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Abstract
A family� of subsets of {1, 2, . . . , n} is a simplicial complex if all subsets of F are in
� for any F ∈ �, and the element of� is called the face of�. Let V (�) = ⋃

F∈� F .

A simplicial complex � is a near-cone with respect to an apex vertex v ∈ V (�) if
for every face F ∈ �, the set (F\{w}) ∪ {v} is also a face of � for every w ∈ F .

Denote by fi (�) = |{A ∈ � : |A| = i + 1}| and hi (�) = |{A ∈ � : |A| =
i + 1, n /∈ A}| for every i, and let link�(v) = {E : E ∪ {v} ∈ �, v /∈ E} for
every v ∈ V (�). Assume that p is a prime and k � 2 is an integer. In this paper,
some extremal problems on k-wise L-intersecting families for simplicial complexes
are considered. (i) Let L = {l1, l2, . . . , ls} be a subset of s nonnegative integers.
If F = {F1, F2, . . . , Fm} is a family of faces of the simplicial complex � such
that |Fi1 ∩ Fi2 ∩ · · · ∩ Fik | ∈ L for any collection of k distinct sets from F , then
m � (k − 1)

∑s−1
i=−1 fi (�). In addition, if the size of every member of F belongs to

the set K := {k1, k2, . . . , kr } with min K > s − r , then m � (k − 1)
∑s−1

i=s−r fi (�).

(ii) Let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr } be two disjoint subsets of
{0, 1, . . . , p − 1} such that min K > s − 2r + 1. Assume that � is a simplicial
complex with n ∈ V (�) and F = {F1, F2, . . . , Fm} is a family of faces of � such
that |Fj | (mod p) ∈ K for every j and |Fi1 ∩ Fi2 ∩ · · · ∩ Fik | (mod p) ∈ L for
any collection of k distinct sets from F . Then m � (k − 1)

∑s−1
i=s−2r hi (�). (iii) Let

L = {l1, l2, . . . , ls} be a subset of {0, 1, . . . , p − 1}. Assume that � is a near-cone
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with apex vertex v andF = {F1, F2, . . . , Fm} is a family of faces of � such that |Fj |
(mod p) /∈ L for every j and |Fi1 ∩ Fi2 ∩ · · · ∩ Fik | (mod p) ∈ L for any collection
of k distinct sets from F . Then m � (k − 1)

∑s−1
i=−1 fi (link�(v)).

Keywords Simplicial complex · Erdős–Ko–Rado theorem · k-wise L-intersecting
families · Multilinear polynomials

Mathematics Subject Classification 05D05 · 05C65

1 Introduction

We begin with introducing some background information that will lead to our main
results.

1.1 Background

Throughout our paper, let [n] = {1, 2, . . . , n} and let 2[n] be the family of all subsets
of [n]. A family F of subsets of [n] is called intersecting if every pair of distinct
subsets E, F ∈ F have a nonempty intersection. Let L = {l1, l2, . . . , ls} be a set of
s nonnegative integers. A family F of subsets of [n] is called k-wise L-intersecting
if |F1 ∩ F2 ∩ · · · ∩ Fk | ∈ L for any collection of k (� 2) distinct subsets from F .
When k = 2, such a family F is called L-intersecting. A family F is k-uniform if
it is a collection of k-element subsets of [n]. Thus, a k-uniform intersecting family is
L-intersecting for L = {1, 2, . . . , k − 1}. Two families A and B of [n] are called
cross L-intersecting if |A ∩ B| ∈ L for each member A from A and B from B.

A family� of subsets of [n] is said to be a simplicial complex (a hereditary family, a
downset or an ideal) if all subsets of any set in� are in�.Let V (�) = ⋃

F∈� F .Then
V (�) ⊆ [n]. The elements of � are called the faces of �. For S ∈ �, the dimension
of S is |S|−1. The dimension of� is defined as dim(�) = max{|A|−1 : A ∈ �}. For
a simplicial complex � with dimension d − 1, let fi−1(�) = |{A ∈ � : |A| = i}| for
i = 0, 1, . . . , d. Clearly, f−1 = 1. The 0-dimensional faces are called the vertices of
�, and F ∈ � is called a facet of � if there does not exist F ′ ∈ � such that F ⊂ F ′.
For a vertex v of �, denote the link of v in � to be

link�(v) = {E : E ∪ {v} ∈ �, v /∈ E},

i.e., it is the star at v, with v itself removed from each set thereof. Obviously, link�(v)

is also a simplicial complex. A simplicial complex� is called a near-conewith respect
to an apex vertex v if for every face F ∈ �, the set (F\{w}) ∪ {v} is also a face of �

for each vertex w ∈ F .

Problems and results concerning the maximum cardinality of set systems with
certain restrictions on the intersections of its members are at the heart of extremal set
theory. In 1961, Erdős et al. [11] obtained a classical result, which is one of the most
celebrated theorems in extremal set theory.
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Theorem 1.1 (Erdős–Ko–Rado theorem, [11]) Let n � 2k and let F be a k-uniform
intersecting family of subsets of [n]. Then

|F | �
(
n − 1

k − 1

)

with equality if and only ifF consists of all the k-subsets containing a common element
provided n > 2k.

Since then, a vast amount of beautiful results concerning intersecting families have
appeared; see [1, 6, 10, 13, 15, 18, 28, 33, 39]. In particular, notice that a k-uniform
intersecting family is also L-intersecting for L = {1, 2, . . . , k − 1}. In 1975, Ray-
Chaudhuri and Wilson [32] derived an upper bound for k-uniform L-intersecting
family, where L is an arbitrary set of s nonnegative integers. This is the well-known
Ray-Chaudhuri–Wilson theorem. In 1981, Frankl and Wilson [14] used a method of
higher incidence matrices to obtain a remarkable theorem, which extends the Ray-
Chaudhuri–Wilson theorem by allowing different subset sizes.

Theorem 1.2 ([14]) Let L be a set of s nonnegative integers. IfF = {F1, F2, . . . , Fm}
is an L-intersecting family of subsets of [n], then

m �
(
n

s

)

+
(

n

s − 1

)

+ · · · +
(
n

0

)

.

In terms of the parameters n and s, this inequality is best possible, as shown by the
set of all subsets of size at most s of [n] with L = {0, 1, . . . , s − 1}. In 1991, Alon et
al. [2] used a very elegant algebraic method to derive the following result which is a
common generalization to the Ray-Chaudhuri–Wilson theorem and Theorem 1.2.

Theorem 1.3 ([2]) Let L be a set of s nonnegative integers and let K be a set of
r positive integers satisfying min K > s − r . If F = {F1, F2, . . . , Fm} is an L-
intersecting family of subsets of [n] such that |Fi | ∈ K for every 1 � i � m, then

m �
(
n

s

)

+
(

n

s − 1

)

+ · · · +
(

n

s − r + 1

)

.

