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Abstract
This article presents a self-adjustable branch-and-bound algorithm for globally solving
a class of linearmultiplicative programming problems (LMP). In this algorithm, a self-
adjustable branching rule is introduced and it can continuously update the upper bound
for the optimal value of LMP by selecting suitable branching point under certain
conditions, which differs from the standard bisection rule. The proposed algorithm
further integrates the linear relaxation program and the self-adjustable branching rule.
The dependability and robustness of the proposed algorithm are demonstrated by
establishing the global convergence. Furthermore, the computational complexity of the
proposed algorithm is estimated. Finally, numerical results validate the effectiveness
of the self-adjustable branching rule and demonstrate the feasibility of the proposed
algorithm.

Keywords Global optimization · Linear multiplicative program · Linear relaxation ·
Branch-and-bound

Mathematics Subject Classification 90C30 · 90C26

1 Introduction

Consider the following linear multiplicative problem:

(LMP) :
⎧
⎨

⎩

max f ( y) =
p∑

i=1
(cTi y + c0i )(dTi y + d0i )

s.t. y ∈ Y = { y ∈ R
n | Ay ≤ b},
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where ci , di ∈ R
n , c0i , d0i ∈ R, A ∈ R

m×n , b ∈ R
m , and Y ∈ R

n is a nonempty and
bounded set.

In recent decades, LMP, being a specialized multiplicative program, has garnered
significant attention from researchers. The prominence of LMP stems from its wide-
ranging applications in financial optimization [1–3], microeconomics [4], plant layout
design [5], data mining/patten recognition [6], VLISI chip design [7], robust optimiza-
tion [8], and various special linear or nonlinear programming problems [9–15] that
can be converted to the form of LMP. Another key aspect is that LMP is known to be
NP-hard [16] and typically exhibits multiple locally optimal solutions which are not
global optimal solutions of LMP [17].

Various practical algorithms have been proposed for solving LMP and its special
cases. Based on their distinctive characteristics, these algorithms can be classified into
branch and bound algorithms [18–21], optimal level solution methods [22, 23], mono-
tonic optimization approaches [24], outcome-space approaches [25, 26], approximate
algorithms [27], level set algorithms [28], etc. Specially, the method that introducing
other technique into branch-and-bound algorithm has gained respect. For instance,
Wang et al. [29, 30] presented a practicable branch-and-bound method and a novel
convex relaxation-strategy-based algorithm by using a new linear relaxation technique
and a convex approximation approach, respectively. Zhao et al. [31] developed a simple
global optimization algorithm based on a new convex relaxation method, the branch
and bound scheme and some accelerating techniques. Yin et al. [32] proposed a new
outer space rectangle branch and bound algorithmby employing affine approximations
technique to subsequently refine the initial outer space rectangle. Shen et al. [33–37]
designed a series of global algorithms after reconsideration of the linear relaxation
technique, second order cone relaxation and the convex quadratic relaxation, respec-
tively. However, the above branch-and-bound algorithms are usually combined with
the standard bisection branching rule which uses the midpoint of the longest edge
of the rectangle as the branching point. So the optimal solution of divided rectangle
may still be the optimal solution of sub-rectangle, i.e., the upper bound for the opti-
mal solution of LMP over sub-rectangle is not updated during the execution of the
algorithm.

Hence, a self-adjustable branch-and-bound (SABB) algorithm is presented to solve
LMP. Compared with the existing literatures [29–35, 38], the features of SABB
algorithm are summarized as follows: (i) In spite of the linear relaxation program
being similar to the existing methods in [29, 32, 39], the objective function in our
algorithm is processed prior to the implementation of the equivalent transformation,
which is different from the algorithms in [29, 32]. Furthermore, this algorithm neces-
sitates fewer auxiliary variables for solving LMP compared to those used in previous
studies [29, 32]. (ii) The introduction of the self-adjustable branching rule in the pro-
posed algorithm enables constant update to the upper bound for the optimal value of
LMP by selecting an appropriate branching point in the direction of better relaxation
approximation of the rectangle. And numerical results validate the effectiveness of
the self-adjustable branching rule by comparing it with the standard bisection branch-
ing rule. (iii) The branching operation of the proposed algorithm is performed in the
image spaceRp rather than decision variable spaceRn in [29, 30, 34]. This means that
the proposed algorithm will help economize on the required computation if p � n.
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(iv) The global convergence and computation complexity of the proposed algorithm
are analyzed. However, the complexity of the algorithms in [29, 32, 34, 38] is not
specified.

The rest part of this paper is organized as follows. In Sect. 2, we describe the
equivalent transformation for LMP and establish its linear relaxation program. A self-
adjustable branching rule is introduced in Sect. 3. In Sect. 4, we summarize the SABB
algorithm and establish its the global convergence, and its complexity is estimated as
well.We test some numerical examples and report numerical results in Sect. 5. Finally,
some conclusions are given in Sect. 6.

2 Equivalent Problem and Its Linear Relaxation Programming

To globally solve LMP, an equivalent problem (EP) is established by an equivalent
transformation. Subsequently, we propose a linear relaxation programming approach
for EP, which provides an upper bound to the optimal value of LMP.

In regard to the objective function f ( y) of LMP, we convert it into the following
form:

f ( y) =
p∑

i=1

(
cTi y + c0i

) (
dTi y + d0i

)

=
p∑

i=1

[(
cTi y

) (
dTi y

)
+ (d0i ci + c0i di )T y + c0i d0i

]
.

By introducing 2p auxiliary variables, we covert LMP into its EP. Let

zi = cTi y, hi = dTi yzi , i = 1, . . . , p,

and define an initial rectangle Z0, given by

Z0 =
{
z ∈ R

p |l0i ≤ zi ≤ u0i , i = 1, . . . , p
}

,

where li 0 = min y∈Y cTi y, ui 0 = max y∈Y cTi y, i = 1, . . . , p. Meanwhile, we also
calculate Li = min y∈Y dTi y, Ui = max y∈Y dTi y, i = 1, . . . , p.

Hence, LMP can be reformulated as EP over Z0 as follows:

(EP(Z0)) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max φ( y, z, h) =
p∑

i=1
[hi + (d0i ci + c0i di )T y + c0i d0i ]

s.t. hi = dTi yzi , i = 1, . . . , p,
zi = cTi y, i = 1, . . . , p,
z ∈ Z0,

dTi y ∈ [Li ,Ui ], i = 1, . . . , p,
y ∈ Y.
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The following theorem establishes the equivalence between LMP and EP.

Theorem 1 y∗ is an optimal solution to LMP if and only if ( y∗, z∗, h∗) is an optimal
solution to EP, in which zi∗ = cTi x

∗, hi = dTi y∗z∗i , i = 1, 2, . . . , p.

