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Abstract
The variety of Moufang loops is axiomatized by any one of four well known (equiv-
alent) identities. We prove that this axiomatic harmony holds in a broader setting
by obtaining two alternate, generalized versions of the (traditional) definition of a
Moufang loop using four “local” identities, each derived from one of the four “global”
Moufang identities, one for loops, the other for magmas with the right or left inverse
property.

Keywords Magma · Loop · Moufang

Mathematics Subject Classification 20N05

1 Prelude

Amagma is a set, Q, together with a single binary operation, ·, and a two-sided neutral
element. We denote this (unique) neutral element as e for an arbitrary magma, and 0 in
our examples. A loop is a magma such that in x · y = z, knowledge of any two of x, y
and z specifies the third uniquely. For an overview of the theory of loops, see [1, 4,
7, 13]. Loops, per se, are so general that they resist mathematical analysis; one needs
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more structure. For example, loops that satisfy the associative law have elegant—even
tight—structure: they are groups.

In the 1930’s, Ruth Moufang [11] initiated the study of loops that satisfy a weak-
ening of the associative law: x(y · xz) = (xy · x)z. Note that we have adopted the
simplifying notational convention that the product of juxtaposed elements has priority
over the displayed binary operation · in terms to be multiplied, i.e., the identity we
have just written is shorthand for x · (y · (x · z)) = ((x · y) · x) · z. In addition to
much else, Moufang showed that, in the variety of loops, this identity is equivalent to
its mirror image: (zx · y)x = z(x · yx). She also initiated a study of loops that satisfy
another “nearly associative” identity: x(yz · x) = xy · zx , which has, of course, a
“nearly associative” mirror: (x · zy)x = xz · yx .

Bol [2] showed that in the variety of loops, these four identities are equivalent,
and so these identities came to be known as theMoufang identities. Not surprisingly,
the variety of loops axiomatized by any one of them is called the variety of Moufang
loops. Later, Bruck [3] provided a shorter proof of the equivalence of the Moufang
identities, and in [4], described more properties of these loops. The smallest Moufang
loop that is not a group has order 12 [6]; it is the only nonassociative Moufang loop
of order 12. The smallest Moufang loop of odd order that is not a group has order 81
[12] (in fact, there are five nonassociative Moufang loops of order 81 [5, 12]). In short,
Moufang loops are very close to groups; they share many deep structural properties
and equational laws. For example, both satisfy the flexible law (xy · x = x · yx), right
alternative law (yx · x = y · xx) and left alternative law (x · xy = xx · y). Moreover,
each element, x , has a unique 2-sided inverse, denoted by x−1, and satisfy both the
right and left inverse properties: yx · x−1 = y and x−1 · xy = y respectively, and
hence Moufang loops are inverse property loops. Moufang loops also satisfy Hall’s
theorem, as well as Lagrange’s Theorem [7, 8]. An arbitrary loop need not satisfy any
of these laws.

The theory of Moufang loops is sophisticated and quite deep, and includes a large
collection of highly specialized and technical results [6, 16]. The starting point in this
theory is the basic theorem mentioned above, i.e., that the four Moufang identities are
equivalent in the variety of loops. In this paper, we offer a proof that applies not only to
loops, but also in the more general setting of magmas, thus allowing us to strengthen
the theorem.

In Sect. 2, we introduce the notion of local identities and elements, and we prove the
equivalence of a pair among the four localized Moufang identities in a more general
magma setting, as well as the equivalence of all four of these identities for magmas
with the inverse property—a harmonious song. Along the way, we establish a number
of useful properties of magmas with either right, left or both inverse properties. In
Sect. 3, the harmony is pared down to its simplest elegance, as we give distinguishing
examples, showing that various assumptions from the previous section are not only
sufficient, but necessary.

Our investigations were aided by the automated reasoning tool Prover9 [9]; most
of our examples were constructed using the finite model builder Mace 4.0 [10].
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2 Scherzo—Local Laws

A local version of an identity is what results when one of the variables in the identity is
held constant. So for example, the familiar commutant of a loop L , which is given by
C(L) = {c ∈ L : cx = xc,∀x ∈ L}, is the local version of the (global) commutative
law (in fact, it is the only local version of the commutative law).

The more complicated associative law can be localized in three different ways,
resulting in the familiar left, middle and right nuclei: Nλ(L) = {a ∈ L : a · xy =
ax · y,∀x, y ∈ L},Nμ(L) = {a ∈ L : x · ay = xa · y,∀x, y ∈ L}, and Nρ(L) =
{a ∈ L : x · ya = xy · a,∀x, y ∈ L} respectively.

