \in U$. Since $T_B(8) \nsubseteq G$, w_1 must not be adjacent to $(U \cup V) \setminus \{u\}$ in *G*. Now, if w_3 is not adjacent to v_0 in *G*, then by Observation 4.3, \overline{G} contains W_8 , another contradiction. Thus, $R(T_B(n), W_8) \le 2n$ for $n \equiv 0 \pmod{4}$.

Next, suppose that $n \neq 0 \pmod{4}$ and that *G* has order 2n - 1. By Theorem 6.4, *G* has a subgraph $T = S_n[4]$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $T_B(n) \notin G$, $E_G(U, V) = \emptyset$ and neither w_2 nor w_3 is adjacent in *G* to *V*. For $n \ge 9$, if w_2 is non-adjacent to some 4 vertices from *U*, then these 4 vertices and any 4 vertices from *V* form C_8 in \overline{G} and with w_2 form W_8 , a contradiction. Otherwise, w_2 is adjacent to at least n - 4 vertices of *U* in *G*. Since $T_B(n) \notin G$, w_3 is not adjacent to these n - 4 vertices, so any 4 vertices from these n - 4 vertices and 4 vertices from *V* form C_8 in \overline{G} which with w_3 form W_8 , again a contradiction. Therefore, $R(T_B(n), W_8) \le 2n - 1$ for $n \neq 0$ (mod 4).

This completes the proof.

Theorem 6.8 For $n \ge 8$, $R(T_C(n), W_8) = 2n - 1$.

Proof Lemma 6.1 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order 2n - 1 and assume that G does not contain $T_C(n)$ and that \overline{G} does not contain W_8 .

Suppose first that there is a subset $X \subseteq V(G)$ of size n with $\delta(G[X]) \ge n - 4$. If $\delta(G[X]) = n - 4$, then let $x \in X$ be such that $d_{G[X]}(x) = n - 4$, and set $Y = X \setminus (\{x\} \cup N_{G[X]}(x))$ where |Y| = 3. Noting that 3(n - 6) > n - 4 for $n \ge 8$, there must be two vertices of Y that are adjacent to a common vertex of $N_{G[X]}(x)$ in G, say to $x' \in N_{G[X]}(x)$. Then the remaining vertex of Y is not adjacent to any vertex of $N_{G[X]}(x) \setminus \{x'\}$, as $T_C(n) \nsubseteq G$, contradicting $\delta(G[X]) \ge n - 4$. So $\delta(G[X]) \ge n - 3$. Set $Y = X \setminus (\{x\} \cup X')$ where |Y| = 2. As 2(n - 5) > n - 3 for $n \ge 8$, the two vertices of Y must be adjacent to a common vertex of X' in G, say x'. Then $G[X' \setminus \{x'\}]$ is an empty graph as $T_C(n) \nsubseteq G$, contradicting $\delta(G[X]) \ge n - 3$.

Now assume that $\delta(G[X]) \le n - 5$ whenever $X \subseteq V(G)$ is of size *n*. By Theorem 1.4, *G* has a subgraph $T = S_{n-1}(3)$. Let $V(T) = \{v_0, ..., v_{n-4}, w_1, w_2\}$ and $E(T) = \{v_0v_1, ..., v_0v_{n-4}, v_1w_1, v_1w_2\}$. Set $V = \{v_2, v_3, ..., v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n. Since $T_C(n) \notin G$, $E_G(U, V) = \emptyset$.

For the case n = 8 such that v_1 is not adjacent to any vertex of U in G, or the case $n \ge 9$, there are four vertices of V(T) that are not adjacent to any vertex of U in G.

For the final case n = 8 with v_1 adjacent to some vertex u of U in G, observe that since $T_C(8) \nsubseteq G$, the vertex u is not adjacent to any vertex of $\{v_2, v_3, v_4\} \cup U$. By Lemma 4.4, $G[U \setminus \{u\}]$ is K_7 or $K_7 - e$, which implies that no vertex of $V(T) \cup \{u\}$ is adjacent to any vertex of $U \setminus \{u\}$ in G, as $T_C(8) \nsubseteq G$. Since $\delta(G[V(T) \cup \{u\}]) \le n - 5$, $\overline{G}[V(T) \cup \{u\}]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

This completes the proof of the theorem.

Theorem 6.9 For $n \ge 8$, $R(S_n(3, 1), W_8) = 2n - 1$.

Proof Lemma 6.1 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order 2n - 1. Assume that G does not contain $S_n(3, 1)$ and that \overline{G} does not contain W_8 .

Suppose first that there is a subset $X \subseteq V(G)$ of size n with $\delta(G[X]) \ge n - 4$. Let x_0 be any vertex of X, and pick a subset $X' \subseteq N_{G[X]}(x_0)$ of size n - 4. Set $Y = X \setminus (\{x_0\} \cup X')$, and so |Y| = 3. Since $\delta(G[X]) \ge n - 4$, each vertex of Y is adjacent to at least n - 7 vertices of X' in G. For $n \ge 10$, it is straightforward to see that there is a matching from Y to X' in G; hence, G contains $S_n(3, 1)$, a contradiction. For n = 9, if $d_{G[X]}(x_0) = n - 4 = 5$, then we can similarly deduce the contradiction that G contains $S_9(3, 1)$, since in this case, each vertex of Y is adjacent to at least n - 6 = 3 vertices of X' in G. As x_0 was arbitrary, we may assume for the case when n = 9 that $\delta(G[X]) \ge n - 3 = 6$, which again leads to the contradiction that G contains $S_9(3, 1)$.

Now for n = 8, suppose $d_{G[X]}(x_0) = 4$. Let $X' = \{x_1, x_2, x_3, x_4\}$ and $Y = \{x_5, x_6, x_7\}$. Since $\delta(G[X]) \ge n - 4$ and $S_8(3, 1) \nsubseteq G$, G[Y] is K_3 ; all three vertices of Y are adjacent to exactly two common vertices of X' in G, say to x_1 and x_2 ; and neither x_3 nor x_4 are adjacent to any vertex of Y in G. By the minimum degree condition, x_3 and x_4 are then adjacent in G, and each is also adjacent to both x_1 and x_2 . This implies that G contains $S_8(3, 1)$, with x_1 being the vertex with degree four, a contradiction. As x_0 was arbitrary, assume for the case when n = 8 that $\delta(G[X]) \ge 5$, which again leads to the contradiction that G contains $S_8(3, 1)$.

Now assume that $\delta(G[X]) \leq n-5$ whenever $X \subseteq V(G)$ is of size *n*. Recall that *G* has order 2n-1, and so by Theorem 1.4, *G* has a subgraph $T = S_{n-1}(2, 1)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_2w_2\}$. Set $V = \{v_3, v_4, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n-6 and |U| = n. Since $S_n(3, 1) \nsubseteq G$, $E_G(U, V) = \emptyset$. Now as $\delta(G[U]) \leq n-5$, $\overline{G}[U]$ contains S_5 , and so for $n \ge 10$, \overline{G} contains W_8 by Observation 4.3, a contradiction.

For n = 9, Theorem 1.4 shows that *G* has a subgraph $T = S_9(2, 1)$, so without loss of generality assume that v_0 is adjacent to some vertex *u* in *U*. Since $S_9(3, 1) \notin G$, $G[V \cup \{u\}]$ is an empty graph and *u* is not adjacent to any vertex of *U* in *G*. By Lemma 4.4, $G[U \setminus \{u\}]$ is K_8 or $K_8 - e$, which implies that no vertex of $V(T) \cup \{u\}$ is adjacent to any vertex of $U \setminus \{u\}$ in *G*, as $S_9(3, 1) \notin G$. Since $\delta(G[V(T) \cup \{u\}]) \leq n-5$, $\overline{G}[V(T) \cup \{u\}]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Finally for n = 8, recall that G has order 15, and so G has a subgraph $T' = S_7$ by Theorem 1.1. Let $V(T') = \{v'_0, \dots, v'_6\}$ and $E(T') = \{v'_0v'_1, \dots, v'_0v'_6\}$. Set V' =

 $\{v'_1, \ldots, v'_6\}$ and U' = V(G) - V(T'), then |U'| = 8. Suppose that v'_2 and v'_3 are adjacent to a common vertex u of U' in G, while v'_1 is adjacent to another vertex $u' \neq u$ of U' in G. Then as $S_8(3, 1) \nsubseteq G$, no vertex of $\{v'_4, v'_5, v'_6\} \cup (U' \setminus \{u, u'\})$ is adjacent to any vertex of $V' \setminus \{v'_1\}$ in G. Now $G[V' \setminus \{v'_1\}]$ contains S_5 and $|U' \setminus \{u, u'\}| = 6$, and so \overline{G} contains W_8 by Observation 4.3, a contradiction. Similar arguments lead to the same contradiction when the roles of v'_1, v'_2 , and v'_3 are replaced by any three vertices of V'. So assume that it is not the case that two vertices of V' are adjacent to a common vertex of U' in G while a third vertex of V' is adjacent to another vertex of U' in G.

For $1 \le i \le 6$, let $d_i = |E_G(\{v'_i\}, U)|$ be the number of vertices of U' that are adjacent to v'_i . Without loss of generality, assume that $d_1 \ge d_2 \ge \cdots \ge d_6$. Recalling that $\delta(G[U']) \le 3$ and so $S_5 \subseteq \overline{G}[U']$, Observation 4.3 implies that $d_3 \ge 1$. If $d_1 \ge 3$ and $d_2 \ge 2$, then it is trivial that G contains $S_8(3, 1)$, a contradiction. By our assumption on the adjacencies of vertices in V' to vertices of U' in G, it is clear that when (d_1, d_2, d_3) is of the form $(\ge 3, 1, 1), (2, 2, 2), \text{ or } (2, 2, 1)$, there is a matching from $\{v'_1, v'_2, v'_3\}$ to U' in G, as v'_2 and v'_3 are adjacent to different vertices of U' in G. This implies that G contains $S_8(3, 1)$, a contradiction. If $(d_1, d_2, d_3) = (2, 1, 1)$, then, similarly, v'_2 and v'_3 are adjacent to different vertices in $U' \setminus \{u, u'\}$. So G contains $S_8(3, 1)$, again a contradiction.

For the final case when $d_1 = d_2 = d_3 = 1$, our assumption implies that v'_1 , v'_2 and v'_3 must be adjacent to a common vertex u of U' in G to avoid a matching from $\{v'_1, v'_2, v'_3\}$ to U' in G. Furthermore, no vertex of $\{v'_4, v'_5, v'_6\}$ is adjacent to any vertex of $U' \setminus \{u\}$ in G. Now if $S_5 \subseteq \overline{G}[V']$, then \overline{G} contains W_8 by Observation 4.3, a contradiction. So $\delta(G[V']) \ge 2$, and in particular, v'_4 is adjacent to some vertex of V' in G. Without loss of generality, v_4 is adjacent to either v_1 or v_5 in G. Since $S_8(3, 1) \nsubseteq G$, $\overline{G}[\{v'_5, v'_2, v'_3, v'_6\}]$ contains S_4 if v'_4 is adjacent to v'_1 in G, while $\overline{G}[\{v'_6, v'_1, v'_2, v'_3\}]$ contains S_4 if v'_4 is adjacent to v'_1 in G, while $\overline{G}[\{v'_6, v'_1, v'_2, v'_3\}]$ contains S_4 if v'_4 is adjacent to any vertex of $U' \setminus \{u\}$ in G, as $S_8(3, 1) \nsubseteq G$. Since $\delta(G[V(T') \cup \{u\}]) \le 3$, $\overline{G}[V(T) \cup \{u\}]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Thus, $R(S_n(3, 1), W_8) \le 2n - 1$ for $n \ge 8$ which completes the proof. \Box

7 Proof of Theorem 3.1

Lemma 7.1 Let $n \ge 8$. If the tree graph T_n exists, then $R(T_n, W_8) \ge 2n - 1$ for each

$$T_n \in \{S_n(1, 4), S_n(5), S_n[5], S_n(2, 2), S_n(4, 1), T_D(n), \dots, T_S(n)\}$$

Also, $R(T_n, W_8) \ge 2n$ if $n \equiv 0 \pmod{4}$ and $T_n \in \{S_n(1, 4), S_n(2, 2), T_D(n), T_N(n)\}$ or if $T_n \in \{T_E(8), T_F(8)\}$.

Proof The graph $G = 2K_{n-1}$ clearly does not contain any tree graph of order n, and \overline{G} does not contain W_8 . Furthermore, if $n \equiv 0 \pmod{4}$, then the graph $G = K_{n-1} \cup K_{4,\dots,4}$ of order 2n - 1 does not contain $S_n(1, 4), T_D(n)$ or $S_n(2, 2)$; nor does

the complement \overline{G} contain W_8 . Finally, the graph $G = K_7 \cup K_{4,4}$ does not contain $T_E(8)$ or $T_F(8)$ and \overline{G} does not contain W_8 .

Theorem 7.2 *If* $n \ge 8$ *, then*

$$R(S_n(1,4), W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4};\\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be a graph with no $S_n(1, 4)$ subgraph whose complement \overline{G} does not contain W_8 . Suppose that *G* has order 2n if $n \equiv 0 \pmod{4}$ and that *G* has order 2n - 1 if $n \not\equiv 0 \pmod{4}$. By Theorem 6.5, *G* has a subgraph $T = S_n(1, 3)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_2w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = j where j = n if $n \equiv 0 \pmod{4}$ and j = n - 1 if $n \not\equiv 0 \pmod{4}$. Since $S_n(1, 4) \not\subseteq G$, w_3 is not adjacent in *G* to any vertex of $U \cup V$ and $d_{G[U \cup V]}(v_i) \le n - 7$ for each $v_i \in V$. If $\delta(\overline{G}[U \cup V]) \ge \lceil \frac{n-5+j}{2} \rceil \ge \frac{n-5+j}{2} \rceil$, then $\overline{G}[U \cup V]$ contains C_8 by Lemma 4.1 and thus W_8 with w_3 as hub, a contradiction. Therefore, $\delta(\overline{G}[U \cup V]) \le \lceil \frac{n-5+j}{2} \rceil - 1$ and $\Delta(G[U \cup V]) \ge n - 5 + j - \lceil \frac{n-5+j}{2} \rceil = \lfloor \frac{n-5+j}{2} \rfloor \ge n - 3$. Since $d_{G[U \cup V]}(v_i) \le n - 7$ for each $v_i \in V$, $d_{G[U \cup V]}(u) \ge n - 3$ for some vertex $u \in U$. Since $S_n(1, 4) \not\subseteq G$, no vertex of *V* is adjacent to $\{u\} \cup N_{G[U \cup V]}(u)$ in *G*.

