Bull. Malays. Math. Sci. Soc. (2024) 47:144 MALAYSIAN M m AT
https://doi.org/10.1007/s40840-024-01728-x o

hitp:/iwww.springer.com/mathematies/journal 40840

®

Check for
updates

Low Regularity for LS Type Equations on the Half Line

Chunxiao Guo' - Yuzhu Wang'® - Mengtao Xu' - Yanfeng Guo?

Received: 8 March 2024 / Revised: 25 May 2024 / Accepted: 5 June 2024 /
Published online: 15 July 2024
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2024

Abstract

We study the initial-boundary vaule problem of the long and short wave equations
posed on the half line with initial datas (ug, ng) € H**(R*) x HS!(R*) and boundary
datas (h, f) e H 2S(z)%l(]RJr) x HSI(R*). We show the local well-posedness by giv-
ing the bilinear estimates of the coupling terms for the equations in suitable spaces
of Bourgain type. Moreover, we consider results concerning ill-posedness for the

system. Finally, the system is proved to be globally well-posed in Sobolev spaces
H'(R*) x L2(R").
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1 Introduction

Consideration is given to the equations where u is an unknown complex function and
n is an unknown real function:

iy + ey = nu — |ul?u, (x, t) € R* = (0, 00),
ne+8n = —ul?, (x, t) € R* = (0, o0),

u(x, 0) = up(x), n(x, 0) = no(x),

u(0, t) = h(1), n(0, t) = f(),

ey

where § is a given positive constant, the initial conditions (ug, ng) € H*(R*) x
H*1(R*) and the boundary conditions (k, f) € Hw(RJr) x HS1(RY).

The long-short (LS) type equations depict the resonance interaction between the
short wave and long wave, which were first deduced by Djordjevic and Redekopp [14].
The system has been well-studied in the past, where the short wave is often described
by Schrodinger equation and the long wave is described by some sort of dispersive
wave equation such as KdV equation, Benjamin-Ono equation so that the system came
in various forms. The well-posedness of the Cauchy problem

iatu+%83u =uv,xeM,t eR,
ooV +v = £|u|2,
u(0, x) = up(x), v(0, x) = vo(x),

was studied by Corcho and Matheus [12], which is called Schrodinger-Debye system.
To apply contraction mapping principle to handle this problem, the authors started by
decoupling the system to obtain the integral formulation:

«

t / I .
u(t) = U(t)uo—i/ Ut —r/)(e—%vou(t’)+fu(z’)/ T (o) Pdr)dr,
0 o 0

where U(r) = ¢!"*/? is the Schrodinger linear unitary group. When M was the
real line R, this system was proved to be local well-posed in H¥(R) x H*(R) for
|k|—% < s < min{k + %, 2k + %} and k > —JT. When M was the torus 7, this sys-
tem was proved to be local well-posed in H KTy x HS(T) for 0 < s < 2k and

|s —k|< 1. Moreover, the authors proved the global well-posedness in H*(R) x H*(R)
for — % < § < 0. Corcho, Oliveira and Silvain [13] considered this system with initial

data in the classic Sobolev spaces H k(M) x HS(M), with k and s satisfying max(0,
k—1) <s <min(2k, k + 1) when M = R"(n = 2, 3). In [1], Arbieto and Matheus
slao considered the system when M = T". They proved that the system was locally
and globally well-posed in H*(T') x H*(T) fors > 0 whenn = 1.
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There are also many results regarding other types of long and short wave equations.
Tsutsumi and Hatano [37] studied the Benney system:

{iut+u” :nu+,3|u|2u,
ne+ny = lul2,

the authors proved the well-posedness for initial data (uq, ng) € H KR) x H/(R) with
% <k<l1,l>k-— %inthegeneralcaseﬁ # 0,and (ug, ng) € HYR) x H%(R)with

0<k< % in the special case 8 = 0. Guo and Wang [18] considered the following
nonlinear equations with periodic boundary conditions:

{ ity + gy — nu +icu + Bg(|lul?u) +hi(x) =0,
e+ lu2+8n + y f(Jul?) + ha(x) = 0,

the authors showed the existence and uniqueness of the global solution of the gen-
eralized LS type equations. Huo [22] proved the Cauchy problem of the LS type
equations where the long wave is described by Benjamin-Ono equation is locally

well-posed in H*(R) x H S’%(R) for s > 0. In [34], Pecher investigated the Cauchy
problem for Schrodinger-Benjamin-Ono system and showed global well-posedness

for data with infinite energy where s > % Bekiranov, Ogawa and Ponce [2] proved

that the Cauchy problem of the coupled Schrodinger-KdV system is locally well-

posed in H*(R) x H* ’%(R) for s > 0. In [38], Wu improved the local results for the
Schrodinger-KdV system and obtained some ill-posedness results at low regularity and

global well-posedness results in H*(R) x H*(R) for s > % The LS type equations

were also studied in many other works( [3, 31-33, 39]), including (2+1)-dimensional
LS type equations which were worth learning for researchers.

This paper is devoted to the local well-posedness of (1) in low regularity sapces
and the global well-posedness in Sobolev spaces. Bourgain space was introduced
by Bourgain [6] and [7] to research the low regularity for some equations, which
are to dispersive equations as Sobolev spaces are to elliptic equations. The Bourgain
method is also called the Fourier restriction norm method. In [27-29], Kenig, Ponce
and Vega developed a bilinear estimate and applied it to these equations in Bourgain
space, which simplifies the Fourier restriction norm method. This method was initially
applied to Schrédinger equation and KdV equation and has improved significantly
compared to previous results, see [20, 35]. To study the global well-posedness in low
regularity, [k; Z]-multiplier norm method and the I-method were introduced in [10,
36]. So far, the Bourgain method has been applied to many other equations such as
Boussinesq equation, Hirota equation, Ostrovsky equation and the fifth order shallow
water equation, see [9, 11, 17, 19, 21, 23-25, 30].

Although the Cauchy problem for the LS type equations have been studied by
many reseachers, the initial-boundary value problem(IBVP) of the LS type equations
is discussed by few authors. How do we deal with the system with nonhomogeneous
boundary data on the half line in low regularity? Erdogan and Tzirakis’s work in
[15] is the motivation for our paper. In this work we investigate the local and global
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regularities of the LS type equations with initial conditions (ug, no) € H*(R") x

H*'(R*) and boundary conditions (k, f) € H 2XQ%I(R‘“) x H*(R"). Recall that the
Fourier restricted norm method has been used to many other equations and has got
success, therefore we try to use this method to obtain the local well-posedness in
low regularity. However, it seems that the Bourgain type spaces were always applied
to dispersive equations. To find admissible 5o and s1, we try to apply the Bourgain
space method for the system by special techniques where the second equation is not
dispersive in this article. Then the existence and uniqueness of the solutions is obtained
by the contraction mapping principle. For the completeness of the research, the ill-
posedness is proved accordingly.

