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Abstract
In this paper, we establish uniform asymptotic formulas for the rank and crank statistics
of cubic partitions. This partly improves upon the asymptotic results established by
Kim–Kim–Nam in 2016.
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1 Introduction and Statement of Results

A partition of an integer n is a sequence of non-increasing positive integers whose
sum equals n. Let p(n) be the number of partitions of n and let p(0) := 1. Euler
discovered the generating function of p(n):

∑

n≥0

p(n)qn = 1

(q; q)∞
, (1.1)

where we define (a; q)∞ = ∏
k≥0(1 − aqk) for any a ∈ C and |q| < 1. To explain

Ramanujan’s famous partition congruences with modulus 5, 7 and 11, the rank and
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crank statistic for integer partitions was introduced byDyson [6], Andrews andGarvan
[2, 7]. As a precise definition of rank and crank for integer partitions are not necessary
for the rest of the paper, we do not give it here.

The cubic partition function c(n) is defined by

∑

n≥0

c(n)qn = 1

(q; q)∞(q2; q2)∞
,

which was introduced by Chan in a series of papers [3–5]. Chan [3] showed that
c(n) satisfies a Ramanujan-type congruence c(3n + 2) ≡ 0 (mod 3). He [4] further
proved that c(n) satisfies congruences modulo higher powers of 3. Motivated by cubic
partition congruences [3, 4], Kim [8] introduced a cubic partition crankwhich explains
infinitely many congruences for powers of 3 explicitly. As a precise definition is quite
complicated and not necessary for the rest of the paper, we do not give it here. Let
C(m, n) be the number of cubic partitions of n with crank m. Kim [8] also established
the generating function for C(m, n) as follows:

∑

n≥0

∑

m∈Z
C(m, n)zmqn = (q; q)∞(q2; q2)∞

(zq; q)∞(z−1q; q)∞(zq2; q2)∞(z−1q2; q2)∞
. (1.2)

It is clear that C(m, n) = 0 for any |m| > n. On the other hand, in his thesis, Reti
[10] defined a rank-like function which also explains the cubic partition congruence
modulo 3. Let R(m, n) be the number of cubic partitions of n with rank m, then

∑

n≥0

∑

m∈Z
R(m, n)zmqn = 1

(q; q2)∞(zq2; q2)∞(z−1q2; q2)∞
. (1.3)

It is clear that R(m, n) = 0 for |m| > n/2.
As we have two different partition statistics explaining cubic partition congruences

and

c(n) =
∑

m∈Z
C(m, n) =

∑

m∈Z
R(m, n),

it is a natural question to ask how the crank and rank of cubic partitions are distributed.
In 2016, Kim–Kim–Nam [9] established the following two-variable asymptotics for
C(m, n) and R(m, n) by using a circle method.

Theorem 1 (Kim–Kim–Nam [9, Theorems 1.1 and 1.2]) As n → ∞,

C(m, n) = πeπ
√

n

16n7/4

(
1 − π

4

)
sech2

(
πm

2
√

n

)(
1 + O

(
1 + |m|1/3

n1/4

))
,

provided |m| ≤ n3/8,
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and

R(m, n) = πeπ
√

n

32n7/4 sech
2
(

πm

2
√

n

) (
1 + O

(
1 + |m|1/3

n1/4

))
, provided |m| ≤ √

n/2.

In this paper, we establish uniform asymptotic formulas for C(m, n) and R(m, n)

that hold for a wider range of m than those given in Theorem 1. This enables a deeper
understanding of their distributions.

Throughout this paper, we set δn = π/
√
4n. Our main results are as the follows.

Theorem 1.1 Let m, n be integers. As n → +∞

C(m, n) ∼ 1

4
c(n)δn

∫

R

sech2(2t)sech2(t − mδn/2)dt,

and

R(m, n) ∼ 1

2
c(n)δnsech

2(mδn),

uniformly with respect to m = o(n3/4).

Remark 1.1 Wehave established asymptotic formulas forC(m, n+|m|) and R(m, n+
2|m|), which hold for all n → +∞ and uniformly with respect to m ∈ Z. For details,
see Theorems 3.2 and 3.3 in Sect. 3.

Throughout the paper, we use the Landau symbols O and the Vinogradov symbol 
.
We recall that the assertions U = O(V ) and U 
 V (sometimes we write this also
as V � U ) are both equivalent to the inequality |U | ≤ cV with some constant c > 0,
while U = o(V ) means that U/V → 0. In this paper, the constants implied in the
symbols o, O and 
 are absolute and independent of any parameters.