Proof This proof bears resemblance to Theorem 1 in Shen et al. [33], so it is omitted
from this paper. ��
According to Theorem 1, LMP and EP share the same global optimal value. Subse-
quently, our focus will be on addressing the solution to EP.

For convenience, assume that

Z = {z ∈ R
p |li ≤ zi ≤ ui , i = 1, . . . , p} ⊆ Z0. (2.1)

Thus, for any Z ⊆ Z0, the corresponding EP over Z can be rewritten as follows:

(EP(Z)) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max φ( y, z, h) =
p∑

i=1
[hi + (d0i ci + c0i di )T y + c0i d0i ]

s.t. hi = dTi yzi , i = 1, . . . , p,
zi = cTi y, i = 1, . . . , p,
z ∈ Z ,

dTi y ∈ [Li ,Ui ], i = 1, . . . , p,
y ∈ Y.

From the structure of EP(Z ), its non-convexity is manifested in constraints
hi = dTi yzi , i = 1, . . . , p. Inspired by [29, 32, 39], for any Z ⊆ Z0 and
dTi y ∈ [Li ,Ui ], i = 1, . . . , p, by using the concave envelope of bilinear function, it
can be derived that the following relationships hold

hi ≤ li dTi y +Ui zi − liUi , hi ≤ ui dTi y + Li zi − ui Li , i = 1, . . . , p.

Then, the linear relaxation problem of EP(Z ) is formulated.

(LRP(Z)) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max ϕ( y, z, h) =
p∑

i=1
[hi + (d0i ci + c0i di )T y + c0i d0i ]

s.t. hi ≤ li dTi y +Ui zi − liUi , i = 1, . . . , p,
hi ≤ ui dTi y + Li zi − ui Li , i = 1, . . . , p,

zi = cTi y, i = 1, . . . , p,
z ∈ Z ,

dTi y ∈ [Li ,Ui ], i = 1, . . . , p,
y ∈ Y.

Apparently, the optimal value of LRP(Z) can provide an upper bound for that of EP(Z).

Remark 1 min{li dTi y+Ui−liUi , ui dTi yzi+Li zi−ui Li }−dTi yzi → 0, i = 1, . . . , p,
when (ui − li ) → 0 for i = 1, . . . , p. The proof is similar to Yin et al. [31], in which
the detail is presented in Theorem 1.
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3 The Self-Adjustment Branching Rule

In this subsection, the proposal implements a self-adjustment branching rule for the
algorithm in order to expedite the attainment of an optimal solution of LMP. In [29,
30, 32–35, 38], the standard bisection branching rule is used and it can be described
as follows:

(i) Let q = argmax{ui − li |i = 1, 2, . . . , p}.
(ii) Z is subdivided into two p-dimensional sub-rectangles Z1 and Z2, i.e.,

Z1 =
{

z ∈ R
p|li ≤ zi ≤ ui , i = 1, 2, . . . , p, i 
= q, lq ≤ zq ≤ (lq + uq)

2

}

,

Z2 =
{

z ∈ R
p|li ≤ zi ≤ ui , i = 1, 2, . . . , p, i 
= q,

(lq + uq)

2
≤ zq ≤ uq

}

.

Using the standard bisection branching rule, the optimal solution of LRP(Z) may
still be the optimal solution to LRP(Z1) or LRP(Z2), so that the upper bound of LMP(Z)
is not updated during the execution of the algorithm. The current focus is on devising
branching strategies that ensure a continuous update of the upper bound for the optimal
value to LMP.

Lemma 1 For any Z ⊆ Z0, assume that ( y∗, z∗, h∗) is an optimal solution of LRP(Z).
For any i , if z∗i = li or z∗i = ui or ui − li = 0 or dTi y∗ = Li or dTi y∗ = Ui or
Ui − Li = 0, we have h∗

i = dTi y∗z∗i .

Proof If z∗i = li , then h∗
i ≤ li dTi y∗ +Ui z∗i − liUi = dTi y∗z∗i .

If z∗i = ui , then h∗
i ≤ ui dTi y∗ + Li z∗i − ui Li = dTi y∗z∗i .

If ui−li = 0, assume that ui = li = z∗i , then h∗
i ≤ li dTi y∗+Ui z∗i −liUi = dTi y∗z∗i .

and h∗
i ≤ ui dTi y∗ + Li z∗i − ui Li = dTi y∗z∗i .

In the same way, if dTi y∗ = Li or dTi y∗ = Ui or Ui − Li = 0, then h∗
i = dTi y∗

z∗i . ��

For any Z ⊆ Z0, assume that ( y∗, z∗, h∗) is an optimal solution of LRP(Z). We
choose ξ = argmax{min{li dTi y∗+Ui z∗i −liUi , ui dTi y∗+Li z∗i −ui Li }−dTi y∗z∗i | i =
1, 2, . . . , p} as the branching direction. According to the above Lemma 1, for any i =
1, . . . , p, we can getmin{li dTi y∗+Ui z∗i −liUi , ui dTi y∗+Li z∗i −ui Li }−dTi y∗z∗i = 0
when z∗i = li , z∗i = ui , ui − li = 0, dTi y∗ = Li , dTi y∗ = Ui , and Ui − Li = 0,
respectively, which will not be chosen for further division. Thus, Z is divided into Z1

and Z2 along [lξ , uξ ] at point r , as follows:

Z1 = {z ∈ R
p|li ≤ zi ≤ ui , i = 1, 2, . . . , p, i 
= ξ, lξ ≤ zξ ≤ r}, (3.1)

Z2 = {z ∈ R
p|li ≤ zi ≤ ui , i = 1, 2, . . . , p, i 
= ξ, r ≤ zξ ≤ uξ }, (3.2)
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in which r ∈ (lξ , uξ ) is denoted as the branching point. Note that the inequality
constraint of two sub-rectangles corresponding to the ξ direction is expressed as

h∗
ξ ≤ lξ dTξ y∗ +Uξ z

∗
ξ − lξUξ , (3.3)

h∗
ξ ≤ rdTξ y∗ + Lξ z

∗
ξ − r Lξ , (3.4)

h∗
ξ ≤ rdTξ y∗ +Uξ z

∗
ξ − rUξ , (3.5)

h∗
ξ ≤ uξ dTξ y∗ + Lξ z

∗
ξ − uξ Lξ . (3.6)

Based on the above discussions, if the optimal solution ( y∗, z∗, h∗) of LRP(Z) is
cut off by dividing along [lξ , uξ ] at point r , i.e., h∗

ξ > rdTξ y∗ + Lξ z∗ξ − r Lξ and

h∗
ξ > rdTξ y∗ +Uξ z∗ξ − rUξ hold, so that we calculate and obtain

r <
h∗

ξ − Lξ z∗ξ
dTξ y∗ − Lξ

� r1, (3.7)

r >
h∗

ξ −Uξ z∗ξ
dTξ y∗ −Uξ

� r2. (3.8)

Combining lξ , uξ , r1 and r2, the selection of r is determined by the following Theo-
rem 2.