This upper bound is best possible as shown by the set of all subsets of [n] of sizes
at least s − r + 1 and at most s. In 2002, Grolmusz and Sudakov [17] obtained the
following result which extends Theorems 1.2 and 1.3 to the k-wise L-intersecting
families for k � 2.

Theorem 1.4 ([17]) Let k � 2 and let L be a set of s nonnegative integers. If F is a
k-wise L-intersecting family of subsets of [n], then

m � (k − 1)

[(
n

s

)

+
(

n

s − 1

)

+ · · · +
(
n

0

)]

. (1.1)
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If in addition the size of every member of F belongs to the set {k1, k2, . . . , kr } and
ki > s − r for every i, then

m � (k − 1)

[(
n

s

)

+
(

n

s − 1

)

+ · · · +
(

n

s − r + 1

)]

. (1.2)

In the same paper [17], Grolmusz and Sudakov also showed that the same bounds
in (1.1) and (1.2) remain true if L is a set of residues modulo a prime p, and the
cardinality of k-wise intersections of members ofF modulo p is in L , but the size of
every member of F modulo p is not in L.

Note that the set L in the above theorems may contain 0. When L does not contain
0, Snevily [36] proved the next result, which implies Theorem 1.2.

Theorem 1.5 ([36]) Let L be a set of s positive integers. If F = {F1, F2, . . . , Fm} is
an L-intersecting family of subsets of [n], then

m �
(
n − 1

s

)

+
(
n − 1

s − 1

)

+ · · · +
(
n − 1

0

)

.

The upper bound in Theorem 1.5 is also best possible as shown by the set of all
subsets of [n] which contain a common element and have at most s + 1 elements.
Snevily [35] also proved that the above bound remains true if L is a set of residues
modulo a prime p, and the cardinality of pairwise intersections of members of F
modulo p is in L , but the size of every member of F modulo p is not in L. For
more advances on L-interesting family, please refer to [16, 20, 24, 25, 31] and the
references therein. In studying k-wise L-intersecting families, it often involves cross L-
intersecting families, see for example [17]. For more advances on cross L-intersecting
families, one may be referred to [21–23, 26, 37].

Note that the family of all independent sets of a graph forms a simplicial complex.
As another generalization of Erdős–Ko–Rado theorem, Holroyd and Talbot [19] first
defined the Erdős–Ko–Rado property of graphs in terms of the independent sets of
graphs. Fakhari [12] studied the Erdős–Ko–Rado type theorems for simplicial com-
plexes associated to the independent sets of graphs. Borg [3] proved a conjecture of
Holroyd and Talbot by giving multi-level solution of simplicial complexes. Olarte et
al. [30] showed that the family of facets of a pure simplicial complex of dimension up
to three satisfies the Erdős–Ko–Rado property whenever it is flag and has no boundary
ridges. Woodroofe [40] generalized Erdős–Ko–Rado property to near-cone by using
algebraic shift method. Recently, Wang [38] extended Theorems 1.2 and 1.3 to sim-
plicial complex and also extended Theorem 1.5 to near-cone by using linear algebra
method.

Bear in mind that one of the outstanding open problems in extremal set theory is the
following Chvátal’s conjecture. It concerns the largest intersecting family of simplicial
complex.

Conjecture 1.6 ([7]) Let F be any family of subsets of [n] such that S ∈ F , T ⊂ S
implies T ∈ F , then some largest intersecting subfamily ofF has the form {A ∈ F :
x ∈ A} for some x ∈ [n].
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This conjecture can also be described in the following form.

Conjecture 1.7 Let � be a simplicial complex and let F be an interesting family of
faces of �. Then

|F | � max
v∈V (�)

(
∑

r

fr (link�(v))

)

.

Recall that 2[n] is a simplicial complex, so Conjecture 1.7 follows directly from
Theorem 1.1 when � = 2[n]. Chvátal [8, 9] verified this conjecture for the case when
� is compressed (that is, if j ∈ F ∈ �, then for any i ∈ V (�)\F with i < j,we have
(F\{ j}) ∪ {i} ∈ �). Snevily [34] confirmed this conjecture when � is a near-cone
with respect to an apex vertex, which is the best result so far on this conjecture. Many
other results have been inspired by this conjecture, we refer the readers to [4, 27, 29]
for more details.

Motivated by Theorem 1.4, Conjecture 1.7 and the main results in [38, 40], it
is natural and interesting for us to consider the maximum cardinality of k-wise L-
intersecting families on simplicial complex in the current paper.

1.2 Main Results

Our first result determines the maximum cardinality of k-wise L-intersecting families
on simplicial complex.On the one handour result extends [17, Theorem1] to simplicial
complex, on the other hand it also extends [38, Theorems 2.1 and 2.2] to the k-wise
L-intersecting families for k � 2.

Theorem 1.8 Let k � 2 and let L = {l1, l2, . . . , ls} be a subset of s nonnegative
integers. If F = {F1, F2, . . . , Fm} is a family of faces of simplicial complex � such
that |Fi1 ∩ Fi2 ∩ · · · ∩ Fik | ∈ L for any collection of k distinct sets fromF , then

m � (k − 1)
s−1∑

i=−1

fi (�).

In addition, if the size of every member of F belongs to the set K = {k1, k2, . . . , kr }
with min K > s − r , then

m � (k − 1)
s−1∑

i=s−r

fi (�).

Our next result is a modular version of Theorem 1.8, which strengthens the
Grolmusz–Sudakov theorem, i.e., [17, Theorem 2].

Theorem 1.9 Let p be a prime and let L = {l1, l2, . . . , ls} be a subset of {0, 1, . . . , p−
1} of size s. Assume that F = {F1, F2, . . . , Fm} is a family of faces of simplicial
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complex� such that |Fi | (mod p) /∈ L for every 1 � i � m and |Fi1 ∩Fi2 ∩· · ·∩Fik |
(mod p) ∈ L for any collection of k � 2 distinct sets fromF . Then

m � (k − 1)
s−1∑

i=−1

fi (�).

In addition, let K = {k1, k2, . . . , kr } be a subset of {0, 1, . . . , p − 1} with min K >

s − r . If |Fi | (mod p) ∈ K for every 1 � i � m, then

m � (k − 1)
s−1∑

i=s−r

fi (�).

The following result improves Theorem 1.8 when p is larger than n.

Theorem 1.10 Let p be a prime and let L = {l1, l2, . . . , ls}, K = {k1, k2, . . . , kr } be
two disjoint subsets of {0, 1, . . . , p − 1} satisfying min K > s − 2r + 1. Assume that
� is a simplicial complex with n ∈ V (�) and F = {F1, F2, . . . , Fm} is a family of
faces of� such that |Fi | (mod p) ∈ K for every 1 � i � m and |Fi1 ∩Fi2 ∩· · ·∩Fik |
(mod p) ∈ L for any collection of k � 2 distinct sets fromF . Then

m � (k − 1)
s−1∑

i=s−2r

hi (�),

where hi (�) is the number of the i-dimensional faces which don’t contain n in �.