For $n \ge 9$, any 4 vertices from V and any 4 vertices from $\{u\} \cup N_{G[U \cup V]}(u)$ form C_8 in \overline{G} and, with w_3 as hub, form W_8 , a contradiction. Suppose that n = 8; then $V = \{v_2, v_3, v_4\}$. Let $\{u_1, \ldots, u_4\}$ be 4 vertices in $N_{G[U \cup V]}(u)$. Since $S_8(1, 4) \notin G$, w_1 is not adjacent to $N_{G[U \cup V]}(u)$. If w_1 is not adjacent to w_3 , then $w_1u_1v_2u_2v_3u_3v_4u_4w_1$ and w_3 form W_8 in \overline{G} , a contradiction. Therefore, w_1 is adjacent to w_3 in G. Then w_2 is not adjacent to any vertex of $U \cup V$ in G. Since $d_{G[V]}(v_i) \le 1$ for i = 2, 3, 4, one of the vertices of V, say v_2 , is not adjacent to the other two vertices of V. Then $u_1w_2u_2w_3u_3v_3u_4v_4u_1$ and v_2 form W_8 in \overline{G} , a contradiction. Thus, $R(S_n(1, 4), W_8) \le 2n$ for $n \equiv 0 \pmod{4}$ and $R(S_n(1, 4), W_8) \le 2n - 1$ for $n \neq 0 \pmod{4}$.

This completes the proof.

Theorem 7.3 If $n \ge 10$, then $R(S_n(5), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1. Assume that *G* does not contain $S_n(5)$ and that \overline{G} does not contain W_8 . By Theorem 6.2, *G* has a subgraph $T = S_n(4)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, v_1w_3\}$. Set $V = \{v_2, v_3, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $S_n(5) \nsubseteq G$, v_1 is not adjacent to any vertex of $U \cup V$ in *G*. Furthermore, for each v_i in *V*, v_i is adjacent to at most three vertices of *U* in *G*.

For $n \ge 10$, $|V| \ge 5 > 4$ and $|U| \ge 9 > 8$. By Corollary 4.8, $\overline{G}[U \cup V]$ contains C_8 which together with v_1 gives W_8 in \overline{G} , a contradiction. Thus, $R(S_n(5), W_8) \le 2n - 1$ which completes the proof.

Theorem 7.4 *If* $n \ge 9$, *then* $R(S_n[5], W_8) = 2n - 1$.

🖄 Springer

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order 2n - 1. Assume that G does not contain $S_n[5]$ and that G does not contain W_8 . By Theorem 7.3, G has a subgraph $T = S_n(5)$. Let V(T) = $\{v_0, \ldots, v_{n-5}, w_1, \ldots, w_4\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-5}, v_1w_1, \ldots, v_1w_4\}$. Set $V = \{v_2, \dots, v_{n-5}\}$ and U = V(G) - V(T); then |V| = n - 6 and |U| = n - 1. Since $S_n[5] \not\subseteq G$, v_0 is not adjacent to w_1, \ldots, w_4 in G and w_1, \ldots, w_4 are each adjacent to at most two vertices of U in G. Now, suppose that v_0 is non-adjacent to at least six vertices of U in G. By Corollary 4.7, six of these vertices together with w_1, \ldots, w_4 contain C_8 in \overline{G} which with v_0 gives W_8 in \overline{G} , a contradiction. Then, suppose that v_0 is adjacent to at least n - 6 vertices of U in G. Choose a set U' of n-6 of these vertices. Since $S_n[5] \not\subseteq G$, v_1 is not adjacent to any vertex of $V \cup U'$ in G. If $\delta(\overline{G}[V \cup U']) \ge n - 6$, then by Lemma 4.1, $\overline{G}[V \cup U']$ contains C_8 which with v_1 gives W_8 in \overline{G} , a contradiction. Therefore, $\delta(\overline{G}[V \cup U']) < n - 7$ and $\Delta(G[V \cup U']) \ge n - 6$. However, this gives $S_n[5]$ in G with u and v_1 as the center of S_{n-5} and S_5 , respectively, where u is a vertex in $V \cup U'$ with $d_{G[V \cup U']}(u) \ge n-6$, a contradiction. Thus, $R(S_n[5], W_8) \le 2n - 1$ which completes the proof.

Theorem 7.5 *If* $n \ge 8$ *, then*

$$R(S_n(2,2), W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4};\\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Assume that *G* is a graph with no $S_n(2, 2)$ subgraph whose complement \overline{G} does not contain W_8 . Suppose that $n \equiv 0 \pmod{4}$ and that *G* has order 2*n*. By Theorem 6.7, *G* has a subgraph $T = T_B(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, v_2w_3\}$. Set $V = \{v_3, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 6 and |U| = n. Since $S_n(2, 2) \nsubseteq G$, w_3 is not adjacent in *G* to $U \cup V$ and v_2 is not adjacent to *V*. If $\delta(\overline{G}[U \cup V]) \ge \frac{2n-6}{2} = n - 3$, then $\overline{G}[U \cup V]$ contains C_8 by Lemma 4.1 which with w_2 forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[U \cup V]) \le n - 4$, and $\Delta(G[U \cup V]) \ge n - 3$. Now, there are two cases to be considered.

Case 1a: One of the vertices of V, say v_3 , is a vertex of degree at least n - 3 in $G[U \cup V]$.

Note that in this case, there are at least 4 vertices from U, say u_1, \ldots, u_4 , that are adjacent to v_3 in G. Since $S_n(2, 2) \not\subseteq G$, these 4 vertices are independent and are not adjacent to any other vertices of U. Since $n \ge 8$, U contains at least 4 other vertices, say u_5, \ldots, u_8 , so $u_1u_5u_2u_6u_3u_7u_4u_8u_1$ and w_3 forms W_8 in \overline{G} , a contradiction. **Case 1b**: Some vertex $u \in U$ has degree at least n - 3 in $G[U \cup V]$.

Since $S_n(2, 2) \notin G$, *u* is not adjacent to any vertex of *V* in *G*. Therefore, *u* must be adjacent to at least n - 3 vertices of *U* in *G*. Without loss of generality, suppose that $u_1, \ldots, u_{n-3} \in N_{G[U]}(u)$. Note that *V* is not adjacent to $N_{G[U]}(u)$, or else there will be $S_n(2, 2)$ in *G*, a contradiction. If $n \ge 12$, then any 4 vertices from $N_{G[U]}(u)$ and any 4 vertices from *V* form C_8 in \overline{G} which, with w_3 as hub, forms W_8 , a contradiction. Suppose that n = 8 and let the remaining two vertices be u_6

and u_7 . If $|N_{G[\{u_1,\ldots,u_5,u_i\}}(u_i)| \le 1$ for i = 6, 7, then let $X = \{u_1,\ldots,u_4\}$ and $Y = \{v_3, v_4, u_6, u_7\}$. By Lemma 4.5, $\overline{G}[X \cup Y]$ contains C_8 and, with w_3 as hub, forms W_8 in \overline{G} , a contradiction. Therefore, one of u_6 and u_7 , say u_6 , is adjacent to at least two of u_1, \ldots, u_5 , say u_1 and u_2 . Since $S_8(2, 2) \nsubseteq G, u_7$ is adjacent in \overline{G} to at least two of u_3, u_4, u_5 , say u_3 and u_4 , and v_0, \ldots, v_4, w_1 are not adjacent in G to u, u_1, \ldots, u_6 . Now, if w_3 is not adjacent to some vertex $a \in \{v_0, v_1, w_1\}$, then $u_1v_3u_2v_4u_3u_7u_4au_1$ and w_3 form W_8 in \overline{G} , a contradiction. Hence, w_3 is adjacent to v_0, v_1 and w_1 in G. Similarly, v_2 is not adjacent to u_7 and v_2 is adjacent to v_1 and w_1 . Since $S_8(2, 2) \nsubseteq G, w_2$ is not adjacent to $U \cup V$, and w_1 is not adjacent to V. Then $u_1v_2u_2w_1u_3w_2u_4w_3u_1$ and v_3 forms W_8 in \overline{G} , a contradiction.

In either case, $R(S_n(2, 2), W_8) \leq 2n$.

Suppose that $n \neq 0 \pmod{4}$ and that *G* has order 2n - 1. By Theorem 6.7, *G* has a subgraph $T = T_B(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, v_2w_3\}$. Set $V = \{v_3, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 6 and |U| = n - 1. Since $S_n(2, 2) \not\subseteq G$, w_3 is not adjacent in *G* to $U \cup V$. If $\delta(\overline{G}[U \cup V]) \ge \lceil \frac{2n-5}{2} \rceil$, then $\overline{G}[U \cup V]$ contains C_8 by Lemma 4.1 which with w_3 forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[U \cup V]) \le \lceil \frac{2n-5}{2} \rceil - 1 = n - 3$, and $\Delta(G[U \cup V]) \ge n - 3$. Again, there are two cases to be considered.

Case 2a: A vertex of V, say v_3 , has degree at least n - 3 in $G[U \cup V]$.

There must be at least 4 vertices from U, say u_1, \ldots, u_4 that are adjacent to v_3 in G. Since $S_n(2, 2) \notin G$, u_1, \ldots, u_4 are independent and are not adjacent to any other vertex of U. Since $n \ge 9$, there are at least 4 other vertices of U, say u_5, \ldots, u_8 , and $u_1u_5u_2u_6u_3u_7u_4u_8u_1$ and w_3 form W_8 in \overline{G} , a contradiction.

Case 2b: A vertex $u \in U$ has degree at least n - 3 in $G[U \cup V]$.

Since $S_n(2,2) \not\subseteq G$, no vertex of V is adjacent to u or to $N_{G[U]}(u)$. Then u is adjacent to at least n-3 vertices of U in G; suppose without loss of generality that $u_1, \ldots, u_{n-3} \subseteq N_{G[U]}(u)$. If $n \ge 10$, then any 4 vertices from $N_{G[U]}(u)$, any 4 vertices from V and w_3 form W_8 in \overline{G} , a contradiction. Suppose that n = 9 and let u_7 be the vertex in $U \setminus \{u, u_1, \ldots, u_{n-3}\}$. If u_7 is adjacent in \overline{G} to at least two of u_1, \ldots, u_6 , say u_1 and u_2 , then $u_1u_7u_2v_3u_3v_4u_4v_5u_1$ and w_3 form W_8 in \overline{G} , a contradiction. Therefore, u_7 is adjacent in G to at least 5 of the vertices u_1, \ldots, u_6 , say u_1, \ldots, u_5 . Since $S_9(2,2) \notin G$, U is not adjacent in G to $\{v_0, v_1, v_2, w_1\} \cup V$ and w_2 is not adjacent to u or u_7 . If w_3 is not adjacent to some vertex $a \in \{v_0, v_1, w_1, w_2\}$, then $uv_3u_1v_4u_2v_5u_7au$ and w_3 form W_8 in G, a contradiction. Hence, w_3 is adjacent to v_0 , v_1 , w_1 and w_2 in G. Similarly, v_2 is adjacent to v_1 , w_1 and w_2 . Since $S_9(2, 2) \not\subseteq G$, w_2 is non-adjacent to at least one of v_3 , v_4 , v_5 , say v_3 without loss of generality. If v_1 is also not adjacent to v_3 , then $uw_2u_7v_1u_1v_2u_2w_3u$ and w_3 form W_8 in G, a contradiction. Thus, v_1 is adjacent to v_3 , then v_3 is not adjacent to both v_4 and v_5 , or else G contains $S_9(2, 2)$. Without loss of generality, assume that v_3 is not adjacent to v_4 in G. Then $uw_2u_7v_4u_1v_2u_2w_3u$ and w_3 form W_8 in \overline{G} , a contradiction.

In either case, $R(S_n(2, 2), W_8) \le 2n - 1$ for $n \ne 0 \pmod{4}$, which completes the proof.

Theorem 7.6 If $n \ge 9$, then $R(S_n(4, 1), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order 2n - 1. Assume that G does not contain $S_n(4, 1)$ and that \overline{G} does not contain W_8 .

Suppose first that there is a subset $X \subseteq V(G)$ of size n with $\delta(G[X]) \ge n - 4$. Let x_0 be any vertex of X, and pick a subset $X' \subseteq N_{G[X]}(x_0)$ of size n - 5. Set $Y = X \setminus (\{x_0\} \cup X')$, and so |Y| = 4. Since $\delta(G[X]) \ge n - 4$, each vertex of Y is adjacent to at least n - 8 vertices of X' in G and each vertex of X' is adjacent to at least one vertex of Y in G. Hence, for $n \ge 11$, it is straightforward to see that there is a matching from Y to X' in G; hence, G contains $S_n(4, 1)$, a contradiction.

For n = 10 and $\delta(G[X]) \ge n - 4 = 6$, let $X = \{x_0, \dots, x_9\}$ and $\{x_1, \dots, x_6\} \subseteq N_{G[X]}(x_0)$. Since $\delta(G[X]) \ge 6$, vertices x_7 , x_8 and x_9 must each be adjacent to at least 3 vertices of x_1, \dots, x_6 . It is straightforward to see that there is a matching from $\{x_7, x_8, x_9\}$ to $\{x_1, \dots, x_6\}$ in *G*; without loss of generality, assume that x_i is adjacent to x_{i+6} in *G* for i = 1, 2, 3. Now, if there is any edge in $G[\{x_4, x_5, x_6\}]$, then $S_{10}(4, 1) \subseteq G$, a contradiction. Otherwise, $G[\{x_4, x_5, x_6\}]$ must be independent and each of x_4, x_5, x_6 must be adjacent to at least two vertices of x_7, x_8, x_9 in *G*. Without loss of generality, assume that x_4 is adjacent to x_7 and x_8 in *G*. Since $S_{10}(4, 1) \nsubseteq G$, x_5 cannot be adjacent to x_1 and x_2 in *G*, but this is impossible since $\delta(G[X]) \ge 6$.

Now for n = 9, suppose that $d_{G[X]}(x_0) = n-4 = 5$. Let $N_{G[X]}(x_0) = \{x_1, \ldots, x_5\}$ and $Y = \{x_6, x_7, x_8\}$. Then, three vertices of Y are each adjacent to at least n - 6 = 3vertices of $N_{G[X]}(x_0)$ in G. Without loss of generality, assume that x_1 is adjacent to x_6, x_2 is adjacent to x_7 and x_3 is adjacent to x_8 , respectively. Now, if x_4 is adjacent to x_5 , then G contains $S_9(4, 1)$, a contradiction. Otherwise, x_4 and x_5 must each be adjacent to at least one of x_6, x_7 and x_8 . Assume that x_4 is adjacent to x_6 . Then x_5 is not adjacent to x_1 and x_4 in G, or else G contains $S_9(4, 1)$. If x_5 is adjacent to x_6 , then x_1, x_4, x_5 must be independent in G, and they are each adjacent to x_2 in G, and since $\delta(G[X]) \ge 5$, they are adjacent to x_7 and x_8 in G, and G contains $S_9(4, 1)$, a contradiction. If x_5 is not adjacent to x_6 , then since $d_{G[X]}(v_0) \ge 5$, x_5 is adjacent to x_2, x_3, x_7 and x_8 in G. Then, x_4 is not adjacent to x_2 and x_3 in G, and x_4 is adjacent to x_1, x_6, x_7 and x_8 in G, and this gives us $S_9(4, 1)$ in G, a contradiction. As x_0 was arbitrary, assume for the case when n = 9 that $\delta(G[X]) \ge n - 3 = 6$, which again leads to the contradiction that G contains $S_9(4, 1)$.