2 Lemmas

We need some facts on the Andrews–Garvan–Dyson cranks of partitions. Let M(m, n)

(with a slight modification in the case that n = 1, where the values are instead
M(±1, 1) = 1, M(0, 1) = −1) be the number of partitions of n with crank m,
then we have

∑

n≥0

∑

m∈Z
M(m, n)zmqn = (q; q)∞

(zq; q)∞(z−1q; q)∞
. (2.1)

It is clear that M(m, m) = 1 for any m ≥ 0. We need the uniform asymptotics of
M(m, n), which can be find in [11, Proposition 2.1]:
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Lemma 2.1 Let g(x) = π

12
√
2

(
1 + e−|x |)−2

. As integer � → +∞

M(k, |k| + �) ∼ g
(
πk/

√
6�

)
�−3/2e2π

√
�/6,

uniformly with respect to k ∈ Z. In particular, for any k ∈ Z and � ≥ 0 we have

M(k, |k| + �) 
 (1 + �)−3/2e2π
√

�/6.

The following lemma gives the algebraic relations between partition cranks and cubic
partition cranks and ranks.

Lemma 2.2 Let m, n ≥ 0. With A := n + m − 2|k| − |m − k|, we have C(m, m) = 1
and

C(m, n + m) =
∑

k∈Z
A≥0

∑

�≥0
�≤A/2

M(k, |k| + �)M(m − k, |m − k| + A − 2�), for all n ≥ 1.

We have R(m, 2m) = R(m, 2m + 1) = 1 and

R(m, n + 2m) =
∑

0≤�≤n/2

p(n − 2�)M(m, m + �), for all n ≥ 1.

Proof Using (2.1) and (1.1), the generating function (1.2) and (1.3) can be rewritten
as

∑

n≥0

∑

m∈Z
C(m, n)zmqn = (q; q)∞

(zq; q)∞(z−1q; q)∞
(q2; q2)∞

(zq2; q2)∞(z−1q2; q2)∞

=
∑

n1≥0
m1∈Z

M(m1, n1)z
m1qn1

∑

n2≥0
m2∈Z

M(m2, n2)z
m2q2n2

=
∑

n≥0
m∈Z

zmqn
∑

n1,n2≥0
n1+2n2=n

∑

m1,m2∈Z
m1+m2=m

M(m1, n1)M(m2, n2)

and

∑

n≥0

∑

m∈Z
R(m, n)zmqn = 1

(q; q)∞
(q2; q2)∞

(zq2; q2)∞(z−1q2; q2)∞

=
∑

n1≥0

p(n1)q
n1

∑

n2≥0
m∈Z

M(m, n2)z
mq2n2

=
∑

n≥0
m∈Z

zmqn
∑

n1,n2≥0
n1+2n2=n

p(n1)M(m, n2).
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Noting that M(m, n) = 0 for all |m| > n, we have

C(m, n) =
∑

n1+2n2=n
n1,n2≥0

∑

m1+m2=m
m1,m2∈Z

M(m1, n1)M(m2, n2)

=
∑

0≤n2≤n/2

∑

m2∈Z
M(m2, n2)M(m − m2, n − 2n2)

=
∑

0≤n2≤n/2

∑

m2∈Z
M(m2, |m2| + (n2 − |m2|))M(m − m2, n − 2|m2| − 2(n2 − |m2|))

=
∑

k∈Z

∑

0≤�≤n/2−|k|
M(k, |k| + �)M(m − k, n − 2|k| − 2�). (2.2)

Thus

C(m, m) =
∑

k∈Z

∑

0≤�≤m/2−|k|
M(k, |k| + �)M(m − k, m − 2|k| − 2�) = M(0, 0)M(m, m) = 1.

Replacing n by n + m and letting A = n + m − 2|k| − |m − k| in (2.2), then we have

C(m, n + m) =
∑

k∈Z
A≥0

∑

�≥0
�≤A/2

M(k, |k| + �)M(m − k, |m − k| + A − 2�),

which completes the proof for C(m, n + m). Similarly,

R(m, n) =
∑

n1+2n2=n
n1,n2≥0

p(n1)M(m, n2)

=
∑

0≤n2≤n/2

p(n − 2n2)M(m, n2)

=
∑

0≤�≤n/2−m

p(n − 2m − 2�)M(m, m + �).