If � = 2[n], then hi (�) = (n−1
i+1

)
for s − 2r � i � s − 1. By Theorem 1.10, the

next result holds directly.

Corollary 1.11 Let p be a prime and let L = {l1, l2, . . . , ls}, K = {k1, k2, . . . , kr } be
two disjoint subsets of {0, 1, . . . , p − 1} satisfying min K > s − 2r + 1. Assume that
F = {F1, F2, . . . , Fm} is a family of subsets of [n] with |Fi | (mod p) ∈ K for any
1 � i � m and |Fi1 ∩ Fi2 ∩ · · · ∩ Fik | (mod p) ∈ L for any collection of k � 2
distinct sets fromF . Then

m � (k − 1)

[(
n − 1

s

)

+
(
n − 1

s − 1

)

+ · · · +
(

n − 1

s − 2r + 1

)]

.

Note that from the condition min K > max L or min K > s − r , one has min K >

s−2r+1.Thus, Corollary 1.11 implies the following two results, whichwere obtained
by Chen and Liu [5] and by Liu and Yang [23], respectively.

Corollary 1.12 ([5])Let p beaprimeand let L = {l1, l2, . . . , ls}, K = {k1, k2, . . . , kr }
be two disjoint subsets of {0, 1, . . . , p − 1} satisfying min K > max L. Assume that
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F = {F1, F2, . . . , Fm} is a family of subsets of [n] satisfying |Fi | (mod p) ∈ K for
every 1 � i � m and |Fi ∩ Fj | (mod p) ∈ L for every pair i �= j . Then

m �
(
n − 1

s

)

+
(
n − 1

s − 1

)

+ · · · +
(

n − 1

s − 2r + 1

)

.

Corollary 1.13 ([23]) Let p be a prime and let L = {l1, l2, . . . , ls}, K =
{k1, k2, . . . , kr } be two disjoint subsets of {0, 1, . . . , p − 1} such thatmin K > s − r .
Assume that F = {F1, F2, . . . , Fm} is a family of subsets of [n] such that |Fi |
(mod p) ∈ K for every 1 � i � m and |Fi1 ∩ Fi2 ∩ · · · ∩ Fik | (mod p) ∈ L
for any collection of k � 2 distinct sets fromF . Then

m � (k − 1)

[(
n − 1

s

)

+
(
n − 1

s − 1

)

+ · · · +
(

n − 1

s − 2r + 1

)]

.

Our last main result improves Theorems 1.8 and 1.9.

Theorem 1.14 Let p be a prime and let L = {l1, l2, . . . , ls} be a subset of
{0, 1, . . . , p − 1} of size s. Assume that � is a near-cone with apex vertex v and
F = {F1, F2, . . . , Fm} is a family of faces of � satisfying |Fi | (mod p) /∈ L for
every 1 � i � m, and |Fi1 ∩ Fi2 ∩ · · ·∩ Fik | (mod p) ∈ L for any collection of k � 2
distinct sets fromF . Then

m � (k − 1)
s−1∑

i=−1

fi (link�(v)).

Note that the family 2[n] is a near-cone and any vertex in [n] is an apex vertex of
2[n]. By setting k = 2 and� = 2[n] and choosing any vertex v ∈ [n] in Theorem 1.14,
the next result, which was obtained by Snevily in 1994 [35], follows immediately.

Corollary 1.15 ([35]) Let p be a prime and let L = {l1, l2, . . . , ls} be a subset of
{0, 1, . . . , p− 1} of size s. Suppose thatF = {F1, F2, . . . , Fm} is a family of subsets
of [n] such that |Fi | (mod p) /∈ L for every 1 � i � m and |Fi ∩ Fj | (mod p) ∈ L
for every pair i �= j . Then

m �
(
n − 1

s

)

+
(
n − 1

s − 1

)

+ · · · +
(
n − 1

0

)

.

Our paper is organized as follows. In the remainder of this section, we introduce
some notations which will be used in the subsequent sections. In Sect. 2, we give the
proofs of Theorems 1.8 and 1.9. In Sect. 3, we give the proof of Theorem 1.10. In
Sect. 4, we give the proof of Theorem 1.14. In the last section, we conclude our paper
with further research problems.

Let p be a prime and let x = (x1, x2, . . . , xn) be a vector with n variables. Let
F[x1, x2, . . . , xn] denote the polynomial ring, where F is eitherR orFp.Apolynomial
f (x) in variables xi , i = 1, 2, . . . , n, is calledmultilinear if the power of each variable
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xi in each term is at most one. Obviously, if each variable xi takes only the value 0
or 1, then any polynomial in variables xi , i = 1, 2, . . . , n, is multilinear since any
positive power of a variable xi may be replaced by one. In this paper, all multilinear
polynomials considered are from F[x1, x2, . . . , xn].

For any subset A ⊆ [n], we define the characteristic vector of A as the vector vA =
(v1, v2, . . . , vn) ∈ R

n with vi = 1 if i ∈ A and vi = 0 otherwise. For two vectors
v = (v1, v2, . . . , vn),w = (w1, w2, . . . , wn) ∈ R

n , let v · w = ∑n
i=1 viwi denote

their standard inner product. Moreover, we index the monic multilinear monomials
by the set of their variables:

xA :=
∏

i∈A

xi .

In particular, if A = ∅, define x∅ := 1.
In the following sections, we use x = (x1, x2, . . . , xn) to denote a vector of n

variables with each variable x j taking values 0 or 1.

2 Proofs of Theorems 1.8 and 1.9

In this section, we give the proofs of Theorems 1.8 and 1.9. In order to complete our
proof, we need some preliminaries.

Lemma 2.1 Let p be a prime and let L = {l1, l2, . . . , ls} be a subset of {0, 1, . . . , p−1}
of size s. Choose A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} to be two
families of faces of simplicial complex � such that (1) |Ai ∩ Bi | (mod p) /∈ L for
every 1 � i � m; (2) |A j ∩ Bi | (mod p) ∈ L for every pair j > i . Then

m �
s−1∑

i=−1

fi (�).

Proof For 1 � i � m, define

φi (x) =
s∏

j=1

(
vBi · x − l j

)
. (2.1)

Then each φi (x) is a polynomial of degree at most s. By condition (1), φi (vAi ) =∏s
j=1(|Ai ∩ Bi |− l j ) � �=0 (mod p) for every 1 � i � m. By condition (2), φi (vA j ) =

∏s
t=1(|A j ∩ Bi | − lt ) = 0 (mod p) for every pair i < j .
Now we show that the polynomials φ1(x), φ2(x), . . . , φm(x) are linearly indepen-

dent over the finite field Fp. Suppose that we have a linear combination of these
polynomials that equals zero, i.e.,

m∑

i=1

αiφi (x) = 0 (2.2)
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with all coefficients αi being in Fp.We show that all coefficients must be zero modulo
p as follows.