Moreover, the global well-posedness for the nonhomogeneous boundary-value
problem is considered. Regarding the well-posedness, there is a difficulty in our case
because of the presence of the boundary conditions. Keeping the difficulty in mind,
we apply the work of Carroll [8] to overcome this, where the unknown boundary
conditions are seen as the given undetermined coefficient.

In this paper, we say (so, s1) is admissible if sq, s1 satisfy

1 1
O<s0—s1§1,2sozs1+§ and so>0,s1>—§.

Definition 1 The system (1) is locally well-posed in H*0(R*) x HS!(R™"), if for any

2s0+1
ug € HORY), h e H T (R*), np € H*1(R*), and f € H*1(R"), the integral equa-
tion (4) below has a unique solution in

250+1

(X" N CYHO NCIH, 1 x [Y*-"' nCYHS N CYHM,
where b, b; < % and T is sufficiently small.

Theorem 1 For any admissible pair (so, 51), if
2s0+1

(1o, o) € HORY) x H'(RY), (h, f) € H- T (R*) x H'(R*), the equation

(1) is locally well-posed in

250+1

(XN CPHP N CIH, 1 x [y n e N COH.

The introduction of X*0-? and Y*1-1 is presented in the next section.
In the next theorem, an ill-posedness result is stated for the LS type equations.

Theorem 2 If 250 < 51 + %, the associated map data-solution
H*RY) x HI(RY) — CY([0, T1; HO(R*) x H*'(R")) is not C? at zero.

Theorem 3 If (ug, ng) € H'(R*) x L2(R*), (h, f) € H'(R*) x L>(R*), the equa-
tion (1) is globally well-posed in H'(R*) x LZ(R*).
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The paper is organized as follows: In Sect. 2, we give several notations and outline
important results prepared for the later study. We use the Bourgain space method to
present the bilinear estimates in Sect. 3. Section 4 is committed to the local results of
the equations. In Sect. 5, the ill-posedness result is stated for the system. In Sect. 6, we
obtain a priori bounds and show the global well-posedness of the LS type equations
in Sobolev spaces.

2 Preliminaries

Now, we give several basic notations and important results in preparation for subse-
quent proof.

2.1 Notations and Function Spaces

Throughout the paper, C will signify an arbitrarily positive constant. In all this paper,
for x, y € R*, we denote x < y by x < Cy. In addition, we denote x ~ y by x < y
and y < x. Furthermore, we use x < y to denote the statement x < C~'y. The
notation x+ means x + €, where € is small enough. We denote x — similarly.

We set

&) =V1+|E2~ 1+
Dy f(t) = f(0, t), for a space time function f.
We fix a cut-off function ¢(t) := ¢, ¢ € C{°(R) such that¢p = 10on [0, 1],¢ =0

for |t|> 2.
Lets > —%, we define

H'(RY) = {f € 2(R"): 3f € H*(R) so that fxo.00) = f}
by the norm
I £ 1l irsrey:= inf (Il £l s ry: £ x00,00) = £

where x is the usual characteristic function.
We denote the linear Schrodinger group by

Wrf(x, 1) = €' f(x) = F1(e ™0 F))(),

where f € L*(R) and p&) = —52. Similarly, we wuse the notation
e~ f(x) = F1(e"*0) F(-))(x) for the second linear equation. It should be pointed
out that frepresnts the Fourier transform of f.

We give a defineition of the function space X*?:
il o= 1146)" (2 + ) E, Dl 2,2
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We also give a defineition of the space ¥*?:

Inllys.s= 11(€)° (x — 8)"7(&, Ollrar2-

2.2 Notion of a Solution

To begin with, it is necessary to consider the linear problem on R* to explore the
solutions of the IBVP (1). Considering the extension of functions, the following lemma
need to be stated.

Lemma 1 ([16]) For g € H*(R*).

(1) Suppose —1 <'s < 1, it holds that || x(0,0)&ll s ®) S l1gll s ).
(2) Suppose 3 < s < 3 and g(0) = 0, it holds that || x(0, 00)g | s ®) S 1€l (-

Then the idea is to write the solutions of two linear equations respectively. Con-
cerning the linear Schrodinger equation, the solution

{iu,+um=0, (x, 1) € Rt = (0, 00), @

u(x, 0) = ug(x), u(0, 1) = h(r)
can be written as

Wi (o, h) = Wr(t)iio + Wy(0, h — p),

where p(t) = ¢(t) Do[ Wr(?)itp], which is in HQ%I(RJ') and 1z is the extension of u.
Note that W (0, h) stands for the boundary operator which has been given in [4].
The porperties of the second linear problem is also considered:

{n,+8n:0, (.x, I)GR+:(0a OO), (3)

n(x, 0) = nop(x), n(0, 1) = f(1),

where f(1) = e~%g(0) and g(x) is a arbitrary function with respect to x. Observe that
when ng = 0,

V50, f)(x) =e % g(x)

on R* is the solution of (3).
Let 71 be extension of ng and Vé (ng, f) be written as

Vi(io, ) = e fig(x) + VO, f —r)(x),

where g(x) is taken as no(x) and r(t) = ¢(t)Do(e %" 7ig) = ¢(t)[e*"7ig]|x—0. Note that
the restrictionof Vé (g, f)onR* x [0, 1] is the solution of (3).
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The LS type equations (1) can be rewritten as the equivalent integral formulations:

{u(t) = ¢(OW (i, h) — ip(t) [y Wr(t — T)F (u, n)dt +id(n)W((0, g), @)

n(t) = ¢p()e ' iig(x) + (1) [y e "G (u, n)dt + p(t)V{(0, 2),
where F(u, n) = ¢(t/T)(nu — |u|2u), qt) = qb(t)[fot Wr(t — ©)F(u, n)dt]|x—o and

Gu, n) = —p@t/T)lul?, 2(t) = pM)] fy e "V G(u, n)d]|x=0.

For the dispersive equation, we collect the following basic results that are classical
in previous studies. (see [15]).

For any s and b, we obtain

IO Wrgll x50 S gl Hs- (&)

Fors € R, 0 < b < L and 0 < by < 1 — by, we obtain

t
||¢>(l)/ Wr(t — O F(T)dt || xs.00 S N Fll 5.4 - (6)
0
What’s more, for T < 1 and —% <by <b < %, we obtain

It/ TYF llgsny S TP P F ll ooy (7

There have been extensive results for the dispersive equations in Bourgain spaces. One
of the features of this work is that we give similiar estimates in Bourgain type spaces
for the second equation which is not dispersive.

