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Abstract
Let n ≥ 2 be an integer. The Grimaldi graph G(n) is defined by taking the elements
of the set {0, . . . , n−1} as vertices. Two distinct vertices x and y are adjacent in G(n)

if and only if gcd(x + y, n) = 1. In this paper, we examine the Betti numbers of the
edge ideals of these graphs and their complements.
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1 Introduction

Let R = k[x1, . . . , xn] be the polynomial ring over an arbitrary field k. It is well
known that associated to any homogeneous ideal I of R there is a minimal graded free
resolution

0 →
⊕

j

R(− j)β�, j (R/I ) → · · · →
⊕

j

R(− j)β0, j (R/I ) → R/I → 0,

where R(− j) denotes the free R-module obtained by shifting the degrees of R by j .
The quantity βi, j (R/I ), which is called the (i, j)th graded Betti number of R/I , is
equal to the number of generators of degree j in the i th syzygy module. The graded
Betti numbers are collected in the Betti table, in which the entry at column i and
row j is βi,i+ j (R/I ). The regularity and the projective dimension are two important
invariants associated with R/I that can be read off from the minimal free resolution.
The regularity of R/I is defined by reg(R/I ) = max{ j − i | βi, j (R/I ) �= 0} and
the projective dimension of R/I is defined by pd(R/I ) = max{i | βi, j (R/I ) �=
0 for some j}.

1.1 Minimal Resolutions and the Edge Ideals

Let us nowconnect the above-mentioned notionswith the ideals arising fromgraphs. In
order to do this, letG be a finite simple graph with the vertex set V (G) = {x1, . . . , xn}
and the edge set E(G). One may associate to the graph G a quadratic squarefree
monomial ideal

I (G) = (xi x j | {xi , x j } ∈ E(G)) ⊆ R,

which is called the edge ideal of G. One of the central problems in combinatorial
commutative algebra is a description of the minimal resolutions of these ideals. The
structure of the resulting resolutions is very poorly understood. This problem has been
studied bymany authors (e.g., [8, 10, 13–15]). In particular, Katzman [15] and Kimura
[16] have provided some results on the nonvanishing of the graded Betti numbers. For
the Ferrers graphs, Corso and Nagel [5] have proved that their edge ideals have linear
resolutions, and furthermore they have given an explicit formula for the Betti numbers
of such ideals. Recently, Fröberg [8] has described the Betti numbers of the edge ideals
of fat forests. We refer the reader to [7, 10, 17, 20] for other problems and results on
this area.

1.2 A Class of Graphs Due to Grimaldi

Let n ≥ 2 be an integer. In 1990, Grimaldi [9] defined a graph G(n) based on the
elements of [n] = {0, . . . , n − 1} and the notion of coprimeness, that is, a graph with
a number-theoretical nature. The vertices of G(n) are the elements of [n] and distinct
vertices x and y are defined to be adjacent if and only if gcd(x + y, n) = 1. This graph
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is called a Grimaldi graph. By letting ϕ as the Euler’s phi function, it follows that
when n is even, G(n) is a ϕ(n)-regular graph, whereas it is (ϕ(n), ϕ(n)−1)-biregular
when n is odd. This means by [1] that G(n) is an almost regular graph. Also, when
n �= 2 is even, G(n) can be expressed as the union of ϕ(n)/2 Hamiltonian cycles, that
is, cycles containing all the vertices of the graph. The odd case is not quite so easy, but
the structure is clear and the results are similar to the even case. Grimaldi has given
an explicit formula for the chromatic polynomial of G(p) and has investigated some
properties of the graph G(pα), where p is a prime and α ≥ 2 is an integer. Hoang et
al. [13] have characterized Cohen–Macaulay and Gorenstein properties for a kind of
circulant graphs and their complements. When n is even, these latter graphs coincide
with Grimaldi graphs and their complements. The complement of G(n), denoted by
G ′(n), is a graph whose vertex set is [n] in which two distinct vertices x and y are
adjacent if and only if gcd(x + y, n) �= 1. In [2], we have characterized when these
graphs are well-covered, Cohen–Macaulay, vertex-decomposable, or Gorenstein.

1.3 The Aim of this Paper

In this paper, we focus on finding the Betti numbers of the edge ideals of G(n)’s and
G ′(n)’s. The rest of the paper is organized as follows. In Sect. 2, we provide some
basic notation and terminology about the Betti numbers of the Stanley–Reisner rings
and the edge ideals of graphs. In Sect. 3, we give a useful technique to compute the
Betti numbers of the edge ideal of G(pα), where p is a prime. Finally, in Sect. 4, we
give a formula for the Betti numbers of the edge ideal of G ′(n), when n is either even
or a prime power.

2 Preliminaries

In this section, we introduce some basic notation which will be used in the sequel.
We refer the reader to [18, 21] for detailed information about the combinatorial and
algebraic backgrounds.

2.1 The Betti Numbers of the Stanley–Reisner Rings

A simplicial complex � with the vertex set V (�) = {v1, . . . , vn} is a collection of
subsets of V (�) such that F ∈ � whenever F ⊆ F ′ for some F ′ ∈ �. The restriction
of � to a subset S of V (�) is �[S] = {F ∈ � | F ⊆ S}. For a given field k, we
attach to � the Stanley–Reisner ideal I� of � to be the squarefree monomial ideal

I� = (x j1 · · · x ji | j1 < · · · < ji and { j1, . . . , ji } /∈ �)

in R = k[x1, . . . , xn] and the Stanley–Reisner ring of� to be the quotient ring k[�] =
R/I�. This provides a bridge between combinatorics and commutative algebra (see
[14]). We denote by H̃ j (�;k) the reduced homology group of � with coefficients in

123



136 Page 4 of 22 T. Ashitha et al.

k. A very useful result about the graded Betti numbers of a Stanley–Reisner ring is
the following so-called Hochster’s formula (c.f. [11, Theorem 8.1.1]):

βi, j (k[�]) =
∑

W⊆V (�)
|W |= j

dimk H̃ j−i−1(�[W ];k).

The dimension of a face F ∈ � is given by dim F = |F | − 1. The dimension of �,
denoted by dim�, is themaximumdimension of all its faces. By lettingd−1 = dim�,
the f -vector of � is the vector ( f−1, f0, . . . , fd−1), where f−1 = 1 and fi is the
number of faces of dimension i . The reduced Euler characteristic of �, denoted by
χ̃(�), is defined to be χ̃ (�) = ∑d−1

i=−1(−1)i fi (�). The h-vector of � is the vector
(h0, . . . , hd), where

hk =
k∑

i=0

(−1)k−i
(
d − i

d − k

)
fi−1, 0 ≤ k ≤ d.

