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Abstract
Based on the well known notion of the neighborhoods of univalent analytic functions
and other related developments, in this article, at first, we obtain an interesting result on
neighborhoods of sense-preserving harmonic mappings. Thereafter, we discuss about
neighborhoods of stable harmonic univalent mappings and some of its subclasses.
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1 Introduction

LetC be the complex plane andD be the open unit disc inC, i.e.D = {z ∈ C : |z| < 1}.
We denote A by the class of all functions f analytic in D with the normalization
f (0) = 0 = f ′(0) − 1 and, let S be the class of all univalent (one to one) functions
in A. The starlike and convex subclasses of S are denoted by S∗ and K, respectively.
It is well known that K � S∗. We refer [12, Chap. 2] for more details about these
classes of functions. In 1981, St. Ruscheweyh (c.f. [15]) introduced the notion of
neighborhoods of analytic functions as follows: for δ ≥ 0, the δ-neighborhood of
f (z) = z + ∑∞

n=2 anz
n ∈ A is defined as
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Nδ( f ) =
{

F(z) = z +
∞∑

n=2

cnz
n ∈ A :

∞∑

n=2

n|an − cn| ≤ δ

}

.

In [11], A. W. Goodman proved that, for the identity function e(z) = z, N1(e) ⊂ S∗.
R. Fournier also studied the δ-neighborhood of analytic functions and derived some
interesting results on the δ-neighborhood of various subclasses ofA in [8, 9]. Later in
1985, J. E. Brown generalized (compare [4]) some results of Ruscheweyh and Fournier
on δ-neighborhood.

In this article, we aim to investigate neighborhoods of harmonic mappings which
aremotivated by the researchwork done in the analytic case asmentioned above. These
results are important in their own right, because, though we consider similar problems
like in the analytic case, but, the techniques that are used to obtain these results are
quite general in the harmonic case.We first start with some basic definitions and results
on harmonic functions. Let � be a domain in C. A complex valued harmonic function
f : � → C is of the form f (z) = u(x, y) + iv(x, y), z = x + iy ∈ � where, u and
v are real valued harmonic functions on �. On each simply connected domain �, f
can be expressed as f = h + g, where h and g are analytic functions on � and they
are known as the analytic and the co-analytic parts of f , respectively. It is well known
from a result of H. Lewy that a harmonic function f = h + g is locally univalent in
� if and only if its Jacobian J f = |h′|2 − |g′|2 is non-vanishing on �. We call f is
sense-preserving if J f > 0.

LetH denote the class of all harmonic functions f = h + g in D with the normal-
izations h(0) = 0 = g(0), fz(0) = 1, and H0 be the class of functions f ∈ H with
fz̄(0) = 0. The subclass of H containing all sense-preserving univalent (one-to-one)
harmonic functions is denoted bySH, and the corresponding subclass ofH0 is denoted
by S0

H. We clarify here that, a complex valued one-to-one harmonic function defined
on a domain � is called harmonic mapping. Each function f ∈ S0

H has the following
Taylor series expansion

f (z) = z +
∞∑

n=2

anz
n +

∞∑

n=2

bnzn, z ∈ D. (1.1)

For more information about the class S0
H, we refer to [6, 7]. Now, in order to describe

our results we need to recall some subclasses of harmonic functions.
A harmonic function f ∈ H is said to be fully convex (fully starlike) if it maps

every circle |z| = r in a one-to-one manner onto a convex (starlike) curve (see [5]).
We denote FS0∗

H and FK0
H by the fully starlike and fully convex subclasses of S0

H
respectively. Let f and F be two functions in H having the following expansions in
D

f (z) = z +
∞∑

n=2

anz
n +

∞∑

n=1

bnzn (1.2)
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and

F(z) = z +
∞∑

n=2

cnz
n +

∞∑

n=1

dnzn . (1.3)

The convolution of these two harmonic functions is defined by

( f ∗ F)(z) = z +
∞∑

n=2

ancnz
n +

∞∑

n=1

bndnzn .

In [13], Hernandez and Martin introduced the notion of stable harmonic mappings.
They defined a (sense-preserving) harmonic function f = h+g to be a stable harmonic
univalent mapping (respectively, stable harmonic starlike, stable harmonic convex and
stable harmonic close-to-convex) if all the functions fλ = h + λg with |λ| = 1 are
univalent (respectively, starlike, convex and close-to-convex). In the same article, they
proved that, a sense-preserving harmonic function f = h + g is stable harmonic
univalent (respectively, stable harmonic starlike, stable harmonic convex and stable
harmonic close-to-convex) in D if and only if the analytic functions Fλ = h + λg are
univalent (respectively, starlike, convex and close-to-convex) in D for each |λ| = 1.
Motivated by the work in [13], we also study the class of stable harmonic mappings
in [3].