The Moufang identities are more complicated still. Each of the four Moufang iden-
tities has three variables; there are thus 12 possible ways to “localize” the following
four Moufang identities:

(A) : z(xy · z) = zx · yz (C) : z(x · zy) = (zx · z)y
(B) : (z · xy)z = zx · yz (D) : (xz · y)z = x(z · yz)

For example, the identity (A) is localized in three ways, thusly:

a(xy · a) = ax · ya, z(ay · z) = za · yz, z(xa · z) = zx · az

Let S be a set, together with a binary operation, ·. We introduce the following
notation: Aλ(S) = {a ∈ S : x(ay · x) = xa · yx,∀x, y ∈ S}, Aμ(S) = {a ∈ S :
a(xy ·a) = ax · ya,∀x, y ∈ S}, and Aρ(S) = {a ∈ S : x(ya ·x) = xy ·ax,∀x, y ∈ S}
where a is the local element.We shall write Aλ(S) simply as Aλ if there is no confusion
about the set.We focus on the following four identities (for both historical and algebraic
reasons summarized in [15]). We say that a ∈ S has the property (Aμ), (Bμ), (Cμ)

or (Dμ) respectively, if for all x, y ∈ S, it satisfies any of the identities:

(Aμ) : a(xy · a) = ax · ya (Cμ) : a(x · ay) = (ax · a)y
(Bμ) : (a · xy)a = ax · ya (Dμ) : (xa · y)a = x(a · ya)

We will call the element a ∈ Aμ(S) an Aμ element. The analogous definitions for
Bμ, Cμ and Dμ are now clear. For any magma, none of Aμ, Bμ,Cμ or Dμ are empty
sets since e ∈ Aμ ∩ Bμ ∩Cμ ∩Dμ. Also Aμ = Bμ; other than this trivial equivalence,
no one of the twelve local Moufang identities implies any other in the variety of
magmas [15], and none of the three “Moufang subsets” must be a submagma [14].
We define a Moufang magma as a magma which satisfies all four Moufang identities
(A), (B), (C) and (D). Though these identities are equivalent in the variety of loops,
only (A) and (B) are equivalent in the variety of magmas (Corollary 2.2, and Example
3.1 and its dual).

Any identity can be localized, of course. We define three local elements, a, that
appear later in the paper:

right alternative element :xa · a = x · aa
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le f t alternative element :a · ax = aa · x
f lexible element :ax · a = a · xa

Manyof the results in this section pertain to local versions of the right and left inverse
properties: a is a right (alternatively, left) inverse element if xa · a−1 = xa−1 · a = x
(alternatively, a−1 · ax = a · a−1x = x) for all x ∈ Q.

We prove the following three results for a general magma before proceeding to
prove results that hold for magmas with the right, or left, or both inverse properties.

Lemma 2.1 For any magma, every element in Aμ ∪ Bμ ∪ Cμ ∪ Dμ is flexible.

Proof Let a ∈ Aμ. In a(xy · a) = ax · ya, set y = e to get that a is a flexible element.
Let a ∈ Bμ. In (a · xy)a = ax · ya, set x = e to get that a is a flexible element.
Let a ∈ Cμ. In a(x · ay) = (ax · a)y, set y = e to get that a is a flexible element.
Let a ∈ Dμ. In (xa · y)a = x(a · ya), set x = e to get that a is a flexible element.

��
The following is a simple corollary of the lemma above:

Corollary 2.2 Aμ = Bμ for every magma.

Proof By Lemma 2.1, for every x, y in a magma Q, a(xy · a) = (a · xy)a. Hence
Aμ = Bμ for every magma Q by using the identities (Aμ) and (Bμ). ��
Lemma 2.3 For any magma, every element in Cμ is a left alternative element, whereas
every element in Dμ is a right alternative element.

Proof Let a ∈ Cμ. In a(x · ay) = (ax · a)y, set x = e to get that a is a left alternative
element.

Let a ∈ Dμ. In (xa · y)a = x(a · ya), set y = e to get that a is a right alternative
element. ��

Let Q be a magma. It is clear that e, the two-sided neutral element, is also the
unique right, and the unique left, neutral element of Q. As we shall see in the next
lemma, inverses in magmas have familiar properties.

Lemma 2.4 Let Q be a magma.
Suppose for every x ∈ Q there exists some x ′ ∈ Q such that yx · x ′ = y ∀y ∈ Q.

Then x ′′ = x, and hence, yx ′ · x = y.
Alternatively, suppose x ′ · xy = y ∀y ∈ Q. Then x ′′ = x, and hence, x · x ′y = y.
In both cases above, x ′ is the unique inverse of x; more specifically, x ′ is the unique

right, and the unique left, inverse of x.

Proof Assume that Q satisfies yx ·x ′ = y.Now xx ′ = ex ·x ′ = e; so x ′ is a right inverse
of x . Thus x ′′ = ex ′′ = xx ′ ·x ′′ = x . Then yx ′ ·x = yx ′ ·x ′′ = y. Also x ′x = x ′x ′′ = e.
This proves that x ′ is also a left inverse of x . To prove that x ′ is the unique left inverse
of x , let u ∈ Q be another left inverse of x : ux = e. Then u = ux · x ′ = ex

′ = x
′
.