Now assume that $\delta(G[X]) \leq n-5$ whenever $X \subseteq V(G)$ is of size *n*. Recall that *G* has order 2n-1, and so by Theorem 6.9, *G* has a subgraph $S_n(3, 1)$ and thus a subgraph $T = S_{n-1}(3, 1)$. Let $V(T) = \{v_0, \ldots, v_{n-5}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-5}, v_1w_1, v_2w_2, v_3w_3\}$. Set $V = \{v_4, \ldots, v_{n-5}\}$ and $U = V(G) - V(T) = \{u_1, \ldots, u_n\}$; then |V| = n - 8 and |U| = n. Since $S_n(4, 1) \nsubseteq G$, *V* is not adjacent to any vertex of *U* in *G*. Now as $\delta(G[U]) \leq n - 5$, $\overline{G}[U]$ contains S_5 , and so for $n \ge 12$, \overline{G} contains W_8 by Observation 4.3, a contradiction.

Suppose that n = 11. If v_0 is not adjacent to any vertex of U in G, then G contains W_8 by Observation 4.3, a contradiction. Assume that v_0 is adjacent to some vertex $u \in U$. Since $S_{11}(4, 1) \notin G$, $G[V \cup \{u\}]$ is an empty graph and u is not adjacent to any vertex of U in G. By Lemma 4.4, $G[U \setminus \{u\}]$ is K_{10} or $K_{10}-e$, so no vertex of $V(T) \cup \{u\}$

is adjacent to any vertex of $U \setminus \{u\}$ in G, as $S_{11}(4, 1) \notin G$. Since $\delta(G[V(T) \cup \{u\}]) \leq n-5, \overline{G}[V(T) \cup \{u\}]$ contains S_5 , so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Now, suppose that n = 10. Then G has order 19, and by Theorem 2.2, G has a subgraph $T' = S_{10}(3, 1)$. Let $V(T') = \{v'_0, \ldots, v'_6, w'_1, w'_2, w'_3\}$ and $E(T') = \{v'_0v'_1, \ldots, v'_0v'_6, v'_1w'_1, v'_2w'_2, v'_3w'_3\}$. Set $V' = \{v'_4, v'_5, v'_6\}$ and $U' = V(G) - V(T') = \{u'_1, \ldots, u'_9\}$. Since $S_{10}(4, 1) \notin G$, V' must be independent in G and is not adjacent to any vertex of U' in G. If v'_0 is adjacent to some vertices in U'in G, say u'_1 . Since $S_{10}(4, 1) \notin G$, u'_1 is not adjacent to any vertex of V' or $U' \setminus \{u'_1\}$ in G. Then, by Lemma 4.4, $G[U' \setminus \{u'_1\}]$ is K_8 or $K_8 - e$, so no vertex of V(T') is adjacent to any vertex of $U' \setminus \{u'_1\}$ in G, as $S_{10}(4, 1) \notin G$. Since $\delta(G[V(T')]) \leq 5$, $\overline{G}[V(T')]$ contains S_5 , so \overline{G} contains W_8 by Observation 4.3, a contradiction. Now, suppose that v'_0 is not adjacent to any vertex of U' in G. Note that $|U' \cup \{w'_1\}| = n$; therefore, $\delta(G[U' \cup \{w'_1\}]) \leq 5$, and so $\overline{G}[U' \cup \{w'_1\}]$ contains S_5 . If w'_1 is not adjacent to any vertex from $V' \cup \{v'_0\}$, then by Observation 4.3, \overline{G} contains W_8 , a contradiction. Otherwise, there are two cases to be considered.

Case 1a: w'_1 is adjacent to some vertices of V' in G.

Without loss of generality, assume that w'_1 is adjacent to v'_4 in G. In this case, v'_1 is not adjacent to $U' \cup \{v'_5, v'_6\}$. Then by Lemma 4.4, G[U'] is K_9 or $K_9 - e$, so no vertex of V(T') is adjacent to any vertex of U' in G, as $S_{10}(4, 1) \notin G$. Since $\delta(G[V(T')]) \leq 5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Case 1b: w'_1 is non-adjacent to each vertex of V' in G.

In this case, w'_1 is adjacent to v'_0 in G. Note that w'_1 is not adjacent to U', since this would revert to the case where v'_0 is adjacent to some vertex of U'. Then again by Lemma 4.4, G[U'] is K_9 or $K_9 - e$, so no vertex of V(T') is adjacent to any vertex of U' in G, as $S_{10}(4, 1) \notin G$. Since $\delta(G[V(T')]) \leq 5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Finally, suppose that n = 9. Then G has order 17, and so G has a subgraph $T' = S_9(2, 1)$ by Theorem 1.4. Let $V(T') = \{v'_0, \ldots, v'_6, w'_1, w'_2\}$ and $E(T') = \{v'_0v'_1, \ldots, v'_0v'_6, v'_1w'_1, v'_2w'_2\}$. Set $V' = \{v'_3, \ldots, v'_6\}$ and $U' = V(G) - V(T') = \{u'_1, \ldots, u'_8\}$.

Now, suppose that $E_G(V', U') \neq \emptyset$. Without loss of generality, assume that v'_3 is adjacent to u'_1 in G. Since $S_9(4, 1) \not\subseteq G$, v'_4 , v'_5 , v'_6 are independent and not adjacent to any vertex of $U' \setminus \{u'_1\}$ in G.

Suppose that v'_0 is adjacent to some vertex of $U' \setminus \{u'_1\}$, say u'_2 . Then u'_2 is nonadjacent to $\{v'_4, v'_5, v'_6\} \cup U' \setminus \{u'_1, u'_2\}$ in G. Since $\delta(G[\{w'_1, w'_2\} \cup U' \setminus \{u'_2\}]) \le n - 5$, $\overline{G}[\{w'_1, w'_2\} \cup U' \setminus \{u'_2\}]$ contains S₅. If v'_4, v'_5, v'_6 and u'_2 are not adjacent to w'_1, w'_2 or u'_1 in G, then \overline{G} contains W_8 by Observation 4.3, a contradiction. Assume that v'_4 is adjacent to w'_1 in G. In this case, v'_1 is not adjacent to $\{v'_5, v'_6\} \cup U' \setminus \{u'_1\}$ in G, and $v'_1u'_3v'_4u'_4v'_6u'_7u'_2u'_8v'_1$ and v'_5 form W_8 in \overline{G} , a contradiction. Similar contradictions occur if we assume that v'_5, v'_6 or u'_2 are adjacent to w'_1, w'_2 or u'_1 in G.

Thus, v'_0 is not adjacent to any vertex of $U' \setminus \{u'_1\}$ in G. Since $\delta(G[\{w'_1, w'_2\} \cup U' \setminus \{u'_1\}]) \le n - 5$, $\overline{G}[\{w'_1, w'_2\} \cup U' \setminus \{u'_1\}]$ contains S₅. If v'_0, v'_4, v'_5 and v'_6 are not

adjacent to w'_1 or w'_2 in G, then \overline{G} contains W_8 by Observation 4.3, a contradiction. There are two cases to be considered.

Case 2a: v'_0 is adjacent to w'_1 or w'_2 in G.

Without loss of generality, assume that v'_0 is adjacent to w'_1 in G. Note that v'_1 and w'_1 are not adjacent to $U' \setminus \{u'_1\}$, since this would revert to the case where v'_0 is adjacent to some vertex of $U' \setminus \{u'_1\}$. Again, since $\delta(G[\{w'_2\} \cup U']) \leq n - 5$, $\overline{G}[\{w'_2\} \cup U'\}]$ contains S_5 . If v'_1 , v'_4 , v'_5 and v'_6 are not adjacent to w'_2 and u'_1 in G, then \overline{G} contains W_8 by Observation 4.3, a contradiction.

Suppose that v'_1 is adjacent to w'_2 or u'_1 , say w'_2 , in *G*. If w'_1 is not adjacent to v'_4 , v'_5 or v'_6 , then by Lemma 4.4, $G[U' \setminus \{u'_1\}]$ is K_7 or $K_7 - e$, so no vertex of $V(T') \cup \{u'_1\}$ is adjacent to any vertex of $U' \setminus \{u'_1\}$ in *G*, as $S_9(4, 1) \notin G$. Since $\delta(G[V(T')]) \leq n-5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction. Otherwise, w'_1 is adjacent to at least one of v'_4 , v'_5 , v'_6 in *G*, say v'_4 . Then, v'_2 is not adjacent to $\{v'_5, v'_6\} \cup U' \setminus \{u'_1\}$, since *G* does not contain $S_9(4, 1)$. Similarly, by Lemma 4.4, $G[U' \setminus \{u'_1\}]$ is K_7 or $K_7 - e$, so no vertex of $V(T') \cup \{u'_1\}$ is adjacent to any vertex of $U' \setminus \{u'_1\}$ in *G*, as $S_9(4, 1) \notin G$. Again, since $\delta(G[V(T')]) \leq n-5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Now suppose that v'_1 is non-adjacent to both w'_2 and u'_1 in G. Then, one of v'_4 , v'_5 , v'_6 is adjacent to w'_2 or u'_1 in G. Without loss of generality, assume that v'_4 is adjacent to w'_2 in G. In this case, v'_2 is not adjacent to $\{v'_5, v'_6\} \cup U' \setminus \{u'_1\}$. Then, again, by Lemma 4.4, $G[U' \setminus \{u'_1\}]$ is K_7 or $K_7 - e$, so no vertex of $V(T') \cup \{u'_1\}$ is adjacent to any vertex of $U' \setminus \{u'_1\}$ in G, as $S_9(4, 1) \not\subseteq G$. Since $\delta(G[V(T')]) \leq n - 5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction. **Case 2b**: v'_0 is non-adjacent to both w'_1 and w'_2 in G.

In this case, one of v'_4 , v'_5 , v'_6 is adjacent to w'_1 or w'_2 in G, say v'_4 to w'_1 in G. Since $S_9(4, 1) \not\subseteq G$, v'_1 is not adjacent to $\{v'_5, v'_6\} \cup U' \setminus \{u'_1\}$ in G. By Lemma 4.4, $G[U' \setminus \{u'_1\}]$ is K_7 or $K_7 - e$, so no vertex of $V(T') \cup \{u'_1\}$ is adjacent to any vertex of $U \setminus \{u'_1\}$ in G, as $S_9(4, 1) \not\subseteq G$. Since $\delta(G[V(T')]) \leq n - 5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Now suppose that $E_G(V', U') = \emptyset$. If $\delta(G[V']) = 0$, then by Lemma 4.4, G[U']is K_8 or $K_8 - e$, and no vertex of V(T') is adjacent to any vertex of U' in G, as $S_9(4, 1) \notin G$. Since $\delta(G[V(T')]) \leq n-5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction. Hence, $\delta(G[V']) \geq 1$, and since $S_9(4, 1) \notin G$, one of the vertices in V' is adjacent to other three in G. Without loss of generality, assume that v'_3 is adjacent to v'_4 , v'_5 and v'_6 in G. Since G does not contain $S_9(4, 1)$, v'_4, v'_5, v'_6 are independent in G. Furthermore, v'_0 is not adjacent to U' in G or else this reverts to the case where v'_3 is adjacent to u'_1 and v'_0 is adjacent to any vertex of $U' \setminus \{u'_1\}$. Since $\delta(G[\{w'_1\} \cup U']) \leq n-5$, $\overline{G}[\{w'_1\} \cup U']$ contains S_5 . If v'_0, v'_4, v'_5 and v'_6 are non-adjacent to w'_1 in G, then \overline{G} contains W_8 by Observation 4.3, a contradiction. Again, there are two cases to be considered.

Case 3a: v'_0 is adjacent to w'_1 in G.

Note that v'_1 and w'_1 are not adjacent to U', or else this reverts to the case where v'_3 is adjacent to u'_1 and v'_0 is adjacent to any vertex of $U' \setminus \{u'_1\}$. Now, since $\delta(G[\{w'_2\}] \cup$

 $U']) \le n-5$, $\overline{G}[\{w'_2\} \cup U'\}]$ contains S_5 . If v'_0 , v'_4 , v'_5 and v'_6 are non-adjacent to w'_2 in G, then \overline{G} contains W_8 by Observation 4.3, a contradiction.

Suppose that v'_0 is adjacent to w'_2 in *G*. Again, v'_2 and w'_2 are non-adjacent to U', or else else this reverts to the case where v'_3 is adjacent to u'_1 and v'_0 is adjacent to any vertex of $U' \setminus \{u'_1\}$. Now, $E_G(V(T'), U') = \emptyset$, and since $\delta(G[V(T')]) \le n - 5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Therefore, w'_2 is adjacent to at least one of v'_4 , v'_5 and v'_6 in G, say v'_4 . Then, v'_2 is not adjacent to v'_5 , v'_6 or U', as $S_9(4, 1) \notin G$, a contradiction. By Lemma 4.4, G[U'] is K_8 or $K_8 - e$, so no vertex of V(T') is adjacent to any vertex of U' in G, as $S_9(4, 1) \notin G$. Again, since $\delta(G[V(T')]) \leq n - 5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Case 3b: v'_0 is not adjacent to w'_1 in G.

In this case, one of v'_4 , v'_5 , v'_6 is adjacent to w'_1 in G, say v'_4 . Since $S_9(4, 1) \nsubseteq G$, v'_1 is not adjacent to v'_5 , v'_6 or U' in G. By Lemma 4.4, G[U'] is K_8 or $K_8 - e$, so no vertex of $V(T') \cup \{u'_1\}$ is adjacent to any vertex of U' in G, as $S_9(4, 1) \nsubseteq G$. Since $\delta(G[V(T')]) \le n-5$, $\overline{G}[V(T')]$ contains S_5 , and so \overline{G} contains W_8 by Observation 4.3, a contradiction.

Thus, $R(S_n(4, 1), W_8) \le 2n - 1$ for $n \ge 9$ which completes the proof.

Theorem 7.7 *If* $n \ge 8$ *, then*

$$R(T_D(n), W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4} \\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be a graph with no $T_D(n)$ subgraph whose complement \overline{G} does not contain W_8 . Suppose that $n \equiv 0 \pmod{4}$ and that *G* has order 2*n*. By Theorem 6.2, *G* has a subgraph $T = S_n[4]$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n. Since $T_D(n) \nsubseteq G$, neither w_2 nor w_3 is adjacent in *G* to $U \cup V$.

Suppose that n = 8. Since *G* does not contain $T_D(n)$, *V* must be independent and non-adjacent to *U* in *G*. Then for any vertices u_1, \ldots, u_4 in *U*, $v_3u_1v_4u_2w_2u_3w_3u_4v_3$ and v_2 form W_8 in \overline{G} , a contradiction. Suppose that $n \ge 12$. Then $|U \cup V| = 2n - 5$. If $\delta(\overline{G}[U \cup V]) \ge \lceil \frac{2n-5}{2} \rceil$, then $\overline{G}[U \cup V]$ contains C_8 by Lemma 4.1 which with w_2 forms W_8 , a contradiction. Thus, $\delta(\overline{G}[U \cup V]) \le \lceil \frac{2n-5}{2} \rceil - 1 = n - 3$, and $\Delta(G[U \cup V]) \ge n - 3$. Now, there are two cases to consider.