TheHilbert–Poincaré series of the R-module k[�] is HPk[�](t) = ∑
i≥0 Hk[�](i)t i ,

where Hk[�] is the Hilbert function of k[�]. By [18, Corollary 1.5], this series can be
expressed as follows:

HPk[�](t) = h0 + h1t + · · · + hdtd

(1 − t)d
.

Let � and 	 be two simplicial complexes with the disjoint vertex sets V (�) and
V (	), respectively. We define their join on the vertex set V (�)∪V (	) to be � ∗	 =
{σ ∪τ | σ ∈ �, τ ∈ 	}.By using the Künneth’s formula (c.f. [3, Proposition 3.2]), we
can describe the reduced homology of the join of two simplicial complexes in terms
of the reduced homologies of the factors for each i as follows:

H̃i (� ∗ 	;k) ∼=
⊕

p+q=i−1

H̃p(�;k) ⊗ H̃q(	;k).

The following lemma gives us the Betti numbers of the Stanley–Reisner rings of
simplicial complexes which are join of finitely many disjoint subcomplexes.

Lemma 2.1 ([12], Lemma 1.2) Let � be a simplicial complex. If � = �1 ∗ · · · ∗ �m,
where the �i ’s are disjoint subcomplexes of �, then

βi, j (k[�]) =
∑

a1+···+am=i
b1+···+bm= j

(
m∏

k=1

βak ,bk (k[�k])
)

.

In particular, pd(k[�]) = ∑m
k=1 pd(k[�k]) and reg(k[�]) = ∑m

k=1 reg(k[�k]).
We now state and prove the following lemma for later use.
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Lemma 2.2 Let�1 and�2 be two simplicial complexes. If V (�1)∩V (�2) = ∅, then
reg(k[�1 ∪ �2]) = max{reg(k[�1]), reg(k[�2])}.
Proof Note that [11, Proposition 5.1.8] implies I�1 ∩ I�2 = I�1∪�2 and I�1 + I�2 =
I�1∩�2 . Therefore, we obtain the following exact sequence:

0 → R/I�1∪�2 → R/I�1 ⊕ R/I�2 → R/I�1∩�2 → 0.

Now, by [19, Proposition 18.6], reg(k[�1 ∪�2]) = max{reg(k[�1]), reg(k[�2])}, as
required. ��

Let �1 and �2 be two simplicial complexes with n and m vertices, respectively. It
is known that if I�1 ⊆ k[x1, . . . , xn] is the Stanley–Reisner ideal of �1 and I�2 ⊆
k[y1, . . . , ym] is the Stanley–Reisner ideal of �2, then

I�1∪· �2 = I�1 + I�2 + (xi y j | i = 1, . . . , n, j = 1, . . . ,m)

is the Stanley–Reisner ideal of�1∪· �2 in k[x1, . . . , xn, y1, . . . , ym]. In this direction,
Whieldon [22] has determined the graded Betti numbers of the edge ring k[�1 ∪· �2].
We close this subsection by stating it.

Lemma 2.3 ([22], Lemma 5.4) Let �1 and �2 be two simplicial complexes with n
and m vertices, respectively. If s ≥ 2 is an integer, then the following formulas hold
true:

βi,i+1(k[�1 ∪· �2]) = βi,i+1(k[�1]) + βi,i+1(k[�2]) +
(
m + n

i + 1

)
−

(
m

i + 1

)

−
(

n

i + 1

)
+

i∑

j=1

{(
m

i − j + 1

)
β j−1, j (k[�1]) +

(
n

j

)
βi− j,i− j+1(k[�2])

}
, and

βi,i+s(k[�1 ∪· �2]) = βi,i+s(k[�1]) + βi,i+s(k[�2])

+
i+s−1∑

j=1

{(
m

i − j + s

)
β j−s, j (k[�1]) +

(
n

j

)
βi− j,i− j+s(k[�2])

}
.

2.2 The Betti Numbers of the Edge Ideals of Graphs

In the sequel, by a graph we mean a finite undirected graph without loops or multiple
edges. For a graph G, let V (G) denote the set of vertices of G and let E(G) denote
the set of edges of G. A graph with just one vertex is referred to as trivial. All other
graphs are nontrivial. A graph is called totally disconnected if it is either a null graph
or it contains no edge. An edge e ∈ E(G) connecting two vertices x and y will also
be written as {x, y}. In this case, it is said that x and y are adjacent. For a subset S of
V (G), we denote by G[S] the induced subgraph of G on the vertex set S and denote
G\S by G[V \S]. If S = {x}, we write G\x instead of G\{x}. The neighborhood of x
in G is the set NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)}, and the closed neighborhood
of x is NG [x] = {x} ∪ NG(x).
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A bipartite graph is one whose vertex set can be partitioned into two disjoint parts
in such a way that the two end vertices for each edge lie in distinct parts. A complete
bipartite graph is one in which each vertex is joined to every vertex that is not in the
same partition. The complete bipartite graph with exactly two parts of sizem and n, is
denoted by Km,n . A complete graph is a graph in which each pair of distinct vertices
is joined by an edge. We denote the complete graph with n vertices by Kn .

To every graph G with the vertex set V (G) = {x1, . . . , xn} and the edge set
E(G), one may associates the edge ideal I (G) of the polynomial ring k[V (G)] =
k[x1, . . . , xn]. Let �(G) be the set of all independent sets of G. Then �(G) is a sim-
plicial complex, which is called the independence complex of G. It is easy to see that
I�(G) = I (G). Note that �(G[W ]) = �(G)[W ] for any W ⊆ V (G). Therefore, the
Hochster’s formula is also applied to compute the Betti numbers of edge ideals. We
write βi, j (G), pd(G), and reg(G) as shorthand for βi, j (k[�(G)]), pd(k[�(G)]), and
reg(k[�(G)]), respectively.

We close this section by recalling the following result which gives us the Betti
numbers of the complete graph Kn and the complete bipartite graph Kn,m .

Proposition 2.4 ([14], Theorems 5.1.1 and 5.2.4) The following statements hold true:

(1) The edge ring of Kn has a 2-linear resolution and βi,i+1(Kn) = i
( n
i+1

)
.

(2) The edge ring of Km,n has a 2-linear resolution and

βi,i+1(Kn,m) =
∑

s+t=i+1
s,t≥1

(
n

s

)(
m

t

)
.