Proposition 4 For any s and b, it holds that
e gllysr S Nlglms- (8)

Proof According to the introduction of the space Y5% we can see that

le(e™ gllyer = 146)° (T — ) Zi(d(D)e ™ BENDN 2z,
SIE O =8 Zi e Ol 2w |12z,
SO TO N2z

This completes the proof. ]

Proposition5 Let0 < by < % by > 0, with by + by < 1, s € R. Define k¢ (¢) by

itty _ §

e o o
- F(t1, &)dt.
1T] +4

ke (1) = (1) / ¢
R
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Then, there exists

T, §)

l{z — &) 2ks(f)||L2< ”W”L

Proof First, the estimates are given for some integrations. If |7|> 1, there exists

— §)2b1
f %dr <1
I7]>1 |l‘L’+8|

If |t|< 1, we have the estimates as follows:

_ 5\2b
/ %dtﬁ/ (t — 8)1dr < 1.
lej<1 liT +4| lr|<1

Then, we separate the integrand as follows:

kg(t) = k1 —ky + k3 +ky,

where
itTy . —&t .
= ¢(1) - F(zy, §)dty, ko = ¢(1) - F(t1, §)dty,
|T||lerl+8 m|zllT1+5
and
1— 675 eittl -1~
= (1) ——F(t1, §)d11, ka = ¢(1) ——F (1, &)dty.
lr<l LT +46 lr<l LTI +6

For k;, we obtain

Iz = 8)"2.Z (k1)) .2

= ll(z — 823 = w)( Oz
146
S 1))+ %( 02
S 128l ||M( Oll2
F(., E)x =1 (Tt — 5)"‘
< (=8 i+ Iz
F(z, &) (T —8)21
< ”W”L (|r|>P mﬁ
F(r, &)
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For k;, we obtain
Iz = 8)2.Z (k) .2

= |{r — 82 Fi(p(t)e ™)

S f PO e - 8)"2.Fi(p)e ")l 2

7|>=1 1T +4

_521 \73
LN ( / &dr)znu—6)’"%<¢<r)e—&>|ug

(t — 5>b1| v 7]>1 |l‘L’+5|2
F(t, £)

< || —2Z

~ ” <T 8)171 ”LZ.

For k3, we obtain

Iz = 8)" 1 (ka) ()l .2

F(z,
- /| ©8) oyl — 812 Zuptan(1 - e NI

nl<l iT1+8

F —s)h 3
o e ( /| “.—)dr)z-||<r—6>b2%<¢<r)<1—e‘”))HL;

(rt — 5)h1|L <1 it +82
< o 2.
(t — &)k

For k4, we obtain

It — 8)’”%(k4><r>||Lg

F(z, §) I(z = 8)2F: (1" )l .2 I (r — 8% \2

(r — 8)br 72 Z </|r|<1 —Iir e dr)
F(‘L’ &) ||t"¢(t)||Hf2 |72 (r — )21 3

S gl » — (/W T df>

n=1
||—F(’ .
~ (t — 5)b1 L2

=l
1
— n!

The proof is completed. O

Proposition 6 Let 0 < by, by < 1, s € R, then

t
l(t) f e PO E ooy S IF llys, b, -
0
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Proof According to the introduction of the space Y*?, we obtain the estimate as
follows:

t
(1) fo e PCOF) s

1
— 1 (=8 F0w) [ D FE O Ol 30z

itT) —t8

SIE (= 8" F (o) /R - For dm)®l 2,2

SIE T = 97Kl 2.2

o F@. )
[{§) ”W”L%”L?'

e
iT1+6

S|

~

The proposition is proved, where the last inequality can be obtained by Proposition
2.3. O

Finally, we get the lemmas [16] below which we will use throughout the paper.

Lemma2 If b; > by > 0and b; + by > 1, then

1 —b
/ (A —a)br(x — )b dr S {a = b) P ¢p (a = b),
where
L, b > 1,
op,(a) = { log(1 +(a)), by =1,
(@)=, by < 1.

Lemma3 If by, by, bo > 0 and by + by + by > 1. Let ] := max(1, by, by, b>). Then

! —bo—b1—by+ |\ O+
/<A—a)b0<x)b1(x+a)bzd)‘5<“> 0T a)™,

0+

the term (a)”" can be discarded unless max(bg, by, by) = 1.

Lemma 4 For fixed 8 € (%, 1), we have

/ ! dx < ! -
(MPVIA —al (@)f—2
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3 A Priori Estimates

Our destination of this section is to establish a priori estimates of the system (1) which
allows us to prove the local results. We start with the linear estimates on two equations
separately. Then we prove the crucial bilinear estimates in detail.

3.1 Linear Estimates
The corresponding linear equations are posed first:

iy +uye =0, (x, 1) € Rt = (0, 00),
n;+én =0, (x, 1) € R* = (0, 00),
u(x, 0) = up(x), n(x, 0) = no(x),
u(0, t) = h(t), n(0, t) = f(1).

©)

For this system, we have the following lemmas.

25+1

Lemma5 Fors > 0.Foranyuo € H*(R),itholdsthat¢(t)Wruo € COH, * (R x R),
and we have

||¢WRMO|| 2s+1 5 ||u0||Hx(R),
LeH, *

Proof Because the argument is well-known, we shall omit the details here.
(see [16]) O

Lemma6 For s € R. For any ng € H*(R), it holds that ¢(t)e %' ng € CYH!(R x R),
and we have

e noll Lo 1z S ol as ey-
Proof 1t is not hard to achieve the lemma since the operator is continuous. (|
25+
Lemma 7 For s > 0. Suppose h with x@,00)h € HTI(]R), it holds that

2s5+1
W0, h) € COHS(R x R), and ¢(t)W/(0, h) € CVH, * (R x R).

Proposition 7 For b < 1 and s > 0. Suppose h with x(,00)h € H %" (R), it holds
that

Ip(OW0, )l xs.0 S 1 X0, 0002 251
H, © (R)

Proof Tt can be found in [15]. O

Lemma 8 For s € R. Suppose f with x0,0)f € H*(R), it holds that
Vg(O, f)e C,OH;(R x R), and ¢(t)V(§(O, f) e C)?Hf(R x R).
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Proposition8 Forb € Rands > —%. Suppose f with x(0,0) f € H*(R), it holds that

lpV5O, Hllys.e S Ix0,000.f 1y ®)-

Proof The proof is not particularly difficult but will not be reproduced here. ]

3.2 Nonlinear Estimates
Let us estimate the forced IBVP:

iuy+uy = F, (x,1) € Rt = (0, 00),
ng+én =G, (x,1) € R* = (0, o0),
u(x, 0) =n(x, 0) =0,

u(0, 1) = n(0, 1) = 0.

(10)

Proposition 9 For any b < % it holds that

t
||¢/ Wr(t — D)Fdt| 21
0

COH, * (RxR)

1
Flixs-»,0=s =,
IF 1l xs. ~» $=3

~ s—3

2 —~ 1
IFlleot) [ 048377 P& Mide g 5 <o
R

Proof The proof can be found in [15]. O
For the second equation, we have a similar proposition:

Proposition 10 For any b’ < %, it holds that

t
16 [ 00 ey

s 1
G llys, -+ () /R()»—5)

1L, A 1
||G||ys,_h/+||fR<A—a>f NG MidEl 2. 5 <.