Likewise, if xv = e for some v ∈ Q, then v = v
′′ = (ev

′
)
′ = (xv · v

′
)
′ = x

′
. This

completes the proof of the case where yx · x ′ = y ∀x, y ∈ Q.
The proof for the case where Q satisfies x ′ · xy = y is the mirror of the proof given

here. ��
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Lemma 2.4 allows us to use the standard notation, x−1 for the inverse of x , instead
of x

′
, whenever the magma satisfies yx · x ′ = y or x

′ · xy = y.
In much of the following results and proofs, we will be using the notations “mirror

of an identity", “mirror of a property (or law)” and “mirror of a proof (or argument)”.
Themirror of an equation is simply an equation being written from right to left instead
of left to right. So (Aμ) and (Bμ) aremirror identities. The same is true for the identities
(Cμ) and (Dμ). Likewise, the right inverse property and left inverse property, and the
right cancelation law and left cancelation law are two examples of pairs of properties
that are mirrors of each other. Similarly, the mirror of a proof would require each step
of the proof being written from left to right instead of right to left (and vice-versa)
using the relevant mirror identities, laws or properties given in the original proof.

Lemma 2.5 Let Q be a magma.

(i) Suppose Q has the right inverse property. Then the mirror of the properties
satisfied by elements in Aμ ∪ Bμ also hold for elements in this set if Q has the
left inverse property.
Alternatively, suppose Q has the left inverse property. Then the mirror of the
properties satisfied by elements in Aμ ∪ Bμ also hold for elements in this set if
Q has the right inverse property.

(ii) Suppose Q has the right inverse property. Then the mirror of the properties
satisfied by elements in Cμ also hold for elements in Dμ if Q has the left inverse
property, and vice-versa.
Alternatively, suppose Q has the left inverse property. Then the mirror of the
properties satisfied by elements in Cμ also hold for elements in Dμ if Q has the
right inverse property, and vice-versa.

Proof Since the right and left inverse properties are mirrors of each other, the proof
of (i) is due to Corollary 2.2, and the identities (Aμ) and (Bμ) being mirrors of each
other, whereas the proof of (ii) is due to the identities (Cμ) and (Dμ) being mirrors of
each other. ��
The next nine results give general properties of magmas with either the right or left
inverse property.

Lemma 2.6 Let Q be a magma with the right inverse property. Then the right
cancelation law applies to every element in Q.

Alternatively, let Q be a magma with the left inverse property. Then the left
cancelation law applies to every element in Q.

Proof Suppose Q has the right inverse property.
If yx = zx for some x, y, z ∈ Q, then y = yx · x−1 = zx · x−1 = z. Thus, the

right cancelation law applies to every element in Q.
The proof for the case where Q has the left inverse property is the mirror of the

proof above. ��
Lemma 2.7 Let Q be a magma with the right inverse property and x ∈ Q.
Then the following three properties hold for all a ∈ Aμ ∪ Bμ ∪ Cμ ∪ Dμ.
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(i) The left cancelation law applies to a,
(ii) a−1 · ax = x, and
(iii) a · a−1x = x.

Moreover, the following three properties hold for all a ∈ Aμ ∪ Bμ ∪ Cμ.

(iv) (ax)−1 = x−1a−1,
(v) (xa)−1 = a−1x−1, and
(vi) x−1 · xa = a.

Proof Let a ∈ Cμ.
By Lemma 2.1 and the right inverse property of a, we get (a · a−1a−1)a =

a(a−1a−1·a) = aa−1 = e. Then for anyu ∈ Q, a(a−1a−1·au) = ((a·a−1a−1)a)u =
u. Now suppose ax = ay for some x, y ∈ Q. Then x = a(a−1a−1 · ax) =
a(a−1a−1 · ay) = y. Hence, the left cancelation law applies to any Cμ element.
This proves (i).

Since a(a−1 · ax) = (aa−1 · a)x = ax , use (i) to obtain (ii).
In the proof of (i), we showed that x = az if z = (a−1a−1 · ax) ∈ Q. From (ii),

we get a(a−1 · az) = az. Replacing az with x proves (iii).
By the flexibilty of a and since a ∈ Cμ, we get a(x−1a−1 ·ax) = a(x−1a−1 ·a)·x =

ax−1 · x = ae. By (i), we get x−1a−1 ·ax = e. By Lemma 2.4, x−1a−1 is the (unique)
inverse of ax , thereby proving (iv).

By (iv) and the right inverse property, we get (a(xa)−1)−1 = xa · a−1 = x .
Taking inverses on both sides, we get a(xa)−1 = x−1. Then, by (ii), (xa)−1 =
a−1 · a(xa)−1 = a−1x−1, which proves (v).

To prove (vi), we use (iii), (v) and the right inverse property: x−1 · xa = (a ·
a−1x−1) · xa = a(xa)−1 · xa = a. This completes the proof for a ∈ Cμ.

Now, let a ∈ Aμ. Then, xa = aa−1 ·xa = (a ·a−1x)a by Corollary 2.2. By Lemma
2.6, we have proven (iii).

Replacing x in (iii) with x−1 and multiplying by xa on the right, we get x−1 · xa =
(a · a−1x−1) · xa = a(a−1x−1 · x) · a = aa−1 · a = a, which proves (vi).

Replacing x in (vi) with x−1a−1 we get (x−1a−1)−1(x−1a−1 · a) = a. Applying
the right inverse property gives (x−1a−1)−1x−1 = ax · x−1. Then (iv) follows by
using the right cancelation law on x−1, then taking the inverses of both sides.