Theorem 2 For any Z ⊆ Z0, assume that ( y∗, z∗, h∗) is the optimal solution of
LRP(Z). If z∗ξ ∈ (lξ , uξ ), ( y∗, z∗, h∗) is not the optimal solution of LRP(Z1) and

LRP(Z2), where Z1 and Z2 are given in (3.1) and (3.2), respectively, and r in Z1 and
Z2 is given as follows:

r =

⎧
⎪⎨

⎪⎩

w, i f w ∈ (r1, r2),

r2 + ε̄, i f w ≤ r2,

r1 − ε̄, i f w ≥ r1,

(3.9)

with (3.7), (3.8), 0 < ε̄ < r1 − r2 and w = 1
2 (uξ − lξ ). Otherwise, let r = z∗ξ , we

get h∗
i = dTi y∗z∗i , then the ξ -th edge of Zs (s = 1, 2) will not be chosen for further

division.

Proof From (3.7) and (3.8), we have

r1 − r2 = h∗
ξ − Lξ z∗ξ

dTξ y∗ − Lξ

− h∗
ξ −Uξ z∗ξ

dTξ y∗ −Uξ

≥ 0,

r1 − uξ = h∗
ξ − Lξ z∗ξ

dTξ y∗ − Lξ

− uξ = h∗
ξ − Lξ z∗ξ − uξ dTξ y∗ + uξ Lξ

dTξ y∗ − Lξ

≤ 0,

r2 − lξ = h∗
ξ −Uξ z∗ξ

dTξ y∗ −Uξ

− lξ = h∗
ξ −Uξ z∗ξ − lξ dTξ y∗ + lξUξ

dTξ y∗ −Uξ

≥ 0,
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where the above inequalities follow from Lξ < dTξ y < Uξ , (3.6) and (3.3), respec-
tively. Thus, we obtain

lξ ≤ r2 < r1 ≤ uξ .

For lξ < z∗ξ < uξ , we have the following two cases:
(i). If r2 ≤ w ≤ r1, then r = w.

Since r > r2, it follows that

h∗
ξ − rdTξ y∗ −Uξ z

∗
ξ + rUξ > h∗

ξ −Uξ z
∗
ξ − r2(dTξ y∗ −Uξ ) = 0. (3.10)

This contradicts (3.5), i.e., ( y∗, z∗, h∗) is not the optimal solution of LRP(Z2).
Similarly, since r < r1, it follows that

h∗
ξ − rdTξ y∗ − Lξ z

∗
ξ + r Lξ > h∗

ξ − Lξ z
∗
ξ − r1(dTξ y∗ − Lξ ) = 0. (3.11)

This contradicts (3.4), i.e., ( y∗, z∗, h∗) is not the optimal solution of LRP(Z1).
(ii). If w /∈ (r2, r1), then w ≤ r2 or w ≥ r1.

If w ≤ r2, then r = r2 + ε̄. Since r2 ≤ r = r2 + ε̄ ≤ r1, ( y∗, z∗, h∗) is not the
optimal solution of LRP(Z2) by (3.10).

Similarly, ifw ≥ r1, then r = r1− ε̄. Thus, ( y∗, z∗, h∗) is not the optimal solution
of LRP(Z1) by (3.11).

If z∗ξ = lξ or z∗ξ = uξ , then r = z∗ξ , such that ( y∗, z∗, h∗) is not the optimal solution

of LRP(Z1) and LRP(Z2). In addition,

lξ dTξ y∗ +Uξ z
∗
ξ − lξUξ − h∗

ξ = 0, rdTξ y∗ + Lξ z
∗
ξ − r Lξ − h∗

ξ = 0,

rdTξ y∗ +Uξ z
∗
ξ − rUξ − h∗

ξ = 0, uξ dTξ y∗ + Lξ z
∗
ξ − uξ Lξ − h∗

ξ = 0,

i.e., the ξ -th edge of Zs (s = 1, 2) will not be chosen for further division. ��
By Theorem 2, the closer r is to w, the smaller the approximation error between

LRP and LMP over Z1 and Z2. The reasons are given below: let

h(zξ ) = di T yzξ ,

h11(zξ ) = lξ di T y +Uξ zξ − lξUξ , h
12(zξ ) = rdi T y + Lξ z

∗
ξ − r Lξ ,

h21(zξ ) = rdi T y +Uξ zξ − rUξ , h
22(zξ ) = uξ di T y + Lξ zξ − uξ Lξ .

The region between h(zξ ) and h11(zξ ), h12(zξ ), h21(zξ ), h22(zξ ) is determined by

S(r) =
∫ r

lξ
[h11(zξ ) − h(zξ )]dzξ +

∫ uξ

r
[h12(zξ ) − h(zξ )]dzξ +

∫ r

lξ
[h21(zξ ) − h(zξ )]dzξ

+
∫ uξ

r
[h22(zξ ) − h(zξ )]dzξ

= (Uξ − Lξ )r
2 + (uξ − lξ )(Lξ −Uξ )r + u2ξ (zξ − Lξ ) − l2ξ (zξ −Uξ ).
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It can obtain the minimum of S(r) at r = 1
2 (uξ − lξ ), so that the chosen of r is given

in (3.9). On the basis of the above discussions, the self-adjusting branching rule is
summarized as follows:

The self-adjustable branching rule
Step 1 : Let ξ = argmax{min{li dTi y∗ + Ui z∗i − liUi , ui dTi y∗ + Li z∗i − ui Li } −
dTi y∗z∗i | i = 1, 2, . . . , p}.
Step 2 : If lξ < z∗ξ < uξ , then choose r by (3.9). otherwise, let r = z∗ξ .
Step 3 : Z is subdivided into two p-dimensional sub-rectangles Z1 and Z2, which
are given by (3.1) and (3.2), respectively.

Based on Theorem 2, the optimal solution of LRP(Z) can be cut off by the self-
adjusting branching rule. The implication is that each iteration of the algorithm may
enhance the upper bound for the optimal value to LMP. In contrast, using the standard
bisection branching rule, the optimal solution of LRP corresponding to the divided
rectangle may be still the optimal solution of the sub-rectangle, thereby contributing
to an increase in computational cost.

4 Algorithm, Convergence and Complexity

In this section, based on LRP and branching rule, we present a self-adjustable branch-
and-bound (SABB) algorithm for solvingLMP.By subsequently subdividing the initial
image space rectangle and solving a series of linear relaxation problems, we establish
the global convergence of the algorithm and estimate its complexity.

4.1 SABB Algorithm

The global optimal solution of LMP is achieved through the introduction of SABB
algorithm based on the linear relaxation program, self-adjustable branching rule and
branch-and-bound framework.