Claim 1 αi = 0 (mod p) for each 1 � i � m.

Proof of Claim 1 Suppose, to the contrary, that i0 is the largest subscript such thatαi0 � �=0
(mod p). As pointed out above, φi (vAi0

) = 0 (mod p) for i < i0. By evaluating x =
vAi0

in Eq. (2.2), we have αi0φi0(vAi0
) = 0 (mod p). Combined with φi0(vAi0

) �= 0
(mod p), it follows that αi0 = 0 (mod p), a contradiction. So Claim 1 holds. 
�

ByClaim 1, the polynomialsφ1(x), φ2(x), . . . , φm(x) are linearly independent over
the field Fp. On the other hand, by the definitions of simplicial complex � and φi (x),
we see that the monomial x j1x j2 . . . x jt appears in φi (x) only if { j1, j2, . . . , jt } is a
face of �. This means that

m �
s−1∑

i=−1

fi (�).

This completes the proof. 
�
Lemma 2.2 Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr } be
two subsets of {0, 1, . . . , p−1} withmin K > s−r . ChooseA = {A1, A2, . . . , Am}
and B = {B1, B2, . . . , Bm} to be two families of faces of simplicial complex � such
that (1) |Ai ∩ Bi | (mod p) /∈ L for every 1 � i � m; (2) |A j ∩ Bi | (mod p) ∈ L
for every pair j > i; (3) |Ai | (mod p) ∈ K for every 1 � i � m. Then

m �
s−1∑

i=s−r

fi (�).

Proof LetW be the family of the faces of � with dimensions at most s − r − 1. Then
|W | = ∑s−r−1

i=−1 fi (�). For each I ∈ W , define

hI (x) = P(x)
∏

j∈I
x j , (2.3)

where P(x) = ∏
k j∈K (

∑n
i=1 xi − k j ). Obviously, hI (x) is a polynomial of degree at

most s.
Let AI (x) be the sum of all the monomials x j1x j2 . . . x jt in the expansion of hI (x)

such that { j1, j2, . . . , jt } are the faces of�.Then each AI (x) is a polynomial of degree
at most s. For any given Ai ∈ A ⊆ � and I ∈ W , if I � Ai , then AI (vAi ) = 0
(mod p). While if I ⊆ Ai , then hI (vAi ) = P(vAi ). Note that Ai ∈ � and � is a
simplicial complex, we obtain that AI (vAi ) = P(vAi ). Together with the fact that |Ai |
(mod p) ∈ K , it follows that AI (vAi ) = 0 (mod p).

Recall that the polynomials φi (x), i = 1, 2, . . . ,m, are defined in (2.1). Now, we
prove that the polynomials in

{φi (x) : 1 � i � m} ∪ {AI (x) : I ∈ W } (2.4)
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are linearly independent over the field Fp. Suppose that we have a linear combination
of these polynomials that equals zero, i.e.,

m∑

i=1

αiφi (x) +
∑

I∈W
μI AI (x) = 0 (2.5)

with all coefficients αi and μI being in Fp. In order to complete our proof, we show
the following two claims.

Claim 2 αi = 0 (mod p) for each 1 � i � m.

Proof of Claim 2 Suppose, to the contrary, that i0 is the largest subscript such that
αi0 � �=0 (mod p). Substituting x = vAi0

in (2.5), we have AI (vAi0
) = 0 (mod p) for

each I ∈ W . Hence, all terms in the second sum of (2.5) vanish. In this case, by the
same discussion as in the proof of Claim 1, we deduce that all αi = 0 (mod p). So
Claim 2 holds. 
�
Claim 3 μI = 0 (mod p) for each I ∈ W .

Proof of Claim 3 Suppose, to the contrary, that I ′ is a subset of the smallest size in
W such that μI ′ �= 0 (mod p). It is routine to check that AI (vI ′) ≡ 0 (mod p) for
each |I | � |I ′| and I �= I ′. Evaluating x = vI ′ in Eq. (2.5) gives us μI ′ AI ′(vI ′) = 0
(mod p).Byadirect calculation,we have hI ′(vI ′) = P(vI ′) = ∏

k j∈K (
∑n

i=1 xi−k j ).

Combined with the condition min K > s − r and I ′ ∈ �, we have AI ′(vI ′) =
P(vI ′) �= 0 (mod p). Thus, μI ′ = 0 (mod p), a contradiction. So Claim 3 holds. 
�

By Claims 2 and 3, we obtain that the polynomials in (2.4) are linearly independent
over the field Fp. Notice that φi (x), i = 1, 2, . . . ,m and AI (x), I ∈ W are the
polynomials of degree at most s, and the monomial x j1x j2 . . . x jt appears in these
polynomials only if { j1, j2, . . . , jt } is a face of �. Thus,

m +
s−r−1∑

i=−1

fi (�) �
s−1∑

i=−1

fi (�),

which is equivalent to m �
∑s−1

i=s−r fi (�).

This completes the proof. 
�
Lemma 2.3 Let L = {l1, l2, . . . , ls} be a subset of s nonnegative integers. Assume
that A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two families of faces
of simplicial complex � such that (1) |Ai ∩ Bi | = |Bi | for each 1 � i � m; (2)
|A j ∩ Bi | ∈ L and |A j ∩ Bi | < |Bi | for every pair j > i . Then

m �
s−1∑

i=−1

fi (�).
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Proof For 1 � i � m, define

φi (x) =
∏

l j<|Bi |

(
vBi · x − l j

)
. (2.6)

Then each φi (x) is a polynomial of degree at most s. By condition (1), φi (vAi ) =∏
l j<|Bi |(|Ai ∩ Bi | − l j ) � �=0 for every 1 � i � m. By condition (2), φi (vA j ) =

∏
lt<|Bi |(|A j ∩ Bi | − lt ) = 0 for every pair i < j .
By a similar discussion as in the proof of Lemma 2.1, we can also get that the

polynomials φ1(x), φ2(x), . . . , φm(x) are linearly independent, whose procedure is
omitted here. On the other hand, by the definitions of simplicial complex� and φi (x),
we see that the monomial x j1x j2 . . . x jt appears in φi (x) only if { j1, j2, . . . , jt } is a
face of �. Thus,

m �
s−1∑

i=−1

fi (�).

This completes the proof. 
�
Lemma 2.4 Let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr } be two subsets of non-
negative integers such that min K > s − r . Assume that A = {A1, A2, . . . , Am} and
B = {B1, B2, . . . , Bm} are two families of faces of simplicial complex � such that
(1) |Ai ∩ Bi | = |Bi | for every 1 � i � m; (2) |A j ∩ Bi | ∈ L and |A j ∩ Bi | < |Bi |
for every pair j > i; (3) |Ai | ∈ K for every 1 � i � m. Then

m �
s−1∑

i=s−r

fi (�).