We now move on to define formally the neighborhoods of harmonic functions. For
δ ≥ 0, the δ-neighborhood of a function f ∈ H having expansion of the form (1.2) is
defined and denoted by

NH
δ ( f ) :=

{

F(z) ∈ H :
∞∑

n=2

n|an − cn| +
∞∑

n=1

n|bn − dn| ≤ δ

}

,

where F is of the form (1.3). In particular, if the function f ∈ H0 has expansion of
the form (1.1), then the δ-neighborhood of f will be defined by

NH
δ ( f ) =

{

F(z) = z +
∞∑

n=2

cnz
n +

∞∑

n=2

dnzn ∈ H0 :
∞∑

n=2

n(|an − cn | + |bn − dn |) ≤ δ

}

.

We refer to the article [17] by Yasar and Yalcin who also worked on the δ-
neighborhood of harmonic functions with varying arguments. It follows directly
from a result of Bharanedhar and Ponnusamy (see [2, Lemma 2]) that, for δ = 1,
NH
1 (e) ⊂ FS0∗

H , where, e(z) = z is the identity function. This result can be thought
as a generalization of the result of Goodman ([11]) mentioned in the first para-
graph of this section. In [15], Ruscheweyh has shown that Nδ( f ) ⊂ S at most for
δ = inf z∈D | f ′(z)| where f ∈ A. As a generalization of this result for harmonic
functions, we prove that if f = h + g ∈ H is sense-preserving, then NH

δ ( f ) ⊂ SH
at most for δ = inf z∈D{|h′(z)| + |g′(z)|}, which is the content of the Theorem 1 in
the next section. It was proved in [15] that, if f ∈ K, then N1/4( f ) ⊂ S∗. After the
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initiation of the work of Ruscheweyh, there has been a considerable interest on the
topic of neighborhoods of univalent analytic functions (cf. [14]). Next, in Theorem 2,
we prove that, if f ∈ S0

H is a stable harmonic convex mapping, then NH
1/4( f ) is con-

tained in the stable harmonic starlike subclass of S0
H. In [15, Theorem 1], Ruscheweyh

proved the following result

Theorem A If f ∈ A and ( f (z)+εz)/(1+ε) ∈ M for all ε ∈ Cwith |ε| < δ (δ > 0),
where M is any of the classes S or S∗, then Nδ( f ) ⊂ M.

Motivated by the above theorem, we have shown that, for f ∈ H0 if f (z) + εz is
stable harmonic univalent for all ε ∈ C with |ε| < δ, then NH

δ ( f ) is contained in the
subclass ofS0

H that contains all stable harmonic univalentmappings. This is the content
of Theorem 3 in the upcoming section. In our penultimate result, i.e. in Theorem 4, we
prove, as an application of Theorem 3, that if f ∈ H0 and ( f (z)+εz)/(1+ε) ∈ FS0∗

H
such that f (z) + εz is stable harmonic univalent, for all ε ∈ C with |ε| < δ, then
NH

δ ( f ) ⊂ FS0∗
H . Sheil-Small and Silvia (see for instance [16]) introduced more

general notion of neighborhood of an analytic function known as the Tδ-neighborhood.
For δ ≥ 0 and T = {Tn}∞n=1, a sequence of nonnegative reals, the Tδ-neighborhood of
f (z) = z + ∑∞

n=2 anz
n ∈ A is defined by

T Nδ( f ) =
{

F(z) = z +
∞∑

n=2

cnz
n ∈ A :

∞∑

n=2

Tn|an − cn| ≤ δ

}

.

In particular, for T = {n}∞n=1, the notion of Tδ-neighborhood coincides with the
well known δ-neighborhood introduced by Ruscheweyh. Analogously, for δ ≥ 0 and
T = {Tn}∞n=1, the Tδ-neighborhood of a function f ∈ H0 with expansion (1.1) is
defined as follows

T NH
δ ( f ) =

{

F ∈ H0 :
∞∑

n=2

Tn|an − cn| +
∞∑

n=2

Tn|bn − dn| ≤ δ

}

,

where F(z) = z + ∑∞
n=2 cnz

n + ∑∞
n=2 dnz

n . Theorem A cannot be extended for
functions in the classK. However, it can be easily checked that, if f ∈ A and ( f (z)+
εz)/(1 + ε) ∈ K for all ε ∈ C with |ε| < δ, then T Nδ( f ) ⊂ K for T = {n2}∞n=1.
Analogously, as an application of Theorem 3, we prove that, if f ∈ H0 and ( f (z) +
εz)/(1+ε) ∈ FK0

H such that f (z)+εz is stable harmonic univalent, with |ε| < δ and
δ > 0, then T N H

δ ( f ) ⊂ FK0
H for T = {n2}∞n=1. This is the content of Theorem 5.