Next, suppose ax = ay for some x, y ∈ Q. Then, using the right inverse property
and (iv), we get x−1 = x−1a−1 · a = (ax)−1a = (ay)−1a = y−1a−1 · a = y−1.
Taking inverses on both sides gives us the left cancelation law for a, thereby proving
(i).

Next, replacing x with ax in (iii), we get a(a−1 · ax) = ax . Then use (i) to obtain
(ii).

From (iii), the right inverse property and (vi), we have a · a−1x−1 = x−1 =
(x−1 · xa)(xa)−1 = a(xa)−1. Then use (i) to obtain (v). This completes the proof
when a ∈ Aμ ∪ Bμ.

Now, suppose a ∈ Dμ. Then, by the right inverse property, (Dμ) property of a
and right inverse property again, a−1 · ax = a−1 · a(xa−1 · a) = (a−1a · xa−1)a =
xa−1 · a = x , which proves (ii).

By (ii) and identity (Dμ), we get e = a−1a = [a−1(a · x−1a) · (a · x−1a)−1]a =
(x−1a · (a · x−1a)−1)a = x−1(a · (a · x−1a)−1a). So, by Lemma 2.4, x = a · (a ·
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x−1a)−1a. Then by (ii), a ·a−1x = a(a−1(a ·(a ·x−1a)−1a) = aa ·(a ·x−1a)−1a = x ;
this proves (iii).

Finally, if ax = ay for some x, y ∈ Q, multiply both sides with a−1 on the left
and use (ii) to prove (i). ��

Note that the properties (iv), (v) and (vi) are not generally true for a ∈ Dμ. This
makes it possible for Aμ = Bμ = Cμ to be a proper subset of Dμ as we shall see in
Lemma 2.12 and Example 3.4.

By Lemma 2.5, we obtain the following lemma:

Lemma 2.8 Let Q be a magma with the left inverse property and x ∈ Q.
Then the following three properties hold for all a ∈ Aμ ∪ Bμ ∪ Cμ ∪ Dμ.

(i) The right cancelation law applies to a,
(ii) xa · a−1 = x, and
(iii) xa−1 · a = x.

Moreover, the following three properties hold for all a ∈ Aμ ∪ Bμ ∪ Dμ.

(iv) (xa)−1 = a−1x−1,
(v) (ax)−1 = x−1a−1, and
(vi) ax · x−1 = a.

Lemma 2.9 Let Q be a magma with the right or left inverse property. Then every
element in Aμ ∪ Bμ ∪ Cμ ∪ Dμ is both a right and left inverse element.

Proof If Q has the right inverse property, then xa ·a−1 = xa−1 ·a = x , and a−1 ·ax =
a·a−1x = x byLemmas2.7(ii) and (iii). The proofwhen Q has the left inverse property
uses Lemmas 2.8(ii) and (iii). ��
Lemma 2.10 Let Q be a magma with the right or left inverse property. Then every
element in Aμ ∪ Bμ ∪ Cμ ∪ Dμ is both a left and right alternative element.

Proof We prove this lemma for magmas with the right inverse property using Lemma
2.7; the proof for magmas with the left inverse property is a mirror of this proof by
using Lemma 2.8.

Let a ∈ Aμ. Then, by Lemma 2.1, aa · x = aa · (xa−1 · a) = a · (a · xa−1)a =
a · a(xa−1 · a) = a · ax ; hence a is a left alternative element. The proof that a is a
right alternative element uses the mirror of the proof above, and Lemma 2.7(iii) and
Corollary 2.2. The proof for the case a ∈ Bμ follows from Corollary 2.2.

Suppose a ∈ Cμ. Then, by using identity (Cμ) and Lemma 2.1, a(x · aa) =
(ax ·a)a = (a · xa)a = a(xa ·a). Use Lemma 2.7(i) for left cancelation of a to prove
that a is right alternative. a is left alternative by Lemma 2.3.

The proof that every element in Dμ is left alternative is a mirror of the proof that
every element in Cμ is right alternative by using identity (Dμ) and Lemma 2.1, and
Lemma 2.6 in the place of Lemma 2.8(i). a ∈ Dμ is right alternative by Lemma 2.3.

��
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Lemma 2.11 Let Q be a magma with the right or left inverse property. Then a ∈ Aμ

if and only if a−1 ∈ Aμ. Likewise, a ∈ Bμ if and only if a−1 ∈ Bμ, a ∈ Cμ if and only
if a−1 ∈ Cμ, and a ∈ Dμ if and only if a−1 ∈ Dμ. Moreover, a · xa−1 = ax · a−1

and a−1 · xa = a−1x · a for all a ∈ Aμ ∪ Bμ ∪ Cμ ∪ Dμ and x ∈ Q.

Proof We begin by proving the third statement of this lemma for a magma Q with the
right inverse property. Let a ∈ Bμ and x, y ∈ Q.By Lemma 2.1, the (Bμ) identity and
Lemma 2.9, a · (a−1x · ya−1)a = a(a−1x · ya−1) · a = (a · a−1x)(ya−1 · a) = xy.
Multiplying both sides by a−1 on the left, and then by a−1 on the right, Lemma
2.9 gives a−1x · ya−1 = (a−1 · xy)a−1. So a−1 ∈ Bμ. Hence, if a−1 ∈ Bμ, then
(a−1)−1 = a ∈ Bμ. The proof for the case a ∈ Aμ follows from Corollary 2.2.