Proof Let the polynomial AI (x) be defined the same as that in the proof of Lemma 2.2
and let the polynomial φi (x) be defined as that in (2.6). By a similar discussion as
in the proof of Lemma 2.2, we can deduce that the polynomials in {φi (x) : 1 �
i � m} ∪ {AI (x) : I ∈ W } are linearly independent, whose procedure is omitted
here. Notice that φi (x), i = 1, 2, . . . ,m and AI (x), I ∈ W are the polynomials of
degree at most s, and the monomial x j1x j2 . . . x jt appears in these polynomials only
if { j1, j2, . . . , jt } is a face of �. Thus,

m +
s−r−1∑

i=−1

fi (�) �
s−1∑

i=−1

fi (�),

which is equivalent to

m �
s−1∑

i=s−r

fi (�).
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This completes the proof. 
�
Now we are ready to give the proof of Theorem 1.9, and then we modify it to show

Theorem 1.8.

Proof of Theorem 1.9 LetF be a family satisfying assertion of Theorem1.9.We repeat
the following procedure untilF is empty. At round i ifF �= ∅,we choose a maximal
collection F1, F2, . . . , Fd fromF such that | ∩d ′

i=1 Fi | (mod p) /∈ L for all 1 � d ′ �
d, but for any additional set F ′ ∈ F we obtain that |(∩d

i=1Fi ) ∩ F ′| (mod p) ∈ L.

Clearly, by definition such family always exists and 1 � d � k − 1. Denote Ai = F1
and Bi = ∩d

j=1Fj and remove all sets F1, F2, . . . , Fd from F . As the result of this
process, we obtain at least m′ � |F |/(k − 1) pairs of sets Ai , Bi . By definition, we
get that |Ai ∩ Bi | = |Bi | (mod p) /∈ L and |A j ∩ Bi | (mod p) ∈ L for any j > i .

In addition, note that Fi is a face of �, and so Ai is a face of �. Note that the
intersection of Fi and Fj is still a face of �, we obtain that Bi is also a face of �.

Thus, we derive that A = {A1, A2, . . . , Am′ } and B = {B1, B2, . . . , Bm′ } are two
families of faces of �. So, by Lemma 2.1, we have

|F | � (k − 1)m′ � (k − 1)
s−1∑

i=−1

fi (�).

We now extend the idea above to prove the second part of the theorem. Let K =
{k1, k2, . . . , kr } be a subset of {0, 1, . . . , p − 1} with min K > s − r . Since |Fi |
(mod p) ∈ K , we get that |Ai | (mod p) ∈ K for each i . According to the above
construction process, we see that these two families A and B satisfy the conditions
of Lemma 2.2. Thus, by Lemma 2.2, we have

|F | � (k − 1)m′ � (k − 1)
s−1∑

i=s−r

fi (�).

This completes the proof. 
�
Theorem 1.8 can be proved by a simple modification of the above proof.

Proof of Theorem 1.8 LetF be a family satisfying assertion of Theorem1.8.We repeat
the following procedure. At step i, if |F | ∈ L for all F ∈ F , then let F1 be the largest
set remaining in F . Denote Ai = Bi = F1 and remove F1 from F . Otherwise,
there exists at least F ∈ F such that |F | /∈ L. We choose a maximal collection
F1, F2, . . . , Fd from F such that | ∩d ′

i=1 Fi | /∈ L for all 1 � d ′ � d, but for any
additional set F ′ ∈ F we obtain that |(∩d

i=1Fi ) ∩ F ′| ∈ L. Denote Ai = F1 and
Bi = ∩d

j=1Fj and remove all sets F1, F2, . . . , Fd from F . As the result of this
process, we obtain at least m′ � |F |/(k − 1) pairs of sets Ai , Bi . By definition, we
get that |Ai ∩ Bi | = |Bi |, |A j ∩ Bi | ∈ L and |A j ∩ Bi | < |Bi | for any j > i .

Since Fi is a face of �, we get that Ai is also a face of �. Clearly, the intersection
of Fi and Fj is still a face of �, we obtain that Bi is also a face of �. Thus, we derive
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that A = {A1, A2, . . . , Am′ } and B = {B1, B2, . . . , Bm′ } are two families of faces
of �. So, by Lemma 2.3, we have

|F | � (k − 1)m′ � (k − 1)
s−1∑

i=−1

fi (�).

The proof of the second part of this theorem is identical with that of Theorem 1.9
(based on Lemma 2.4) and we omit it here.

This completes the proof. 
�

3 Proof of Theorem 1.10

In this section, we give the proof of Theorem 1.10. In order to do so, we need the
following lemma.

Lemma 3.1 Let p be a prime and let L = {l1, l2, . . . , ls}, K = {k1, k2, . . . , kr } be
two disjoint subsets of {0, 1, . . . , p − 1} satisfying min K > s − 2r + 1. Assume
that � is a simplicial complex with n ∈ V (�) and choose A = {A1, A2, . . . , Am}
and B = {B1, B2, . . . , Bm} to be two families of faces of � such that (1) |Ai ∩ Bi |
(mod p) /∈ L for every 1 � i � m; (2) |A j ∩ Bi | (mod p) ∈ L for every pair j > i;
(3) there exists an integer t satisfying n ∈ Ai for i > t and n /∈ Ai ∪ Bi for i � t; (4)
|Ai | (mod p) ∈ K for every 1 � i � m. Then

m �
s−1∑

i=s−2r

hi (�),

where hi (�) is the number of the i-dimensional faces which don’t contain n in �.

Proof For 1 � i � m, define

φi (x) =
s∏

j=1

(
vBi · x − l j

)
.

Then each φi (x) is a polynomial of degree at most s. By condition (1), φi (vAi ) =∏s
j=1(|Ai ∩ Bi |− l j ) � �=0 (mod p) for every 1 � i � m. By condition (2), φi (vA j ) =

∏s
q=1(|A j ∩ Bi | − lq) = 0 (mod p) for every pair i < j .
LetQ be the family of the faces of � with dimensions at most s − 1 which contain

the vertex n. For each L ∈ Q, define

qL(x) = (1 − xn)
∏

j∈L\{n}
x j .

Let W be the family of the faces of � with dimensions at most s − 2r − 1 which
don’t contain the vertex n.Let H = {(ki −1) (mod p) : ki ∈ K }∪K .Then |H | � 2r .
For each I ∈ W , define
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TI (x) = P(x)
∏

j∈I
x j ,

where P(x) = ∏
h∈H (

∑n−1
i=1 xi − h). Let AI (x) be the sum of all the monomials

x j1x j2 . . . x jq in the expansion of TI (x) such that { j1, j2, . . . , jq} are the faces of �.

Then each AI (x) is a polynomial of degree at most s. For any given Ai ∈ A ⊆ �

and I ∈ W , if I � Ai , then AI (vAi ) = 0 (mod p), whereas if I ⊆ Ai , then
TI (vAi ) = P(vAi ). Note that Ai ∈ �, we obtain that AI (vAi ) = P(vAi ). Together
with the fact that |Ai | (mod p) ∈ K , it follows that AI (vAi ) = 0 (mod p).