=~ 1 1
|G (8, A)IdéllL%, 5 <s <3

~

Proof Now that Y*>? norm is independent of space translation, it turns to estimate the
bound above for quo(f(; e =Gdr). Atx = 0, we get

t t
D0< / e % DGdr) = / / e YOG, t)dtdé.
0 R JO
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Using

GE 1) = / TG (E, Md

R

and

/t ITAT8 4 el — 1]

e T=—,
0 iA+6

we obtain

t em‘ _ e—tS .
Do< / e““"”Gdr) = / — G(&, MdEdx
0 R2 IA+6

el[)\ e*IB
~ | ———— G, rdedx.
| =50t e
Let us write
t
¢(t)Do< / e_‘s(t_r)Gd‘L') =51 +5+8S3,
0

where

S1 = ¢(1) / e G~ 9GGE, nded,

Sz—(b(t)/
S3 = ot )/

and ¢ is defined as a smooth cut-off function in [—1, 1], and ¢ = 1 — ¢/. According
to Taylor expansion, we obtain

— &G, NdEdn,

— 8)G(E, VdEd

ith

e _eft _ zzxz(t) sl
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Using an inequality that ||uv| gs < |lu|| g1 ]|v]l g5, we have

o k .
1511 5rs §Zmu / ¢ =8y — )G (&, MdEdA i

sz(k_l),n f(x—s)" Y — )G, Mdéll 2

1 ~
< II()»)S/R 5 G, MIdEll2,

where we use that ||¢r¥|| y1 < k and Z,fil ﬁ is convergent. This completes the

proof for s € R.
For s > %, by Cauchy—Schwartz inequality in £, it is easy to find that

NI slip(m” / (&)2dE)? - G lys -

[A=d|<1

We can bound it by |G ||ys. - since f(é)_z“dé is convergent.
Next we prove the second term S,

1 ~
120l sy < Nl I14A)* / mwcu —9G(E, MdEll 2
R A —

s 1 ~
S ) /R =3 IGE, MIdEll 2.

For —% < s < 1, the proof is completed.

2°

Fors > 1, we see that

2
15211 Fs ) < II/ } G, ?»)IdSIILHII/ IG(S MIdE| 2

where we used the inequality (1) < (A — &) +3. Applying Cauchy—Schwarz inquality,
the second summand is bounded as follows

2 1 R T :
(fR“” (/ <x—8>2-2b’<é>2sd§></ gy 196 dé)‘”)

(8 2s 1
<S p(/ (A — 8)2 217/ ) dg) ”G”Y&f},/

5 ||G”ys,—h’~

To compute ||S3]| gs(r), it can be completed by the method analogous to that used
above. |
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3.3 Bilinear Estimate

In this section, our goal is to give bilinear estimates which is of great use to obtain
local well-posedness. Due to the presence of the boundary conditions, we shall deal
with more bilinear estimates than the Cauchy problem of LS type equations.

Proposition 11 For any admissible 50, S1 and for any

ap < min(%, S1+ %, s1 —so+ 1), for % —€e<b, b < % where € is sufficient

small, it holds that
null ysorag. o S N1l ysi.op Nl so.5-

Proof According to the relation of the Fourier transform and its convolution, it is
obvious to get

nu(g, v) = /ﬁ(él, u(€ — &, T — tdérdr,

Therefore,
1 o= | / mmo”@l’fi”f) T W kanily,,.
We define
fE T =[AE, DIE)™ (T —8)™,
g(&, T) =[a(E, D) (r +&%),
and

(§)forao(gy) (g — &)

ME, &, 1, 11) = (T +E2)b (1) — 801 (T — 11 + (€ — £1)2)b°

Then it turns to prove that

|| / ME &, T ) f 6, wgE — &1, T - mdaidnily,,

2 2
SIFNIz2 N8l

= 03, lull}

Yst: N X50- b
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Applying Cauchy—Schwarz in the &7 integral and Holder’s inequality, the norm
above can be estimated by

1/2 172
||< / Mzdsldn) ( / fHEL TS E — &L T — rl)d&dn) ||25L%
< Sgup (/ Mzdéldn)II/ fz(fl, Tl)gz(é &, 17— Tl)”LéL%

= zup( f Mzdsldn)nfnizngniz.
, T

Thus it turns to prove the proposition in the case that the supremum above is finite.
Applying the Lemma 2.5, it yields the bound

sup

/ (&)250%200 (£) =281 (£ — £) 725
&1

T+t —5+E PP

With the help of the inequality (a — b) < (t —a){t — b), the supremum is reduced to

sup dé&

()220 (61) 721 (g — 1) 2
0]

(E2+5—(E —EH-
B (£)250% 200 (£1) =21 (& — £1) =250
= sup 3 -

¢ (6 — & +28&))

d1.

Observe that when |£]|< 1, it is not hard to obtain the bound

()220
fw—sfﬂ sl

. 1
provided s1 +s0 > —35.

When |£]>> 1, we take the following cases into consideration: i) |&1|< 1, ii) |&] —
2&|< 1 and iii) |€1|> 1 and |&; — 2&|> 1.
In the first case, the transformation n = & 12 —2&&1, dn = 2(&1 — §)d& contributes

to the following:

|§|2a0—1
Sup/ ~——=dn <L
g Jmge 0 —mn)

: 1
provided that ap < 5.

In the second case, after the same variables substitution, the integral is estimated
by

|%-|2a0—2s1—l
sup/ —— g dn < L
£ Jinigiel (8 —m)
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provided that ag < s1 + %

Inthe third case, which implies that (6 — 512 +28&1) ~ (512 — 2£&;1),itisnotdifficult
to estimate the integral (after the variable substitution £ — & + &)

(E>2s0+2a0
Sup/ 1— 25 2s +1—d$1'
£ (1 — &) —(51)0 (& + &)
Combining Lemma 2.5, we bound this by

<%.>250+2a0 <%.1 >—2s1 —2s0—2+max(1l,2s;+1, 2s50)+

— <§>2a072s1 —2+max(1,2s1+1,250)+
which is bounded for
1 . 1
ap < s + 1-— Emax(l, 2S1 + 1, 2S0) = m1n(s1 + E, S1 — S0 + 1).

O

Proposition 12 For any admissible S0, S1 and for any
%—so < ay <min(%, S1 +%,s1 —so+1), for %—6 <b, b < % where € is

sufficient small, it holds that

2 2(sp+ap)—3 g
] o+ &)+ nu(§, MIdEN 2 Inllys.ellullgso.e-
R

Proof This proposition can be shown in a similar way as before. First, we have

2 2(sg+ag)—3 e A _ _
l R3<X+E) @ AU = &1, A = ADld§i1drdE ]2

2(sg+ag)—3

(A+EXT T f(Er, M)QE — &1, A — Ap)
R3 (E1)51(E — &1)0 (A — 8)P1 (A — A1 + (£ — &1)?)

pd§1drdE| 2.