The proposed branching process is conducted on the image space using the self-
adjustable branching rule, which is different from other branching methods based on
the original decision variables such as the algorithms in [29, 30, 34]. Specifically, the
branching process of this text takes place in image space Rp of the affine function
ci T x, i = 1, . . . , p.These distinctions imply that the proposed algorithmmay be even
better in economize on the required computations if p � n.

At stage k of SABB algorithm, assume that

Zk =
{
z ∈ R

p|lki ≤ zi ≤ uki , i = 1, . . . , p
}

⊆ Z0. (4.1)

Thus, Zk is divided into two rectangles Zk1 and Zk2 by the self- adjustable branching
rule such that Zk = Zk1 ∪ Zk2.

Based on the above discussions, the basic steps of SABB algorithm for globally
solving LMP are summarized as follows.

SABB algorithm statement:
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Step 0:Given the error tolerance ε > 0, and an initial rectangle Z0. Solve LRP(Z0)

to obtain its optimal solution ( y0, z0, h0) and optimal value ϕ( y0, z0, h0). SetUB0 =
ϕ( y0, z0, h0), h̄i

0 = dTi y0z0i , i = 1, 2, . . . , p, LB0 = φ( y0, z0, h̄
0
). IfUB0−LB0 ≤

ε, then the algorithm stops, and y0 is a global ε-optimal solution for LMP. Otherwise,

let X = {( y0, z0, h̄0)}, k = 0, set T0 = {Z0}.
Step 1: Using the self-adjustable branching rule to subdivide Zk into two new

sub-rectangles Zk1, Zk2 and set T = {Zk1, Zk2}.
Step 2: For each Zks(s = 1, 2), solve LRP(Zks) to obtain the optimal solution

( yks, zks, hks) and optimal value ϕ( yks, zks, hks). Set UB(Zks) = ϕ( yks, zks, hks),

let h̄ksi = dTi yks zksi , i = 1, 2, . . . , p, X = X
⋃{( yks, zks, h̄ks)}. If LBk >

UB(Zks), set Tk = Tk \ Zks . Let Tk = (Tk\Zk)
⋃

T . Update lower bound
LBk = max( y,z,h)∈X φ( y, z, h), and set ( yk, zk, hk) = argmax( y,z,h)∈X φ( y, z, h).

Step 3: Set Tk+1 = {Z |UB(Z)− LBk > ε, Z ∈ Tk}. If Tk+1 = ∅, then terminate:
yk is a global ε-optimal solution for LMP. Otherwise, select the rectangle Zk+1 such
that Zk+1 = argmaxZ∈Tk+1 UB(Z), set k = k + 1, and return to Step 1.

4.2 Convergence of SABB Algorithm

In this subsection, we discuss the global convergence of SABB algorithm.

Theorem 3 Given ε ≥ 0, if SABB algorithm terminates finitely, then it returns a
global ε-optimal solution of LMP; otherwise, an infinite sequence { yk} is generated,
and every accumulation point of that is a global optimal solution for LMP.

Proof If the presented algorithm terminates finitely, without loss of generality, suppose
it terminates at kth iteration. Then we have

UBk − LBk ≤ ε. (4.2)

According to Step 2 of the algorithm,

LBk = φ( yk, zk, h̄
k
) = f ( yk), (4.3)

By (4.2) and (4.3), we can get

UBk − f ( yk) ≤ ε. (4.4)

Let f ∗ be the global optimal value of LMP. Combining (4.2)–(4.4), we have

f ∗ − ε ≤ UBk − ε ≤ LBk = f ( yk).

So, yk is a global ε-optimal solution of LMP.
If the algorithm is infinite, it can generate an infinitely nested sequence of rectangles

{Zk}, such that uki − lki → 0 as k → ∞ for i = 1, 2, . . . , p. It also generates the
optimal solution sequence {( yk, zk, hk)} to LRP(Zk). Let h̄ki = di yk zki , i = 1, . . . , p,
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then ( yk, zk, h̄
k
) is a feasible solution sequence for EP(Zk). Since the feasible region

of EP(Zk) is bounded, without loss of generality, assume that limk→∞ yk = y∗, then
we have that

lim
k→∞ zki = lim

k→∞ cTi yk = cTi y∗ � z∗i , i = 1, 2, . . . , p

lim
k→∞ h̄ki = lim

k→∞ dTi yk zki = dTi y∗z∗i � h∗
i , i = 1, 2, . . . , p.

According to the definition of LBk and the continuity of the function φ, we have

lim
k→∞ LBk = lim

k→∞ f ( yk) = lim
k→∞ φ( yk, zk, h̄

k
) = φ( y∗, z∗, h∗) = f ( y∗). (4.5)

From the above results and lki ≤ zki = cTi yk ≤ uki , it follows that

lim
k→∞ lki = lim

k→∞ zki = lim
k→∞ uki = z∗i .

Additionally, from the inequality constraints hki ≤ lki d
T
i yk + Ui zki − lki Ui and hki ≤

uki d
T
i yk + Li zki − uki Li , for any i, we have

lim
k→∞ hki ≤ lim

k→∞(lki d
T
i yk +Ui z

k
i − lki Ui ) = z∗i dTi y∗ +Ui z

∗
i − z∗i Ui = z∗i dTi y∗,

lim
k→∞ hki ≤ lim

k→∞(uki d
T
i yk + Li z

k
i − uki Li ) = z∗i dTi y∗ + Li z

∗
i − z∗i Li = z∗i dTi y∗.

This implies that

lim
k→∞UBk = lim

k→∞ ϕ( yk, zk, hk)

= lim
k→∞

p∑

i=1

(hki + (d0i ci + c0i di )T yk + c0i d0i )

≤
p∑

i=1

(dTi y∗z∗i + (d0i ci + c0i di )T y∗ + c0i d0i )

=
p∑

i=1

(h∗
i + (d0i ci + c0i di )T y∗ + c0i d0i )

= φ( y∗, z∗, h∗).

Further, combining (4.5) with LBk ≤ UBk , we have

lim
k→∞ LBk = lim

k→∞UBk . (4.6)

Based upon the structure of SABB algorithm, then it must have

LBk ≤ f ∗ ≤ UBk, k = 0, 1, 2, . . . . (4.7)
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From (4.5)-(4.7), we can get

lim
k→∞ LBk = lim

k→∞UBk = f ∗ = f ( y∗). (4.8)

Since ( y∗, z∗, h∗) is a feasible solution of EP(Zk), according to (4.8), ( y∗, z∗, h∗) is
an optimal solution of EP(Zk). Furthermore, by using Theorem 1 and Theorem 2, it
follows that y∗ is a global optimal solution of LMP, i.e., every accumulation point of
the sequence { yk} is a global optimal solution for LMP. The proof is completed ��

4.3 Computational Complexity of SABB Algorithm

In order to estimate the maximum iterations of SABB algorithm, we analyze its com-
putational complexity. To this end, we define the size δ(Z) for the rectangle (2.1)
as

δ(Z) = max{u j − l j | j = 1, . . . , p}, (4.9)

and for convenience, we define

μ = max{Uj − L j | j = 1, . . . , p}. (4.10)

Lemma 2 Given ε ≥ 0, for any Z ∈ Z0 and any feasible solution ( y, z, h) of LRP(Z),
if δ(Z) ≤ ε/pμ, then we have

|ϕ( y, z, h) − φ( y, z, h̄)| ≤ ε,

in which h̄i = dTi yzi , i = 1, . . . , p.