3 The Betti Numbers of theG(p˛)’s

In this section, we find some invariants regarding the graphs G(pα)’s, where p is a
prime. In particular, we find the Betti numbers of these graphs. The case p = 2 is
easy to handle, while the odd case is not quite so easy. For this latter case, we give a
useful technique to compute the Betti numbers. Let us start with the following purely
combinatorial lemma, which is useful for later use.

Lemma 3.1 Let m, n, i, j, k ∈ N, 0 ≤ i ≤ n, and 0 ≤ j ≤ m. Then the following
equalities hold true:

(1)
∑

i+ j=k
i, j≥0

(n
i

)(m
j

) = (n+m
k

)
.

(2)
∑

i+ j=k
i, j≥0

i j
( n
i+1

)( m
j+1

) = (k + 1)
{
kmn−m2−n2+m+n

(m+n−1)(m+n)

(m+n
k+2

) + ( n
k+2

) + ( m
k+2

)}
.
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Proof (1): By the binomial expansion theorem we have the following equalities:

(1 + x)n(1 + x)m =
n∑

i=0

(
n

i

)
xi

m∑

j=0

(
m

j

)
x j =

n+m∑

k=0

⎛

⎜⎜⎝
∑

i+ j=k
i, j≥0

(
n

i

)(
m

j

)
⎞

⎟⎟⎠ xk

and (1+ x)n+m = ∑n+m
k=0

(n+m
k

)
xk . It is noteworthy that the coefficients of the mono-

mials of degree k of two above expressions are
∑

i+ j=k
i, j≥0

(n
i

)(m
j

)
and

(n+m
k

)
. Hence,

they are equal, as required.
(2): Note that

∑n
i=0

(n
i

)
xi = (1 + x)n , and thus, we obtain that

n−1∑

i=1

i

(
n

i + 1

)
xi+1 = x2

n−1∑

i=1

i

(
n

i + 1

)
xi−1 = x2

(
n−1∑

i=0

(
n

i + 1

)
xi
)′

= x2
(
1

x

n−1∑

i=0

(
n

i + 1

)
xi+1

)′
= x2

(
1

x

n∑

i=1

(
n

i

)
xi
)′

= x2
(

(1 + x)n − 1

x

)′
= nx(1 + x)n−1 − (1 + x)n + 1.

Therefore,
∑n−1

i=1 i
( n
i+1

)
xi+1 = nx(1 + x)n−1 − (1 + x)n + 1. On the other hand,

{
n−1∑

i=0

i

(
n

i + 1

)
xi+1

}⎧
⎨

⎩

m−1∑

j=0

j

(
m

j + 1

)
x j+1

⎫
⎬

⎭

= x2
m+n−2∑

k=0

∑

i+ j=k
i, j≥0

i j

(
n

i + 1

)(
m

j + 1

)
xk .

Hence, the coefficients of the monomials of degree k + 2 (0 ≤ k ≤ m + n − 2) of the
above expression are

∑

i+ j=k
i, j≥0

i j

(
n

i + 1

)(
m

j + 1

)
.

Moreover, the product of two polynomials nx(1+ x)n−1 − (1+ x)n + 1 and mx(1+
x)m−1 − (1 + x)m + 1 is

nmx2(1 + x)n+m−2 − (n + m)x(1 + x)n+m−1 + (1 + x)n+m + nx(1 + x)n−1

−(1 + x)n + mx(1 + x)m−1 − (1 + x)m + 1.
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This implies that the coefficient of the monomials of degree k+2 (0 ≤ k ≤ m+n−2)
of the above polynomial is

{
nm

(
m + n − 2

k

)
− (m + n)

(
m + n − 1

k + 1

)
+

(
n + m

k + 2

)}

+
{
n

(
n − 1

k + 1

)
−

(
n

k + 2

)}
+

{
m

(
m − 1

k + 1

)
−

(
m

k + 2

)}

= (k + 1)

{
kmn − m2 − n2 + m + n

(m + n − 1)(m + n)

(
m + n

k + 2

)
+

(
n

k + 2

)
+

(
m

k + 2

)}
.

We now get the result by comparing the two coefficients above. ��
The following proposition deals with the graphsG(2α)’s and gives us the projective

dimension of these graphs.

Proposition 3.2 Let α be a positive integer. Then the edge ring of G(2α) has a 2-linear
resolution. Moreover, we have

βi,i+1(G(2α)) =
(

2α

i + 1

)
− 2

(
2α−1

i + 1

)
.

In particular, pd(G(2α)) = 2α − 1.

Proof Let A = {0, 2, . . . , 2α − 2} and B = {1, 3, . . . , 2α − 1}. If either x, y ∈ A
or x, y ∈ B, then x + y = 0 (mod 2), and thus, {x, y} /∈ E(G(2α)). On the other
hand, if x ∈ A and y ∈ B, then x + y = 1 (mod 2), and thus, {x, y} ∈ E(G(2α)).
Therefore, A and B are the maximal independent sets of G(2α), and furthermore,
G(2α) is a complete bipartite graph with bipartition (A, B). By Proposition 2.4(2),
we obtain that

βi,i+1(G(2α)) =
∑

s+t=i+1
s,t≥1

(
2α−1

s

)(
2α−1

t

)
.

This, together with Lemma 3.1(1), completes the proof. ��
We now continue the paper with the odd case.

Proposition 3.3 Let p be an odd prime. Then α(G(p)) = 2, the edge ring of G(p)
has a 2-linear resolution, and we have

βi,i+1(G(p)) =

⎧
⎪⎪⎨

⎪⎪⎩

p−1
2

{( p
i+1

) − (p−2
i+1

)} − (p−1
i+1

)
if 1 ≤ i ≤ p − 3,

p2−p−2
2 if i = p − 2,

p−1
2 if i = p − 1.

In particular, pd(G(p)) = p − 1.
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Proof Since p is a prime, it is easy to see that the vertex 0 is adjacent to all of the
other vertices in G(p), and {x, y} /∈ E(G(p)) for some x, y ∈ [p] if and only if
x + y = p. Thus, all of the maximal independent sets of G(p) are {0} and {i, p − i}
for all 1 ≤ i ≤ p−1

2 . Therefore, the independence complex of G(p) is a disjoint union

of p−1
2 edges and one vertex. This means that the Hilbert series of k[�(G(p)] is

p − 1

2

1

(1 − t)2
+ 1

1 − t
− p − 1

2
=

p−1
2 (1 − t)p−2 + (1 − t)p−1 − p−1

2 (1 − t)p

(1 − t)p
.