Case 1: One of the vertices of *V*, say v_2 , is a vertex of degree at least n-3 in $G[U \cup V]$. Since $T_D(n) \not\subseteq G$, v_1 is not adjacent in *G* to w_2 , w_3 or $U \cup V \setminus \{v_2\}$. Let $U' = \{w_2, w_3\} \cup U \cup V \setminus \{v_2\}$; then |U'| = 2n - 4. Now, if $\delta(\overline{G}[U']) \ge \frac{2n-4}{2} = n - 2$, then $\overline{G}[U']$ contains C_8 by Lemma 4.1 which with v_1 forms W_8 , a contradiction. Hence, $\delta(\overline{G}[U']) \le n - 3$, and $\Delta(G[U']) \ge n - 2$. Note that neither w_2 nor w_3 have degree $\Delta(G[U'])$. Therefore, $d_{G[U']}(u') \ge n - 2$ for some vertex $u' \in U \cup V \setminus \{v_2\}$. By the Inclusion–Exclusion Principle, some vertex $a \in U \cup V \setminus \{v_2\}$ is adjacent in *G* to both

u' and v_2 . Then G has a subgraph $T_D(n)$ in which u' is the vertex of degree n - 5 and v_2 is the vertex of degree 3, a contradiction.

Case 2: Some vertex $u \in U$ has degree at least n - 3 in $G[U \cup V]$.

Suppose that there is at least one vertex in V that is adjacent to u in G, say v_2 . Then G has a subgraph $T_D(n)$ in which u is the vertex of degree n - 5 and v_0 is the vertex of degree 3, a contradiction. Similarly, no other vertex of V is adjacent to u. Now, since $T_D(n) \nsubseteq G$, $d_{G[N_{G[U]}(u) \cup \{v\}]}(v) \le 1$ and $d_{G[V \cup \{x\}]}(x) \le 1$, for any $v \in V$ and $x \in N_{G[U]}(u)$. Then, by Lemma 4.5, $\overline{G}[V \cup N_{G[U]}(u)]$ must contain C_8 , which with w_2 as hub, forms W_8 in \overline{G} , a contradiction.

Now, suppose that $n \neq 0 \pmod{4}$ and that *G* has order 2n - 1. By Theorem 6.4, *G* has a subgraph $T = S_n[4]$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $T_D(n) \notin G$, neither w_2 nor w_3 is adjacent to $U \cup V$ in *G*. If $\delta(\overline{G}[U \cup V]) \geq \frac{2n-6}{2} = n - 3$, then $\overline{G}[U \cup V]$ contains C_8 , by Lemma 4.1, which with w_2 forms W_8 in \overline{G} , a contradiction. Thus, $\delta(\overline{G}[U \cup V]) \leq n - 4$, and $\Delta(G[U \cup V]) \geq n - 3$. The arguments of the preceding cases then lead to contradictions.

Thus, $R(T_D(n), W_8) \le 2n$, which completes the proof.

Lemma 7.8 Each graph H of order $n \ge 8$ with minimal degree at least n - 4 contains $T_E(n)$ unless n = 8 and $H = K_{4,4}$.

Proof Let $V(H) = \{u_0, \ldots, u_{n-1}\}$. First, suppose that $\Delta(H) \ge n-3$ and assume without loss of generality that $u_1, \ldots, u_{n-3} \in N_H(u_0)$. Suppose that u_{n-2} and u_{n-1} are adjacent in H. Since $\delta(H) \ge n-4$, $N_H(u_0) \cap N_H(u_{n-2}) \ne \emptyset$, so assume without loss of generality that u_1 is adjacent to u_{n-2} in H. Furthermore, u_1 must be adjacent to at least n-7 vertices from $\{u_2, \ldots, u_{n-3}\}$ in H. Without loss of generality, assume that u_1 is adjacent to u_2, \ldots, u_{n-3} in H. Now, if any vertex of $\{u_2, \ldots, u_{n-6}\}$ is adjacent to u_{n-5}, u_{n-4} or u_{n-3} in H, then we have $T_E(n)$ in H. Suppose that is not the case; then each vertex of $\{u_2, \ldots, u_{n-6}\}$ must be adjacent to u_0, u_1, u_{n-2} and u_{n-1} in H. Since $d_H(u_{n-3}) \ge n-4, u_{n-3}$ is adjacent to at least one of u_1, u_{n-2} and u_{n-1} in H, so H contains $T_E(n)$, a contradiction.

Suppose that u_{n-2} is not adjacent to u_{n-1} in H. Since $\delta(H) \ge n - 4$, u_{n-2} and u_{n-1} are each adjacent to at least n - 5 vertices in $N_H(u_0)$, so at least one vertex of $N_H(u_0)$, say u_1 , is adjacent in H to both u_{n-2} and u_{n-1} . If $H[\{u_2, \ldots, u_{n-3}\}]$ contains subgraph $2K_2$, then H contains subgraph $T_E(n)$. Note that this will always happens for $n \ge 11$, since $\delta(H) \ge n - 4$.

Suppose that n = 10. Since $\delta(H) \ge 6$, u_2 must be adjacent in H to at least two vertices of u_3, \ldots, u_7 , without loss of generality say u_3 and u_4 . If $H[\{u_4, \ldots, u_7\}]$ contains any edge, then H contains $T_E(10)$. Otherwise, $\{u_4, \ldots, u_7\}$ must be independent in H and each of these vertices must be adjacent to u_0, u_1, u_2, u_3, u_8 and u_9 ; this also gives a subgraph $T_E(10)$ in H.

Similarly, for n = 9, u_2 must be adjacent to at least one of u_3 , ..., u_6 , say u_3 , in H. If $H[\{u_4, u_5, u_6\}]$ contains any edge, then H contains $T_E(9)$. Otherwise, $\{u_4, u_5, u_6\}$ is independent in H and since $\delta(H) \ge 5$, u_4 is adjacent to at least one of u_2 and u_3 , and u_5 is adjacent to at least one of u_7 and u_8 . Again, this gives a subgraph $T_E(9)$ in H.

For n = 8, if u_2, \ldots, u_5 are independent in H, then they are each adjacent to u_0 , u_1 , u_6 and u_7 in H, which gives $T_E(8)$ in H. Otherwise, we can assume that u_2 is adjacent to u_3 in H. If u_4 is adjacent to u_5 in H, we will have $T_E(8)$ in H; otherwise, assume that u_4 is not adjacent to u_5 . Now, suppose that u_4 is adjacent to u_2 or u_3 in H. If u_5 is adjacent to u_6 or u_7 in H, then H contains $T_E(8)$. Otherwise, u_5 must be adjacent to u_0 , u_1 , u_2 and u_3 since $\delta(H) \ge 4$. However, this also gives $T_E(8)$ in H. On the other hand, suppose that u_4 is adjacent to neither u_2 nor u_3 in H. Similarly, u_5 is not adjacent to u_2 or to u_3 in H. Since $\delta(H) \ge 4$, both u_4 and u_5 must be adjacent to u_0 , u_1 , u_6 and u_7 in H, and this also gives $T_E(8)$ in H.

Suppose that *H* is (n - 4)-regular and that $N_H(u_0) = \{u_1, \ldots, u_{n-4}\}$. By the Handshaking Lemma, this only happens when *n* is even.

Suppose that $n \ge 10$. Note that u_{n-3} , u_{n-2} and u_{n-1} are each adjacent to at least n - 6 vertices of $N_H(u_0)$ in H. By the Inclusion–Exclusion Principle, at least one of u_1, \ldots, u_{n-4} is adjacent to two of $u_{n-3}, u_{n-2}, u_{n-1}$ in H, say u_1 to u_{n-3} and u_{n-2} , and there must be another vertex, say u_2 , that is adjacent to u_{n-1} in H. Now, if there is any edge in $H[\{u_3, \ldots, u_{n-4}\}]$, then $T_E(n) \subseteq H$, and this always happens for $n \ge 12$. For n = 10, since $d_H(u_1) = 6$, u_1 is non-adjacent in H to at least one of u_3, \ldots, u_6 , say u_3 . Since $d_H(u_3) = 6$, u_3 is adjacent to one of u_4, u_5, u_6 , giving $T_E(10)$ in H.

Now suppose that n = 8. If u_5 , u_6 and u_7 are independent in H, then $H = K_{4,4}$. Otherwise, we can assume that u_5 is adjacent to u_6 in H. If u_5 is also adjacent to u_7 in H, then u_5 is adjacent in H to two vertices of $N_H(u_0)$, say u_1 and u_2 . Suppose that u_6 is adjacent to u_1 or u_2 , say u_1 , in H. Since $d_H(u_6) = 4$, u_6 is also adjacent to at least one of u_2 , u_3 , u_4 , u_7 , so $T_E(8) \subseteq H$. Otherwise, suppose that neither u_6 nor u_7 is adjacent to u_1 or u_2 in H. Since H is a 4-regular graph, u_6 and u_7 are both adjacent to u_3 and u_4 in H, and u_1 is adjacent to at least one of u_3 and u_4 in H. This gives $T_E(8)$ in H. On the other hand, suppose that u_5 is not adjacent to u_7 in H. Then, similarly, u_6 is not adjacent to u_7 in H, so u_7 is adjacent to u_1 , u_2 , u_3 and u_4 in H, and H contains $T_E(8)$.

Theorem 7.9 For $n \ge 8$,

$$R(T_E(n), W_8) = \begin{cases} 2n - 1 & \text{if } n \ge 9; \\ 16 & \text{if } n = 8. \end{cases}$$

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1 if $n \ge 9$ and of order 16 if n = 8. Assume that *G* does not contain $T_E(n)$ and that \overline{G} does not contain W_8 .

By Theorem 6.9, *G* has a subgraph $T = S_n(3, 1)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_2w_2, v_3w_3\}$. Set $V = \{v_4, \ldots, v_{n-4}\}$ and U = V(G) - V(T). Then |V| = n - 7 and $|U| \ge n - 1$. Since $T_E(n) \nsubseteq G$, each of v_1, v_2, v_3 is not adjacent to any vertex of $V \cup U$ in *G*, and each vertex of *V* is adjacent to at most one vertex of *U* in *G*. Let *W* be a set of n - 2 vertices of *U* that are not adjacent to v_4 in *G*. By Lemma 4.4, G[W] is K_{n-2}

or $K_{n-2} - e$. Since $T_E(n) \nsubseteq G$, no vertex of T is adjacent to any vertex of W, and so $\delta(G[V(T)]) \ge n - 4$ by Observation 4.3.

Lemma 7.8 implies that G[V(T)] contains $T_E(n)$ if $n \ge 9$, a contradiction, and so n = 8 and $G[V(T)] = K_{4,4}$. Note that |U| = 8, and as $T_E(8) \nsubseteq G$, no vertex of U is adjacent to any vertex of G[V(T)]. By Lemma 4.4, G[U] is K_8 or $K_8 - e$, and thus contains $T_E(8)$, a contradiction.

Therefore, $R(T_E(n), W_8) \le 2n - 1$ when $n \ge 9$ and $R(T_E(n), W_8) \le 16$ when n = 8.

Lemma 7.10 *Each graph H of order n* \geq 8 *with minimal degree at least n*-4 *contains T_F(n) unless n* = 8 *and H* = K_{4,4}.

Proof Let $V(H) = \{u_0, u_1, \dots, u_{n-1}\}$ so that $d(u_0) = \delta(H)$ and $V = \{u_1, \dots, u_{n-4}\} \subseteq N(u_0)$. Set $U = \{u_{n-3}, u_{n-2}, u_{n-1}\}$. By the minimum degree condition, every vertex of U is adjacent to at least n - 6 vertices of V. It is straightforward to see that some pair of vertices in U have a common neighbour in V. Moreover, for $n \ge 9$, every pair of vertices in U has a common neighbour in V.

Assume without loss of generality that u_1 is adjacent to both u_{n-3} and u_{n-2} , and that u_2 is adjacent to u_{n-1} . If u_2 is adjacent to a vertex of $V \setminus \{u_1\}$, which is the case when $n \ge 10$, then H contains $T_F(n)$. Assume now that $n \le 9$ and that u_2 is not adjacent to any vertex of $V \setminus \{u_1\}$.

For the case when n = 9, u_{n-1} is adjacent to at least n-6 = 3 vertices of V, and so it is adjacent to another vertex, say to u_3 . As above, assume that u_3 is not adjacent to any vertex of $V \setminus \{u_1\}$. By the minimum degree condition, each of u_2 and u_3 is adjacent to every vertex of $\{u_1\} \cup U$, giving $T_F(9)$ in H.

For the final case when n = 8, the minimum degree condition implies that u_2 is adjacent to at least two vertices of $\{u_1, u_5, u_6\}$. If u_2 is adjacent to u_1 , then H contains $T_F(8)$. Remaining is the case when u_2 is not adjacent to u_1 but is adjacent to both u_5 and u_6 . Exchanging the roles of u_1 and u_2 , we may assume that u_1 is adjacent to u_7 but not adjacent to any vertex of V. From the minimum degree condition on u_3 and u_4 , it is easy to see that either H contains $T_F(8)$ or $H = K_{4,4}$.

Theorem 7.11 *For* $n \ge 8$,

$$R(T_F(n), W_8) = \begin{cases} 2n - 1 & \text{if } n \ge 9; \\ 16 & \text{if } n = 8. \end{cases}$$

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be a graph with no $T_F(n)$ subgraph whose complement \overline{G} does not contain W_8 . Suppose that n = 8 and that *G* has order 16. By Theorem 6.8, *G* has a subgraph $T = T_C(8)$. Let $V(T) = \{v_0, \ldots, v_4, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_4, v_1w_1, v_2w_2, v_2w_3\}$. Set $U = V(G) - V(T) = \{u_1, \ldots, u_8\}$; then |U| = 8. Since $T_F(8) \notin G$, v_1 is not adjacent in *G* to v_2 , v_3 , v_4 or any vertex of *U*, and $d_{G[U]}(v) \leq 1$ for $v = v_3$, v_4 , w_2 , w_3 .

Suppose that v_1 is adjacent to w_2 or w_3 , without loss of generality say w_2 . Since $T_F(8) \nsubseteq G, v_2$ is not adjacent to $\{v_3, v_4\} \cup U$. If neither v_3 nor v_4 are adjacent to U, then

by Lemma 4.4, G[U] is K_8 or $K_8 - e$, so G[U] contains $T_F(8)$, a contradiction. Suppose that only one of the vertices v_3 and v_4 is adjacent to U in G, say v_3 . By Lemma 4.4, $G[U \setminus \{u_1\}]$ is K_7 or $K_7 - e$, and $G[V(T) \cup \{u_1\}]$ is not adjacent to $G[U \setminus \{u_1\}]$. By Observation 4.3, $\delta(G[V(T) \cup \{u_1\}]) \ge 5$, and by Lemma 7.10, $G[V(T) \cup \{u_1\}]$ contains $T_F(9)$ and hence $T_F(8)$, a contradiction. Suppose that both v_3 and v_4 are adjacent to U in G and assume that v_3 is adjacent to u_1 and that v_4 is adjacent to u_2 . By Lemma 4.4, $G[U \setminus \{u_1, u_2\}]$ is K_6 or $K_6 - e$. At most one vertex from $G[V(T) \cup \{u_1, u_2\}]$ is adjacent to $G[U \setminus \{u_1, u_2\}]$ or else G contains $T_F(8)$. Therefore, 9 vertices from $G[V(T) \cup \{u_1, u_2\}]$ form a vertex set W that is not adjacent to $U \setminus \{u_1, u_2\}$. By Observation 4.3, $\delta(G[W]) \ge 5$, and by Lemma 7.10, G[W] contains $T_F(9)$ and hence $T_F(8)$, a contradiction.