Now, let a ∈ Cμ and x, y ∈ Q; and write u = a−1x · a−1 and v = a−1y. Then,
by Lemmas 2.1 and 2.9, au · a = a · ua = a · (a−1x · a−1)a = a · a−1x = x and
av = a ·a−1y = y. Replacing these in a(u ·av) = (au ·a)v, we get a ·(a−1x ·a−1)y =
x · a−1y. Multiplying both sides by a−1 on the left and using Lemma 2.9 gives
(a−1x · a−1)y = a−1(x · a−1y). Thus, a−1 ∈ Cμ. The proof of this case is complete
since (a−1)−1 = a.

The proof for the case a ∈ Dμ is the mirror of the proof for the Cμ case.
Corollary 2.2 completes the proof of the second and third statements of this lemma

when Q has the right inverse property.
The proof of the same for the case where Q has the left inverse property is the

mirror of the proofs above.
The proof of the first equation in the last statement of this lemma uses Lemmas 2.9,

2.1 and 2.9 again; the proof of the second equation is the mirror of this proof:
a · xa−1 = (a · xa−1)a · a−1 = a(xa−1 · a) · a−1 = ax · a−1. ��

Lemma 2.12 Let Q be a magma with the right inverse property. Then Aμ = Bμ =
Cμ ⊆ Dμ.

Proof Let a ∈ Bμ and x, y ∈ Q. If u = x · ay and v = (ay)−1 = y−1a−1 by Lemma
2.7(iv), then au = a(x · ay), and by the right inverse property, va = y−1a−1 · a =
y−1 and uv = (x · ay)(ay)−1 = x . Replace these in au · va = (a · uv)a to get
a(x · ay) · y−1 = ax · a. Multiply by y on the right and use the right inverse property
to get a ∈ Cμ.

If a ∈ Cμ and x, y ∈ Q, by Lemma 2.7(v), (ya)−1 = a−1y−1. Now, by Lemma
2.9, (a ·xy)a = ((a ·xy)a ·(ya)−1)·ya = a(xy ·(a ·a−1y−1))·ya = a(xy ·y−1)·ya =
ax · ya, and we have shown that a ∈ Bμ.

This, with Corollary 2.2 complete the proof that Aμ = Bμ = Cμ.
Next, by Lemmas 2.9 and 2.1, if a ∈ Bμ = Cμ, compute x(a · ya) = (a ·a−1x)(ay ·

a) = a(a−1x · ay) · a = ((a · a−1x)a · y)a = (xa · y)a and we have shown that
a ∈ Dμ which proves the subset containment. ��

Lemma 2.12 harmonizes with its mirror, Lemma 2.13:

Lemma 2.13 Let Q be a magma with the left inverse property. Then Aμ = Bμ =
Dμ ⊆ Cμ.

The following lemma proves that magmas with both inverse properties are, in fact,
loops:
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Lemma 2.14 Let S be a set, together with a binary operation, ·.
Suppose ∀x ∈ S, there exists some (not necessarily unique) x

′ ∈ S such that
yx · x ′ = y ∀y ∈ S. Then every element of S appears once and only once in each
column of the Cayley table.

Alternatively, suppose ∀x ∈ S, there exists some (not necessarily unique) x
′ ∈ S

such that x
′ · xy = y ∀y ∈ S. Then every element of S appears once and only once in

each row of the Cayley table.

Proof Suppose S satisfies the condition yx · x ′ = y. Let u, v ∈ S. Then there exists
w = vu

′ ∈ S. Now v = vu
′ · u ′′ = wu

′′ = (wu · u ′
)u

′′ = wu. So, every element
of S appears at least once in every column of the Cayley table. Now, if v = zu for
some z ∈ S, zu = wu implies that z = zu · u ′ = wu · u ′ = w. So, each element of
S appears only once in each column of the Cayley table. The proof when x

′ · xy = y
∀x ∈ S is a mirror of the proof above. ��

The converse of this lemma is not true as shown in Example 3.7. Moreover, in
Example 3.8 we see that the lemma above holds even if x ∈ S does not have a unique
x ∈ S such that yx · x ′ = y for every y ∈ S.

By combining Lemmas 2.12, 2.13 and 2.14, the quartet emerges in full harmony:

Corollary 2.15 Let Q be a magma with the inverse property. Then Aμ = Bμ = Cμ =
Dμ, and Q is an (inverse property) loop.

Nowwe proceed to obtain results that will culminate in two forms of generalization
of the definition of Moufang loops.

Corollary 2.16 Let Q be a magma with the right or left inverse property. Suppose
every element of Q belongs to at least one of Aμ, Bμ, Cμ or Dμ. Then Q is a loop
which satisfies each of the Moufang identities (A), (B), (C) and (D), (and hence is a
Moufang loop).