Now, we prove that the polynomials in

{φi (x) : 1 � i � m} ∪ {qL(x) : L ∈ Q} ∪ {AI (x) : I ∈ W } (3.1)

are linearly independent over the field Fp. Suppose that we have a linear combination
of these polynomials that equals zero, i.e.,

m∑

i=1

αiφi (x) +
∑

L∈Q
βLqL(x) +

∑

I∈W
γI AI (x) = 0. (3.2)

with all coefficients αi , βL and γI being in Fp. In what follows we show that all
coefficients must be zero modulo p.

Claim 4 αi = 0 (mod p) for each i > t .

Proof of Claim 4 Suppose, to the contrary, that i0 is the largest subscript such that
αi0 �= 0 (mod p) and i0 > t . By condition (3), we have n ∈ Ai0 . Then qL(vAi0

) =
0 for each L ∈ Q. Note that AI (vAi0

) = 0 for each I ∈ W and φi (vAi0
) = 0

(mod p) for i < i0. By evaluating Eq. (3.2) with x = vAi0
, we have αi0φi0(vAi0

) = 0
(mod p). Combined with φi0(vAi0

) �= 0 (mod p), it follows that αi0 = 0 (mod p),
a contradiction. So Claim 4 holds. 
�
Claim 5 αi = 0 (mod p) for each i � t .

Proof of Claim 5 Suppose, to the contrary, that i0 is the largest subscript such that
αi0 �= 0 (mod p) and i0 � t . Then n /∈ Ai0 . Let A

′
i0

= Ai0 ∪ {n}. Then xn = 1 in
vA′

i0
. This means that qL(vA′

i0
) = 0 for each L ∈ Q.

From the condition |Ai0 | (mod p) ∈ K , we have P(vA′
i0
) = P(vAi0

) = 0

(mod p). Then for any I ∈ W , if I � A′
i0
, then AI (vA′

i0
) = 0 (mod p). While

if I ⊆ A′
i0
, then TI (vA′

i0
) = P(vA′

i0
), i.e., TI (vA′

i0
) = 0 (mod p). Since Ai0 ∈ �,

we have AI (vA′
i0
) = TI (vA′

i0
) = 0 (mod p).

Note that n /∈ Bi for each i � t, we have φi (vA′
i0
) = φi (vAi0

) = 0 for i < i0. Then

by evaluating Eq. (3.2) with x = vA′
i0
,we have αi0φi0(vA′

i0
) = 0 (mod p).Combined

with φi0(vA′
i0
) �= 0 (mod p), it follows that αi0 = 0 (mod p), a contradiction. So

Claim 5 holds. 
�
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Combining Claims 4 and 5 reduces (3.2) to

∑

L∈Q
βLqL(x) +

∑

I∈W
γI AI (x) = 0. (3.3)

Rewrite (3.3) as

⎛

⎝
∑

L∈Q
βLq

′
L(x) +

∑

I∈W
γI AI (x)

⎞

⎠ − xn

⎛

⎝
∑

L∈Q
βLq

′
L(x)

⎞

⎠ = 0, (3.4)

where q ′
L(x) = ∏

j∈L\{n} x j . Notice that xn doesn’t appear in the first parentheses of
(3.4). Setting xn = 0 in (3.4) gives us

∑

L∈Q
βLq

′
L(x) +

∑

I∈W
γI AI (x) = 0

and

xn

⎛

⎝
∑

L∈Q
βLq

′
L(x)

⎞

⎠ = 0.

By setting xn = 1, we have

∑

L∈Q
βLq

′
L(x) = 0. (3.5)

As the set of all multilinear monomials in variables xi , 1 � i � n, of degree at most
s−1 are linearly independent over the fieldFp.Thus, by (3.5), we obtain the following
claim directly.

Claim 6 βL = 0 (mod p) for each L ∈ Q.

In order to complete the proof, in view of Claims 4–6, we just need to show that
AI (x), I ∈ W , are linearly independent over the field Fp.

Claim 7 γI = 0 (mod p) for each I ∈ W .

Proof of Claim 7 Suppose, to the contrary, that I0 is a subset of the smallest size in
W such that γI0 �= 0 (mod p). From the condition min K > s − 2r + 1, we have
P(vI ) �= 0 (mod p) for each I ∈ W . For each I ∈ W \{I0} with |I | � |I0|, it is
routine to check that AI (vI0) = 0 (mod p). By evaluating Eq. (3.2) with x = vI0 ,we
have γI0 AI0(vI0) = 0 (mod p). Combined with I0 ∈ �, we obtain that AI0(vI0) =
P(vI0) �= 0 (mod p). Then γI0 = 0 (mod p), a contradiction. So Claim 7 holds. 
�
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ByClaims4–7,we see that the polynomials in (3.1) are linearly independent over the
fieldFp.By the definition of simplicial complex and the definitions of the polynomials
φi (x), qL(x) and AI (x), we get that each monomial x j1x j2 . . . x jk appearing in φi (x)
[resp. qL(x) and AI (x)] satisfies that { j1, j2, . . . , jk} is a face of �. Thus,

m + |Q| + |W | �
s−1∑

i=−1

fi (�).

By the definitions of Q and W , we have |Q| = ∑s−1
i=−1 f ′

i (�) and |W | =
∑s−1

i=−1 hi (�), where f ′
i (�) and hi (�) denote the number of the i-dimensional faces

which contain n and the number of the i-dimensional faces which do not contain n in
�, respectively. Hence,

m �
s−1∑

i=−1

fi (�) −
s−1∑

i=−1

f ′
i (�) −

s−2r−1∑

i=−1

hi (�) =
s−1∑

i=s−2r

hi (�).

This completes the proof. 
�
Now we are ready to show Theorem 1.10.

Proof of Theorem 1.10 Let F be a family satisfying assertion of Theorem 1.10. We
repeat the following procedure until F is empty. At round i if F �= ∅, we choose a
maximal collection F1, F2, . . . , Fd from F such that n /∈ F1 whenever there exists
F ∈ F with n /∈ F, and | ∩d ′

i=1 Fi | (mod p) /∈ L for all 1 � d ′ � d, but for
any additional set F ′ ∈ F we obtain that |(∩d

i=1Fi ) ∩ F ′| (mod p) ∈ L. Clearly,
by definition such family always exists and 1 � d � k − 1. Denote Ai = F1 and
Bi = ∩d

j=1Fj and remove all sets F1, F2, . . . , Fd fromF .As the result of this process,
we obtain at least m′ � |F |/(k − 1) pairs of sets Ai , Bi . By definition, we get that
|Ai | (mod p) ∈ K and |Ai ∩ Bi | = |Bi | (mod p) /∈ L for every 1 � i � m, and
|A j ∩ Bi | (mod p) ∈ L for any j > i . Moreover, we also obtain that there must exist
an integer t such that n ∈ Ai for i > t and n /∈ Ai ∪ Bi for i � t .