Suppose then that v_1 is not adjacent to w_2 or w_3 . Since $d_{G[U]}(v) \le 1$ for $v = v_3, v_4, w_2, w_3$, there are 4 vertices from U that are not adjacent to $\{v_3, v_4, w_2, w_3\}$. These 8 vertices form C_8 in \overline{G} and thus, with v_1 as hub, W_8 , a contradiction.

Thus, $R(T_F(8), W_8) \le 16$.

Now, suppose that $n \ge 9$ and that *G* has order 2n - 1. By Theorem 6.8, *G* has a subgraph $T = T_C(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, v_4, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_2w_2, v_2w_3\}$. Set $V = \{v_3, \ldots, v_{n-4}\}$ and $U = V(G) - V(T) = \{u_1, \ldots, u_{n-1}\}$; then |V| = n - 6 and |U| = n - 1. Since $T_F(n) \notin G$, v_1 is not adjacent in *G* to any vertex of $U \cup V$, and $d_{G[U]}(v) \le 1$ for $v \in V$. Since $n \ge 10$, there are 4 vertices from *U*, 4 vertices from *V* and v_1 that form W_8 in \overline{G} , a contradiction. Thus, $R(T_F(n), W_8) \le 2n - 1$ for $n \ge 10$.

Suppose that n = 9 and let m be the number of vertices of U that are adjacent in G to at least one vertex of V. Since $d_{G[U]}(v) \leq 1$ for $v \in V, 0 \leq m \leq 3$. If m = 0, then G[U] is K_8 or $K_8 - e$ by Lemma 4.4, so G[V(T)] is not adjacent to G[U]. By Observation 4.3, $\delta(G[V(T)]) \geq 5$, and G[V(T)] contains $T_F(9)$ by Lemma 7.10, a contradiction. Suppose that m = 1. Assume without loss of generality that u_1 is adjacent to some vertex of V, and that $E_G(V, U \setminus \{u_1\}) = \emptyset$. By Lemma 4.4, $G[U \setminus \{u_1\}]$ is K_7 or $K_7 - e$, and at most one vertex from $G[V(T) \cup \{u_1\}]$ is adjacent to $G[U \setminus \{u_1\}]$ or else G contains $T_F(9)$. There are then 9 vertices from $G[V(T) \cup$ $\{u_1\}$ that form a vertex set W_1 that is not adjacent to $U \setminus \{u_1\}$. By Observation 4.3, $\delta(G[W_1]) \ge 5$, and $G[W_1]$ contains $T_F(9)$ by Lemma 7.10, a contradiction. Suppose that m = 2. Assume that u_1 and u_2 are adjacent to some vertices of V and that $E_G(V, U \setminus \{u_1, u_2\}) = \emptyset$. By Lemma 4.4, $G[U \setminus \{u_1, u_2\}]$ is K_6 or $K_6 - e$. If at least three vertices in $U \setminus \{u_1, u_2\}$ are adjacent to $V(T) \cup \{u_1\}$, then $T_F(9) \subseteq G$. If at most two vertices in $U \setminus \{u_1, u_2\}$ are adjacent to $V(T) \cup \{u_1\}$, then there are 4 vertices in $U \setminus \{u_1, u_2\}$ that are not adjacent to V(T). Then Observation 4.3 gives $\delta(G[V(T)]) \geq 5$, and G[V(T)] contains $T_F(9)$ by Lemma 7.10, a contradiction. Suppose that m = 3. Assume that u_1, u_2, u_3 are each adjacent to some vertex of V and that $E_G(V, U \setminus \{u_1, u_2, u_3\}) = \emptyset$. Without loss of generality, assume that u_i is adjacent to v_{i+2} for i = 1, 2, 3. By Lemma 4.4, $G[U \setminus \{u_1, u_2, u_3\}]$ is K_5 or $K_5 - e$. Since $T_F(9) \not\subseteq G$, $\{v_1, v_3, v_4, v_5\}$ is independent and $V(T) \setminus \{w_1\}$ is not adjacent to $U \setminus \{u_1, u_2, u_3\}$. Then by Observation 4.3, $\delta(G[V(T) \setminus \{w_1\}]) \ge 4$, and v_1, v_3, v_4 and v_5 are each adjacent to v_2 , w_2 and w_3 in G. This gives $T_F(9)$ in G. Therefore, $T_F(9) < 17 = 2n - 1.$

Theorem 7.12 *If* $n \ge 8$, *then* $R(T_G(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1. Assume that *G* does not contain $T_G(n)$ and that \overline{G} does not contain W_8 . By Theorem 6.9, *G* has a subgraph $T = S_n(3, 1)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_2w_2, v_3w_3\}$. Set $V = \{v_4, v_5, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 7 and |U| = n - 1. Since $T_G(n) \notin G$, w_1 , w_2 , w_3 are not adjacent to $U \cup V$ in *G*, and v_1 , v_2 , v_3 are not adjacent to *V*.

Suppose that $n \ge 9$; then $|U| \ge 8$. If $\delta(\overline{G}[U]) \ge \frac{n-1}{2}$, then $\overline{G}[U]$ contains C_8 by Lemma 4.1 which, with w_2 as hub, forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[U]) < \frac{n-1}{2}$, and $\Delta(G[U \cup V]) \ge \frac{n-1}{2} \ge 4$. Therefore, some vertex $u \in U$ satisfies $|N_{G[U]}(u)| \ge 4$. Since $T_G(n) \nsubseteq G$, $N_{G[U]}(u)$ is not adjacent in G to $N_{G[V(T)]}(v_0)$. Hence, 4 vertices from $N_{G[U]}(u)$, v_1 , v_2 , v_3 , w_1 and any vertex from V form W_8 in \overline{G} , a contradiction. Thus, $R(T_G(n), W_8) \le 2n - 1$ for $n \ge 9$.

Suppose that n = 8 and let $U = \{u_1, \ldots, u_7\}$ and $W = \{v_4\} \cup U$. If $\delta(\overline{G}[W]) \ge 4$, then \overline{G} contains C_8 by Lemma 4.1 and thus W_8 , with w_1 as hub, a contradiction. Therefore, $\delta(\overline{G}[W]) \le 3$, and $\Delta(G[W]) \ge 4$. Now, suppose that $d_{G[W]}(v_4) \ge 4$. Then without loss of generality, assume that $u_1, \ldots, u_4 \in N_G(v_4)$. Then $u_1, \ldots, u_4, w_1, w_2, w_3$ are independent and are not adjacent to u_5, u_6 or u_7 , giving W_8 , a contradiction. On the other hand, suppose that some vertex in U, say u_1 , satisfies $d_{G[W]}(u_1) \ge 4$. Then v_4 is not adjacent to u_1 ; therefore, assume that $u_2, \ldots, u_5 \in N_G(u_1)$. Then v_1, \ldots, v_4 are not adjacent to $\{u_1, \ldots, u_5\}$, so $v_1u_1v_2u_2v_3u_3w_1u_4v_1$ and v_4 form W_8 in \overline{G} , a contradiction. Thus, $R(T_L(8), W_8) \le 15$.

Lemma 7.13 *Each graph H of order n* \geq 8 *with minimal degree at least n*-4 *contains T_H(n), T_K(n) and T_L(n).*

Proof Let $V(H) = \{u_0, \ldots, u_{n-1}\}$ where $u_1, \ldots, u_{n-4} \in N_H(u_0)$. Suppose that u_{n-3}, u_{n-2} or u_{n-1} , say u_{n-3} , is adjacent in H to the two others.

Since $\delta(H) \ge n - 4$, u_{n-3} is adjacent to at least one of u_1, \ldots, u_{n-4} , say u_1 . If u_1 is adjacent to another vertex in $\{u_2, \ldots, u_{n-4}\}$, then H contains $T_K(n)$. Note that this always happens for $n \ge 9$. Suppose that n = 8 and that u_1 is not adjacent to any of u_2, u_3, u_4 . Then u_1 is adjacent to u_6 and u_7 . Since $\delta(H) \ge n - 4$, u_2 is adjacent to at least one of u_5, u_6, u_7 , giving $T_K(n)$ in H.

Similarly, since $\delta(H) \ge n - 4$, u_{n-2} is adjacent to at least n - 7 vertices of $\{u_1, \ldots, u_{n-4}\}$. Suppose that u_{n-2} is adjacent to u_1 . If $n \ge 10$, then at least two of u_2, \ldots, u_{n-4} are adjacent, so H contains $T_H(n)$. If $n \ge 9$, then u_1 is adjacent to at least one of u_2, \ldots, u_{n-4} , so H contains $T_L(n)$. Now suppose that n = 9. If any of u_2, \ldots, u_5 are adjacent to each other, then H contains $T_H(9)$. Otherwise, u_2, \ldots, u_5 are each adjacent to u_6, u_7 and u_8 , and so H contains $T_H(9)$. Finally, suppose that n = 8. If any two of u_2, u_3, u_4 are adjacent, then H contains $T_H(8)$; otherwise, they are each adjacent to u_6 or u_7 . Now, if u_1 is adjacent to u_5, u_6 and u_7 , and H also contains $T_H(8)$. Furthermore, if u_1 is adjacent to u_2, u_3, u_4 , and then H contains $T_L(8)$. If u_1 is not adjacent to u_2, u_3 or u_4 , then u_6, u_7, u_8 are adjacent to u_2, u_3, u_4 , and then

H contains $T_L(8)$. Now if u_{n-2} is adjacent to some u_2, \ldots, u_{n-4} , say u_2 , then similar arguments apply by interchanging u_1 and u_2 .

Suppose now that neither u_{n-3} , u_{n-2} nor u_{n-1} is adjacent to both of the others. Then one of these, say u_{n-3} , is adjacent to neither of the others. Since $\delta(H) \ge n-4$, u_{n-3} is adjacent to at least n-5 of the vertices u_1, \ldots, u_{n-4} . Without loss of generality, assume that $u_1, \ldots, u_{n-5} \in N_H(u_{n-3})$. Then u_{n-2} is adjacent to at least n-7 of the vertices u_1, \ldots, u_{n-5} including, without loss of generality, the vertex u_1 . Also, u_{n-1} is adjacent to at least one of u_2, \ldots, u_{n-4} , so H contains $T_H(n)$. If u_{n-2} is adjacent to u_{n-1} , then H also contains $T_L(n)$. If u_{n-2} is not adjacent to u_{n-1} , then u_{n-2} is adjacent to at least n-6 vertices of u_1, \ldots, u_{n-5} , so H contains $T_L(n)$. Now, suppose that $n \ge 9$. Then u_{n-2} and u_{n-1} are each adjacent to at least 3 of u_1, \ldots, u_5 , and one of those vertices must be adjacent to both u_{n-2} and u_{n-1} ; thus, H contains $T_K(n)$. Finally, suppose that n = 8. If u_6 and u_7 are each adjacent to at least two of the vertices u_1, u_2, u_3 , then one of those vertices must be adjacent to both u_6 and u_7 ; thus, H contains $T_K(8)$. Otherwise, u_6 or u_7 , say u_6 , is non-adjacent to at least two of u_1, u_2, u_3 , say u_1 and u_2 . Then u_6 is adjacent to u_0, u_3, u_4 and u_7 , and so H contains $T_{K}(8).$

Theorem 7.14 *If* $n \ge 8$, *then* $R(T_H(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1 and assume that *G* does not contain $T_H(n)$ and that \overline{G} does not contain W_8 . By Theorem 7.12, *G* has a subgraph $T = T_G(n)$. Let $V(T) = \{v_0, \ldots, v_{n-5}, w_1, \ldots, w_4\}$ and E(T) = $\{v_0v_1, \ldots, v_0v_{n-5}, v_1w_1, v_2w_2, v_3w_3, w_3w_4\}$. Set $U = \{u_1, \ldots, u_{n-1}\} = V(G) -$ V(T); then |U| = n - 1. Since $T_G(n) \notin G$, $E_G(\{w_1, w_2\}, \{w_3, w_4\}) = \emptyset$ and w_4 is not adjacent to *U*. Now, let $W = \{w_1\} \cup U$; then |W| = n. If $\delta(\overline{G}[W]) \geq \frac{n}{2}$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which, with w_4 as hub, forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[W]) < \frac{n}{2}$, and $\Delta(G[W]) \geq \lfloor \frac{n}{2} \rfloor \geq 4$.

First, suppose that w_1 is a vertex with degree at least $\frac{n}{2}$ in G[W]. Assume without loss of generality that $u_1, \ldots, u_4 \in N_{G[W]}(w_1)$. Since $T_H(n) \nsubseteq G, u_1, \ldots, u_4$ are independent and are not adjacent to $\{w_2, u_5, \ldots, u_{n-1}\}$ in G. Then $w_2, u_1, \ldots, u_4, w_4$ and any 3 vertices from $\{u_5, \ldots, u_{n-1}\}$ form W_8 in \overline{G} , a contradiction. Hence, $d_{G[W]}(u') \ge \frac{n}{2}$ for some vertex $u' \in U$, say $u' = u_1$. Note that w_1 is not adjacent to u_1 , or else G contains $T_H(n)$. Without loss of generality, suppose that $u_2, \ldots, u_5 \in N_{G[W]}(u_1)$. Since $T_H(n) \nsubseteq G, u_2, \ldots, u_5$ are not adjacent to $V(T) \setminus \{v_0\}$ in G. Now, if v_0 is not adjacent to $\{u_2, \ldots, u_5\}$ in G, then by Observation 4.3, $\delta(G[V(T)]) \ge n - 4$, or else \overline{G} contains W_8 . By Lemma 7.13, G[V(T)] contains $T_H(n)$, a contradiction. On the other hand, suppose that v_0 is adjacent to at least one of u_2, \ldots, u_5 , say u_2 . Then u_3, u_4, u_5 are independent in G and are not adjacent to u_6 and u_7 in G. Furthermore, w_4 is not adjacent to v_1 or v_2 . Then $v_1u_3v_2u_4u_6w_1u_7u_5v_1$ and w_4 form W_8 in \overline{G} , a contradiction. Thus, $R(T_H(n), W_8) \le 2n - 1$.

Theorem 7.15 If $n \ge 8$, then $R(T_J(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order 2n - 1 and assume that G does not contain $T_J(n)$ and that \overline{G} does not contain W_8 . By Theorem 6.8, G has a subgraph $T = T_C(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, v_2w_3\}$. Set $V = \{v_3, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |U| = n - 1. Let $U = \{u_1, \ldots, u_{n-1}\}$. Since $T_J(n) \nsubseteq G$, neither w_1 nor w_2 is adjacent in G to any vertex from $U \cup V$.

Let $W = \{v_3\} \cup U$; then |W| = n. If $\delta(\overline{G}[W]) \ge \lceil \frac{n}{2} \rceil \ge \frac{n}{2}$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which with w_1 forms W_8 , a contradiction. Thus, $\delta(\overline{G}[W]) < \lceil \frac{n}{2} \rceil$, and $\Delta(G[W]) \ge \lfloor \frac{n}{2} \rfloor \ge 4$.

Suppose that $d_{G[W]}(v_3) \ge \lfloor \frac{n}{2} \rfloor \ge 4$. Without loss of generality, assume that $u_1, \ldots, u_4 \in N_G(v_3)$. Since $T_J(n) \nsubseteq G, u_1, \ldots, u_4$ is independent in G and is not adjacent to any remaining vertices from U in G. Then $u_2w_1u_3u_5u_4u_6w_2u_7u_2$ and u_1 form W_8 in \overline{G} , a contradiction. Hence, there is a vertex in U, say u_1 , such that $d_{G[W]}(u_1) \ge \lfloor \frac{n}{2} \rfloor \ge 4$.