Replacing n by n + m in above, we have

R(m, n + 2m) =
∑

0≤�≤n/2

p(n − 2�)M(m, m + �).

From this we see that R(m, 1 + 2m) = p(1)M(m, m) = 1 and R(m, 2m) =
p(0)M(m, m) = 1, which completes the proof of Lemma 2.2. �


We need the following auxiliary lemmas.
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Lemma 2.3 For x ∈ [0, 1], define

f (x) = √
1 − x + √

x/2.

Then f (x) is increasing on [0, 1/3] and decreasing on [1/3, 1]. Moreover,

f (1/3 + t) = √
3/2 − κt2 + O(|t |3),

as t → 0, where κ := 2−9/2 · 35/2.

Proof The proof of this lemma is a direct calculation and we shall omit it. �

Lemma 2.4 Let g(x) be defined as in Lemma 2.1. For any x0 ∈ R ∪ {∞}. If y ∼ x as
x → x0, then g(y) ∼ g(x) as x → x0.

Proof Recall that

g(x) = π

12
√
2

(
1 + e−|x |)−2

.

We have

∣∣∣
√

g(y)/g(x) − 1
∣∣∣ =

∣∣∣∣
1 + e−|x |

1 + e−|y| − 1

∣∣∣∣ = |e−|x | − e−|y||
1 + e−|y| ≤ |e−|x | − e−|y|| → 0,

whenever y ∼ x and x → x0 with x0 ∈ R ∪ {∞}. The proof follows. �

In this paper, the Euler-Maclaurin summation formula we use is always stated as

follows.

Lemma 2.5 Let a, b ∈ Z with a ≤ b, h ∈ C1([a, b]). The we have

∑

a≤�≤b

h(�ε) = 1

ε

∫ bε

aε

h(u) du + h(aε) + h(bε)

2
+ O

(∫ bε

aε

|h′(u)| du

)
,

for any ε ∈ (0, 1), where the implied constant is absolute.

3 The Proofs of theMain Results

In view of C(m, n) = C(|m|, n) and R(m, n) = R(|m|, n), C(m, |m|) =
R(m, 2|m|) = 1 for all m ∈ Z, and as well as C(m, n + |m|) = R(m, n + 2|m|) = 0
for all n < 0 and m ∈ Z, this section will only consider the cases for C(m, n +m) and
R(m, n + 2m) with n ≥ 1 and m ≥ 0. We assume that the function f (x) is always
defined by Lemma 2.3.
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3.1 Unform Asymptotic Formulas for C(m, n+m)

For simplify our writing, we denote A := Am,n,k = n + m − 2|k| − |m − k| and
SA = {k ∈ Z : A ≥ 0} × {� ∈ Z : 0 ≤ � ≤ A/2}. Then one can check that:

A ≤ n and #SA 
 n2.

We split that SA = S0 ∪ S1 ∪ S2 with S0 := {
(k, �) ∈ SA : A ≤ n0.5

}
,

S1 :=
{
(k, �) ∈ SA : A > n0.5, |2�/A − 1/3| ≤ A−0.2

}
,

and

S2 :=
{
(k, �) ∈ SA : A > n0.5, |2�/A − 1/3| > A−0.2

}
.

Therefore, using Lemma 2.2 we can rewrite the formula for C(m, n + m) as:

C(m, n + m) =
∑

0≤ j≤2

CS j (m, n),

where

CS j (m, n):=
∑

(k,�)∈S j

M(k, |k| + �)M(m − k, |m − k| + A − 2�). (3.1)

From Lemma 2.1, for any k ∈ Z, � ≥ 0

M(k, |k| + �) 
 (1 + �)−3/2e2π
√

�/6.

Thus for (k, �) ∈ SA, we have

M(k, |k| + �)M(m − k, |m − k| + A − 2�) 
 e
2π√
6
(
√

�+√
A−2�)

.

For (k, �) ∈ S0, we have

√
� + √

A − 2� ≤ 2n0.25.

For (k, �) ∈ S2, using Lemma 2.3 we have

√
A f (2�/A) ≤ √

Amax
(

f (1/3 − A−0.2), f (1/3 + A−0.2)
)

= √
A

(
f (1/3) − κ A−0.4 + O(A−0.6)

)

≤ √
3n/2 − κn0.1 + O(1).
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Therefore, using #SA ≤ n2 and above estimates we have

∑

j∈{0,2}
CS j (m, n) 
 e

2π√
6
(2n0.25) ∑

(k,�)∈S0

1 + e
2π√
6
(
√
3n/2−κn0.1+O(1)) ∑

(k,�)∈S2

1


 en1/3n2 + n2eπ
√

n−n1/11 
 eπ
√

n−n1/12 . (3.2)

We will now prove that the main contribution of the summation for C(m, m + n)

comes from CS1(m, n), as defined by equation (3.1).