Proof For any feasible solution ( y, z, h) for LRP(Z ), let h̄i = dTi yzi , i = 1, . . . , p,
it is obvious that ( y, z, h̄) is a feasible solution for EP over Z . From Theorem 1 and
Theorem 2, we have φ( y, z, h̄) = f ( y). If δ(Z) ≤ ε/pμ for any sufficiently small
positive number ε, we can obtain

|ϕ( y, z, h) − f ( y)| = |ϕ( y, z, h) − φ( y, z, h̄)|
=

p∑

i=1
(hi − h̄i )

≤
p∑

i=1

[
min{li dTi y +Ui zi − liUi , ui dTi y + Li zi − ui Li } − dTi yzi

]

=
p∑

i=1
min{(zi − li )(Ui − dTi y), (ui − zi )(dTi y − Li )}

≤ pμδ(Z)

≤ ε.

��
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Theorem 4 Given the convergence tolerance ε ∈ (0, 1), SABB algorithm can find a
global ε-optimal solution to LMP in at most

N = p.

⌈

log2
pμδ(Z0)

ε

⌉

iterations, where δ(Z0) and μ are given by (4.9) and (4.10), respectively.

Proof Without loss of generality, assume that the convergence tolerance ε ∈ (0, 1) at
the initializing step and that the sub-rectangle Z is selected for partitioning in step 1
of SABB algorithm at every iteration. After k.p iterations, we have

δ(Z) ≤ 1

2k
δ(Z0).

From Lemma 1, if

1

2k
δ(Z0) ≤ ε

pμ
,

i.e.,

k ≥ log2
pμδ(Z0)

ε
,

we can obtain |ϕ(x, y, z, h) − φ(x, y, z, h̄)| ≤ ε. Therefore, after at most

p.�log2
pμδ(Z0)

ε
�

iterations, we can follow that

0 ≤ φ( y∗, z∗, h∗) − φ( y, z, h̄)

≤ |ϕ( y, z, h) − φ( y, z, h̄)|
≤ ε,

where ( y∗, z∗, h∗) is the optimal solution of EP. Therefore, y∗ is the optimal solution
of LMP. In step 2 of SABB algorithm, ( yk, zk, h̄k) is the best currently known feasible
solution, and we also note that {φ( yk, zk, h̄k)} is a increasing sequence satisfying

φ( yk, zk, h̄k) ≥ φ( y, z, h̄).

Therefore, we have

φ( y∗, z∗, h∗) − φ( yk, zk, h̄k) ≤ φ( y∗, z∗, h∗) − φ( y, z, h̄) ≤ ε,

which implies that f ( y∗) − f ( yk) ≤ ε. When SABB algorithm terminates, yk is a
global ε-optimal solution to LMP, and the proof is completed. ��
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Table 1 Notations in numerical instances

Item Description

LRP The linear relaxation method in this paper

LRP1(LRP2) Two linear relaxation methods in [21]

RP[∗] The relaxation method in reference [*]

SABB BB algorithm with self-adjustable branching rule and
choosing the branching direction where the

relaxation is tighter direction of approximation error

BRBB BB algorithm with bisection rule

CRBB BB algorithm with combination rule

SABB-L BB algorithm with self-adjustable branching rule and
choosing the longest edge of rectangles as the

branching direction

Opt.val The average optimal value obtained by the relevant
algorithm

Iter The average number of the algorithm iterations

CPU The average CPU time calculated by the algorithm in
seconds

Gap The difference in corresponding numerical comparison of
two algorithms

Gap(%) The percentage of Gap.CPU to BBB.CPU or Gap.Iter to
BBB.Iter

“.../-” The method fails to find the optimal solution in 3600s/10 s
at all cases

Bold font The best result in a set of algorithm comparisons

5 Numerical Experiments

In this section, the effectiveness of SABB algorithm is validated by numerical compu-
tation. All of algorithms are coded in MATLAB (2018b), then it runs on in a computer
with Intel(R) Core(TM)i9-13900HX CPU(2.20GHz). The linear and quadratic sub-
problem in the algorithms are solved by the linprog and quadprog in MATLAB,
respectively.

Each (m, n, p) generates ten randomly instances, and their average results are
obtained. The error tolerance ε and ε̄ are set to 10−4 and the maximum CPU time is
limited to 3600s or 10 s in line with the computation requirement. The notations of
computational results are listed in Table 1.

In computational experiments, we consider the following LMP:

(P) :

⎧
⎪⎨

⎪⎩

max
p∑

i=1

(
n∑

j=1
ci j x j + c0i

)(
n∑

j=1
di j x j + d0i

)

s.t. Ax ≤ b,
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where ci j , di j , c0i and d0i , are randomly generated in [−5, 5], and all elements of
A ∈ R

m×n and b ∈ R
m are randomly generated in [0.1, 1].

5.1 Numerical Comparison of RelaxationMethods

To evaluate the performance of the proposed linear relaxation method (LRP), the
comparisons of LRP and the existing relaxation methods in [21, 29, 30, 32–35, 37]
are performed.

Since the relaxation methods in [21], denoted as LRP1 and LRP2, are similar to
LRP, their performances are first compared. As shown in Table 2, the upper bound
values of LRP are smaller than those of LRP1 and LRP2, and the lower bound values
of LRP are lager than those of LRP1 and LRP2. The CPU time spent by LRP is longer
than those of LRP1 and LRP2 in most cases. These results mean that LRP provides a
tighter bound than LRP1 and LRP2. Addtionally, the upper bound obtained by LRP
is smaller than those obtained by the relaxation methods in [29, 30, 32–35, 37] for all
randomly generated instances, as shown Table 3. These results suggest that LRP is
superior to the relaxation methods in [29, 30, 32–35, 37].

5.2 Numerical Comparison of Branching Rules

In order to explore the influence of branching rules on the algorithm, the comparisons
of the self-adjustable branching rule (SABB algorithm) and the combination rules
(BRBB and CRBB algorithms) are performed.