Now, suppose that v_3 is adjacent to u_1 in G[W]. Then u_1 is adjacent to at least 3 other vertices of U in G, say u_2 , u_3 and u_4 . Since $T_J(n) \nsubseteq G$, v_3 is not adjacent to $v_1, v_2, v_4, \ldots, v_{n-4}, w_1, w_2, w_3, u_2, u_3, u_4$ and neither v_1 nor v_2 is adjacent to u_2, u_3 or u_4 in G. Then $v_2u_2v_1u_3w_1v_4w_2u_4v_2$ and v_3 form W_8 in \overline{G} , a contradiction.

Thus, v_3 is not adjacent to u_1 in G. Note that u_1 is not adjacent to any other vertices of V in G or else previous arguments apply. Similarly, v_0 is not adjacent to $N_{G[W]}(u_1)$ in G. Since $T_J(n) \nsubseteq G$, neither v_1 nor v_2 is adjacent to u_1 or $N_{G[W]}(u_1)$ in G, and so $d_{N_{G[W]}(u_1)}(v) \le 1$ for all $v \in V$.

Suppose that $n \ge 10$; then $|V| \ge 4$ and $|N_{G[W]}(u_1)| \ge 5$. If $d_{G[V]}(u) \le 2$ for each $u \in N_{G[W]}(u_1)$, then $\overline{G}[V \cup N_{G[W]}(u_1)]$ contains C_8 by Lemma 4.5 which, with w_1 as hub, forms W_8 in \overline{G} , a contradiction. Thus, $d_V(u') \ge 3$ for some vertex $u' \in N_{G[W]}(u_1)$. Then any 4 vertices from V, of which at least 3 are in $N_{G[V]}(u')$, and any 4 vertices from $N_{G[W]}(u_1) \setminus \{u'\}$ satisfy the condition in Lemma 4.5, so $\overline{G}[V \cup N_{G[W]}(u_1)]$ contains C_8 which with w_1 forms W_8 , a contradiction.

Suppose that n = 9; then $V = \{v_3, v_4, v_5\}$. Assume that $u_2, \ldots, u_5 \in N_{G[W]}(u_1)$. Suppose that w_1 is not adjacent to w_2 in G. Let $X = \{v_3, v_4, v_5, w_2\}$ and $Y = \{u_2, \ldots, u_5\}$ and note that $d_{G[Y]}(x) \le 1$ for each $x \in X$. If $d_{G[X]}(y) \le 2$ for each $y \in Y$, then $\overline{G}[X \cup Y]$ contains C_8 by Lemma 4.5 which, with w_1 as hub, forms W_8 , a contradiction. Thus, $d_{G[X]}(u') \ge 3$ for some $u' \in Y$, say $u' = u_2$, so X is not adjacent to $Y \setminus \{u_2\}$. Hence, $v_3u_1v_4u_3v_5u_4w_2u_5v_3$ and w_1 form W_8 in \overline{G} , a contradiction.

Thus, w_1 is adjacent to w_2 in G. Then v_1 is not adjacent to $\{v_3, v_4, v_5\} \cup U$. Suppose that v_1 is not adjacent to v_2 . Then set $X = \{v_2, \ldots, v_5\}$ and $Y = \{u_2, \ldots, u_5\}$. If $d_{G[X]}(y) \leq 2$ for each $y \in Y$, then $\overline{G}[X \cup Y]$ contains C_8 by Lemma 4.5 which, with v_1 as hub, forms W_8 , a contradiction. Thus, $d_{G[X]}(u') \geq 3$ for some $u' \in Y$, say $u' = u_2$, so X is not adjacent to $Y \setminus \{u_2\}$, and $v_2 u_1 v_3 u_3 v_4 u_4 v_5 u_5 v_2$ and v_1 form W_8 in \overline{G} , a contradiction. Thus, v_1 is adjacent to v_2 in G. Then V is independent and is not adjacent to U in G. Since $W_8 \notin \overline{G}$, G[U] is K_{n-1} or $K_{n-1} - e$ by Lemma 4.4. Since $T_J(9) \notin G$, T is not adjacent to U and, by Observation 4.3, $\delta(G[V(T)]) \geq 5$. However, this is impossible since V is independent and is not adjacent to v_1 , w_1 or w_2 .

Finally, suppose that n = 8; then $V = \{v_3, v_4\}$. Assume that $u_2, \ldots, u_5 \in N_{G[W]}(u_1)$. If v_3 is adjacent to any vertex of $\{u_2, \ldots, u_5\}$, say u_2 , then v_3 is not

adjacent to $\{v_1, v_2, v_4, w_3\} \cup U \setminus \{u_2\}$, so $v_1u_1v_2u_3w_1u_4w_2u_5v_1$ and v_3 form W_8 in \overline{G} , a contradiction. Thus, v_3 is not adjacent to $\{u_2, \ldots, u_5\}$. Similarly, v_4 is not adjacent to $\{u_2, \ldots, u_5\}$. Now, if w_3 is adjacent to any of the vertices u_2, \ldots, u_5 , say u_2 , then v_2 is not adjacent to $\{w_1, w_2, v_3, v_4\}$, so $v_3u_1v_4u_2w_1u_3w_2u_4v_3$ and v_2 form W_8 in \overline{G} , a contradiction. Thus, w_3 is not adjacent to $\{u_2, \ldots, u_5\}$. By Observation 4.3, $\delta(G[V(T)]) \ge 4$. Suppose that v_2 is adjacent to w_1 . Since $T_J(8) \nsubseteq G$, neither v_3 nor v_4 is adjacent to w_3 . Since $\delta(G[V(T)]) \ge 4$, v_3 and v_4 are adjacent to v_1 and v_2 , and $\{w_1, w_2, w_3\}$ is not independent. However, then $T_J(8) \subseteq G[V(T)]$, a contradiction. Thus, v_2 is not adjacent to w_1 and, similarly, v_2 is not adjacent to w_2 . Since $\delta(G[V(T)]) \ge 4$, w_1 and w_2 are adjacent to each other and to w_3 . Since $T_J(8) \nsubseteq G$, neither v_3 nor v_4 is adjacent to v_1 or v_2 ; however, this contradicts $\delta(G[V(T)]) \ge 4$.

In each case, $R(T_J(8), W_8) \le 2n - 1$, which completes the proof of the theorem.

Theorem 7.16 *If* $n \ge 8$, *then* $R(T_K(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let G be a graph of order 2n - 1 and assume that G does not contain $T_K(n)$ and that \overline{G} does not contain W_8 .

Suppose that $n \not\equiv 0 \pmod{4}$. By Theorem 6.5, *G* has a subgraph $T = S_n(1,3)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_2w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n-5 and |U| = n-1. Since $T_K(n) \not\subseteq G$, w_2 is not adjacent in *G* to any vertex of $U \cup V$. Now, if $\delta(G[U]) \ge \frac{n-1}{2}$, then $\overline{G}[U]$ contains C_8 by Lemma 4.1 which, with v_1 as hub, forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[U]) < \frac{n-1}{2}$, and $\Delta(G[U]) \ge \lfloor \frac{n-1}{2} \rfloor$. Let $U = \{u_1, \ldots, u_{n-1}\}$ and assume without loss of generality that $d_{G[U]}(u_1) \ge \lfloor \frac{n-1}{2} \rfloor \ge 4$. Since $T_K(n) \nsubseteq G$, $E_G(V, N_{G[U]}(u_1)) = \emptyset$, so any 4 vertices from *V*, any 4 vertices from $N_{G[U]}(u_1)$ and w_2 form W_8 in \overline{G} , a contradiction. Therefore, $R(T_K(n), W_8) \le 2n - 1$ for $n \neq 0 \pmod{4}$.

Let 8. By Theorem 7.14, G has а subgraph п = Т = $\{v_0, v_1, v_2, v_3, w_1, \ldots, w_4\}$ $T_{H}(8)$. Let V(T)= and E(T)= $\{v_0v_1, \ldots, v_0v_3, v_1w_1, w_1w_2, w_2w_3, v_2w_4\}$. Set $U = V(G) - V(T) = \{u_1, \ldots, u_7\}$; then |U| = 7. Since $T_K(8) \not\subseteq G$, w_2 is not adjacent to $\{w_4\} \cup U$. Let $W = \{w_4\} \cup U$. Then |W| = 8. If $\delta(\overline{G}[W]) \ge 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which, with w_2 as hub, forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[W]) < 3$, and $\Delta(G[W]) \ge 4$.

Now, suppose that $d_{G[W]}(w_4) \ge 4$ and assume without loss of generality that w_4 is adjacent to u_1, u_2, u_3 and u_4 . Then v_1 is not adjacent to $\{v_3, w_2, w_3\} \cup U$ and neither v_2 nor v_3 is adjacent to $\{u_1, \ldots, u_4\}$, since $T_K(8) \not\subseteq G$. Now, suppose that $E_G(\{u_1, \ldots, u_4\}, \{u_5, u_6, u_7\}) \neq \emptyset$ and assume that u_1 is adjacent to u_5 . Then u_1 is not adjacent to $\{w_1, w_2, w_3, u_2, \ldots, u_7\}$ in G, and $v_1u_2v_2u_3v_3u_4w_2u_6v_1$ and u_1 form W_8 in \overline{G} , a contradiction. Thus, $E_G(\{u_1, \ldots, u_4\}, \{u_5, u_6, u_7\}) = \emptyset$, so $u_1u_5u_2u_6u_3u_7u_4v_3u_1$ and v_1 form W_8 in \overline{G} , a contradiction.

Now suppose that $d_{G[W]}(u') \ge 4$ for some vertex $u' \in U$, say $u' = u_1$. Since, $T_K(8) \nsubseteq G$, w_4 is not adjacent to u_1 . Then without loss of generality, suppose that $u_2, \ldots, u_5 \in N_G(u_1)$. Since $T_K(8) \nsubseteq G$, $E_G(\{v_1, v_2, v_3\}, \{u_2, \ldots, u_5\}) = \emptyset$. If u_2 is adjacent to w_1 , then u_2 is not adjacent to $\{u_3, \ldots, u_7\}$ and v_1 is not adjacent to u_6 . Then $w_2u_3v_2u_4v_3u_5v_1u_6w_2$ and u_2 form W_8 in \overline{G} , a contradiction. Thus, u_2 is not adjacent to w_1 . Similarly, u_3 , u_4 and u_5 are not adjacent to w_1 . If u_2 is adjacent to v_0 , then v_2 is not adjacent to $\{v_1, v_3, w_1, w_2, w_3, u_2, \ldots, u_7\}$, and $v_1u_2v_3u_3w_1u_4w_2u_5v_1$ and v_2 form W_8 in \overline{G} , a contradiction. Thus, u_2 is not adjacent to v_0 . Similarly, u_3 , u_4 and u_5 are not adjacent to v_0 . By similar arguments, u_3 , u_4 and u_5 are not adjacent to w_3 or w_4 .

Hence, u_2, \ldots, u_5 are not adjacent to V(T) in G, so $\delta(G[V(T)]) \ge 4$ by Observation 4.3. By Lemma 7.13, G[V(T)] contains $T_K(8)$, a contradiction. Thus, $R(T_K(8), W_8) \le 15$.

Now suppose that $n \equiv 0 \pmod{4}$ and that $n \geq 12$. If *G* has an $S_n(1,3)$ subgraph, then the arguments above lead to contradictions. Thus, *G* does not contain $S_n(1,3)$ as a subgraph. Now, by Theorem 7.14, *G* has a subgraph $T = T_H(n)$. Let $V(T) = \{v_0, \ldots, v_{n-5}, w_1, \ldots, w_4\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-5}, v_1w_1, w_1w_2, w_2w_3, v_2w_4\}$. Set $V = \{v_3, \ldots, v_{n-5}\}$ and let $U = V(G) - V(T) = \{u_1, \ldots, u_{n-1}\}$. Then |V| = n-7 and |U| = n-1. Since $T_K(n) \nsubseteq G$, w_2 is not adjacent in *G* to $\{w_4\} \cup U$. Since $S_n(1,3) \nsubseteq G$, v_0 is not adjacent to $\{w_4\} \cup U$.

If $\delta(\overline{G}[U]) \geq \frac{n-1}{2}$, then $\overline{G}[U]$ contains C_8 by Lemma 4.1 which, with w_2 , forms W_8 , a contradiction. Thus, $\delta(\overline{G}[U]) < \frac{n-1}{2}$, and $\Delta(G[U]) \geq \lfloor \frac{n-1}{2} \rfloor \geq 5$. Without loss of generality, assume that $u_2, \ldots, u_6 \in N_G(u_1)$. Since $T_K(n) \notin G$, v_1 , v_2 and V are not adjacent to $\{u_2, \ldots, u_6\}$, and w_1 and w_2 are not adjacent to u_1 .

Now, if u_2 is adjacent to w_1 , then u_2 is not adjacent to $\{w_3, w_4\} \cup U \setminus \{u_1\}$, since $T_K(n) \nsubseteq G$, so $v_0 u_3 v_1 u_4 v_2 u_5 v_3 u_6 v_0$ and u_2 form W_8 in \overline{G} , a contradiction. Thus, u_2 is not adjacent to w_1 . Similarly, u_3, \ldots, u_6 are not adjacent to w_1 . If u_2 is adjacent to w_3 in G, then v_0 is not adjacent to w_1, w_2, w_3 , and $d_{G[U \setminus \{u_1, u_2\}]}(u_i) \le n - 6$ for $i = 3, \ldots, 6$, since $S_n(1, 3) \nsubseteq G$. Since $T_K(n) \nsubseteq G$, w_3 is not adjacent to w_1 or w_4 . Since $d_{G[U \setminus \{u_1, u_2\}]}(u_3) \le n - 6$ and $d_{G[U \setminus \{u_1, u_2\}]}(u_4) \le n - 6$, u_3 and u_4 are adjacent in \overline{G} to at least 2 vertices in $\{u_7, \ldots, u_{n-1}\}$. Without loss of generality, assume that u_3 is adjacent in \overline{G} to u_7 and that u_4 is adjacent to u_8 . Then $u_3 u_7 w_2 u_8 u_4 w_1 w_3 w_4 u_3$ and v_0 form W_8 in \overline{G} , a contradiction. Thus, u_2 is not adjacent to w_3 . Similarly, u_3, \ldots, u_6 are not adjacent to w_4 .

Hence, u_2, \ldots, u_6 are not adjacent to V(T). By Observation 4.3, $\delta(G[V(T)]) \ge 4$, so G[V(T)] contains $T_K(n)$ by Lemma 7.13, a contradiction. Thus, $R(T_K(n), W_8) \le 2n - 1$ for $n \equiv 0 \pmod{4}$. This completes the proof.