Lemma 3.1 Let g(x) be defined as in Lemma 2.4. As n → +∞

C(m, m + n) ∼ 18
∑

k∈Z
A>n0.5

g

(
πk√

A

)
g

(
π(m − k)√

4A

)
A−9/4eπ

√
A,

uniformly with respect to m ≥ 0.

Proof Notice the fact that as � → +∞

M(k, |k| + �) ∼ g

(
πk√
6�

)
e2π

√
�/6

�3/2
,

uniformly with respect to k ∈ Z, see Lemma 2.1. For (k, �) ∈ S1, since A > n0.5 →
+∞,

� ∼ A/6,
πk√
6�

∼ πk√
A

, A − 2� ∼ 2A/3,
π(m − k)√
6(A − 2�)

∼ π(m − k)√
4A

,

using the above estimates and Lemma 2.4, we have

M(k, |k| + �)M(m − k, |m − k| + A − 2�) ∼ g

(
πk√

A

)
g

(
π(m − k)√

4A

)
e

2π√
6
(
√

�+√
A−2�)

(A/6)3/2(2A/3)3/2
.

Moreover, using Lemma 2.3, we have

2π√
6
(
√

� + √
A − 2�) = 2π√

6

√
A f (2�/A)

= 2π√
6

√
A

(√
3/2 − κ(2�/A − 1/3)2 + O(|2�/A − 1/3|3)

)

= π
√

A − 8πκ√
6A3/2

(� − A/6)2 + O(A−0.1).

123



Uniform Asymptotic Formulas of Ranks and Cranks for Cubic... Page 9 of 15 133

Therefore, further simplifications yields

M(k, |k| + �)M(m − k, |m − k| + A − 2�) ∼

g

(
πk√

A

)
g

(
π(m − k)√

4A

)
e
π

√
A− 8πκ√

6A3/2
(�−A/6)2

(A/3)3
.

Hence using (3.1) yields

CS1(m, n) ∼
∑

(k,�)∈S1

g

(
πk√

A

)
g

(
π(m − k)√

4A

)
e
π

√
A− 8πκ√

6A3/2
(�−A/6)2

(A/3)3

=
∑

k∈Z
A>n0.5

g
(

πk√
A

)
g

(
π(m−k)√

4A

)
eπ

√
A

(A/3)3
∑

0≤�≤A/2
|�−A/6|≤0.5A0.8

e
− 8πκ√

6A3/2
(�−A/6)2

.

Notice that (0.5A0.8)2/A3/2 = 0.25A0.1 → +∞, the inner summation above is
asymptotically equivalent to the following Gauss integral:

∫

R

e
− 8πκ√

6A3/2
(u−A/6)2

du =
√√

6A3/2

8κ
,

by using the Euler–Maclaurin summation formula. Therefore, by noting that κ =
2−9/2 · 35/2, we have

CS1(m, n) ∼ 18
∑

k∈Z
A>n0.5

g

(
πk√

A

)
g

(
π(m − k)√

4A

)
A−9/4eπ

√
A.

Notice that A = n + m − 2|k| − |m − k|, we pick out the term k = 0 from the sum
above yields

CS1(m, n) � n−9/4eπ
√

n .

While considering estimate (3.2), we see that

CS0(m, n) + CS2(m, n) 
 eπ
√

n−n1/12 ,

which completes the proof. �


We now evaluate the summation in Lemma 3.1. Note that A = n + k − 2|k| for
k ≤ m, and A = n + 2m − 3k for k > m. Therefore, the summation in Lemma 3.1
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can be rewritten as

(1 + o(1))C(m, n + m)

= 18
∑

k≤m
n−(2|k|−k)>n1/2

g
(

πk√
n−(2|k|−k)

)
g

(
π(m−k)√

4(n−(2|k|−k))

)

(n − (2|k| − k))9/4
eπ

√
n−(2|k|−k)

+ 18
∑

k>m
n−(3k−2m)>n1/2

g
(

πk√
n−(3k−2m)

)
g

(
π(m−k)√

4(n−(3k−2m))