Using Cauchy—Schwarz inequality in &1, A1, & variables, it turns to verify that

()\‘ + 52>s0+a07%
sup

X /R EPTE — B0 — 8P — T + (€ — By 1 dhdE < co.

Using Lemma 2.5 in the XA integral, we obtain the bound

su/ 0.+ 2o dEdE 11
D e EOPUE — &) 0+ (€ — )2 —oy— 14

First we consider the case % < so +ap.
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144 Page 180f36 C.Guoetal.

Using (A +£2) < (A + (8 — £1)% — 8)(&1) (&1 — 2&), we bound the integral above
by

R> (&1)

20— g) 20

For |£|< |1, we bound this by

1
/R2 Guym e B0zl — gymo 19 S

since 2sg > 1 and 2s1 +3 — 2s¢ — 2ag > 1.
For |£1>> |&1], we bound it by

1 1
/ e gt §/ CIETE=TR

since ap < 51 + %

Now we consider the case % <so+tap < %

Applying the inequality (a — b) < (t — a)(t — b), we bound (11) by

1
/Rz (61)25 (6 — £1)2%0 (67 — 2616 — 8) 30

d&d§.

For |&|< 1, the integral is estimated after the variables substitution
n =& —2£&1, dn = 251 — §)dé:

1
/ 3 rdndé S
R2 (€>2s0+1<n _ 3>‘7—s0—a0+7

since s9 > 0 and so + ap < 1. For |§ — 2&1|< 1, the integral is estimated after the
change of variable as before n = 512 —28&1, dn =2(& — £)d&y:

1
f 3 -dndg S 1
R2 <i_->2s1+2so+1<)7 _ 8>7—so—t/10+7

since 51 + 59 > 0 and so +ap < 1. For |§1|2 1 and |§ — 2&1]|> 1, which implies that
(8 — 7 +28£)) ~ (€7 — 2£&), we bound the integral by

1
/Rz (£)21F3 8000 (g _ £1)250 (g — 2g)3 %040

d&d§.
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Using Lemma 2.6 in the &; integral, it is not difficult to get the bound

1
R (5)23' +3—2ap—max(1,2s; +% —s0—ao, 250 % —so—ao)+

Under the assumption of the proposition, the integral is finite. (|

Proposition 13 For any admissible sy, s; and for any ap < min(2sg + %, 1), for

% —e<b, b < % where € is sufficient small, it holds that

IHae 1 ael] gsgrao. 5 S Nl 39,0
Proof The proof can be found in [16], so we omit it here. O
Proposition 14 For any admissible 50, S1 and for any

% — 50 < ag < min(l, so+ %, 4s0), for % —€e<b, b < % where € is sufficient
small, it holds that

2(spt+ag)—3 ——
||/ O+ E) T ulPu, MIAEN 2 S Nulg.o-
R

Proof Similarly to Proposition 3.9. It is straightforward to show that

2(sgtag)—3 ——
||/R<x+sz> T lluPuE, el

.y /R o+ 620, w)EE, )

UuE —E —E, A= — A)d&1dgrdidradE] 2
[ T S @ 1) € 60— = k)
RS (E1)50(82)%0(E — &1 — £2)%0 (g +EDP (M — £3)P

1
’ d&1d&rdrdrad .
T v

With aid of Cauchy—Schwarz inequality in the &1, &, A, A, & variables (after the
change of variable &, — —&», Ap — —Aj), it turns to prove that

su / (A + 52)S°+“°_%
xp RS (£1)250(82) 250 (8 — &1 + &) 250 (A + E2)2 (A + £2)2D
1

Rtk — G g vy idRdiidiadg < co.
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Using Lemma 2.5 in the A; and X, integral, the supremum is bounded by

<)\ + ;;:2)30*"10—%
sup

A /R3 (E1)250(E2)20(5 — §1 +£)20(+E] —E7 +(E — &1 +§)2)1~

d&1dédéE.
(12)

First we consider the case % < s0 + agp.

Note that (A +&2) < (A +E2 —E7+ (& — & +£)1)(E — &) (&1 — &), we bound
(12) by

I (61 — £ 073 (g — gy
R3

G E 0 —fr byt R

After the variables substitution &, — &1 + &, &1 — & + &1, we bound it by

<§1 >~3‘0+(l0—% (%-2)50+a0—%
d& dérdéE.
/1%3 (& +§1>250<§ +§2)2s0 (& +& +é,;‘2>230 §1d&rd§

Considering the subcases | + &1 + & |2 || and |€ + &1|2 |&|, we can bound it by

—2s0 (EI)SO+a07%d >2d / (g’_-l)so+a0*%(§2>so+a0*% Jedind
/(§> (/ <§+%-1>2s0 &1 &+ <§>2x0<§-+$] +§2)2S0(§+E2>2X0 §1d&rdE

=51+ 9.

Notice that (£ + £1)(&) = (&1), we have

< —2s0 <;§)s0+a07% 2
si< [@ _ET ) ae
(& +£,) 0003
1 2
_ / <s>2“°3< / —3dsl) d
(€ + £yt

<1
provided3—2ag > 1 andsg — ag + % > 1.Using Lemma 2.5 and (§ +&) (§+&1+&) =
(&1) and (& + &) (&) 2 (62), we get

1

(€ +£)3200(6 + £ + )00+ (g) 0=

s
/ d€de
1

dé1d§2dé

A\

fl 3 2a0 )So ao+%

A
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provided 3 — 2ag > 1 and so — ap + %

> 1.
Now we consider the case % <sp+ap < % For sg > %, applying the relation (a —

b) < (t —a){t — b), we bound (12) by
1

/R3 (E1)250(£2) 290 (€ — &1 + E2) 290 (8] — £)3 0790 (g — £3)3 500

1
S / 3 3 d&d&
R? (51)2”(52)‘?0_““7(51 — &p)270m

d&1d&dé

A

d
b
1

A

provided so — agp + % > 1.
Fors > %, we take the following cases into consideration:i) |§1 —&|< 1 or |§1—&| <

1,ii) |6 —&|= L and |§; — &2|= 1.
In the former case we find that (&1)(§ — &1 +&2) ~ (§2)(&), which yields the bound

—2s —4s
/ ()" 70(8a) ™ dé\dbrdE.
(61 —§)

3TN0 () — )30

Subsitituing n = (§1 — £)(&1 — &) in the &; integral, we obtain

—2s50 —4s0
[ — (éi) (62) dndésdt
(M) 27070/ |40 + (& — &)?