This implies that βp−1,p(G(p)) = p−1
2 , βp−2,p−1(G(p)) = p2−p−2

2 , and

βi,i+1(G(p)) = p − 1

2

{(
p

i + 1

)
−

(
p − 2

i + 1

)}
−

(
p − 1

i + 1

)

for all 1 ≤ i ≤ p − 3, as required. ��
The following lemma gives us a decomposition for a class of Grimaldi graphs

involving the join of graphs. Let us recall that the join of two graphs G and H ,
denoted by G ∗ H , is a graph formed from disjoint copies of G and H by connecting
each vertex of G to each vertex of H .

Lemma 3.4 Let p be an odd prime and α > 1 be an integer. Then we have

G(pα) = G[I0] ∗ G[I1 ∪ Ip−1] ∗ · · · ∗ G[I p−1
2

∪ I p+1
2

],

where Ii = {x ∈ [pα] | x = i (mod p)} for every 0 ≤ i ≤ p − 1, G[I0] is a totally
disconnected graph, and G[Ii ∪ Ip−i ] is an induced graph of G(pα) with the edge set

E(G[Ii ∪ Ip−i ]) = {{x, y} | x, y ∈ Ii } ∪ {{x, y} | x, y ∈ Ip−i }.

Proof In order to prove the lemma, it is enough to prove the following claims:
Claim 1: G[I0] is a totally disconnected graph.
Claim 2: G[Ii ] is a complete graph for 1 ≤ i ≤ p − 1.
Claim 3: {x, y} /∈ E(G(pα)) for x ∈ Ii and y ∈ Ip−i with 1 ≤ i ≤ p−1

2 .

Claim 4: {x, y} ∈ E(G(pα)) for x ∈ I0 and y ∈ Ii ∪ Ip−i with 1 ≤ i ≤ p−1
2 .

Claim 5: {x, y} ∈ E(G(pα)) for x ∈ Ii ∪ Ip−i and y ∈ I j ∪ Ip− j with 1 ≤ i �= j ≤
p−1
2 .
Claim 1 is true since for every x, y ∈ I0, x + y = 0 (mod p), and thus, x and y are

not adjacent in G(pα). Claim 2 is true since for every x, y ∈ Ii with 1 ≤ i ≤ p − 1,
gcd(x + y, pα) = 1, and thus, x is adjacent to y in G(pα). Claim 3 is true since by
the assumption, x + y = 0 (mod p), and thus, x is not adjacent to y in G(pα). Claim
4 is true since by the assumption, x + y = y (mod p), and thus, x is adjacent to y in
G(pα). Claim 5 is true since by the assumption, gcd(x + y, pα) = 1, and thus, x is
adjacent to y in G(pα). ��
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Proposition 3.5 Let p be an odd prime and α > 1 be an integer. Then α(G(pα)) =
pα−1 and the f -vector of �(G(pα)) is ( f−1, f0, . . . , f pα−1−1), where f−1 = 1,

f0 = pα , f1 = (pα−1)pα−1

2 , and fi = (pα−1

i+1

)
for all 2 ≤ i ≤ pα−1 − 1. In particular,

χ̃ (�(G(pα))) = (pα − pα−1)(1 − pα−1

2
).

Proof By Lemma 3.4, all of the maximal independent sets of G(pα) are I0 and Iuv =
{{u, v} | 0 ≤ u < v ≤ pα − 1, u + v = 0 (mod p)}. Thus, α(G(pα)) = pα−1.

We also obtain that fi = (pα−1

i+1

)
for all 2 ≤ i ≤ pα−1 − 1. Moreover, we claim that

f1 = (pα−1)pα−1

2 . Indeed, by the structure of the graph G(pα), for x ∈ V (G(pα)), we
have

deg(x) =
{
pα − pα−1 if x ∈ I0,

pα − pα−1 − 1 otherwise.

Hence,

|E(G(pα))| = 1

2

∑

x∈V (G(pα))

deg(x) = 1

2

⎛

⎝
∑

x∈I0
deg(x) +

∑

x∈(I1∪···∪Ip−1)

deg(x)

⎞

⎠

= 1

2

[
pα−1(pα − pα−1) + (pα − pα−1)(pα − pα−1 − 1)

]

= 1

2

[
(pα − pα−1)(pα − 1)

]
.

This implies that f1 = (pα

2

) − |E(G(pα))| = (pα−1)pα−1

2 . Now, these computations
lead to

χ̃ (�(G(pα))) =
pα−1−1∑

i=−1

(−1)i fi = −1 + pα − (pα − 1)pα−1

2

+
pα−1−1∑

i=2

(−1)i
(
pα−1

i + 1

)
.

We know that
pα−1∑
i=0

(−1)i
(pα−1

i

) = (1 − 1)p
α−1 = 0, and so,

pα−1−1∑

i=2

(−1)i
(
pα−1

i + 1

)
= −

pα−1∑

i=3

(−1)i
(
pα−1

i

)
= 1 − pα−1 + (pα−1 − 1)pα−1

2
.

123



Betti Numbers of Edge Ideals of Grimaldi Graphs and Their… Page 11 of 22 136

Hence, we conclude that

χ̃(�(G(pα))) = pα − pα−1 + (pα−1 − 1)pα−1

2
− (pα − 1)pα−1

2

= (pα − pα−1)(1 − pα−1

2
),

as required. ��

Lemma 3.6 Let p be an odd prime and α > 1 be an integer. Then reg(G(pα)) = 2
and pd(G(pα)) = pα − 1.

Proof By considering G = G(pα) and applying Lemma 3.4, we have �(G) = 〈I0〉∪
�1 ∪ · · · ∪ � p−1

2
, where 〈I0〉 is the simplex over the set I0 and each �i denotes the

independence complex of the induced subgraph of G[Ii ∪ Ip−i ]. Note that at this
point, for every 1 ≤ i ≤ p−1

2 , dim�i = 1, and so, �i is regarded as a complete
bipartite graph. Hence, G[Ii ∪ Ip−i ] is a disjoint union of two complete graphs. Thus,
reg(�i ) = reg(G[Ii ∪ Ip−i ]) = 2. Now, by Lemma 2.2, we obtain that reg(�(G)) =
max{reg(〈I0〉), reg(�1), . . . , reg(� p−1

2
)} = 2, as required. ��

Theorem 3.7 Let p be an odd prime and α > 1 be an integer. If G = G(pα) and
I0 = {x ∈ [pα] | x = 0 (mod p)}, then

βi,i+1(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pα−1−1∑
t=0

{(t+pα−pα−1

i

) − (t
i
)} +

i−1∑
k=0

(pα−1

k

)
βi−k,i−k+1(G\I0) if i < pα−1,

pα−1−1∑
t=0

(t+pα−pα−1

i

) +
pα−1∑
k=0

(pα−1

k

)
βi−k,i−k+1(G\I0) if i ≥ pα−1,

and

βi,i+2(G) =

⎧
⎪⎨

⎪⎩

pα−1∑
k=0

(pα−1

k

)
βi−pα−1+k,i−pα−1+k+2(G\I0) if i ≥ 2,

0 otherwise.