In addition, since Fi is a face of �, we get that Ai is a face of �. Note that the
intersection of Fi and Fj is still a face of �, we obtain that Bi is also a face of �.

Thus, we derive that A = {A1, A2, . . . , Am′ } and B = {B1, B2, . . . , Bm′ } are two
families of faces of �. So, by Lemma 3.1, we have

|F | � (k − 1)m′ � (k − 1)
s−1∑

i=s−2r

hi (�).

This completes the proof. 
�
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4 Proof of Theorem 1.14

In this section, we give the proof of Theorem 1.14. In order to do so, we need the
following lemma.

Lemma 4.1 Let p be a prime and let L = {l1, l2, . . . , ls} be a subset of {0, 1, . . . , p−1}
of size s. Assume that� is a near-cone with apex vertex v andA = {A1, A2, . . . , Am}
and B = {B1, B2, . . . , Bm} are two families of faces of � such that (1) v /∈ Bi and
Bi ∪{v} ∈ � for every 1 � i � t; (2) v /∈ Bi and Bi ∪{v} /∈ � for every t+1 � i � r;
(3) v ∈ Bi for every r + 1 � i � m; (4) Bi ⊆ Ai and |Bi | (mod p) /∈ L for every
1 � i � m; (5) |A j ∩ Bi | (mod p) ∈ L for every pair j > i . Then

m �
s−1∑

i=−1

fi (link�(v)).

Proof According to the conditions (1)–(3), we denoteB1 = {B1, B2, . . . , Bt },B2 =
{Bt+1, Bt+2, . . . , Br } andB3 = {Br+1, Bl+2, . . . , Bm} for short. For Bi ∈ B1,define

φi (x) =
s∏

j=1

(
vBi · x − l j

)
.

For Bi ∈ B2 or Bi ∈ B3, define

φi (x) =
∏

l j<|Bi |

(
vBi · x − l j

)
.

Then each φi (x) is a polynomial of degree at most s. By the definition of φi (x), we
first claim that φi (vAi ) � �=0 (mod p) for every 1 � i � m and φi (vA j ) = 0 (mod p)
for every pair i < j .On the one hand, by condition (4), we obtain that |Ai ∩Bi | = |Bi |
(mod p) /∈ L for every 1 � i � m. This means that φi (vAi ) � �=0 (mod p) for every
1 � i � m. On the other hand, for any given pair i < j, by condition (5), we
obtain that φi (vA j ) = ∏s

q=1(|A j ∩ Bi | − lq) = 0 (mod p) for i � t . Furthermore,
combining conditions (4) and (5), we derive that |A j ∩ Bi | < |Bi | for i < j . Then
φi (vA j ) = ∏

lq<|Bi |(|A j ∩ Bi | − lq) = 0 (mod p) for i � t + 1. Thus, we get that
φi (vA j ) = 0 (mod p) for every pair i < j .

LetQ be the family of the faces of � with dimensions at most s − 1 which contain
the apex vertex v. For each L ∈ Q, define

qL(x) = (xv − 1)
∏

j∈L\{v}
x j .

123



128 Page 18 of 23 H. Zhang, H. Li

LetH be the family of the faces of�with dimensions at most s−1 satisfying that
for each R ∈ H , we obtain that v /∈ R and R ∪ {v} /∈ �. For each R ∈ H , define

hR(x) =
∏

j∈R

x j .

Now, we prove that the polynomials in

{φi (x) : 1 � i � m} ∪ {qL(x) : L ∈ Q} ∪ {hR(x) : R ∈ H } (4.1)

are linearly independent over the field Fp. Suppose that we have a linear combination
of these polynomials that equals zero, i.e.,

m∑

i=1

αiφi (x) +
∑

L∈Q
βLqL(x) +

∑

R∈H
γRhR(x) = 0. (4.2)

with all coefficients αi , βL and γR being in Fp. We show that all coefficients must be
zero modulo p in what follows.

Claim 8 γR = 0 (mod p) for each R ∈ H .

Proof of Claim 8 Suppose, to the contrary, that R0 is a face in H such that γR0 �= 0
(mod p). We consider the coefficient of the monomial

∏
j∈R0

x j in (4.2). Since � is
a near-cone with apex vertex v and R0 ∪ {v} is not a face of �, we claim that R0 is a
facet of �. Otherwise, there exists F ∈ � such that R0 ⊂ F . If v ∈ F, then we find
that R0 ∪ {v} ∈ �, a contradiction. If v /∈ F, since � is a near-cone with apex vertex
v, we obtain that for any subset S of F, S ∪ {v} is a face of �. Thus, R0 ∪ {v} ∈ �,

a contradiction. So, R0 is a facet of �. By the definitions of φi (x) and qL(x), it is
straightforward to check that

∏
j∈R0

x j doesn’t appear in φi (x) and qL(x). It follows
that themonomial

∏
j∈R0

x j only appears in hR0(x).Thus, the coefficient of
∏

j∈R0
x j

in (4.2) is γR0 . As the set of all multilinear monomials in variables xi , 1 � i � n, of
degree at most s are linearly independent over the field Fp. Thus, γR0 = 0 (mod p),
a contradiction. So Claim 8 holds. 
�
Claim 9 αi = 0 (mod p) for each r + 1 � i � m.

Proof of Claim 9 Suppose, to the contrary, that i0 is the largest subscript such that
αi0 � �=0 (mod p) and r + 1 � i0 � m. Then v ∈ Bi0 . In view of condition (4), we
have Bi ⊆ Ai for every 1 � i � m. This means that v ∈ Ai0 . Then xv = 1 in
vAi0

. Thus, qL(vAi0
) = 0 for each L ∈ Q. Note that φi (vAi0

) = 0 (mod p) for any
i < i0. By evaluating Eq. (4.2) with x = vAi0

, we have αi0φi0(vAi0
) = 0 (mod p).

Together with the fact that φi0(vAi0
) �= 0 (mod p), it follows that αi0 = 0 (mod p),

a contradiction. So Claim 9 holds. 
�
Combining Claims 8 and 9 reduces (4.2) to

r∑

i=1

αiφi (x) +
∑

L∈Q
βLqL(x) = 0. (4.3)
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which is equivalent to

⎛

⎝
r∑

i=1

αiφi (x) −
∑

L∈Q
βLq

′
L(x)

⎞

⎠ + xv

⎛

⎝
∑

L∈Q
βLq

′
L(x)

⎞

⎠ = 0, (4.4)

where q ′
L(x) = ∏

j∈L\{v} x j . Notice that xv doesn’t appear in the first parentheses of
Eq. (4.4). Setting xv = 0 in Eq. (4.4) gives us

r∑

i=1

αiφi (x) −
∑

L∈Q
βLq

′
L(x) = 0

and

xv

⎛

⎝
∑

L∈Q
βLq

′
L(x)

⎞

⎠ = 0.