Proof Since Q = Aμ ∪Bμ ∪Cμ ∪Dμ, by Lemma 2.9, it has both right and left inverse
properties. Hence, by Corollary 2.15, Q = Aμ = Bμ = Cμ = Dμ, and hence is a
Moufang loop. ��
Lemma 2.17 Let Q be a magma with the right or left inverse property. In its Cayley
table, every element of Q appears once and only once in each row and column whose
leading element is from Aμ ∪ Bμ ∪ Cμ ∪ Dμ.

Proof Suppose Q has the right inverse property. By Lemma 2.14, every element of Q
(including any element a ∈ Aμ ∪ Bμ ∪Cμ ∪ Dμ) appears once and only once in each
column of the Cayley table.

Now, for any x ∈ Q, there exists u = a−1x ∈ Q. Then, by Lemma 2.9, au =
a · a−1x = x . So every element of Q appears at least once in the row where a is the
leading element. The proof of the uniqueness of u in the equation au = x follows
from Lemma 2.7(i).

The proof when Q has the left inverse property is a mirror of the proof above by
using Lemma 2.8(i). ��
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We note that the “right or left inverse property” condition in Lemma 2.17 is
nontrivial (i.e., necessary), as we shall see in Example 3.5.

Lemma 2.18 Let L be a loop such that each x ∈ L has an inverse, x−1 ∈ L. Then

(i) x−1 · xy = y for each y ∈ L if and only if x · x−1y = y for each y ∈ L, and
(ii) yx · x−1 = y for each y ∈ L if and only if yx−1 · x = y for each y ∈ L.

Proof Since L is a loop, left and right cancelation laws apply here. Suppose x−1 ·xy =
y for each y ∈ L . Substitute y with x−1y and use the left cancelation law on x−1 to
obtain x · x−1y = y for each y ∈ L . To prove that the second equation in (i) implies
the first, substitute y with xy in the second equation and use the left cancelation law
on x . This proves (i).

To prove (ii), use the mirror of the proof above and the right cancelation law. ��
Lemma 2.19 Let L be a loop. Suppose every element of L has at least one of the
properties (Aμ), (Bμ), (Cμ) or (Dμ). Then L has the inverse property.

Proof Since a loop is a variety of magmas, we are free to use the lemmas in this section
that apply to general magmas (i.e., those that don’t impose the right or left inverse
properties).

Let x be an arbitrary element of L . Since L is a loop, there exist unique elements
u, v ∈ L such that ux = xv = e. We show that u = v.

By the premise of the lemma, x ∈ Aμ ∪ Bμ ∪ Cμ ∪ Dμ = L . So by Lemma 2.1,
x · vx = xv · x = ex = x = xe. Left cancelation of x (since L is a loop) gives
vx = e = ux . Right cancelation of x produces the desired v = u, i.e., x has a unique
two-sided inverse, x−1.

To complete the proof of this lemma, by Lemma 2.18, we only need to prove that
either one of the two equations in each of Lemma 2.18(i) and (ii) hold.

Now, let y ∈ L .
Case 1. Suppose x ∈ Bμ, i.e., x ∈ Aμ by Corollary 2.2. Then yx = xx−1 · yx =

(x · x−1y)x by the (Bμ) property of x . Right cancelation of x gives y = x · x−1y.
Since identities (Aμ) and (Bμ) are mirrors of each other, the mirror of the proof above
proves that y = yx−1 · x .

Case 2. Suppose x ∈ Cμ. By the (Cμ) property of x we have x(x−1 · xy) =
(xx−1 · x)y = xy. Left cancelation of x gives x−1 · xy = y. Now x · x−1y =
x(x−1y · xx−1) = (x · x−1y)x · x−1 by the (Cμ) property of x . Then y = yx · x−1

since x · x−1y = y by Lemma 2.18(i).
Case 3. Suppose x ∈ Dμ. The proof is a mirror of the proof in the case above. ��
Our scherzo has now reached its crescendo in full harmony:

Theorem 2.20 A loop is a Moufang loop if and only if every one of its element has at
least one of the properties (Aμ), (Bμ), (Cμ) or (Dμ).

Proof If a loop is a Moufang loop, then all its elements has all of the properties
(Aμ), (Bμ), (Cμ) and (Dμ) by definition.

Now suppose every element of a loop, L , has at least one of the properties
(Aμ), (Bμ), (Cμ) or (Dμ). So L = Aμ ∪ Bμ ∪ Cμ ∪ Dμ. By Lemma 2.19, L
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has the inverse property. Then, since a loop is also a magma, by Corollary 2.15,
Aμ = Bμ = Cμ = Dμ. So L = Aμ ∩ Bμ ∩ Cμ ∩ Dμ.

So every element of L satisfies all four Moufang identities (A), (B), (C) and (D),
and hence, L is a Moufang loop by definition.

This completes the proof of this theorem. ��
Corollary 2.16 and Theorem 2.20 provide an alternate, and somewhat generalized,

definition of Moufang loops: AMoufang loop is either a magma with the right or left
inverse property, or a loop, whose every element has at least one of the local properties
(Aμ), (Bμ), (Cμ) or (Dμ).