Let Z = �
p
i=1[li , ui ] denote the divided rectangle, zoptx denote the corresponding

optimal solution of the relaxation problem over Z , ξ denote the branching direction
chosen, z∗ξ denote the branching point chosen of the interval [lξ , uξ ] and zMξ denote
the medium point of the interval [lξ , uξ ], respectively. The bisection rule chooses
z∗ξ = zMξ as the the branching point in [29, 30, 32–35]. The combination rule in

[21] chooses a linear combination of zoptx and zMξ as its the branching point, i.e.,

z∗ξ = αzoptx + (1 − α)zMξ , α ∈ [0, 1]. Note that the bisection rule is the combination
rule at α = 0, denoted as BRBB algorithm.

Table 4 shows that both the CPU time and the number of iterations of SABB
algorithm are lower than those in BRBB algorithm. When (m, p) is fixed, both the
value of Gap.CPU and Gap.Iter grow with n grows. In contrast, both the value of
Gap(%).CPU and Gap(%).Iter decrease with n increases. On the whole, the self-
adjustable branching rule in branch-and-bound algorithm is better than the bisection
branching rule (the combination rule at α = 0) in branch-and-bound algorithm, which
may be the result of the former can keep update the upper bound of LMP.

We further compare the performance of SABB and CRBB algorithms at α =
0.3, 0.5, 0.7 and 1.0 (CRBB algorithms), as shown in Table 5. When n ≤ 50, the CPU
time spent by CRBB algorithm at α = 1.0 is less than that of SABB algorithm and
those of CRBBalgorithms.However, SABBalgorithm is better thanCRBBalgorithms
when n > 100, which suggest that the self-adjustable branching rule has a better effect
on the algorithm than the combination rules for large-scale test instances.
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5.3 Numerical Comparison of the Branching Direction

In this subsection, we test randomly generated problem P to demonstrate the impact
of the chosen direction for self-adjustable branching rule on the algorithm.

Table 6 shows that both SABB algorithm and SABB-L algorithm can find the same
optimal values for problem P when (m, p) = (50, 2). However, the CPU time cost
by SABB algorithm is reduced by at lest 57.18% compared to SABB-L algorithm.
And the number of iterations required by SABB algorithm is significantly lower than
that by SABB-L algorithm. Note that SABB algorithm terminates and returns the
optimal solution when p takes the values of 3, 4 and 5, while SABB-L algorithm
is not terminated and keeping run after obtaining the same optimal values. These
results indicate that the choosing branching direction of SABB algorithm has higher
computing efficiency comparing with the general way of choosing directions.

5.4 Numerical Comparison of Algorithms

In this subsection, the comparisons of SABB algorithm and the algorithms in [29, 32]
for solving P are performed.

As shown in Table 7, SABB algorithm and the algorithm in [32] can find the same
optimal values for all test random instances, whereas the CPU time cost by SABB
algorithm is less than those of the algorithm in [32]. Moreover, the CPU time spent
by SABB algorithm grows slowly with the increase of n compared to the other two
algorithms. By contrast, the algorithm in [29] finds the global optimal values for only a
few random instances, and it costs longer the CPU time than the other two algorithms.
These results reveal that the self-adjustable branching rule is helpful to improve the
efficiency of SABB algorithm.

6 Conclusions

In this paper, we investigate a linear multiplicative program (LMP), which has
important application in various domains such as financial optimization and robust
optimization. Firstly, by employing appropriate variable substitution techniques, LMP
is transformed into an equivalent problem (EP). Subsequently, EPcanbe simplified into
a series of linear relaxation programs through the application of affine approximations.
Thenwe propose a self-adjustable branch-and-bound algorithm by integrating the self-
adjustable branching rule and branch-and-bound framework. The proposed algorithm
has been proven to converge to the global optimal solution of the initial LMP. Addi-
tionally, we conduct an analysis of the computational complexity of the algorithm.
Finally, numerical results demonstrate its feasibility and high efficiency. The future
research direction is to investigate whether there exist more effective relaxation meth-
ods, alternative branching rules or reduction strategies for addressing general linear
multiplicative problem.

123



A Self-Adjustable Branch-and-Bound Algorithm for Solving... Page 21 of 25 137

Ta
bl
e
6

C
om

pa
ri
so
n
re
su
lts

of
th
e
br
an
ch
in
g
di
re
ct
io
n
fo
r
so
lv
in
g
P

(m
,
n,

p)
O
pt
.v
al

C
PU

It
er

SA
B
B

SA
B
B
-L

G
ap

SA
B
B

SA
B
B
-L

G
ap

G
ap

(%
)

SA
B
B

SA
B
B
-L

G
ap

G
ap

(%
)

(5
0,

5,
2)

−0
.0
04

4
−0

.0
04

4
0.
00

00
0.
10

0.
24

0.
14

59
.5
3

1.
7

9.
4

7.
7

81
.8
2

(5
0,

15
,
2)

0.
01

05
0.
01

05
0.
00

00
0.
11

0.
35

0.
24

67
.8
0

2.
6

15
.6

13
.0

83
.5
7

(5
0,

50
,
2)

−0
.0
26

3
−0

.0
26

3
0.
00

00
0.
22

0.
60

0.
39

64
.2
0

6.
5

23
.0

16
.5

71
.7
4

(5
0,

10
0,

2)
0.
02

27
0.
02

27
0.
00

00
0.
27

5.
66

5.
39

95
.1
5

6.
2

15
9.
2

15
3.
0

96
.1
1

(5
0,

20
0,

2)
0.
05

13
0.
05

13
0.
00

00
0.
50

7.
09

6.
58

92
.8
8

7.
2

11
6.
1

10
8.
9

93
.7
8

(5
0,

50
0,

2)
0.
08

95
0.
08

94
0.
00

00
3.
81

8.
89

5.
08

57
.1
8

15
.2

36
.2

21
.0

58
.0
1

(5
0,

5,
3)

0.
02

57
0.
02

57
0.
00

00
0.
15

3.
11

2.
97

95
.4
2

2.
8

15
9.
5

15
6.
7

98
.2
1

(5
0,

10
,
3)

−0
.0
63

8
−0

.0
63

8
0.
00

00
0.
12

4.
07

3.
96

97
.2
0

3.
0

20
9.
6

20
6.
6

98
.5
7

(5
0,

50
,
3)

0.
09

61
0.
09

61
0.
00

00
0.
37

–
9.
64

–
11

.3
39

8.
6

38
7.
3

–

(5
0,

10
0,

3)
0.
03

36
0.
03

36
0.
00

00
0.
91

–
9.
11

–
22

.8
27

6.
1

25
3.
3

–

(5
0,

20
0,

3)
0.
07

25
0.
07

21
0.
00

03
3.
03

–
7.
02

–
46

.7
15

7.
7

11
1.
0

–

(5
0,

50
0,

3)
0.
08

88
0.
08

84
0.
00

04
6.
72

–
3.
42

–
25

.7
39

.9
14

.2
–

(5
0,

5,
4)

0.
01

17
0.
01

17
0.
00

00
0.
24

5.
59

5.
35

95
.6
8

5.
8

28
3.
0

27
7.
2

98
.5
7

(5
0,

10
,
4)