250 4so
(5) E (2522)SO —dads

E
—250 1
l / 12250 B2z a 45 S0 > 7

) 250

1
d, <_9
§.50 =7

2 2s0—aog+4so—1

provided ap < min(l, 4s¢). In the latter case, after the variables substitution & —
£ + &, £| — £ + £, the integral is bounded by

1
éﬂﬁh@%@ §1+62)20 (81 — )30 (g — )30
—25 —25 —25
[ Ea e el
R (§1) 3790740 (g5) 300

d§1d&rd§
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By symmetry, we obtain two inequalities: |& + &) +&|2> |€] and |& +&1]2 |&], leading
to the bound

—2s0 2
f <s>2s0( f %@) d
(£)27%040
. / (E)H0(E + £2) T20(E + & + &) 0

(£1)2 7500 (g) 3 =50

—2s —2s
S /(5)72S0(<%—)S0+tl07%)2d§+./ <§> 0<$+$2) 0 d$2d5

(& +E2)37070 (gy) I 500

& / (£)720(() 003 2 g + / (£) 720 (£) 0903 g

d§1d&rds

<1
provided ag < min(1, so + %). O
Proposition 15 For any admissible 50, S1 and for any

a; < min(sg — s1, 250 — $1 — %), for % —€e<b, b < % where ¢ is sufficient

small, it holds that
2 2
9 et “ Ml ysyear.—o1 S Nl s

Proof Similarly to Proposition 3.9. Notice that

ox(uP)E, T) = cE@ * WIE. 1),

Therefore,
S1+ai13y = _ _
R ) e L
Let
fE, ) = A, DlE)(r+£%)°
and

(E)raE(5) 05 — &)

ME 61 T 1) .
¢ &t 1) (T =8 (r + (T — 11 — (& — &1)2)P
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Then we estimate the supremum by

sup
§

2s51+2ay 2 —250 _ —250
/(5) 1§17(61) (& — &1) dt

(52 _ 2&-%—1 _ 5>2b+2b1—1
- / (£) 2514201 g |2 (£,) ~250(E — £p) %0
~ Sup 2 1—

(€2 — 288 —6)

d1.

When |£|< 1, we bound the supermum by

sup / Ldél <1
El<1J (EENIT(&)ds0 7T

When |§]>> 1, we estimate the supremum by

/ (£)Z1201 |12 (g)) 7250 (8 — &) 7250

(E2 — 2881~ 4.

sup
3

Then we consider the following two cases: when |£€ — 2&;|< 1, we bound the integral

by

2s51+2a14+2—4sg 2s51+2a14+2—4sg
/ (&) dt, :/ (&) dp < (g)2r2ai—ds
\ lpl<1

g—oe|<1 (62 —288)1- (o

which is bounded by a; < 259 — 51 — %

when |£€ — 2£(|> 1, we bound the integral by

/ <$>2s1+2a1+1+ dg, < <;§>231+2a174so+max(2s0,1)+
(E1)20(& —g)20( —28)1= 7 ™ '

this holds since a; < min(sg — 51, 250 — 5] — %)_

O

Proposition 16 For any admissible sp, s; and for any % —51 <a; <1—sq, for

% —e<b, b < % where € is sufficient small, it holds that

”/R“ — &) o |uP1dE N 12 S el g

Proof Similarly to Proposition 3.9, we continue to show that

()\' _ 8)2(s1+a1—1)|%-|2
P /R (ENZ0(E — £1)20 (A1 — E2)2(h — Ay + (€ — £1)2)2

d&jdidé < oo.
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With the help of Lemma 2.5 in the A; integral and the variable substitution n =
£(& — 2&1) in the integral, the supremun is bounded as

A—3 2(s1+a;—1)
/ ( ) €] dndé.
R

T e I E T D)

A

Without loss of generality | — §|Z €], we get

(A — 5)2(s1+u171)|§|
Slip /IRZ (£)20(k + g)% (n+ n}l_d”d?

Using sg > %, then integrating in 1, we have the bound in a similar way as before,

(A — 5)2(&1+a1—1)|€|2
S'ip /1;2 (€>2SO<%—2+n>2so<)\+n)1_dnd€

/ ()L _ 8)2(x1+a|7])|§|2<§>72‘g0
R (r =&l

< sup dég,

A

When |£|< 1, we have the bound

1
_ 2(s1+ay)—3 <
SI;p(A 8) / |§|2s0_2dé S L

provided a; < % — 1.
When |£[>> 1, we have the bound

2 —2s0
Sup()x _ 8)2(51‘*‘111)_2/ wdf ,S 1,
A (&)
provideda; < 1 — s1. U
Proposition 17 For any admissible 50, 1 and for any

—%—sl<a1<min(s0—s1+1,1—s1), for %—e<b,b1<% where € is

sufficient small, it holds that

e [ 2 ey, < e
R (h—8) s et

Proof Similarly to Proposition 3.9, the goal is to prove that

W / (212 o — )2 g 2
2 S E0POE — EDP0 0 — BN — ki + G — EDD)P

d&jdidé < oo.
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Using Lemma 2.5 in the A; integral and the variable substitution n = £(§ — 2&)), the
integral is estimated as

(20— 5) 2|
dndé.
%342@—§Pm@+ Iy (1 1= 14

Without loss of generality |§ — g|Z ||, it can be inferred that

nd§

sup
A

/ (R)2erran i — §) 2 |g|
2 (€ — )X0(E+ )P0 +m)1-

()\()2(A1+a1)()\’ _ 8>72|§|]+mm(230’1)<§)72“¥0
-/]R ()\' _ $2>min(2s0,1)—

< sup
A

d.

When |£|< 1, we have the bound

1
<§-)2s0717min(2so, l)dg ~ 1

sup ()\')2(31 +ay)—2—min(2sg, 1) /
A

provided that a; < min(sgp — s1 + 1, % — 51)-
When |£[>> 1, we have the bound

sup dé <1,

A

/ ()&>2(s1+a1)<)\ > 2|%-|1+m1n(2vo 1)(E> 250
(&

)mm(2so 1—

provided that a; < 1 — s7. O

3.4 Counter-Examples

We are devoted to give two counter-examples, which shows that the restrictions on sg
and s; are of necessity.

Theorem 18 For any b, by € R, the estimate ||nu/| ysgrag,—5 S 1172l ysy. by [[22]] 5.6 holds
only if s — s1 < 1.
Proof Choose N € Z* alarge integer. Let
2 1 2
A ={¢, 1) eR30<§ < Nandlf+$ |< 1},

1
By ={(5, 1) e R N <& 5N+mand|r—5|5 1}.

Put f:: x4, and g := xp,. A straightforward computation gives that

1
1 (N%0\2\? S
~ (2 ~ NS0—2
178N .- <N2( N > ) N2,

@ Springer



144 Page 26 of 36 C.Guoetal.

Nt -1
I fllyso.o~ N72 and [|gllysy.op~ N*172
Thus, || fgll o) 1Sl gsoo 1€ lysi 6 implies that so — s1 < 1, which completes
the proof. ]

Theorem 19 For any b, b| € R, the estimate ||ax|u|2||Ys1+a1.—b1 < ||u||is0‘,, holds only

if 250 — 51 > 4.