Proof By Lemma 3.4, we have G = G[I0] ∗ G[I1 ∪ Ip−1] ∗ · · · ∗ G[I p−1
2

∪ I p+1
2

],
where G[I0] is a totally disconnected graph and for every 1 ≤ i ≤ p−1

2 , G[Ii ∪ Ip−i ]
is an induced subgraph of G with the edge set

E(G[Ii ∪ Ip−i ]) = {{x, y} | x, y ∈ Ii } ∪ {{x, y} | x, y ∈ Ip−i }.

This implies that G\I0 = G[I1 ∪ Ip−1] ∗ · · · ∗G[I p−1
2

∪ I p+1
2

]. Also, for every x ∈ I0,

NG(x) = I1 ∪ · · · ∪ Ip−1, and so, G\NG[x] = G[I0\{x}] is a totally disconnected
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graph. Now, by [6, Lemma 3.1], we have I (G) : x = I (G\NG[x]) + (NG(x)) and
(I (G), x) = I (G\x) + (x). Thus, we obtain that

βi, j (R/(I (G) : x)(−1)) = βi, j−1(R/(I (G) : x)) = βi, j−1(k[V (I0)]/I (G\NG[x]))

=
{(pα−pα−1

i

)
if j = i + 1,

0 otherwise.

On the other hand, by applying the long exact sequence theorem to the short exact
sequence 0 −→ R/(I (G) : x)(−1)

·x−→ R/I (G) −→ R/(I (G), x) → 0, we obtain
the following long exact sequence:

· · · → Tori (R/(I (G) : x)(−1);k) j → Tori (R/I (G);k) j → Tori (R/(I (G), x);k) j

→ Tori−1(R/(I (G) : x)(−1);k) j → · · · .

This, togetherwith the fact that for j = i+1with i ≥ 0, Tori+1(R/(I (G), x);k)i+1 =
0 and Tori−1(R/(I (G) : x)(−1);k)i+1 = 0, lead us to the following short exact
sequence:

0 → Tori (R/(I (G) : x)(−1);k)i+1 → Tori (R/I (G);k)i+1

→ Tori (R/(I (G), x);k)i+1 → 0.

By using the above observations, we have for every i ≥ 1,

βi,i+1(G) = βi,i+1(R/(I (G) : x)(−1)) + βi,i+1(R/(I (G), x))

=
(
pα − pα−1

i

)
+ βi,i+1(R/(I (G), x)).

Also, by [4, Remark 2.1], the equality βi,i+1(R/(I (G), x)) = βi,i+1(G\x) +
βi−1,i (G\x) holds true for every i ≥ 1. This implies the following recurrence for-
mula for computing the Betti numbers of the graph G, where β0,1(G\x) = 0 and
β1,2(G) = (pα − pα−1) + β1,2(G\x), as follows:

βi,i+1(G) =
(
pα − pα−1

i

)
+ βi,i+1(G\x) + βi−1,i (G\x).

As a result of applying this process consecutively by replacing G by G\x , we obtain
that β0,1(G) = β0,1(G\I0) = 0 and

βi,i+1(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pα−1−1∑
t=0

i−1∑
k=0

(t
k
)(pα−pα−1

i−k

) +
i−1∑
k=0

(pα−1

k

)
βi−k,i−k+1(G\I0) if i < pα−1,

pα−1−1∑
t=0

t∑
k=0

(t
k
)(pα−pα−1

i−k

) +
pα−1∑
k=0

(pα−1

k

)
βi−k,i−k+1(G\I0) if i ≥ pα−1.
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In order to simplify the formula, we apply Lemma 3.1(1) and obtain

i−1∑

k=0

(
t

k

)(
pα − pα−1

i − k

)
=

∑

s+t=i
s,t≥0

(
t

s

)(
pα − pα−1

t

)
−

(
t

i

)

=
(
t + pα − pα−1

i

)
−

(
t

i

)
.

Moreover, if i ≥ pα−1 > t , we have

t∑

k=0

(
t

k

)(
pα − pα−1

i − k

)
=

i∑

k=0

(
t

k

)(
pα − pα−1

i − k

)
=

∑

s+t=i
s,t≥0

(
t

s

)(
pα − pα−1

t

)

=
(
t + pα − pα−1

i

)
.

This implies that

βi,i+1(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pα−1−1∑
t=0

{(t+pα−pα−1

i

) − (t
i
)} +

i−1∑
k=0

(pα−1

k

)
βi−k,i−k+1(G\I0) if i < pα−1,

pα−1−1∑
t=0

(t+pα−pα−1

i

) +
pα−1∑
k=0

(pα−1

k

)
βi−k,i−k+1(G\I0) if i ≥ pα−1.

For the second formula, we have

βi,i+2(R/(I (G) : x)(−1)) = βi−1,i+2(R/(I (G) : x)(−1)) = 0.

This implies that Tori (R/I (G);k)i+2 ∼= Tori (R/(I (G), x);k)i+2, and so, by [4,
Remark 2.1], βi,i+2(G) = βi,i+2(R/(I (G), x)) = βi−1,i+1(G\x)+βi,i+2(G\x).As
a result of applying this process consecutively by replacing G by G\x , we obtain that

βi,i+2(G) =
pα−1∑

k=0

(
pα−1

k

)
βi−pα−1+k,i−pα−1+k+2(G\I0),

as required. ��
By keeping the notation of the previous theorem, its proof shows that G\I0 =

G[I1 ∪ Ip−1] ∗ · · · ∗ G[I p−1
2

∪ I p+1
2

]. Also, by Lemma 3.4, we have �(G\I0) =
�1 ∪· · · · ∪· � p−1

2
, where for every 1 ≤ k ≤ p−1

2 , �k = �(G[Ik ∪ Ip−k]). Thus, in
order to finding the Betti numbers of G(pα) by Lemma 2.3, we need to compute the
Betti numbers of G[Ik ∪ Ip−k] for all 1 ≤ k ≤ p−1

2 . To this end, we state and prove
the following proposition.
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Proposition 3.8 Let p be an odd prime and α > 1 be an integer. If G = G(pα) and
Ii = {x ∈ [pα] | x = i (mod p)} for 0 ≤ i ≤ p − 1, then

βi, j (G[Ik ∪ Ip−k]) =

⎧
⎪⎪⎨

⎪⎪⎩

2i
(pα−1

i+1

)
if j = i + 1,

(i + 1)
{

(i−2)pα−1+2
2(2pα−1−1)

(2pα−1

i+2

) + 2
(pα−1

i+2

)}
if j = i + 2,

0 otherwise.