)

(n − (3k − 2m))9/4
eπ

√
n−(3k−2m),

as n → +∞. We write

CI (m, n) :=18
∑

k≤m
(2|k|−k)≤n5/8

g
(

πk√
n−(2|k|−k)

)
g

(
π(m−k)√

4(n−(2|k|−k))

)

(n − (2|k| − k))9/4
eπ

√
n−(2|k|−k)

+ 18
∑

k>m
(3k−2m)≤n5/8

g
(

πk√
n−(3k−2m)

)
g

(
π(m−k)√

4(n−(3k−2m))

)

(n − (3k − 2m))9/4
eπ

√
n−(3k−2m),

for replacing the above summation of (1 + o(1))C(m, n + m), then the error term is

(1 + o(1))C(m, n + m) − CI (m, n)



∑

k≤m
2|k|−k>n5/8

n+k−2|k|>√
n

eπ
√

n+k−2|k| +
∑

k>m
3k−2m>n5/8

n+2m−3k>
√

n

eπ
√

n+2m−3k


 neπ
√

n−n5/8 + neπ
√

n−n5/8 
 eπ
√

n−n1/8 .

Moreover, using Lemma 2.4 for g(x), and the fact that eπ
√

x−r ∼ eπ
√

x−πr/
√
4x for

all r = o(x3/4) as x → +∞, one can find that

CI (m, n) ∼
18eπ

√
n

n9/4

( ∑

k≤m
(2|k|−k)≤n5/8

e
− π(2|k|−k)

2
√

n +
∑

k>m
(3k−2m)≤n5/8

e
− π(3k−2m)

2
√

n

)
g

(
πk√

n

)
g

(
π(m − k)√

4n

)

= 18eπ
√

n

n9/4

⎛

⎝
∑

k≤m

e
− π(2|k|−k)

2
√

n +
∑

k>m

e
− π(3k−2m)

2
√

n

⎞

⎠ g

(
πk√

n

)
g

(
π(m − k)√

4n

)
+ O(eπ

√
n−n1/8 ).
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Therefore, using the definition of g(x):

g(x) = π

12
√
2

1

(1 + e−|x |)2
= π

48
√
2

e|x |sech2(x/2),

and with δn = π/
√
4n, by a straightforward calculation, the main term in the above

formula can be evaluated in the following form:

C(m, n + m) ∼ π2eπ
√

n+mδn

162n9/4

∑

k∈Z
sech2(kδn)sech

2
(
2−1(m − k)δn

)
.

Note that for all t ∈ R, using the Euler–Maclaurin summation formula implies:

∑

k∈Z
sech2(kδn)sech2((t − kδn)/2)

= 1

δn

∫

R

sech2(x)sech2 ((t − x)/2) dx + O

(∫

R

∣∣∣∂x

(
sech2(x)sech2 ((t x)/2)

)∣∣∣
)

.

Note that e−2|x | 
 sech2(x) 
 e−2|x | and ∂x sech2(x) 
 e−2|x | for all x ∈ R, we
have

∫

R

∣∣∣∂x

(
sech2(x)sech2 ((t − x)/2)

)∣∣∣ dx 

∫

R

e−2|x |−|t−x |dx



∫

R

sech2(x)sech2 ((t − x)/2) dx .

Moreover, note that

1

8

∫

R

sech2(x)sech2 ((t − x)/2) dx = 1

4

∫

R

sech2(2x)sech2 (x − t/2) dx,

is an even function for t ∈ R, and C(−m, n + |m|) = C(m, n + |m|) for all m ∈ Z.
We conclude the above with the following theorem.

Theorem 3.2 As n → +∞

C(m, n + |m|) ∼ πeπ
√

n+|m|δn

64n7/4

∫

R

sech2(2x)sech2 (x − mδn/2) dx,

uniformly with respect to m ∈ Z.
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3.2 Uniform Asymptotic Formulas of R(m, n)

From Lemma 2.2, we can rewrite the formula for R(m, n + 2m) as:

R(m, n + 2m) =
∑

0≤�≤n/2

p(n − 2�)M(m, m + �)

=

⎛

⎜⎜⎜⎝
∑

0≤�≤n/2
|2�/n−1/3|≤n−0.2

+
∑

0≤�≤n/2
|2�/n−1/3|>n−0.2

⎞

⎟⎟⎟⎠ p(n − 2�)M(m, m + �)

=: RM (m, n) + RE (m, n).