We summarize (as well as generalize) some of the main results obtained in this
section (specifically, Lemmas 2.4 and 2.9 - 2.13):

Theorem 2.21 Let Q be a magma such that for each x ∈ Q there exists some x
′ ∈ Q

satisfying the stated condition.

(1) Suppose Q satisfies at least one of the identities yx · x ′ = y or x ′ · xy = y for
all x, y ∈ Q. Then

(a) x
′
is the (unique) inverse of x,

(b) every element in Aμ∪Bμ∪Cμ∪Dμ is both a right and left alternative element,
(c) every element in Aμ ∪ Bμ ∪Cμ ∪ Dμ is both a right and left inverse element,

and
(d) a ∈ Aμ (respectively Bμ,Cμ, Dμ) if and only if a′ ∈ Aμ (respectively

Bμ,Cμ, Dμ).

(2) (a) Suppose yx · x ′ = y for all x, y ∈ Q. Then Aμ = Bμ = Cμ ⊆ Dμ.
(b) Suppose x ′ · xy = y for all x, y ∈ Q. Then Aμ = Bμ = Dμ ⊆ Cμ.

3 Intermezzo—Examples

The following example shows that inverse properties are necessary inLemmas2.12 and
2.13. By Lemma 2.14, this magma, Q, has neither the right nor left inverse property.
Moreover, in this magma, Cμ = Dμ = {0} ⊂ Aμ = Bμ = Q. So Q satisfies the
(global)Moufang identities (A) and (B), but not (C) or (D); hence Q is not aMoufang
magma. Also, without the right inverse property, it is possible for Dμ to be a proper
subset of Bμ and Bμ �= Cμ, and without the left inverse property, it is possible for Cμ

to be a proper subset of Bμ, and Bμ �= Dμ.

Example 3.1

0 1 2
1 0 0
2 0 0

By Lemma 2.14, we know that the magma, Q, in the next example has neither the
right nor left inverse property. In this example, Aμ = Bμ = Cμ = {0, 4} ⊂ Dμ = Q
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which shows that the converse of Lemma 2.12 is not true. The dual (i.e., the transpose)
of this example is a magma with neither the right nor left inverse property such that
Aμ = Bμ = Dμ = {0, 4} ⊂ Cμ = Q which shows that the converse of Lemma 2.13
is not true either. Neither Q nor its dual satisfy the Moufang identities (A) or (B);
hence, both of them are not Moufang magmas. However Q satisfies (D) (but not (C)),
whereas its dual satisfies (C) (but not (D)).

Example 3.2

0 1 2 3 4
1 1 2 3 4
2 1 2 4 4
3 1 4 3 4
4 4 4 4 4

Examples 3.1 and 3.2 (and its dual), with Corollary 2.2, show that, unlike in the
variety of loops, formagmas in general (specifically, for thosewith neither the right nor
left inverse property), only two of the global versions of the four Moufang identities,
i.e., (A) and (B), are equivalent. However, imposing on Q the condition “satisfies
the right or left inverse property” renders all four global identities equivalent (i.e., a
special case of Corollary 2.16). But with the addition of such a condition, the magma
becomes a loop if it satisfies any one of the four global identities, as per Corollary
2.16. Regardless, Example 3.3 below shows that it is possible for a non-loop magma
to satisfy all four global Moufang identities. However, by Corollary 2.16, we know
that such an example of a magma, Q, exists because it has neither the right nor left
inverse property. Here Q = Aμ = Bμ = Cμ = Dμ; this is an example of a Moufang
magma which is not aMoufang loop. This example also shows that the converse of the
first part of Corollary 2.15 is not true, i.e., it is possible that Aμ = Bμ = Cμ = Dμ

for a magma Q, yet Q needs not have the inverse property.

Example 3.3

0 1 2
1 1 1
2 1 1

Example 3.3 forecloses on the possibility of generalizing Corollary 2.16 to “a
magma whose every element is an Aμ, Bμ,Cμ and Dμ element is a Moufang loop.”
Hence, the “right or left inverse property” condition is not trivial but necessary in
Corollary 2.16 for the magma to be a Moufang loop. The next example shows that
Lemma 2.12 is not trivial (i.e., that the subset containment can be proper). Thismagma,
Q, has the right, but not the left, inverse property. In this magma, Aμ = Bμ = Cμ =
{0} ⊂ Dμ = {0, 1}.
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Example 3.4

0 1 2 3
1 0 3 2
2 2 0 1
3 3 1 0

We now compare Example 3.4 with Lemma 2.7. We have shown that a Dμ element
in a magma with the right inverse property must satisfy the first three properties of
Lemma 2.7. But a Dμ element in a magma with the right inverse property need not
satisfy the final three properties in Lemma 2.7, as Example 3.4 shows. Explicitly, the
Dμ element 1 does not satisfy (iv) from Lemma 2.7, since (1 ·2)−1 = 3−1 = 3 �= 2 =
2 · 1 = 2−1 · 1−1. Nor does it satisfy (v) from Lemma 2.7, since (2 · 1)−1 = 2−1 =
2 �= 3 = 1 · 2 = 1−1 · 2−1. And finally, the Dμ element 1 does not satisfy (vi) from
Lemma 2.7, since 2−1 · (2 · 1) = 2−1 · 2 = 2 · 2 = 0 �= 1. We note that in Lemma
2.12, we use the properties (iv) and (v) from Lemma 2.7 that are not satisfied by a Dμ

element in general to prove that Bμ = Cμ in right inverse property magmas.
Note, of course, that the dual of this example is a magma that has the left, but not

the right, inverse property and in which Aμ = Bμ = Dμ = {0} ⊂ Cμ = {0, 1}.
Example 3.4 and its dual show that the condition of the magma satisfying both inverse
properties in Corollary 2.15 is necessary and not trivial to ensure the equality Aμ =
Bμ = Cμ = Dμ.