Proof By the proof of Lemma 3.6, for every 1 ≤ k ≤ p−1
2 , the graph G[Ik ∪ Ip−k]

is a disjoint union of two complete graphs. Thus, �(G[Ik ∪ Ip−k]) = �(G[Ik]) ∗
�(G[Ip−k]), where �(−) denotes the independence complex of −. Since reg(G[Ik ∪
Ip−k]) = 2 and βi, j (G[Ik ∪ Ip−k]) = 0 for all j > i + 2, by Lemma 2.1, we obtain
that

βi, j (G[Ik ∪ Ip−k]) =

⎧
⎪⎪⎨

⎪⎪⎩

βi,i+1(G[Ik]) + βi,i+1(G[Ip−k]) if j = i + 1,∑
i1+i2=i

βi1,i1+1(G[Ik])βi2,i2+1(G[Ip−k]) if j = i + 2,

0 otherwise.

Now, Proposition 2.4(1) implies that

βi, j (G[Ik ∪ Ip−k]) =

⎧
⎪⎪⎨

⎪⎪⎩

2i
(pα−1

i+1

)
if j = i + 1,

∑
i1+i2=i

i1i2
(pα−1

i1+1

)(pα−1

i2+1

)
if j = i + 2,

0 otherwise.

Note that, by Lemma 3.1(2),

∑

i1+i2=i

i1i2

(
pα−1

i1 + 1

)(
pα−1

i2 + 1

)
= (i + 1)

{
(i − 2)pα−1 + 2

2(2pα−1 − 1)

(
2pα−1

i + 2

)
+ 2

(
pα−1

i + 2

)}
,

and thus,

βi, j (G[Ik ∪ Ip−k]) =

⎧
⎪⎪⎨

⎪⎪⎩

2i
(pα−1

i+1

)
if j = i + 1,

(i + 1)
{

(i−2)pα−1+2
2(2pα−1−1)

(2pα−1

i+2

) + 2
(pα−1

i+2

)}
if j = i + 2,

0 otherwise,

as required. ��
We conclude this section with the following example.

Example 3.9 Consider the graph G = G(32) and let I0 = {0, 3, 6}, I1 = {1, 4, 7},
and I2 = {2, 5, 8}. By applying Proposition 3.8 with p = 3 and α = 2, we obtain the
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Betti table of G\I0 = G[I1 ∪ I2] as follows:
0 1 2 3 4

total : 1 6 13 12 4
0 : 1 · · · ·
1 : · 6 4 · ·
2 : · · 9 12 4

Now, by Theorem 3.7, we have

βi,i+1(G) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if i = 0,

18 + β1,2(G\I0) if i = 1,

63 + β2,3(G\I0) + 3β1,2(G\I0) if i = 2,
(6
i

) + (7
i

) + (8
i

) +
3∑

k=0

(3
k

)
βi−k,i−k+1(G\I0) if i ≥ 3,

andβi,i+2(G) = βi−3,i−1(G\I0)+3βi−2,i (G\I0)+3βi−1,i+1(G\I0)+βi,i+2(G\I0).
Thus, we obtain the Betti table of G as follows:

0 1 2 3 4 5 6 7 8
total : 1 24 94 180 205 144 60 13 1

0 : 1 · · · · · · · ·
1 : · 24 85 141 138 87 36 9 1
2 : · · 9 39 67 57 24 4 ·

4 The Betti Numbers of theG′(n)’s

In this section, we focus on the G ′(n)’s, the complements of the G(n)’s. Let us recall
that G ′(n) is the graph whose vertex set is [n] in which two distinct vertices x and
y are adjacent if and only if gcd(x + y, n) �= 1. It is obvious that G ′(p), p prime,
contains one isolated vertex and disjoint edges. By [2, Lemma 4.1], if n is even, G ′(n)

is well-covered. Because of this, we first consider the graph G ′(n) with even n.

Lemma 4.1 Let n be an even integer. Thenα(G ′(n)) = 2 and the f -vector of�(G ′(n))

is (1, n, n
2ϕ(n)), where ϕ is the Euler’s phi function.

Proof By the proof of [2, Lemma 4.1], we obtain that α(G ′(n)) = 2 and the f -vector
of �(G ′(n)) is ( f−1, f0, f1), where f−1 = 1, f0 = n, and f1 = |E(G(n))| = n

2ϕ(n),
as required. ��
Proposition 4.2 Let n be an even integer. Then the following statements hold true:

(1) The Hilbert series of R/I (G ′(n)) is H PR/I (G ′(n))(t) = 1+(n−2)t+(1−n+ n
2 ϕ(n))t2

(1−t)2
.

(2) reg(G ′(n)) = 2 and pd(G ′(n)) = n − 2.
(3) βn−2,n(G ′(n)) = 1 − n + n

2ϕ(n) is the unique extremal Betti number, where ϕ

is the Euler’s phi function.
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Proof (1): By Lemma 4.1, the components of the h-vector of �(G ′(n)) are h0 =(2
0

)
f−1 = 1, h1 = (−1)1

(2−0
1−0

)
f−1 + (−1)0

(2−1
1−1

)
f0 = n − 2, and

h2 = (−1)2
(
2

2

)
f−1 + (−1)1

(
2 − 1

2 − 1

)
f0 + (−1)0

(
2 − 2

2 − 2

)
f1 = 1 − n + n

2
ϕ(n).

This implies that the Hilbert–Poincaré series of R/I (G ′(n)) is

HPR/I (G ′(n))(t) = 1 + (n − 2)t + (1 − n + n
2ϕ(n))t2

(1 − t)2
,

as required.
(2): By [2, Theorem B], the graph G ′(n) is Cohen–Macaulay with α(G ′(n)) =

2, and also, by the Auslander–Buchsbaum formula, we have pd(G ′(n)) = n −
dim R/I (G ′(n)) = n − α(G ′(n)) = n − 2. Moreover, since 1 − n + n

2ϕ(n) �= 0,
by part (1), we obtain that pd(G ′(n)) + reg(G ′(n)) = n, and thus, reg(G ′(n)) = 2.
(3): It is followed from (1) and (2). ��

Next, we consider the Betti numbers of the graph G ′(pα), p prime. We recall the
structure of the graph G ′(pα) as follows:

Lemma 4.3 ([2], Lemma 4.2) Let p be an odd prime and α be a positive integer. Then
the graph G ′(pα) is a disjoint union of one complete graph K pα−1 and p−1

2 complete
bipartite graphs K pα−1,pα−1 , that is,

G ′(pα) ∼= Kpα−1 ∪ Kpα−1,pα−1 ∪ Kpα−1,pα−1 ∪ · · · ∪ Kpα−1,pα−1
︸ ︷︷ ︸

p−1
2 times

.