We claim that the main contribution of R(m, n + 2m) arises from RM (m, n), while
the RE (m, n) is an error term. In fact, by use of the Hardy–Ramanujan asymptotic
formula:

p(n) ∼ 1

4
√
3n

e2π
√

n/6,

as n → +∞, Lemma 2.1 and Lemma 2.3, we have

RE (m, n) =
∑

0≤�≤n/2
|2�/n−1/3|>n−0.2

p(n − 2�)M(m, m + �)



∑

0≤�≤n/2
|2�/n−1/3|>n−0.2

e2π
√

(n−2�)/6+2π
√

�/6 =
∑

0≤�≤n/2
|2�/n−1/3|>n−0.2

e
2π√
6

√
n f (2�/n)


 n exp

(
2π

√
n√

6
sup

0≤x≤1
|x−1/3|>n−0.2

f (x)

)


 n exp

(
2π

√
n√

6

(√
3/2 − κn−0.4 + O(n−0.6)

) )

 eπ

√
n−n1/11 .

Moreover, since n → +∞, |2�/n − 1/3| ≤ n−0.2, we have � ∼ n/6 and n − 2� ∼
2n/3. Using Lemmas 2.1 and 2.4 implies:

p(n − 2�)M(m, m + �) ∼ g

(
πm√
6�

)
e

2π√
6

(√
n−2�+√

�
)

4
√
3(n − 2�)�3/2

∼ g

(
πm√

n

)
e
2π

√
n√

6
f (2�/n)

4
√
3(2n/3)(n/6)3/2
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= g

(
πm√

n

)
9

23/2n5/2
e
2π

√
n√

6

(√
3/2−κ(2�/n−1/3)2+O(|2�/n−1/3|3))

∼ 3π

16n5/2

(
1 + e−πm/

√
n
)−2

e
π

√
n− 8πκ(�−n/6)2√

6n3/2 .

Therefore,

RM (m, n) ∼ 3π

16n5/2

(
1 + e−πm/

√
n
)−2 ∑

0≤�≤n/2
|2�/n−1/3|≤n−0.2

e
π

√
n− 8πκ(�−n/6)2√

6n3/2 .

Noting that κ = 2−9/2 · 35/2 and using similar arguments to C(m, n + m), we have

RM (m, n) ∼ 3πeπ
√

n

16n5/2

(
1 + e−πm/

√
n
)−2

√√
6n3/2

8κ
= πeπ

√
n

8n7/4

(
1 + e−πm/

√
n
)−2

.

By combining this with the previous estimate for RE (m, n), δn = π/
√
4n, and as

well as R(−m, n + 2|m|) = R(m, n + 2|m|) holds for all m ∈ Z. This leads to the
following theorem.

Theorem 3.3 As n → +∞

R(m, n + 2|m|) ∼ πeπ
√

n+2|m|δn

32n7/4 sech2(mδn),

uniformly with respect to m ∈ Z.

3.3 The Proof of Theorems 1.1

We use Theorems 3.2 and 3.3 to prove Theorems 1.1.

Proof of Theorem 1.1 Notice that δn = π/
√
4n and note that for m = o(n3/4),

π
√

n − |m| + |m|δn−|m| = π
√

n − |m|δn + |m|δn + O(m2n−3/2) = π
√

n + o(1),

and

sech
(

x − 2−1mδn−|m|
)

= sech(x − 2−1mδn + O(m2n−3/2)) ∼ sech(x − 2−1mδn),

uniformly with respect to x ∈ R. Therefore, using Theorem 3.2 implies

C(m, n) ∼ πeπ
√

n−|m|+|m|δn

16n7/4 · 1
4

∫

R

sech2(2x)sech2
(

x − 2−1mδn−|m|
)
dx

∼ πeπ
√

n

16n7/4 · 1
4

∫

R

sech2(2x)sech2 (x − mδn/2) dx . (3.3)

123



133 Page 14 of 15 R. Lu, N.H. Zhou

Similarly, for m = o(n3/4), using Theorem 3.3 implies

R(m, n) ∼ πeπ
√

n−2|m|+2mδn−2|m|

32n7/4 sech2(2mδn−2|m|) ∼ πeπ
√

n

32n7/4 sech
2(mδn). (3.4)

Therefore, the proof of Theorem 1.1 will follows from (3.3),(3.4) and the fact that

c(n) ∼ 1

8
n−5/4eπ

√
n,

see [9, Equation (1.5)]. �
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