2 Main Results

We start with our first result.

Theorem 1 If f = h + g ∈ H is sense-preserving, then N H
δ ( f ) ⊂ SH at most for

δ = inf z∈D{|h′(z)| + |g′(z)|}.
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Proof We claim that, for any δ′ > δ, we can choose η ∈ D such that

|h′(η)| + |g′(η)|
|η| < δ′.

Since f is sense-preserving, h′(z) 
= 0. If g′(z) = 0 for all z ∈ D, then by the
normalization of f , we have g(z) = 0. In that case f ∈ A and our claim follows from
the proof of [15, Theorem 1]. Now suppose g′(z) 
= 0. Since f is sense-preserving,
the analytic function ψ(z) = h′(z) + cg′(z) 
= 0 in D for all c ∈ D. Let σ =
inf z∈D{|ψ(z)|}. Thereforeσ ≤ δ. Consequently, it follows from theminimummodulus
principle that there exists a sequence {zn}n≥1 with |zn| → 1 as n → ∞ such that

∣
∣
∣
∣
ψ(zn)

zn

∣
∣
∣
∣ → σ ≤ δ < δ′, as n → ∞.

Hence, there exists some zk ∈ {zn}n≥1 such that |ψ(zk)/zk | < δ′ for every choice
of complex constant c ∈ D. This implies (|h′(zk)| + |g′(zk)|)/|zk | < δ′. Hence, our
claim is established (taking zk = η). Now let us consider the function

F(z) = f (z) − h′(η)

2η
z2 − g′(η)

2η
z2, z ∈ D,

where η is chosen as before. Then clearly F ∈ NH
δ′ ( f ), but, the Jacobian JF (η) = 0.

Therefore F /∈ SH. Hence, proof of the theorem is complete.

The next theorem is a generalization of a well known result of St. Ruscheweyh ([15,
Corollary 1]) for n = 1 to the stable harmonic convex mappings.

Theorem 2 Let f = h+g ∈ S0
H be a stable harmonic convex mapping. Then N H

1/4( f )

is contained in the stable harmonic starlike subclass of S0
H. The number 1/4 is best

possible.

Proof Since f = h + g ∈ S0
H is stable harmonic convex, then by [13, Corollary 3.2],

the mappings Fλ = h +λg are convex for all λ ∈ D, where, D denotes the closed unit
disc. Let f have an expansion of the form (1.1) in D. We first show that if

ρ(z) = ϕ(z) + ψ(z) = z +
∞∑

n=2

cnz
n +

∞∑

n=2

dnzn ∈ NH
δ ( f ),

for δ ≥ 0, then Pλ = ϕ + λψ ∈ Nδ(Fλ). Now if ρ ∈ NH
δ ( f ), then by the definition

we have

∞∑

n=2

n(|an − cn| + |bn − dn|) ≤ δ.
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Now

∞∑

n=2

n|(an + λbn) − (cn + λdn)| =
∞∑

n=2

n|(an − cn) + λ(bn − dn)|

≤
∞∑

n=2

n(|an − cn| + |bn − dn|)

≤ δ.

Therefore Pλ = ϕ + λψ ∈ Nδ(Fλ). Since Fλ ∈ K, it follows from [15, Corollary 1],
that N1/4(Fλ) ⊂ S∗. So in particular for δ = 1/4, we can say that if ρ = ϕ + ψ ∈
NH
1/4( f ), then Pλ = ϕ + λψ ∈ S∗ for all λ ∈ D. Evidently Pλ is locally univalent,

which implies ϕ′(z) + λψ ′(z) 
= 0 for all z ∈ D and for all λ ∈ D. This implies
|ϕ′(z)| 
= |λψ ′(z)| for all z ∈ D and for all λ ∈ D and hence |ψ ′(z)| < |ϕ′(z)| for all
z ∈ D. Because if |ψ ′(z0)| ≥ |ϕ′(z0)| for some z0 ∈ D, then it will imply |ϕ′(z0)| =
|γψ ′(z0)| for some γ ∈ D, which is a contradiction. Therefore |ψ ′(z)| < |ϕ′(z)| for
all z ∈ D and hence ρ = ϕ + ψ is sense-preserving in D. Therefore, by [13, Theorem
4.2], ρ = ϕ + ψ is a stable harmonic starlike mapping. Hence, the result follows.