Lemma 4.4 Let p be an odd prime and α be a positive integer. Then the following
statements hold true:

(1) α(G ′(pα)) = (p−1)pα−1

2 + 1.
(2) The f -vector of�(G ′(pα)) is (1, pα, f1, . . . , fα(G ′(pα))−1), where f1 = 1

2 (p
α−

pα−1)(pα − 1) and

fi = pα−1 ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∑

c1+···+c p−1
2

=i

0≤c1,...,c p−1
2

≤pα−1

⎧
⎪⎨

⎪⎩

p−1
2∏

j=1

(
pα−1

c j

)
⎫
⎪⎬

⎪⎭
2|{ j |c j>0}|

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+
∑

c1+···+c p−1
2

=i

0≤c1,...,c p−1
2

≤pα−1

⎧
⎪⎨

⎪⎩

p−1
2∏

j=1

(
pα−1

c j

)
⎫
⎪⎬

⎪⎭
2|{ j |c j>0}|
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for all 2 ≤ i ≤ (p−1)pα−1

2 .

Proof ByLemma4.3, the graphG ′(pα) iswell-covered andα(G ′(pα)) = (p−1)pα−1

2 +
1. It is clear that f−1 = 1, f0 = pα . Applying the proof of Proposition 3.5, f1 =
|E(G(pα))| = 1

2 (p
α − pα−1)(pα − 1).

Based on the structure of the graph G ′(pα), we now assume that

G ′(pα) = Kpα−1 ∪ K (1)
pα−1,pα−1 ∪ K (2)

pα−1,pα−1 ∪ · · · ∪ K
(
p−1
2 )

pα−1,pα−1 .

Let (U ( j), V ( j)) be the bipartition of K ( j)
pα−1,pα−1 for 1 ≤ j ≤ p−1

2 . Let Ii be the set

of independent sets of K (1)
pα−1,pα−1 ∪ K (2)

pα−1,pα−1 ∪ · · · ∪ K
(
p−1
2 )

pα−1,pα−1 with size i . We

see that fi = pα−1 · |Ii | + |I j |. We observe that each element of Ii has the following
form

X (1) ∪ · · · ∪ X (
p−1
2 ),

where 0 ≤ |X ( j)| ≤ pα−1 and |X (1)| + · · · + |X (
p−1
2 )| = i and either X ( j) ⊂ U ( j)

or X ( j) ⊂ V ( j) if |X ( j)| > 0 for all 1 ≤ j ≤ p−1
2 . By virtue of this observation, we

have

|Ii | =
∑

c1+···+c p−1
2

=i

0≤c1,...,c p−1
2

≤pα−1

⎧
⎪⎨

⎪⎩

p−1
2∏

j=1

(
pα−1

c j

)
⎫
⎪⎬

⎪⎭
2|{ j |c j>0}|.

Therefore, we obtain

fi = pα−1 ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∑

c1+···+c p−1
2

=i

0≤c1,...,c p−1
2

≤pα−1

⎧
⎪⎨

⎪⎩

p−1
2∏

j=1

(
pα−1

c j

)
⎫
⎪⎬

⎪⎭
2|{ j |c j>0}|

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+
∑

c1+···+c p−1
2

=i

0≤c1,...,c p−1
2

≤pα−1

⎧
⎪⎨

⎪⎩

p−1
2∏

j=1

(
pα−1

c j

)
⎫
⎪⎬

⎪⎭
2|{ j |c j>0}|

for every 1 ≤ i ≤ (p−1)pα−1

2 , as required. ��
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Proposition 4.5 Let p be an odd prime. Then βi, j (G ′(p)) =
{( p−1

2
i

)
if j = 2i,

0 if j �= 2i .
In

particular, pd(G ′(p)) = reg(G ′(p)) = p−1
2 .

Proof Since the graph G ′(p) is a disjoint union of p−1
2 graphs K2 and one graph K1,

�(G ′(p)) = �(K1) ∗ �(K2) ∗ · · · ∗ �(K2).

Now, by Lemma 2.1 and Proposition 2.4(1), we obtain that

βi, j (G
′(p)) =

∑

a1+···+a p−1
2

=i

b1+···+b p−1
2

= j

p−1
2∏

k=1

βak ,bk (K2) =
{( p−1

2
i

)
if j = 2i,

0 if j �= 2i .

Therefore, pd(G ′(p)) = reg(G ′(p)) = p−1
2 , as required. ��

Theorem 4.6 Let p be an odd prime and α > 1 be an integer. Let i and j be positive
integers. If 1 ≤ j − i ≤ p+1

2 , then

βi, j (G
′(pα)) =

( p−1
2

j − i

) ∑

u1+···+u j−i=i
u1,...,u j−i≥1

⎡

⎣
j−i∏

k=1

{(
2pα−1

uk + 1

)
− 2

(
pα−1

uk + 1

)}⎤

⎦

+
( p−1

2
j − i − 1

) ∑

u0+···+u j−i−1=i
u0,...,u j−i−1≥1

u0

(
pα−1

u0 + 1

)⎡

⎣
j−i−1∏

k=1

{(
2pα−1

uk + 1

)
− 2

(
pα−1

uk + 1

)}⎤

⎦ .

In the case j − i >
p+1
2 , we have βi, j (G ′(pα)) = 0.

Proof By Lemma 4.3, the graph G ′(pα) is a disjoint union of one complete graph
Kpα−1 and p−1

2 complete bipartite graphs Kpα−1,pα−1 . This implies that

�(G ′(pα)) = �(Kpα−1) ∗ �(Kpα−1,pα−1) ∗ · · · ∗ �(Kpα−1,pα−1).