Theorem 7.17 *If* $n \ge 8$, *then* $R(T_L(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be a graph with no $T_L(n)$ subgraph whose complement \overline{G} does not contain W_8 . Suppose that $n \neq 0 \pmod{4}$ and that *G* has order 2n - 1. By Theorem 6.5, *G* has a subgraph $T = S_n(1, 3)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_2w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $T_L(n) \notin G$, v_1 is not adjacent to $U \cup V$, and $d_{G[U]}(v_i) \leq n - 7$ for each $v_i \in V$. Now, if $\delta(G[U]) \geq \frac{n-1}{2}$, then $\overline{G[U]}$ contains C_8 by Lemma 4.1 which, with v_1 , forms W_8 , a contradiction. Thus, $\delta(\overline{G[U]}) < \frac{n-1}{2}$, and $\Delta(G[U]) \geq \lfloor \frac{n-1}{2} \rfloor$. Let $U = \{u_1, \ldots, u_{n-1}\}$ and without loss of generality assume that $d_{G[U]}(u_1) \ge \lfloor \frac{n-1}{2} \rfloor \ge 4$ and that $u_2, \ldots, u_5 \in N_{G[U]}(u_1)$. Now if $E_G(V, N_{G[U]}(u_1)) = \emptyset$, then 4 vertices from V, 4 vertices from $N_{G[U]}(u_1)$ and v_1 form W_8 in \overline{G} , a contradiction. Thus, $E_G(V, N_{G[U]}(u_1)) \neq \emptyset$. Assume without loss of generality that v_2 is adjacent to u_2 . Since $T_L(n) \nsubseteq G$, v_2 is not adjacent to $U \setminus \{u_1, u_2\}$. Since $d_{G[U]}(v_i) \le n-7$ for each $v_i \in V$, v_5 is non-adjacent to at least one of u_6, \ldots, u_{n-1} , say u_6 . Now if $E_G(\{v_3, v_4, v_5\}, \{u_3, u_4, u_5\}) = \emptyset$, then $v_2u_3v_3u_4v_4u_5v_5u_6v_2$ and v_1 form W_8 in \overline{G} , a contradiction. Thus assume, say, that v_3 is adjacent to u_3 in G; then v_3 is not adjacent to $U \setminus \{u_1, u_3\}$. Again, if $E_G(\{v_4, v_5\}, \{u_4, u_5\}) = \emptyset$, then $v_2u_7v_3u_4v_4u_5v_5u_6v_2$ and v_1 form W_8 in \overline{G} , a contradiction. Thus assume, say, that v_4 is adjacent to u_4 , then v_4 is not adjacent to $U \setminus \{u_1, u_4\}$. If v_5 is not adjacent to u_5 , so v_5 is not adjacent to $U \setminus \{u_1, u_5\}$, and $v_2u_7v_3u_2v_4u_3v_5u_6v_2$ and v_1 form W_8 in \overline{G} , a contradiction. Thus, v_5 is adjacent to u_5 , so v_5 is not adjacent to $U \setminus \{u_1, u_5\}$, and $v_2u_7v_3u_2v_4u_3v_5u_6v_2$ and v_1 form W_8 in \overline{G} , a contradiction.

Hence, $R(T_L(n), W_8) \le 2n - 1$ for $n \ne 0 \pmod{4}$.

Now, suppose that $n \equiv 0 \pmod{4}$ and that *G* has order 2n - 1. Suppose first that n = 8. By Theorem 7.14, *G* has a subgraph $T = T_H(8)$. Let $V(T) = \{v_0, \ldots, v_3, w_1, \ldots, w_4\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_3, v_1w_1, w_1w_2, w_2w_3, v_2w_4\}$. Set $U = V(G) - V(T) = \{u_1, \ldots, u_7\}$; then |U| = 7. Since $T_L(8) \notin G$, neither v_1 nor v_2 are adjacent to *U*, and $d_{G[U]}(v_3) \leq 1$. Furthermore, v_1 is not adjacent to w_4 , and v_2 is not adjacent to w_1 or w_3 . Let $W = \{w_4\} \cup U$; then |W| = 8. If $\delta(\overline{G}[W]) \geq 4$, then $\overline{G}[W]$ contains C_8 by Lemma 4.1 which with v_1 forms W_8 , a contradiction. Thus, $\delta(\overline{G}[W]) < 3$ and $\Delta(G[W]) \geq 4$.

Now, suppose that $d_{G[W]}(w_4) \ge 4$ and assume without loss of generality that $u_1, \ldots, u_4 \in N_G(w_4)$. Then v_2 is not adjacent to v_1, v_3, w_1, w_2 and $d_{G[U]}(u_i) \le 1$ for $1 \le i \le 4$, since $T_L(8) \nsubseteq G$. Since $d_{G[U]}(v_3) \le 1$, assume without loss of generality that v_3 is not adjacent to u_3 or u_4 . Now, suppose that $E_G(\{u_1, \ldots, u_4\}, \{u_5, u_6, u_7\}) \ne \emptyset$ and assume, say, that u_1 is adjacent to u_5 . Then u_1 is not adjacent to $\{v_3, w_1, w_2, w_3, u_2, \ldots, u_7\}$. Since $T_L(8) \nsubseteq G$, at least one of w_1 and w_2 is adjacent in \overline{G} to u_2, u_3 and u_4 , say w_1 , so $v_1u_2w_1u_3v_3u_4v_2u_6v_1$ and u_1 form W_8 in \overline{G} , a contradiction. Thus, $E_G(\{u_1, \ldots, u_4\}, \{u_5, u_6, u_7\}) = \emptyset$. Then $u_1u_5u_2u_6u_3u_7u_4v_2u_1$ and v_1 form W_8 in \overline{G} , a contradiction. Therefore, $d_{G[W]}(u') \ge 4$ for some vertex of $u' \in U$, say $u' = u_1$.

Suppose that w_4 is adjacent to u_1 . Then without loss of generality, assume that u_1 is adjacent to u_2 , u_3 and u_4 . Since $T_L(8) \not\subseteq G$, neither v_0 nor w_4 is adjacent to w_1 or w_2 , and w_4 is not adjacent to $\{v_1, v_3\} \cup U \setminus \{u_1\}$. If $E_G(\{u_2, u_3, u_4\}, \{u_5, u_6, u_7\}) \neq \emptyset$, then, say, u_2 is adjacent to u_5 and is thus not adjacent to $\{v_0, v_3, w_1, w_2, w_3, u_3, u_4, u_6, u_7\}$, so $w_1v_0w_2w_4u_3v_1u_4v_2w_1$ and u_2 form W_8 in \overline{G} , a contradiction. Thus $E_G(\{u_1, \ldots, u_4\}, \{u_5, u_6, u_7\} = \emptyset$. Let $X = \{v_1, u_2, u_3, u_4\}$ and $Y = \{v_3, u_5, u_6, u_7\}$. Since $d_{G[U]}(v_3) \leq 1$, $\overline{G}[X \cup Y]$ contains C_8 by Lemma 4.5 which, with w_4 , forms W_8 , a contradiction.

Thus, u_1 is not adjacent to w_4 so assume without loss of generality that $u_2, \ldots, u_5 \in N_G(u_1)$. Since G does not contain $T_L(8)$, $d_{G[V(T)]}(u_i) \leq 1$ for $2 \leq i \leq 5$. If u_2 is adjacent to w_4 , then u_2 is not adjacent to $V(G) \setminus \{u_1, w_4\}$ in G. Since $d_{G[U]}(v_3) \leq 1$, that v_3 is not adjacent to, say, u_3 or u_4 . Since $d_{G[V(T)]}(u_i) \leq 1$ for $2 \leq i \leq 5$, u_4 and u_5 are each adjacent in \overline{G} to at least 2 of w_1, w_2, w_3 , so some $w_i \in \{w_1, w_2, w_3\}$

is adjacent in \overline{G} to both u_4 and u_5 . Therefore, $u_3v_3u_4w_iu_5v_2u_6v_1u_3$ and u_2 form W_8 in \overline{G} , a contradiction. Thus, u_2 is not adjacent to w_4 . Similarly, u_3 , u_4 , u_5 are not adjacent to w_4 . Similar arguments show that u_2 , ..., u_5 are not adjacent to w_1 or w_2 .

Now, if u_2 is adjacent to any other vertex of V(T), then u_2 is not adjacent to $\{u_3, u_4, u_5\}$, so $u_3w_1u_4w_4u_5v_2u_6v_1u_3$ and u_2 form W_8 in \overline{G} , a contradiction. Hence, u_2 is not adjacent to V(T) and, similarly, u_3, u_4, u_5 are not adjacent to V(T). Therefore, by Observation 4.3, $\delta(G[V(T)]) \ge 4$. By Lemma 7.13, G[V(T)] contains $T_L(8)$, a contradiction. Thus, $R(T_L(8), W_8) \le 15$.

Now suppose that $n \ge 12$. If G contains $S_n(1, 3)$, then the previous arguments above lead to contradictions. Thus, G does not contain $S_n(1, 3)$. By Theorem 6.8, G has a subgraph $T = T_C(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_2w_2, v_2w_3\}$. Set $U = V(G) - V(T) = \{u_1, \ldots, u_{n-1}\}$; then |U| = n - 1.

Suppose that w_2 is not adjacent to U. If $\delta(\overline{G}[U]) \ge \frac{n-1}{2}$, then G contains C_8 by Lemma 4.1 and, with w_2 as hub, forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[U]) < \frac{n-1}{2}$ and so $\Delta(G[U]) \ge \lfloor \frac{n-1}{2} \rfloor \ge 5$. Without loss of generality, assume that $u_2, \ldots, u_6 \in N_G(u_1)$. Since $S_n(1,3) \nsubseteq G, u_2, \ldots, u_6$ are not adjacent to $V(T) \setminus \{v_0\}$. If u_2 is adjacent to v_0 , then since $S_n(1,3) \nsubseteq G, u_3, \ldots, u_6$ are not adjacent to $\{u_7, \ldots, u_{n-1}\}$, so $u_3u_7u_4u_8u_5u_9u_6u_{10}u_3$ and w_2 form W_8 in \overline{G} , a contradiction. Thus, u_2 is not adjacent to v_0 and, similarly, u_3, \ldots, u_6 are also not adjacent to v_0 . Hence, u_2, \ldots, u_6 are not adjacent to V(T). Therefore, by Observation 4.3, $\delta(G[V(T)]) \ge n - 4$, so G[V(T)] contains $T_L(n)$ by Lemma 7.13, a contradiction.

Thus some vertex of U, say u_{n-1} , is adjacent to w_2 . Set $U' = U \setminus \{u_{n-1}\}$; then |U'| = n-2. Since $T_L(n) \nsubseteq G$, u_{n-1} is not adjacent to U' in G. Now, if $\delta(\overline{G}[U']) \ge \frac{n-2}{2}$, then $\overline{G}[U']$ contains C_8 by Lemma 4.1 which, with u_{n-1} , forms W_8 , a contradiction. Thus, $\delta(\overline{G}[U']) \le \frac{n-2}{2} - 1$, and $\Delta(G[U']) \ge \frac{n-2}{2} \ge 5$. Without loss of generality, assume that $u_2, \ldots, u_6 \in N_G(u_1)$ and repeat the above arguments to prove that u_2, \ldots, u_6 are not adjacent to V(T). Therefore, $\delta(G[V(T)]) \ge n-4$ by Observation 4.3, so G[V(T)] contains $T_L(n)$ by Lemma 7.13, a contradiction.

Therefore, $R(T_L(n), W_8) \le 2n - 1$ for $n \equiv 0 \pmod{4}$, which completes the proof.

Theorem 7.18 If $n \ge 9$, then $R(T_M(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1. Assume that *G* does not contain $T_M(n)$ and that \overline{G} does not contain W_8 . By Theorem 6.4, *G* has a subgraph $T = S_n(4)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, v_1w_3\}$. Set $V = \{v_2, v_3, \ldots, v_{n-4}\}$ and $U = V(G) - V(T) = \{u_1, \ldots, u_{n-1}\}$; then |V| = n - 5 and |U| = n - 1. Since $T_M(n) \notin G$, w_1 , w_2 and w_3 are not adjacent to any vertex of $U \cup V$ in *G*.

Now, suppose that some vertex in V is adjacent to at least 4 vertices of U in G, say v_2 to u_1, \ldots, u_4 . Then u_1, \ldots, u_4 are not adjacent to other vertices in U. Then $u_1u_5u_2u_6u_3u_7u_4u_8u_1$ and w_1 form W_8 in \overline{G} , a contradiction. Therefore, each vertex in V is adjacent to at most three vertices of U in G. Choose any 8 vertices of U.

Thus, $R(T_M(n), W_8) \le 2n - 1$ for $n \ge 9$. This completes the proof.

Theorem 7.19 *If* $n \ge 9$, *then*

$$R(T_N(n), W_8) = \begin{cases} 2n-1 & \text{if } n \neq 0 \pmod{4}; \\ 2n & \text{otherwise.} \end{cases}$$

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2*n* if $n \equiv 0 \pmod{4}$ and of order 2n - 1 if $n \neq 0 \pmod{4}$. Assume that *G* does not contain $T_N(n)$ and that \overline{G} does not contain W_8 . By Theorem 6.6, *G* has a subgraph $T = T_A(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, w_1w_3\}$. Set $V = \{v_2, v_3, \ldots, v_{n-4}\}$ and $U = V(G) - V(T) = \{u_1, \ldots, u_j\}$, where j = n - 1 if $n \neq 0 \pmod{4}$ and j = notherwise. Since $T_N(n) \nsubseteq G$, w_2 is not adjacent to $U \cup V$ in *G*. If each $v_i \in V$ is adjacent to at most three vertices of *U* in *G*, then by Corollary 4.8, $\overline{G}[U \cup V]$ contains C_8 which with w_2 gives W_8 in \overline{G} , a contradiction. Therefore, some vertex in *V*, say v_2 , is adjacent to at least four vertices of *U* in *G*, say u_1, \ldots, u_4 . If none of these is adjacent to other vertices of *U* in *G*, then $u_1u_5u_2u_6u_3u_7u_4u_8u_1$ and w_2 form W_8 in \overline{G} , a contradiction.

Therefore, assume that u_1 is adjacent to u_5 in G. Since $T_N(n) \notin G$, u_2 , u_3 , u_4 are not adjacent to $\{u_6, \ldots, u_j\}$ in G. For n = 9 and n = 10, $\{v_3, \ldots, v_{n-4}\}$ is not adjacent to $\{u_5, \ldots, u_{n-1}\}$ or else G will contain $T_N(n)$ with v_2 and v_0 being the vertices of degree n - 5 and 3, respectively. However, $v_3u_5v_4u_6u_2u_7u_3u_8v_3$ and w_2 form W_8 in \overline{G} , a contradiction. For $n \ge 11$, if v_2 is not adjacent to $\{u_6, \ldots, u_j\}$ in G, then $v_2u_6u_2u_7u_3u_8u_4u_9v_2$ and w_2 form W_8 in \overline{G} , a contradiction. Therefore, assume that v_2 is adjacent to u_6 in G. Then u_6 is not adjacent to $\{u_7, \ldots, u_j\}$ in G, and $u_2u_7u_3u_8u_4u_9u_6u_{10}u_2$ and w_2 form W_8 in \overline{G} , again a contradiction.

Thus, $R(T_N(n), W_8) \leq 2n$ for $n \equiv 0 \pmod{4}$ and $R(T_N(n), W_8) \leq 2n - 1$ for $n \neq 0 \pmod{4}$.