Finally, we prove that the value δ = 1/4 is best possible. To see this, suppose
NH

δ ( f ) is contained in the stable harmonic starlike subclass of S0
H for some δ > 1/4.

If Pλ = ϕ + λψ ∈ Nδ(Fλ) for all λ ∈ D, then

∞∑

n=2

n|(an + λbn) − (cn + λdn)| =
∞∑

n=2

n|(an − cn) + λ(bn − dn)| ≤ δ.

Thus, it follows that for some suitable λ with |λ| = 1,

∞∑

n=2

n(|an − cn| + |bn − dn|) =
∞∑

n=2

n|(an − cn) + λ(bn − dn)| ≤ δ.

This implies ρ(z) = ϕ(z) + ψ(z) ∈ NH
δ ( f ). Therefore, ρ belongs to the stable

harmonic starlike subclass of S0
H. We thus get Pλ = ϕ + λψ ∈ S∗ for all λ ∈ D

(see, [13, Corollary 4.3]). Hence Nδ(Fλ) ⊂ S∗ for some δ > 1/4, which contradicts
sharpness of the [15, Corollary 1] for n = 1.

Our next theorem is an extension of Theorem A to stable harmonic univalent
mappings.

Theorem 3 Let f = h + g ∈ H0 and δ > 0. Assume that for all ε ∈ C such that
|ε| < δ, f (z) + εz is stable harmonic univalent. Then N H

δ ( f ) is contained in the
stable harmonic univalent subclass of S0

H.
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Proof Since f (z)+εz is stable harmonic univalent, therefore by [13, Proposition 2.1],
the functions

Fλ(z) + εz

1 + ε
∈ S for all λ ∈ ∂D,

where Fλ = h + λg and ∂D denotes the unit circle. Therefore by Theorem A, we
have Nδ(Fλ) ⊂ S. Now let us assume that ρ = ϕ + ψ ∈ NH

δ ( f ). Then by a similar
argument as in the proof of Theorem 2, we have Pλ = ϕ+λψ ∈ Nδ(Fλ). This implies
Pλ = ϕ+λψ ∈ S for all λ ∈ ∂D. Again following a similar argument as in Theorem 2,
we can say that ρ = ϕ + ψ is sense-preserving in D. Hence by [13, Proposition 2.1],
ρ = ϕ + ψ is stable harmonic univalent. Hence the proof of the theorem is complete.

As an application of the Theorem 3, we prove our next result.

Theorem 4 Let f ∈ H0 and δ > 0 such that for all |ε| < δ, the function ( f (z) +
εz)/(1+ε) ∈ FS0∗

H , z ∈ D. If f (z) + εz is stable harmonic univalent then N H
δ ( f ) ⊂

FS0∗
H .

Proof Define for z ∈ D,

Q′ =
{
z + (ζ−1)

2 z2

(1 − z)2
− ζ z̄ − (ζ−1)

2 z̄2

(1 − z̄)2
: |ζ | = 1

}

. (2.1)

Then for each function f ∈ S0
H, f ∈ FS0∗

H if and only if ( f ∗ϕ)(z) 
= 0, 0 < |z| < 1,
for all ϕ ∈ Q′ (see [2, Lemma 1]). Now if

ϕ(z) = z +
∞∑

n=2

αnz
n +

∞∑

n=1

βnzn ∈ Q′,

then it follows from (2.1) that

αn = n + 1

2
+ (n − 1)ζ

2
, βn = −

(
n − 1

2
+ (n + 1)ζ̄

2

)

, |ζ | = 1.

Thus, |αn| ≤ n and |βn| ≤ n, for all n = 1, 2, 3, . . .. Now, let f ∈ H0 having
expansion of the form (1.1) be such that for all ε ∈ C, with |ε| < δ, ( f (z) + εz)/(1+
ε) ∈ FS0∗

H , z ∈ D. Then we have for ϕ ∈ Q′,

( f ∗ ϕ)(z) + εz

1 + ε

= 0, 0 < |z| < 1, |ε| < δ,

which implies ( f ∗ ϕ)/z 
= −ε, z ∈ D. Therefore it follows that |( f ∗ ϕ)/z| ≥ δ, for
z ∈ D. Assume F ∈ NH

δ ( f ), where F has the following expansion

F(z) = z +
∞∑

n=2

cnz
n +

∞∑

n=2

dnzn, z ∈ D. (2.2)
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Since f (z) + εz is stable harmonic univalent, it is clear from Theorem 3 that F ∈ S0
H.