0.
04

08
0.
04

08
0.
00

00
0.
40

–
9.
62

–
14

.0
49

7.
6

48
3.
6

–

(5
0,

50
,
4)

−0
.0
64

6
−0

.0
64

7
0.
00

01
0.
81

–
9.
21

–
27

.3
39

4.
6

36
7.
3

–

(5
0,

10
0,

4)
0.
04

96
0.
04

96
0.
00

00
1.
63

–
8.
38

–
39

.5
27

0.
2

23
0.
7

–

123



137 Page 22 of 25 Y. Zhang

Ta
bl
e
6

co
nt
in
ue
d

(m
,
n,

p)
O
pt
.v
al

C
PU

It
er

SA
B
B

SA
B
B
-L

G
ap

SA
B
B

SA
B
B
-L

G
ap

G
ap

(%
)

SA
B
B

SA
B
B
-L

G
ap

G
ap

(%
)

(5
0,

20
0,

4)
0.
05

70
0.
05

70
0.
00

00
2.
64

–
7.
39

–
38

.9
15

4.
1

11
5.
2

–

(5
0,

50
0,

4)
0.
15

08
0.
15

07
0.
00

01
7.
31

–
2.
81

–
26

.8
37

.3
10

.5
–

(5
0,

5,
5)

−0
.0
42

6
−0

.0
42

6
0.
00

00
0.
37

8,
38

8.
00

95
.5
2

9.
8

41
0.
5

40
0.
8

97
.6
2

(5
0,

10
,
5)

0.
06

55
0.
06

55
0.
00

00
0.
67

–
9.
34

–
25

.9
49

5.
2

46
9.
3

–

(5
0,

50
,
5)

0.
00

99
0.
00

98
0.
00

01
2.
15

–
7.
86

–
75

.3
37

9.
4

30
4.
1

–

(5
0,

10
0,

5)
0.
08

40
0.
08

40
0.
00

00
2.
77

–
7.
25

–
68

.3
26

4.
3

19
6.
0

–

(5
0,

20
0,

5)
0.
17

59
0.
17

59
0.
00

00
3.
19

–
6.
83

–
42

.9
14

1.
0

98
.1

–

(5
0,

50
0,

5)
0.
12

17
0.
12

17
0.
00

00
9.
24

–
0.
36

–
46

.5
17

8.
0

13
1.
5

–

123



A Self-Adjustable Branch-and-Bound Algorithm for Solving... Page 23 of 25 137

Ta
bl
e
7

C
om

pa
ri
so
n
re
su
lts

of
SA

B
B
al
go

ri
th
m

an
d
th
e
al
go

ri
th
m
s
in

[2
9,
32
]
fo
r
so
lv
in
g
P

(m
,
n,

p)
O
pt
.v
al

C
PU

It
er

SA
B
B

[3
2]

[2
9]

SA
B
B

[3
2]

[2
9]

SA
B
B

[3
2]

[2
9]

(5
0,

10
,
2)

10
.0
33

1
10

.0
33

1
10

.0
33

1
0.
36

1.
87

6.
35

56
.8

29
8.
8

13
3.
2

(5
0,

50
,
2)

4.
02

25
4.
02

25
4.
02

25
0.
53

1.
65

11
5.
86

65
.0

19
9.
2

22
72

.2

(5
0,

10
0,

2)
8.
86

69
8.
86

69
8.
86

69
0.
86

1.
00

65
9.
14

64
.0

73
.0

10
92

6.
0

(5
0,

20
0,

2)
5.
18

65
5.
18

65
5.
18

65
6.
54

13
.2
1

25
09

.9
3

29
1.
3

56
1.
2

21
71

6.
0

(5
0,

50
0,

2)
19

.5
14

5
19

.5
14

5
..

16
.6
1

53
.5
7

..
18

0.
4

53
8.
1

..

(5
0,

10
00

,
2)

22
.8
40

7
22

.8
40

7
..

19
0.
55

48
6.
49

..
53

2.
0

13
91

.0
..

(5
0,

20
00

,
2)

14
.9
81

8
14

.9
81

8
..

18
2.
05

76
3.
55

..
17
1.
8

55
8.
0

..

(5
0,

30
00

,
2)

19
.5
31

4
19

.5
31

4
..

46
3.
65

17
86
.9
1

..
12
1.
4

40
1.
0

..

(5
0,

40
00

,
2)

19
.3
12

4
19

.3
12

4
..

78
3.
03

23
15
.5
4

..
15
8.
3

43
9.
5

..

(5
0,

50
00

,
2)

15
.6
20

4
15

.6
20

4
..

16
87

.2
0

28
35
.8
9

..
13
2.
7

33
7.
0

..

(5
0,

60
00

,
2)

14
.8
88
5

..
..

19
36

.9
1

..
..

10
5.
5

..
..

(5
0,

10
,
5)

5.
76

77
5.
76

77
5.
76

77
1.
75

2.
90

29
.2
1

73
.0

13
6.
6

81
.8

(5
0,

50
,
5)

−4
.0
86

2
−4

.0
86

2
−4

.0
86

2
44

.3
6

63
.6
3

15
61

.2
8

18
00

.0
25

44
.0

41
38

.0

(5
0,

10
0,

5)
24

.2
59

4
24

.2
59

4
..

72
.5
2

24
5.
05

..
18

20
57

84
..

(5
0,

40
0,

5)
−1

7.
78
76

..
..

31
83

.3
9

..
..

36
,5
52

..
..

123



137 Page 24 of 25 Y. Zhang

Acknowledgements The authors are grateful to the responsible editor and the anonymous referees for their
valuable comments and suggestions, which has helped to substantially improve the presentation of this
work.

Author Contributions The whole work has been carried out by the author.

Funding Not applicable.

Availability of Data and Materials Not applicable.

Declarations

Conflict of interest No potential conflict of interest was reported by the author.

Ethics Approval Not applicable.