Theorem 7.20 *If* $n \ge 9$, *then* $R(T_P(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order 2n - 1. Assume that G does not contain $T_P(n)$ and that \overline{G} does not contain W_8 . Suppose $n \neq 0 \pmod{4}$. By Theorem 6.6, G has a subgraph $T = T_A(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, w_1w_3\}$. Set $V = \{v_2, v_3, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $T_P(n) \notin G$, w_1 is not adjacent to any vertex of $U \cup V$ in G. If each v_i in V is adjacent to at most three vertices of U in G, then by Corollary 4.8, $\overline{G}[U \cup V]$ contains C_8 which with w_1 gives W_8 in \overline{G} , a contradiction. Therefore, some vertex in V, say v_2 , is adjacent to at least four vertices of U in G, say u_1, \ldots, u_4 . For n = 9 and n = 10, G contains $T_P(9)$ and $T_P(10)$ with edge set $\{u_1v_2, u_2v_2, u_3v_2, v_2v_0, v_0v_1, v_0v_3, v_1w_1, v_1w_2\}$ and $\{u_1v_2, u_2v_2, u_3v_2, u_4v_2, v_2v_0, v_0v_1, v_0v_3, v_1w_1, v_1w_2\}$, respectively. For $n \ge 11$,

each of u_1, \ldots, u_4 is adjacent to at most two remaining vertices in U. Then by Corollary 4.7, $\overline{G}[U]$ contains C_8 which with w_1 gives W_8 in \overline{G} , a contradiction.

Suppose that $n \equiv 0 \pmod{4}$. By Theorem 7.18, *G* contains a subgraph $T = T_M(n)$. Let $V(T) = \{v_0, \ldots, v_{n-5}, w_1, \ldots, w_4\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-5}, v_1w_1, v_1w_2, v_1w_3, w_1w_4\}$. Let $V = \{v_2, v_3, \ldots, v_{n-5}\}$ and U = V(G) - V(T); then |V| = n - 6 and |U| = n - 1. Since $T_P(n) \notin G$, w_1 is not adjacent to $\{v_0, w_2, w_3\} \cup U$ in *G*, and so $d_{G[U]}(w_2) \leq 1$, $d_{G[U]}(w_3) \leq 1$ and $d_{G[U]}(v) \leq n - 7$ for any vertex $v \in V$. Now, if *G* contains a subgraph $T_A(n)$, then arguments similar to those used for the case $n \neq 0 \pmod{4}$ above can be used. Therefore, *G* contains no $T_A(n)$. Then v_0 is not adjacent to $\{w_2, w_3\} \cup U$ in *G*.

Suppose that some vertex $v \in V$ is not adjacent to w_1 in G. Let X be any four vertices in U that are not adjacent to v in G and set $Y = \{v, v_0, w_2, w_3\}$. By Lemma 4.5, $\overline{G}[X \cup Y]$ contains C_8 which with w_1 gives W_8 in \overline{G} , a contradiction. Therefore, each vertex of V is adjacent to w_1 in G. Since $T_P(n) \nsubseteq G$, w_4 is adjacent to at most n - 7 vertices of U in G. Since $T_A(n) \nsubseteq G$, w_2 and w_3 are not adjacent in G. Now, if w_4 is adjacent to both w_2 and w_3 in G, then w_4 is not adjacent to v_0 in G since $T_P(n) \nsubseteq G$. Let X be any four vertices of U that are not adjacent to w_4 in G and let $V = \{w_1, \ldots, w_4\}$. By Lemma 4.5, $\overline{G}[X \cup Y]$ contains C_8 which with w_1 gives W_8 in \overline{G} , a contradiction. Therefore, w_4 is non-adjacent to either w_2 or w_3 in G, say w_2 . Since $d_{G[U]}(w_2) \le 1$ and $d_{G[U]}(w_4) \le n-7$, there is a set X of four vertices in U that are not adjacent to both w_2 and w_4 in G. Let $Y = \{v_0, w_1, w_3, w_4\}$. By Lemma 4.5, $\overline{G}[X \cup Y]$ contains C_8 which with w_1 gives W_8 in \overline{G} , again a contradiction.

In either case, $R(T_P(n), W_8) \le 2n - 1$ for $n \ge 9$ and this completes the proof. \Box

Theorem 7.21 If $n \ge 9$, then $R(T_O(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1. Assume that *G* does not contain $T_Q(n)$ and that \overline{G} does not contain W_8 . By Theorem 6.4, *G* has a subgraph $T = S_n(4)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_1w_2, v_1w_3\}$. Set $V = \{v_2, v_3, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $T_O(n) \notin G$, G[V] are independent vertices and not adjacent to U.

Suppose that $n \ge 10$. Then $|V| \ge 5$ and $|U| \ge 9$, so by Observation 4.3, \overline{G} contains W_8 , a contradiction. If n = 9, then |V| = 4 and |U| = 8. By Lemma 4.4, G[U] is K_8 or $K_8 - e$. Since $T_Q(9) \notin G$, T is not adjacent to U, and $\delta(G[V(T)] \ge 5$. As v_2, \ldots, v_5 are independent in G, they are each adjacent to all other vertices in G[V(T)]. Therefore, G[V(T)] contains $T_Q(9)$ with v_2 and v_0 as the vertices of degree 4, a contradiction.

Thus, $R(T_O(n), W_8) \le 2n - 1$ for $n \ge 9$, which completes the proof.

Theorem 7.22 If $n \ge 9$, then $R(T_R(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1. Assume that *G* does not contain $T_R(n)$ and that \overline{G} does not contain W_8 . By Theorem 6.8, *G* has a subgraph $T = T_C(n)$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, v_2w_2, v_2w_3\}$. Set $V = \{v_3, \ldots, v_{n-4}\}$ and $U = V(G) - V(T) = \{u_1, \ldots, u_{n-1}\}$; then |V| = n - 6 and |U| = n - 1. Since $T_R(n) \notin G$, w_1 is not adjacent in G to any vertex of $U \cup V$. If $\delta(\overline{G}[U \cup V]) \geq \lceil \frac{2n-7}{2} \rceil$, then $\overline{G}[U \cup V]$ contains C_8 by Lemma 4.1 which with w_3 forms W_8 , a contradiction. Therefore, $\delta(\overline{G}[U \cup V]) \leq \lceil \frac{2n-7}{2} \rceil - 1$, and $\Delta(G[U \cup V]) \geq \lfloor \frac{2n-7}{2} \rfloor = n - 4$. Now, there are two cases to be considered.

Case 1: One of the vertices of V, say v_3 , is a vertex of degree at least n - 4 in $G[U \cup V]$.

Note that in this case, there are at least 3 vertices from U, say u_1, u_2, u_3 , that are adjacent to v_3 in G. Suppose that v_3 is also adjacent to a in G, where a is a vertex in $U \cup V$. Since $T_R(n) \not\subseteq G$, these 4 vertices are independent and are not adjacent to any other vertices of U. Since $n \ge 9$, U contains at least 4 other vertices, say u_5, \ldots, u_8 , so $u_1u_5u_2u_6u_3u_7au_8u_1$ and w_3 form W_8 in \overline{G} , a contradiction.

Case 2: Some vertex $u \in U$ has degree at least n - 4 in $G[U \cup V]$.

Since $T_R(n) \notin G$, *u* is not adjacent to any vertex of *V* in *G*. Therefore, *u* must be adjacent to at least n - 4 vertices of *U* in *G*. Without loss of generality, suppose that $u_1, \ldots, u_{n-4} \in N_{G[U]}(u)$. Note that *V* is not adjacent to $N_{G[U]}(u)$, or else it will form $T_R(n)$ in *G*, a contradiction. If $n \ge 10$, then any 4 vertices from $N_{G[U]}(u)$ and any 4 vertices from *V* form C_8 in \overline{G} which with w_3 forms W_8 , a contradiction. Suppose that n = 9 and let the remaining two vertices be u_6 and u_7 . If either u_6 or u_7 is non-adjacent to any two vertices of $\{u_1, \ldots, u_5\}$ in *G*, say u_6 is not adjacent to u_1 and u_2 in *G*, then $u_1u_6u_2v_3u_3v_4u_4v_5u_1$ and w_3 form W_8 in \overline{G} , a contradiction. So, both u_6 and u_7 are adjacent to at least 4 vertices of $\{u_1, \ldots, u_5\}$ in *G*. Since $T_R(9) \notin G$, *T* cannot be adjacent to U, and $\delta(G[V(T)] \ge 5$. As both v_2 and w_3 are not adjacent to v_3 , v_4 or v_5 in *G*, they are adjacent to all other vertices in G[V(T)]. Similarly, since v_3 is not adjacent to v_2 or w_3 in *G*, v_3 is adjacent to w_1 or w_2 in *G*. Without loss of generality, assume that v_3 is adjacent to w_1 . Then G[V(T)] contains $T_R(9)$ with edge set $\{v_2w_2, v_2v_1, v_2v_0, v_0v_4, v_0v_5, v_2w_3, v_2w_1, w_1v_3\}$, a contradiction.

In either case, $R(T_R(n), W_8) \leq 2n - 1$.

Theorem 7.23 If $n \ge 9$, then $R(T_S(n), W_8) = 2n - 1$.

Proof Lemma 7.1 provides the lower bound, so it remains to prove the upper bound. Let *G* be any graph of order 2n - 1. Assume that *G* does not contain $T_S(n)$ and that \overline{G} does not contain W_8 . Suppose $n \neq 0 \pmod{4}$. By Theorem 6.4, *G* has a subgraph $T = S_n[4]$. Let $V(T) = \{v_0, \ldots, v_{n-4}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-4}, v_1w_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, \ldots, v_{n-4}\}$ and U = V(G) - V(T); then |V| = n - 5 and |U| = n - 1. Since $T_S(n) \notin G$, G[V] are independent vertices and are not adjacent to *U*. If $n \ge 10$, then $|V| \ge 5$ and $|U| \ge 9$, so by Observation 4.3, \overline{G} contains W_8 , a contradiction. Suppose that n = 9. Then |V| = 4 and |U| = 8. By Lemma 4.4, G[U] is K_8 or $K_8 - e$. Since $T_S(9) \notin G$, *T* is not adjacent to *U*, and $\delta(G[V(T)] \ge 5$. As v_2, \ldots, v_5 are independent in *G*, they are adjacent to all other vertices in G[V(T)], and so G[V(T)] contains $T_S(9)$ with edge set $\{v_0v_1, v_0v_2, v_1v_4, v_1v_5, v_2w_1, v_2w_2, v_2w_3, v_3w_1\}$.

Now suppose that $n \equiv 0 \pmod{4}$. By Theorem 6.4, *G* has a subgraph $T = S_{n-1}[4]$. Let $V(T) = \{v_0, \ldots, v_{n-5}, w_1, w_2, w_3\}$ and $E(T) = \{v_0v_1, \ldots, v_0v_{n-5}, v_1w_1, w_1w_2, w_1w_3\}$. Set $V = \{v_2, \ldots, v_{n-5}\}$ and U = V(G) - V(T); then |V| = n - 6 and |U| = n. Since $T_S(n) \notin G$, G[V] is not adjacent to *U*. Since |V| = n - 6 > 4, by Observation 4.3, $\Delta(\overline{G}[U]) \leq 3$ and $\delta(G[U]) \geq n - 4$ since $W_8 \nsubseteq \overline{G}$. By Lemma 6.3, either G[U] is $K_{4,...,4}$ and contains $T_S(n)$ or G[U] contains $S_n[4]$ and the arguments from the $n \not\equiv 0 \pmod{4}$ case above lead to a contradiction. Thus, $R(T_S(n), W_8) \le 2n - 1$ for $n \ge 9$, which completes the proof. \Box

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Data Availability No new data were created or analysed during this study. Data sharing is not applicable to this article.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Baskoro, E.T.: The Ramsey number of paths and small wheels. Majalah Ilmiah Himpunan Matematika Indonesia 8, 13–16 (2002)
- Baskoro, E.T., Surahmat: Surahmat The Ramsey number of paths with respect to wheels. Discrete Math. 294, 275–277 (2005)
- Baskoro, E.T., Surahmat, Nababan, S.M., Miller, M.: On Ramsey graph numbers for trees versus wheels of five or six vertices. Graphs Combin. 18, 717–721 (2002)
- 4. Bondy, J.A.: Pancyclic graphs. J. Comb. Theory Ser. B 11, 80-84 (1971)
- Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H., Gould, R.J., Jacobson, M.S.: Goodness of trees for generalized books. Graphs Comb. 3, 1–6 (1987)
- Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. Chapman and Hall/CRC, Boston (2015)
- Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs, III: small off-diagonal numbers. Pac. J. Math. 41, 335–345 (1972)
- Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers of stars versus wheels. Eur. J. Comb. 25, 1067–1075 (2004)
- 9. Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers $R(T_n, W_6)$ for $\Delta(T_n) \ge n 3$. Appl. Math. Lett. 17, 281–285 (2004)
- 10. Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers $R(T_n, W_6)$ for small n. Util. Math. 67, 269–284 (2005)
- Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers R(T_n, W₆) for T_n without certain deletable sets. J. Syst. Sci. Complex 18, 95–101 (2005)
- Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers of paths versus wheels. Discrete Math. 290, 85–87 (2005)
- Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers of trees versus W₆ or W₇. Eur. J. Comb. 27, 558–564 (2006)
- Hafidh, Y., Baskoro, E.T.: The Ramsey number for tree versus wheel with odd order. Bull. Malays. Math. Sci. Soc. 44, 2151–2160 (2021)
- Haghi, Sh., Maimani, H.R.: A note on the Ramsey number of even wheels versus stars. Discuss. Math. Graph Theory 38, 397–404 (2018)

- Hasmawati, H., Baskoro, E.T., Assiyatun, H.: Star-wheel Ramsey numbers. J. Comb. Math. Comb. Comput. 55, 123–128 (2005)
- 17. Jackson, B.: Cycles in bipartite graphs. J. Comb. Theory Ser. B **30**, 332–342 (1981)
- Korolova, A.: Ramsey numbers of stars versus wheels of similar sizes. Discrete Math. 292, 107–117 (2005)
- Li, B., Ning, B.: The Ramsey numbers of paths versus wheels: a complete solution. Electron. J. Combin. 21(4), #P4.41 (2014)
- 20. Li, B., Schiermeyer, I.: On star-wheel Ramsey numbers. Graphs Comb. 32, 733-739 (2016)
- Salman, A.N.M., Broersma, H.J.: The Ramsey Numbers for paths versus wheels. Discrete Math. 307, 975–982 (2007)
- Surahmat, Baskoro, E.T.: On the Ramsey number of a path or a star versus W₄ or W₅. In: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, 14–17 July 2001, pp. 165–170 (2001)
- 23. Zhang, Y.: On Ramsey numbers of short paths versus large wheels. Ars Comb. 89, 11-20 (2008)
- Zhang, Y.: The Ramsey numbers for stars of odd small order versus a wheel of order nine. Nanjing Daxue Xuebao Shuxue Bannian Kan 25, 35–40 (2008)
- Zhang, Y., Chen, Y., Zhang, K.: The Ramsey numbers for stars of even order versus a wheel of order nine. Eur. J. Comb. 29, 1744–1754 (2008)
- Zhang, Y., Cheng, T.C.E., Chen, Y.: The Ramsey numbers for stars of odd order versus a wheel of order nine. Discrete Math. Algorithms Appl. 1, 413–436 (2009)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.