Proof Choose N € Z* alarge integer. Let
2 1 2
Ay={¢E DeR N =E=N+—Sand|t+E7|= 1},

Put f:: XA, A straightforward computation gives that

[N .~<—<N—>2>2 Noh

IS 0.6~ N2,

Thus, [|3, £ - 7%5 ||f||25O , implies that 259 — s1 > % The proof is completed.
O

4 Local Theory

Now, we consider the IBVP:

ity +yy = nu — lulu, (x, t) € R* = (0, 00),
ne+8n+u>=0, (x, 1) € R* = (0, 00),

u(x, 0) = up(x), n(x, 0) = no(x),

u(0, 1) = h(r), n(0, t) = f(t).

13)

We write the IBVP(13) in its integral equation form:

T'1(u, n)(t) =) Wio, h) — ip(t) f Wt — T (. it + igOWO. 4
Ta(u, n)(t) =p(t)e™* fig(x) + p(1) / “OGw, nydt + ¢(1) Vg (0, 2).
Let
By = {(u, n) € X x YL lu|| gugo+1 ysy.oy < 7.
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A proof will be given that I' = (I"1(«, n)(t), I'2(u, n)(t)) is a contraction map(see
[5]) from B, to B, for appropriate r and T. Applying (6), (7), Proposition 3.9 and
Proposition 3.11, it yields that

t
0 fo Wit = D F @, mdelos S IF@ I,y
S T3l — uPul oo

3

1 4
S T2 (ullgson Inllysby +llll ysg.)-

Notice that
(W (ido, h) +id(W(0, g) = ¢p(t)Writo + d()W(0, h — p +igq),
By (5), we get
@) Wriioll xs0.6 S llioll o S Nluolll o we)-
Applying Lemma 2.1 and Proposition 3.4, it can be inferred that

IpOWHO, b — p+ig) Ol xsor S Al 2901 +Pl 2901 +lIgll 2990

H * R H * R H * (R

By Lemma 3.1, we can obtain

Pl 2001 S lluoll aso®s-
H * (R

According to (7), Propositions 3.7, 3.9, 3.10, 3.11 and 3.12, we see that

1
5—b— 3
gl 2001 S T2777 (lullgsoon 1l ysy.or el s, 0)-
H 4 ®

In view of these estimates, it shows that
171, m)|l xs0.6 S Nueoll o)+ Al 21

H, R*)

3

1
1_ 5
+ T2 (el yso.0 17y sy g+l sg.6)-

Then, applying Propositions 2.4, 3.8 and 3.13, it yields that
t
1 4
lp(r) fo e TOGw, n)dtllysn S T2 707 (1l 3g.6)-
Notice that
(V0. )+ VO, 2) = p(t)e ' fig + )V (O, f —r — 2).
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Using Lemma 2.1, Propositions 2.2 and 3.5, it follows that
||¢(t)v(§(07 f —r—= Z)”)/Sl'hl S ||f||H;1+](R+)+”r”H[V1+I(R)+||Z”H;1+1(R)
By Lemma 3.2, we see that
171l 1 ) S ol o1 ey
Finally, according to (7), Propositions 3.8, 3.14 and 3.15, it is obvious to find

- 2
12l o1y S T2 777 (el g.0)-

With aid of these estimates, it yields that

1oy
IT 26, )llyson S Mol @t ot oyt T2 707 (el 0)-
Hence, the main point of this problem is the following inequality. For any u, n € B,,

IT1 @, m)llyso.p Slluoll mso@ny+ A1 25941
H * (RY)

3

1
1_,
+T2 (”u”XSOvb”n“}’sl’bl+||u||x.v0,h)s

T2, n)llys.o SHWO”H”(R+)+||f||H:‘1+1(R+)

1 _p— 2
+T2 (”ullxxo,h)’

Choosing r > 0 so that
r=4C(luoll mso@+Ihll 201 +lnollmsi@y+If 1l et g )s
H 4 [®Y) B R
t

i
T 0 (r+r?) < T (14)

CQrr+4r) <

N =

Then
(1T (ue, n)”xSovh"'”FZ(u’ n)”yfl’/’l <r.

Therefore, with such a choice of r, (I'1(u, n), I'2(«, n)) maps B, into B,. The same
inequalities permit one to infer that for r as in (5),

Ty (1, n1) — Ti(uz, n2)ll gso.o+ 112G, n1) — Ta(uz, n2)|lys.6

1
= 5(””1 —uz| ooty — n2llysio),
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for any (u1, n1), (u2, ny) € B,. In other words, the map (I'1(u, n), I'2(u, n)) is a
contraction mapping of B,.

Hence, we get the local well-posedness in X*0:? x Y*1:21. Now we check that
ue C?H;O([O, T1 x R). Applying Lemma 3.1, we observe that the Schrédinger group

operator Wriig and the boundary term W(0, f — p +iq) is continuous, which means
that the first and the third part of I"; is continuous in H*°. We also obtain the same
result for the second term owing to the embedding X*? C C,0 H; for b > 1/2 and (6)
2s0+1
together with Propositions 3.9 and 3.11. The result that u € C)?H, g (R x [0, T) is
shown from Lemmas 3.1, 3.3 and Proposition 3.7. In addition, the statements for n are
proved in a similar way. The well-posedness depending on the initial and boundary
conditions follows from the a priori estimates and the above contraction mapping
argument.

5 Ill-Posedness

Here, it is natural to be concerned about the ill-posedness of the LS type equation for
the completeness of the research. Therefore, we shall give a proof of Theorem 1.3.

Proof Suppose for the contradiction that the LS type equations (1)
are locally well-posed on [0, 7] for T € (0, 1), and the solu-
tion map (ug, ng) +— (u, n) is C?> from H*R) x H'([R) to
C?([O, T1; H°(R) x H*'(R)). Then. by Picard iterative scheme, so is the oper-

ator A = (Ay, Ay): HO(R) x H*'(R) — C2([0, T]; H*(R) x H'(R)) defined
as

t
Mo, mo) = =i [ WG = OIW D0 - V(I + W o PW(eolds
0
13
Az(ug, no) 2/0 V(t — DLW (T)uo»)(1)ldT.
Suppose N is large enough, we consider the initial data (1o, ng) such that

~ g1 PR _n
(&) = eoN 074 x1_10,101(€); 10(§) = €0N "~ 2 x(—10,101(§),

then [lugl| g%, l|nollgs1~ €p. We may set T=1 by choosing €y small enough. Further,
”AZ”C?([Q 1 H%1 is equal to

' 2
sup || o V(e = Dx (W (Duol“)(T)ld T 51

0<r<1

t
= sup IIE(fE)”/(; /eXp{i(l—f)ﬁ}[eXP{—if(é—Sz)z}

0<r<l1
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-expliTE bip(E — )it (E2))dErdT .2

t
> sup [£(&)" /(; /‘f‘/XlD{itS}eXp{—if(E2 —28& — 8)}uo(s — Sz)lfo(éz)dézdflng-

0<r<l

This term has a lower bound of
t
N OSUP1|I/0 fexp{it5}6xz7{—if(€2 — 285 — 8)}up(E — Sz)%(éz)dézdtllL§~
<t<
(15)