Note that β0,0(Kpα−1) = β0,0(Kpα−1,pα−1) = 1. Also, by Proposition 2.4, the edge
rings of Kpα−1 and Kpα−1,pα−1 have 2-linear resolutions. Now, βu0,u0+1(Kpα−1) =
u0

( pα−1

u0+1

)
, together with Lemma 3.1(1), implies that

βuk ,uk+1(Kpα−1,pα−1) =
∑

s+t=uk+1
s,t≥1

(
pα−1

s

)(
pα−1

t

)
=

(
2pα−1

uk + 1

)
− 2

(
pα−1

uk + 1

)
.
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Therefore, by Lemma 2.1, we obtain that for every i and j ,

βi, j (G
′(pα)) =

∑

u0+···+u p−1
2

=i

v0+···+v p−1
2

= j

βu0,v0(Kpα−1)

⎧
⎪⎨

⎪⎩

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1)

⎫
⎪⎬

⎪⎭
, (1)

where uk, vk ≥ 0 are integers.
First, suppose that j − i = 1. By Eq.1, we obtain that

βi, j (G
′(pα)) = βi,i+1(Kpα−1) + p − 1

2
βi,i+1(Kpα−1,pα−1)

= i

(
pα−1

i + 1

)
+ p − 1

2

{(
2pα−1

i + 1

)
− 2

(
pα−1

i + 1

)}
.

Second, suppose that j − i = p+1
2 . Therefore, there exists 0 ≤ k ≤ p−1

2 such that
uk, vk ≥ 1 and vk �= uk + 1. Thus, βuk ,vk (Kpα−1) = 0 and βuk ,vk (Kpα−1,pα−1) = 0.
Now, by Eq.1, we obtain that

βi, j (G
′(pα)) =

∑

u0+···+u p−1
2

=i

u0,...,u p−1
2

≥1

βu0,u0+1(Kpα−1)

⎛

⎜⎝

p−1
2∏

�=1

βu�,u�+1(Kpα−1,pα−1)

⎞

⎟⎠

=
∑

u0+···+u p−1
2

=i

u0,...,u p−1
2

≥1

u0

(
pα−1

u0 + 1

)
⎡

⎢⎣

p−1
2∏

�=1

{(
2pα−1

u� + 1

)
− 2

(
pα−1

u� + 1

)}
⎤

⎥⎦ .

Third, suppose that 1 < j − i <
p+1
2 . This implies that j − i = ∑ p−1

2
k=0(vk −

uk) <
p+1
2 . Therefore, there exists 0 ≤ k ≤ p−1

2 such that vk − uk < 1. Note
that if βi, j (Kpα−1) �= 0 then i = j = 0 or j = i + 1 ≥ 2. This is also true for

βi, j (Kpα−1,pα−1) �= 0. Hence, if 1 < j − i <
p+1
2 , it implies that

βi, j (G
′(pα)) =

∑

u0+···+u p−1
2

=i

v0+···+v p−1
2

= j

βu0,v0(Kpα−1)

⎧
⎪⎨

⎪⎩

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1)

⎫
⎪⎬

⎪⎭
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=
∑

u0+···+u p−1
2

=i

v0+···+v p−1
2

= j

u�=v�=0 or v�=u�+1≥2
|{0≤�≤ p−1

2 |v�=u�+1≥2}|= j−i

βu0,v0(Kpα−1)

⎧
⎪⎨

⎪⎩

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1)

⎫
⎪⎬

⎪⎭
.

Hence, we obtain that

βi, j (G
′(pα)) =

∑

u1+···+u p−1
2

=i

v1+···+v p−1
2

= j

u0=v0=0
u�=v�=0 or v�=u�+1≥2

|{1≤�≤ p−1
2 |v�=u�+1≥2}|= j−i

βu0,v0 (Kpα−1 )

⎧
⎪⎨

⎪⎩

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1 )

⎫
⎪⎬

⎪⎭

+
∑

u0+···+u p−1
2

=i

v0+···+v p−1
2

= j

v0=u0+1≥2
u�=v�=0 or v�=u�+1≥2

|{1≤�≤ p−1
2 |v�=u�+1≥2}|= j−i−1

βu0,v0 (Kpα−1 )

⎧
⎪⎨

⎪⎩

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1 )

⎫
⎪⎬

⎪⎭
.

Since β0,0(Kpα−1) = 1 and βu0,u0+1(Kpα−1) = u0
( pα−1

u0+1

)
, we obtain that

βi, j (G
′(pα)) =

∑

u1+···+u p−1
2

=i

v1+···+v p−1
2

= j

u�=v�=0 or v�=u�+1≥2
|{1≤�≤ p−1

2 |v�=u�+1≥2}|= j−i

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1 )

+
∑

u0+···+u p−1
2

=i

v0+···+v p−1
2

= j

v0=u0+1≥2
u�=v�=0 or v�=u�+1≥2

|{1≤�≤ p−1
2 |v�=u�+1≥2}|= j−i−1

u0

(
pα−1

u0 + 1

)
⎧
⎪⎨

⎪⎩

p−1
2∏

k=1

βuk ,vk (Kpα−1,pα−1 )

⎫
⎪⎬

⎪⎭

=
( p−1

2
j − i

) ∑

u1+···+u j−i=i
u1,...,u j−i≥1

⎡

⎣
j−i∏

k=1

{(
2pα−1

uk + 1

)
− 2

(
pα−1

uk + 1

)}⎤

⎦

+
( p−1

2
j − i − 1

) ∑

u0+···+u j−i−1=i
u0,...,u j−i−1≥1

u0

(
pα−1

u0 + 1

)
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⎡

⎣
j−i−1∏

k=1

{(
2pα−1

uk + 1

)
− 2

(
pα−1

uk + 1

)}⎤

⎦ .

Forth, suppose that j − i >
p+1
2 . Therefore, there exists 0 ≤ k ≤ p−1

2 such
that vk > uk + 1. This implies that βuk ,vk (H) = 0, where H is either the complete
graph Kpα−1 or the complete bipartite graph Kpα−1,pα−1 . Now, by Eq.1, we obtain that
βi, j (G ′(pα)) = 0, and so, the proof is completed. ��

As an immediate corollary, we obtain that

Corollary 4.7 If p is an odd prime and α > 1 is an integer, then reg(G ′(pα)) =
p+1
2 and pd(G ′(pα)) = pα − p+1

2 .

We close this paper with the following example.

Example 4.8 Consider the graph G = G ′(32). By Theorem 4.6, we obtain

βi,i+1(G) = i

(
3

i + 1

)
+

{(
6

i + 1

)
− 2

(
3

i + 1

)}

= (i − 2)

(
3

i + 1

)
+

(
6

i + 1

)
.

Moreover, βi,i+2(G) = ∑
i0+i1=i
i0,i1≥1

i0
( 3
i0+1

) {( 6
i1+1

) − 2
( 3
i1+1

)}
. Thus, we obtain the

Betti table of G as follows:

0 1 2 3 4 5 6 7
total : 1 12 47 87 87 49 15 2

0 : 1 · · · · · · ·
1 : · 12 20 15 6 1 · ·
2 : · · 27 72 81 48 15 2
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