Therefore, to prove F ∈ FS0∗
H , it is sufficient to show that F ∗ ϕ 
= 0 for all ϕ ∈ Q′

with 0 < |z| < 1. Now for ϕ ∈ Q′, we have

∣
∣
∣
∣
F ∗ ϕ

z

∣
∣
∣
∣ =

∣
∣
∣
∣
f ∗ ϕ

z
+ (F − f ) ∗ ϕ

z

∣
∣
∣
∣ ≥ δ −

∣
∣
∣
∣
(F − f ) ∗ ϕ

z

∣
∣
∣
∣ .

But, for z ∈ D,

∣
∣
∣
∣
(F − f ) ∗ ϕ

z

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∞∑

n=2

(cn − an)αnz
n−1 +

∞∑

n=2

1

z
(dn − bn)βnzn

∣
∣
∣
∣
∣

≤
∞∑

n=2

|cn − an||αn||zn−1| +
∞∑

n=2

|dn − bn||βn||zn−1|

<

∞∑

n=2

n|cn − an| +
∞∑

n=2

n|dn − bn|

≤ δ.

Therefore |(F ∗ ϕ)/z| > 0, z ∈ D, which implies (F ∗ ϕ)(z) 
= 0 for 0 < |z| < 1 for
all ϕ ∈ Q′. Hence F ∈ FS0∗

H .

Remark 1. In particular, if we take f (z) = e(z) = z and δ = 1, then it follows from
Theorem 4 that NH

1 (e) ⊂ FS0∗
H .

2. In a recent article ([10]), Fournier has shown that, in particular, if we take M = S∗
in Theorem A, then this result is a consequence of the Kobori-Noshiro result,
which states that if a function f (z) = z + ∑∞

n=2 anz
n ∈ A satisfies the condition∑∞

n=2 n|an| ≤ 1, then f is univalent and starlike in D. For harmonic functions,
it is known from [2, Lemma 2] that, if f ∈ H0 with expansion of the form (1.1)
satisfies the condition

∞∑

n=2

n|an| +
∞∑

n=2

n|bn| ≤ 1,

then f ∈ FS0∗
H . We shall see that Theorem 4 can be considered as a consequence

of [2, Lemma 2]. Now let us assume the function f ∈ H0 with expansion of
the form (1.1) satisfies the hypothesis of Theorem 4 and let F ∈ NH

δ ( f ) having
expansion of the form (2.2). Therefore F ∈ S0

H and

1

δ

( ∞∑

n=2

n|cn − an| +
∞∑

n=2

n|dn − bn|
)

≤ 1,
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then it follows from [2, Lemma 2] that for each θ ,

μ(z) = z + F(z) − f (z)

δeiθ
∈ FS0∗

H .

Hence μ(z) ∗ ϕ(z) 
= 0, 0 < |z| < 1, for all ϕ ∈ Q′, which gives

0 
= μ(z) ∗ ϕ(z)

z
= 1 + F(z) ∗ ϕ(z) − f (z) ∗ ϕ(z)

δeiθ z
, z ∈ D.

Therefore, we have for z ∈ D,

∣
∣
∣
∣
F(z) ∗ ϕ(z)

z
− f (z) ∗ ϕ(z)

z

∣
∣
∣
∣ < δ.

Again, from hypothesis of Theorem 4, it follows that |( f ∗ ϕ)/z| ≥ δ, z ∈ D.
Therefore (F ∗ ϕ)/z 
= 0, for all ϕ ∈ Q′, which implies F ∈ FS0∗

H . Hence
NH

δ ( f ) ⊂ FS0∗
H . Therefore from the above discussion we conclude that Theorem

4 is a consequence of [2, Lemma 2].