References

1. Kahl, F., Agarwal, S., Chandraker, M.K., Kriegman, D., Belongies, S.: Practical global optimization
for multiview geometry. Int. J. Comput. Vis. 79(3), 271–284 (2008)

2. Qu, S., Zhou, Y., Zhang, Y., Wahab, M.I.M., Zhang, G., Ye, Y.: Optimal strategy for a green supply
chain considering shipping policy and default risk. Comput. Ind. Eng. 131, 172–186 (2019)

3. Konno, H., Shirakawa, H., Yamazaki, H.: A mean-absolute deviation-skewness portfolio optimization
model. Ann. Oper. Res. 45, 205–220 (1993)

4. Konno, H., Kuno, T.: Generalized linear multiplicative and fractional programming. Ann. Oper. Res.
25, 147–162 (1990)

5. Quesada, I., Grossmann, I.E.: Alternative bounding applications for the global optimization of various
engineering design problems. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design.
Nonconvex Optimization and Its Applications, vol. 9, pp. 309–331. Springer, Berlin (1996)

6. Bennett, K., Mangasarian, O.: Bilinear separation of two sets in n-space. Comput. Optim. Appl. 2,
207–227 (1994)

7. Dorneich, M., Sahinidis, N.: Global optimization algorithms for chip design and compaction. Eng.
Optim. 25(2), 131–154 (1995)

8. Mulvey, J., Vanderbei, R., Zenios, S.: Robust optimization of large-scale systems. Oper. Res. 43,
264–281 (1995)

9. Tuy, H.: Convex Analysis and Global Optimization, 2nd edn. Kluwer Academic, Dordrecht (2016)
10. Benson, H.: Global maximization of a generalized concave multiplicative function. J. Optim. Theory

Appl. 137, 105–120 (2008)
11. Zhao, Y., Liu, S.: Global optimization algorithm for mixed integer quadratically constrained quadratic

program. J. Comput. Appl. Math. 319, 159–169 (2017)
12. Lu, C., Deng, Z., Jin, Q.: An eigenvalue decomposition based branch-and-bound algorithm for non-

convex quadratic programming problems with convex quadratic constraints. J. Global Optim. 67(3),
475–493 (2017)

13. Luo, H., Chen, S., Wu, H.: A new branch-and-cut algorithm for non-convex quadratic programming
via alternative direction method and semidefinite relaxation. Numer. Algorithms 88, 993–1024 (2021)

14. Konno, H., Kuno, T., Yajima, Y.: Parametric simplex algorithms for a class of NP-complete problems
whose average number of steps is polynomial. Comput. Optim. Appl. 1, 227–239 (1992)

15. Raghavachari, M.: On connections between zero-one integer programming and concave programming
under linear constraints. Oper. Res. 17, 680–684 (1969)

16. Matsui, T.: NP-hardness of linear multiplicative programming and related problems. J. Global Optim.
9(2), 113–119 (1996)

17. Konno, H., Kuno, T.: Linear multiplicative programming. Math. Program. 56, 51–64 (1992)
18. Ryoo, H.S., Sahinidis, N.V.: Global optimization of multiplicative programs. J. Global Optim. 26,

387–418 (2003)

123



A Self-Adjustable Branch-and-Bound Algorithm for Solving... Page 25 of 25 137

19. Gao, Y., Xu, C., Yang, Y.: Outcome-space branch and bound algorithm for solving linear multiplicative
programming. Comput. Intell. Secur. 3801, 675–681 (2005)

20. Zhou, X., Cao, B., Wu, K.: Global optimization method for linear multiplicative programming. Acta
Math. Appl. Sin. 31(2), 325–334 (2015)

21. Cambini, R., Riccardi, R., Scopelliti, D.: Solving linearmultiplicative programs via branch-and-bound:
a computational experience. CMS 20(1), 38 (2023)

22. Cambini, R., Sodini, C.: Global optimization of a rank-two nonconvex program. Math. Methods Oper.
Res. 71(1), 165–180 (2010)

23. Cambini, R., Sodini, C.: On the minimization of a class of generalized linear functions on a flow
polytope. Optimization 63(10), 1449–1464 (2014)

24. Yang, L., Shen, P., Pei, Y.: A global optimization approach for solving generalized nonlinear multi-
plicative programming problem. Abstr. Appl. Anal. 2014(1), 641909 (2014)

25. Gao, Y., Xu, C., Yang, Y.: An outcome-space finite algorithm for solving linear multiplicative pro-
gramming. Appl. Math. Comput. 179(2), 494–505 (2006)

26. Oliveira, Rúbia.M., Ferreira, P.A.V.: An outcome space approach for generalized convexmultiplicative
programs. J. Global Optim. 47(1), 107–118 (2010)

27. Shen, P., Huang, B., Wang, L.: Range division and linearization algorithm for a class of linear ratios
optimization problems. J. Comput. Appl. Math. 350, 324–342 (2019)

28. Liu, S., Zhao, Y.: An efficient algorithm for globally solving generalized linear multiplicative pro-
gramming. J. Comput. Appl. Math. 296, 840–847 (2016)

29. Wang, C., Bai, Y., Shen, P.: A practicable branch-and-bound algorithm for globally solving multiplica-
tive programming. Optimization 66(3), 397–405 (2017)

30. Wang, C., Deng, Y., Shen, P.: A novel convex relaxation-strategy-based algorithm for solving linear
multiplicative problems. J. Comput. Appl. Math. 407, 114080 (2022)

31. Zhao,Y., Zhao, T.:Global optimization for generalized linearmultiplicative programming using convex
relaxation. Math. Problems Eng. 2018, 9146309 (2018)

32. Yin, J., Jiao, H., Shang, Y.: Global algorithm for generalized affine multiplicative programming Prob-
lem. IEEE Access 7, 162245–162253 (2019)

33. Shen, P., Wang, K., Lu, T.: Outer space branch and bound algorithm for solving linear multiplicative
programming problems. J. Global Optim. 78, 453–482 (2020)

34. Shen, P., Huang, B.: Global algorithm for solving linear multiplicative programming problems. Optim.
Lett. 14, 693–710 (2020)

35. Shen, P.,Wang,K., Lu, T.:Global optimization algorithm for solving linearmultiplicative programming
problems. Optimization 71(6), 1421–1441 (2022)

36. Shen, P.,Wu,D.,Wang, F.:An efficient spatial branch-and-bound algorithmusing an adaptive branching
rule for linear multiplicative programming. J. Comput. Appl. Math. 426, 115100 (2023)

37. Shen, P., Wu, D., Wang, K.: Globally minimizing a class of linear multiplicative forms via simplicial
branch-and-bound. J. Global Optim. 86, 303–321 (2023)

38. Jiao, H., Wang, W., Chen, R., et al.: An efficient outer space algorithm for generalized linear multi-
plicative programming problem. IEEE Access 99, 1–1 (2020)

39. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I-Convex
underestimating problems. Math. Program. 10(1), 147–175 (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	A Self-Adjustable Branch-and-Bound Algorithm for Solving Linear Multiplicative Programming
	Abstract
	1 Introduction
	2 Equivalent Problem and Its Linear Relaxation Programming
	3 The Self-Adjustment Branching Rule
	4 Algorithm, Convergence and Complexity
	4.1 SABB Algorithm
	4.2 Convergence of SABB Algorithm
	4.3 Computational Complexity of SABB Algorithm

	5 Numerical Experiments
	5.1 Numerical Comparison of Relaxation Methods
	5.2 Numerical Comparison of Branching Rules
	5.3 Numerical Comparison of the Branching Direction
	5.4 Numerical Comparison of Algorithms

	6 Conclusions
	Acknowledgements
	References