In the following example, Q is a magma with the right (but not the left) inverse
property, and Aμ = Bμ = Cμ = Dμ = {0, 1} �= Q. Hence Q is not a Moufang loop,
and as per Lemma 2.17, each element appears exactly once in the rows with these (and
only these) two elements (0 and 1) as leading entries.

Example 3.5

0 1 2 3 4 5
1 0 3 2 5 4
2 3 0 1 2 3
3 2 1 0 3 2
4 5 4 5 0 1
5 4 5 4 1 0

The next example shows that the “right or left inverse property" condition in
Corollary 2.16 is not trivial. In this example, Q is a magma without the right or
left inverse property, and for which Q = Aμ ∪ Bμ ∪ Cμ ∪ Dμ, i.e., every ele-
ment of Q has at least one of the properties (Aμ), (Bμ), (Cμ) or (Dμ). Specifically,
Aμ = Bμ = Dμ = {0, 2, 3} and Cμ = {0, 1}. However, Q is not a loop, and it is
certainly not Moufang since Aμ ∩ Bμ ∩ Cμ ∩ Dμ = {0} �= Q.

This example also proves that Lemma 2.17 is not trivial since 2 ∈ Dμ but there is
a repetition of elements of Q in the row where 2 is the leading element.
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Example 3.6

0 1 2 3
1 0 2 3
2 3 2 2
3 2 2 2

The example below shows that the converse of Lemma 2.14 is not true even for a
magma. Though every element of Q = {0, 1, 2} appears once and only once in each
column of the Cayley table, taking y = 1, x = 1 ∈ Q in the equation yx · x ′ = y
gives (1 · 1) · x ′ = 2 · x ′ = 1. However, 2 · z �= 1,∀z ∈ Q, which shows that none of
the elements of Q qualify as x

′
.

Example 3.7

0 1 2
1 2 1
2 0 0

In the following example, which is not a magma, the condition of the existence of
some x

′ ∈ S for each x ∈ S such that yx · x ′ = y for each y ∈ S is satisfied. But note
that (1 · 1) · 1 = (1 · 1) · 2 = 1 and (2 · 1) · 1 = (2 · 1) · 2 = 2. So, both 1 and 2 satisfy
the criteria for 1

′
. Likewise, (1 · 2) · 1 = (1 · 2) · 2 = 1 and (2 · 2) · 1 = (2 · 2) · 2 = 2.

So, both 1 and 2 satisfy the criteria for 2
′
. Thus, neither 1

′
nor 2

′
is a unique element

of S. Yet, in this example, every element appears once and only once in each column
of the Cayley table, as per Lemma 2.14. The repetition of elements in a row of the
Cayley table is displayed in the proof of Lemma 2.14, where v = wu

′′ = wu with the
possibility of u

′′ �= u. Hence the element v may be repeated in the row where w is the
leading element, i.e., in both the columns where u

′′
and u are the leading elements.

Moreover, in this example, Aμ = Bμ = S. This shows that the converse about the
equality Aμ = Bμ for magmas, in Corollary 2.2, is not true, i.e., this equality can be
true in a variety that is more general than magmas.

Example 3.8

1 1
2 2

The following example shows that in Corollary 2.2, the condition of Q being a
magma is not trivial, i.e., it is possible that Aμ �= Bμ for a general set Q. In this
example, Q is not a magma, Aμ = {3, 4} and Bμ = {1, 3, 4}. For completeness, we
note that Dμ = Aμ �= Bμ = Cμ, and Q is both right and left alternative.

Example 3.9

3 4 3 3
1 2 3 2
3 3 3 3
1 4 3 4
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4 Presto—Conclusion

Since all four Moufang identities are equivalent in the variety of loops [2, 3], to
show that a given loop is Moufang, one must show that each triple of elements from
the loop satisfies any one of the four Moufang identities. Our harmony reveals an
alternate, and in some sense sharper, approach, i.e., it suffices, via Theorem 2.20,
to show that each element in a loop satisfies only one, any one, of the four local
identities (Aμ), (Bμ), (Cμ) and (Dμ) (instead of one of the four “global" Moufang
identities) in order for the loop to be Moufang, which in turn, of course, allows us to
conclude that every element of the loop satisfies all four of the global identities. In
fact, Corollary 2.16 establishes this in the more general setting of magmas with either
the right or left inverse property. Hence, Corollary 2.16 and Theorem 2.20 are two
alternate, generalized versions of the theorem on the equivalence of the four Moufang
identities for loops.
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