Note that N, set ¢ := W and localize to the region where —1 < & < 1, one can

confirm that

RN(explirs) expl—iT(&? — 2 — 8))) > %

where 0 <t <1t.
Thus, we obtain

(15) z 65N51+1N—2S0—% ~ 63N51—250+%.
Therefore, by choosing N large enough, we have

A2 ”C?([O, 1]:H51 (R)Z A

Since A; is C2—differentiable, we must have
2 2
”AZHC,O([O, 1];1-1S|(]R)§ luoll zso + 170l s »

but it fails to hold when s1 — 2s¢ + % > 0. This completes the proof. ]

6 Global Well-Posedness

We shall investigate global results in energy space H' x L2. To begin with, we recall
the equations which need to be solved:

i + uyy = nu — lul?u, x € R* = (0, 00), t € R*,
n+8n = —ul?, x e R* = (0, ), t € R*,

u(x, 0) = up(x), n(x, 0) = no(x),

u(0, t) = h(t), n(0, t) = ().

(16)

To obtain the global solution, we establish several a priori estimates and give the
following identities. A few computational techniques are needed for the desired results.
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Multiplying (16) by u, it is simple to yield

d [ _
i), lul?dx — 23u, (0, HA(t) = 0. (17)

Multiplying (16) by 2u; + u, integrating and taking the real part, it holds that

d o0 (o) 1 o0 o0
“ 2d 2 _ - 4 2
f uy x+/ nlu|“dx f |u|"dx +/ uydx
dt \ Jo 0 2 Jo 0
+/ nlul*dx —/ lul*dx —/ lul®nidx — R(iug, u)
0 0 0

— Ruy (0, () + 2R, (0, O () = 0.

From (16) we infer that

o o0
/ |u|2n,dx :/ |u|2(—3n — |u|)2()dx
0 0
o0 o
= —3/ |u|2ndx—/ |u|?|u|?dx (19)
0 0

o 1
= —5/ lu|’ndx + =h*@).
0 2

By substituting (19) into (18), we see that

d o o 1 o o
- f uﬁd“f n|u|2dx——/ lu|*dx +f uldx
dr\ Jo 0 2 Jo 0

o0 o0
1
+(6+ 1)] nlul2dx —/ ul*dx = Sh*@) = Rus, u) (20)
0 0
— Ruy (0, (1) + 2%Ru (0, I (1) = 0.
Multiplying (16) by u,, integrating and taking the real part, it holds that
d o0 — o0 — 2 —/ 1 4
——3 utdx — 2N ux(Wn)dx + |lu (0, H)|“=Ih(@)h (t) — =h"(t) = 0.
dt 0 0 2
(2D
From (16) we infer that
o o0
2?)?/ uy(un)dx = / n|u|§dx
0 0 (22)

oo
:/ n(—n; — dn)dx.
0
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By substituting (22) into (21), we see that

d o 1d ° 2 o 2 2
—% Muxdx——— n“dx —§ n dx+|ux(0, t)|
dt 0 2dt Jo 0

{ (23)
+ Sh(OR (1) + §h4(t) =0.
Multipying (16) by n, we obtain
d [ , 5 oo 2
— n-dx +26 ndx +2 nlulydx = 0. 24)
dt Jo 0 0
From (16) we find
o0 o0
/ nlu)2dx = 25)%/ Ty (un)dx
0 0
o0
= 25)%/ Uity + tyy + |ul>u)dx (25)
0
2 f "t — ShVE @) — (0, DP— 2140
=-3— x—3 — |ux (0, —= .
i 0 il * 2
Inserting (25) into (24), we get
d oo 2 d ~ © — © 2 ~ -/
— n“dx —2—S uudx + 28 n“dx — 23h(t)h (1)
dt Jy dt Jo 0 (26)

—2|ux (0, H)|>*=h*(1) = 0.

By (20)+(26), we derive that
d oo o ‘l oo oo o
_</ uzdx+/ n|u|2dx — —/ |u|4dx —23‘/ uﬁxdx+/ nzdx>
dr \ Jo 0 2 Jo 0 0
o0 o0 o0 o0
+/ uldx + (8 + 1)/ nlu?dx — / lu|*dx +25/ n?dx — Ry, u)
0 0 0 0

— Rux (0, OA() + 2Rux (0, OF () — 23hOR (1) — 2)ux (0, t)|2—%h4(t) =0.
(27)

Let

oo o0 1 oo oo o0
E(1) :=/ uldx +/ nlul>dx — —/ lu|*dx — 23/ Uil dx +f n’dx,
0 0 2 Jo 0 0

K(t) :=(28 — 1)/00 uldx + (8 — 1)/oon|u|2dx+(l —8)/Oo|u|4dx
0 0 0
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o0
—48 f uydx + R(iup, u) + Ry (0, (L) — 2Ru, (0, I (t)
0
_ 3
+ 23R (1) + 2|ux (0, t)|2+§h4(t),
Then we have
d
—E@{)+28E®) = K().
dt
Let
t
A= f lux (0, $)°ds.
0

By integrating (17) with respect to ¢, it infers that

t
el sl 122 = 3 /0 ux (0, $YR(s)ds.
Therefore, we obtain
lul?,< C(VA+1).

Using Gagliardo-Nirenberg inequality, we see that

* it ) < i et
(fo Jul dx) < Ml sl

In addition, note that
o0
|| nlulPdx|Splinl?,+C()llux |2 ,+C(A),
0 L L

o0
| f ity dx|<Jluy |22+ C(A),
0

1N (iur, W) Spllnll7+C(p)lux |7 2+C(A),

where C(A) represents a constant related to A. Then, we conclude that

1
E@®) 2 5 luxl+ln ),

K(t) < (28 — Dluy |2+C(0)(E — Dllux|*+p(8 — Din)*+(1 — &)l [lux |

+48||uy [P+C () ux |*+pIn|>+C(h, £, A)
< (28— 1+8C(p) — 48 + €7 (1 — O)lluy |2+3p[In|>+C(h, £, A)
< 8(lux|*+lIn|®) + C(h, f, A),
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where p < 1,26 — 1+6C(p) — 46 +6’%(1 — §) < 6. Therefore, we infer that

d
EE(t) +3E(@) < C(h, f, A). (28)
Using Gagliardo-Nirenberg inequality, we also see that

2 2 2
E@) S Null o+ lux 7o+ lImll -,

2 2 2
lull g2+ lluxll72+nl 7S E@),

Then combining (23), we get that A < E(¢) + 1. Substituting this result into (28) and
using Gronwall’s inequality, we deduce ||u|| z1+|/7|| ;2 remains bounded.
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