To prove our next result, we need [1, Theorem 2.8]. It is known that a function
f = h + g is convex in |z| < r for each r < 1 if and only if

∂

∂θ

[

arg

(
∂

∂θ
f (reiθ )

)]

= Re
z(zh′(z))′ + z(zg′(z))′

zh′(z) − zg′(z)
> 0,

for 0 < |z| < 1. In the proof of [1, Theorem 2.8], one can easily see that the limit

lim
z→0

z(zh′(z))′ + z(zg′(z))′

zh′(z) − zg′(z)

does not exist if g′(0) 
= 0. The above limit exists and is equal to 1 only when
g′(0) = 0. Therefore, in the statement of [1, Theorem 2.8], f must belong to the class
S0
H instead of SH. With this slight modification, we recall [1, Theorem 2.8] in the

following form:

Lemma 1 Let f = h + g ∈ S0
H. Then f ∈ FK0

H if and only if

h(z) ∗ z + ζ z2

(1 − z)3
+ g(z) ∗ ζ z̄ + z̄2

(1 − z̄)3

= 0, |ζ | = 1, 0 < |z| < 1.

We now state and prove our final result.

Theorem 5 Let f ∈ H0 and δ > 0 such that for all |ε| < δ, the function ( f (z) +
εz)/(1+ε) ∈ FK0

H, z ∈ D. If f (z) + εz is stable harmonic univalent then T N H
δ ( f ) ⊂

FK0
H for T = {n2}∞n=1.
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Proof For z ∈ D, define

Q′
c =

{
z + ζ z2

(1 − z)3
+ ζ z̄ + z̄2

(1 − z̄)3
: |ζ | = 1

}

. (2.3)

Then it follows from the Lemma 1 that, for f ∈ S0
H, f ∈ FK0

H if and only if
( f ∗ ϕ)(z) 
= 0, 0 < |z| < 1, for all ϕ ∈ Q′

c. Again, we see that if

ϕ(z) = z +
∞∑

n=2

αnz
n +

∞∑

n=1

βnzn ∈ Q′
c,

then, from (2.3) it follows that

αn = n(n + 1)

2
+ n(n − 1)

2
ζ, βn = n(n − 1)

2
+ n(n + 1)

2
ζ̄ , |ζ | = 1.

This implies |αn| ≤ n2 and |βn| ≤ n2, for all n = 1, 2, 3, . . .. Let f ∈ H0 having
expansion of the form (1.1) be such that, for all ε ∈ C with |ε| < δ, ( f (z) + εz)/(1+
ε) ∈ FK0

H. Then for ϕ ∈ Q′
c, we have

( f ∗ ϕ)(z) + εz

1 + ε

= 0, 0 < |z| < 1, |ε| < δ,

which implies ( f ∗ϕ)/z 
= −ε, z ∈ D. Therefore it follows that |( f ∗ϕ)/z| ≥ δ, z ∈ D.
Let F ∈ T NH

δ ( f ) having expansion of the form (2.2), where T = {n2}∞n=1. Since
f (z) + εz is stable harmonic univalent, it follows from the Theorem 3 that F ∈ S0

H.
Therefore to prove the result it is sufficient to show that F ∗ ϕ 
= 0 for all ϕ ∈ Q′

c
with 0 < |z| < 1. Now for ϕ ∈ Q′

c, we have

∣
∣
∣
∣
(F − f ) ∗ ϕ

z

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∞∑

n=2

(cn − an)αnz
n−1 +

∞∑

n=2

1

z
(dn − bn)βnzn

∣
∣
∣
∣
∣

≤
∞∑

n=2

|cn − an||αn||zn−1| +
∞∑

n=2

|dn − bn||βn||zn−1|

<

∞∑

n=2

n2|cn − an| +
∞∑

n=2

n2|dn − bn|

≤ δ.

Therefore
∣
∣
∣
∣
F ∗ ϕ

z

∣
∣
∣
∣ =

∣
∣
∣
∣
f ∗ ϕ

z
+ (F − f ) ∗ ϕ

z

∣
∣
∣
∣ ≥ δ −

∣
∣
∣
∣
(F − f ) ∗ ϕ

z

∣
∣
∣
∣ > δ − δ = 0.

This implies F ∗ ϕ 
= 0 for all ϕ ∈ Q′
c with 0 < |z| < 1. Hence F ∈ FK0

H and the
proof is complete.
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Remark In [13, Corollary 4.1], Hernandez and Martin proved that, if a sense-
preserving harmonic mapping is stable harmonic convex, then it is fully convex. Thus,
in the hypothesis of Theorem 5, if we consider f ∈ H0 such that, for all |ε| < δ,
(δ > 0) the functions f (z) + εz are sense-preserving and stable harmonic convex,
then the conclusion of Theorem 5 follows as well.
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