By setting xv = 1, we have

∑

L∈Q
βLq

′
L(x) = 0. (4.5)

As the set of all multilinear monomials in variables xi , 1 � i � n, of degree at most
s − 1 are linearly independent over the field Fp. By (4.5), we obtain the following
claim directly.

Claim 10 βL = 0 (mod p) for each L ∈ Q.

In order to complete the proof, we need to show the following claim. That is, we
need only to show that φi (x), 1 � i � r , are linearly independent over the field Fp.

Claim 11 αi = 0 (mod p) for each i = 1, . . . , r .

Proof of Claim 11 Suppose, to the contrary, that i0 is the largest subscript such that
αi0 � �=0 (mod p) and 1 � i0 � r . Note that φi (vAi0

) = 0 (mod p) for any i < i0. By
evaluating Eq. (4.3) with x = vAi0

, we have αi0φi0(vAi0
) = 0 (mod p). Combined

with φi0(vAi0
) �= 0 (mod p), it follows that αi0 = 0 (mod p), a contradiction. So

Claim 11 holds. 
�
By Claims 8–11, we obtain that the polynomials in (4.1) are linearly independent

over the field Fp. By the definition of simplicial complex � and the definitions of
the polynomials φi (x), qL(x) and hR(x), we obtain that each monomial x j1x j2 . . . x jk
appearing in φi (x) (resp. qL(x) and hR(x)) satisfies that { j1, j2, . . . , jk} is a face of
�. Thus we have

m + |Q| + |H | �
s−1∑

i=−1

fi .
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By the definitions of Q and H , we have |Q| = ∑s−1
i=−1 f ′

i and |H | = ∑s−1
i=−1 f ′′

i ,

where f ′
i and f ′′

i denote the number of the i-dimensional faces which contain v and
the number of the i-dimensional faces which do not contain v and unite v is not a face,
respectively. Hence, we get

m �
s−1∑

i=−1

fi −
s−1∑

i=−1

f ′
i −

s−1∑

i=−1

f ′′
i =

s−1∑

i=−1

fi (link�(v)).

This completes the proof. 
�
Now we give the proof of Theorem 1.14.

Proof of Theorem 1.14 LetF be a family satisfying assertion of Theorem 1.14. Based
onF , we define three families as follows:

F1 = {Fi ∈ F : v /∈ Fi and Fi ∪ {v} ∈ �},
F2 = {Fi ∈ F : v /∈ Fi and Fi ∪ {v} /∈ �},
F3 = {Fi ∈ F : v ∈ Fi }.

Clearly, F1 ∪ F2 ∪ F3 is a partition of F . We repeat the following procedure until
F is empty. At round i if F �= ∅, we choose a maximal collection F1, F2, . . . , Fd
from F such that | ∩d ′

i=1 Fi | (mod p) /∈ L for all 1 � d ′ � d, but for any additional
set F ′ ∈ F we obtain that |(∩d

i=1Fi ) ∩ F ′| (mod p) ∈ L. In addition, the following
conditions should be satisfied when selecting Fi from F : we select the set Fi from
F1 if F1 �= ∅, and select the set Fi from F2 if F1 = ∅ and F2 �= ∅, and select the
set Fi fromF3 ifF1 = F2 = ∅ and F3 �= ∅.

Since F is a k-wise L-intersecting family and |Fi | (mod p) /∈ L for each i , we
obtain that such family always exists and 1 � d � k − 1. Denote Ai = F1 and
Bi = ∩d

j=1Fj and remove all sets F1, F2, . . . , Fd from F . As the result of this
process, we obtain at least m′ � |F |/(k − 1) pairs of sets Ai , Bi . By definition, we
get that Bi ⊆ Ai and |Bi | = | ∩d

j=1 Fj | (mod p) /∈ L and |A j ∩ Bi | (mod p) ∈ L
for any j > i . Furthermore, we obtain that there must exist two integers t, r satisfying
(1) v /∈ Bi and Bi ∪ {v} ∈ � for every i � t; (2) v /∈ Bi and Bi ∪ {v} /∈ � for
every t + 1 � i � r; (3) v ∈ Bi for every r + 1 � i � m. Since F1 ∈ F is a face
of �, we obtain that Ai is a face of �. Since the intersection of Fi and Fj is still a
face of �, we obtain that Bi is also a face of �. Therefore, we derive that these two
families A = {A1, A2, . . . , Am′ } and B = {B1, B2, . . . , Bm′ } satisfy the conditions
of Lemma 4.1. So, by Lemma 4.1, we have

|F | � (k − 1)m′ � (k − 1)
s−1∑

i=−1

fi (link�(v)).

This completes the proof. 
�
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5 Concluding Remarks

In this paper, we present some upper bounds for the k-wise L-intersecting families
of faces of simplicial complex �. In particular, in Theorem 1.14, we derive that if �

is a near-cone with apex vertex v, and F = {F1, F2, . . . , Fm} is a family of faces
of � satisfying |Fi | (mod p) /∈ L for every 1 � i � m, and |Fi1 ∩ Fi2 ∩ · · · ∩ Fik |
(mod p) ∈ L for any collection of k � 2 distinct sets from F , then

m � (k − 1)
s−1∑

i=−1

fi (link�(v)).

Thus, it is, of course, interesting to consider the following problem.

Problem 5.1 Let p be a prime and let L = {l1, l2, . . . , ls} be a subset of
{0, 1, . . . , p − 1} of size s. Assume that � is a near-cone with apex vertex v and
F = {F1, F2, . . . , Fm} is a family of faces of � satisfying |Fi1 ∩ Fi2 ∩ · · · ∩ Fik |
(mod p) ∈ L for any collection of k � 2 distinct sets fromF . Then

m � (k − 1)
s−1∑

i=−1

fi (link�(v)).

Notice that Problem 5.1 follows directly from Theorem 1.14 under the restriction
|Fi | (mod p) /∈ L for every 1 � i � m. Hence, the rest case is |Fi | (mod p) ∈ L
for some 1 � i � m.

In addition, motivated by Chvátal’s conjecture (i.e., Conjecture 1.7) and Theo-
rem 1.14, we conclude this paper by proposing the following problem.

Problem 5.2 Let k � 2 and let L = {l1, l2, . . . , ls} be a subset of s nonnegative inte-
gers. If F = {F1, F2, . . . , Fm} is a k-wise L-interesting family of faces of simplicial
complex �, then

m � max
v∈V (�)

[

(k − 1)
s−1∑

i=−1

fi (link�(v))

]

.

It is routine to check that Problem 5.2 implies Chvátal’s conjecture when k = 2
and L = {1, 2, . . . , dim(�)}, where dim(�) stands for the dimension of �.

We intend to do exactly the above challenging problems in the near future.
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