

Divisorial Ideals in the Power Series Ring *^A* **⁺** *XB***[[***X***]]**

Hamed Ahmed¹

Received: 13 February 2024 / Revised: 17 May 2024 / Accepted: 26 May 2024 / Published online: 18 June 2024 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2024

Abstract

Let $A \subseteq B$ be an extension of integral domains, $B[[X]]$ be the power series ring over *B*, and $R = A + XB||X||$ be a subring of $B||X||$. In this paper, we give a complete description of v-invertible v-ideals (with nonzero trace in *A*) of *R*. We show that if *B* is a completely integrally closed domain and I is a fractional divisorial v -invertible ideal of *R* with nonzero trace over *A*, then $I = u(J_1 + X J_2 || X ||)$ for some $u \in qf(R)$, J_2 an integral divisorial v-invertible ideal of *B* and $J_1 \subseteq J_2$ a nonzero ideal of *A*.

Keywords t -ideal \cdot t -invertible ideal \cdot Class group

Mathematics Subject Classification 13A15 · 13C20 · 13G05

1 Introduction

Let *A* be an integral domain with quotient field *K*. Let $\mathcal{F}(A)$ be the set of nonzero fractional ideals of *D*. For an $I \in \mathcal{F}(A)$, set $I^{-1} = \{x \in K \mid xI \subseteq A\}$. The mapping on $\mathcal{F}(A)$ defined by $I \mapsto I_v = (I^{-1})^{-1}$ is called the v-operation on *A*. A nonzero fractional ideal *I* is said to be a *v*-ideal or *divisorial* if $I = I_v$, and *I* is said to be *vinvertible* if $(II^{-1})_v = A$. For properties of the v-operation the reader is referred to [\[8,](#page-9-0) Section 34]. However, we will be mostly interested in the *t*-operation defined on $\mathcal{F}(A)$ by $I \mapsto I_t = \bigcup \{J_v, J$ is a nonzero finitely generated fractional subideal of *I*}. (For properties of the *t*-operation the reader may consult [\[1](#page-9-1)]). A fractional ideal *I* is called a *t*-ideal if $I = I_t$. A *t*-ideal (respectively, *v*-ideal) *I* has *t*- (respectively, *v*-) *finite type* if $I = J_t$ (respectively, $I = J_v$) for some finitely generated fractional ideal *J* of *A*. The set of v-ideals may be a proper subset of the set of *t*-ideals. A fractional ideal *I* is said to be *t*-invertible if $(II^{-1})_t = A$. The set $T(A)$ of *t*-invertible fractional *t*-ideals of *A* is a group under the *t*-multiplication $I \star J := (IJ)_t$, and the set $P(A)$ of nonzero

Communicated by Rosihan M. Ali.

 \boxtimes Hamed Ahmed hamed.ahmed@hotmail.fr

 1 Department of Mathematics, Faculty of Sciences, Monastir, Tunisia

principal fractional ideals of *A* is a subgroup of $T(A)$. Following [\[7](#page-9-2)], we define the *t*-class group of A, denoted $Cl_t(A)$, to be the *t*-group of *t*-invertible fractional *t*-ideals of *A* under *t*-multiplication modulo its subgroup of principal fractional ideals that is, $Cl_t(A) = T(A)/P(A)$. The *t*-class group of an integral domain was studied by many authors $([7-11])$ $([7-11])$ $([7-11])$.

Let $A \subseteq B$ be an extension of integral domains. In [\[2](#page-9-3)], the authors study when the natural mapping φ : $Cl_t(A) \to Cl_t(A + XB[X])$; $[I] \mapsto [I(A + XB[X])]$ is an isomorphism. They showed that if *B* is an integrally closed domain and $qf(A) \subseteq B$, then $Cl_t(A) \cong Cl_t(A + XB[X])$ ([\[2](#page-9-3), Theorem 4.7]). Also, the authors study the form of v-invertible (respectively, *t*-invertible) ideals of the polynomial ring of the form $A + XB[X]$. Let $A \subseteq B$ be an extension of integral domains such that *B* is an integrally closed domain and $A + XB[X]$. The authors proved that if *I* is a fractional divisorial v-invertible ideal of *R*, then $I = u(J_1 + XJ_2[X])$ for some $u \in q f(A + XB[X])$, *J*₂ an integral divisorial v-invertible ideal of *B* and $J_1 \subseteq J_2$ a nonzero ideal of *A* ([\[2](#page-9-3), Theorem 2.3]). In this paper, we extend these results to the ring of formal power series of the form $A + XB \llbracket X \rrbracket$. In particular, we give a relationship between v -invertible v -ideals of an integral domain and those of its power series ring of the form $A + XB[[X]].$

Let $A \subseteq B$ be an extension of integral domains, $B||X||$ be the power series ring over *B*, and $R = A + XB||X||$. In the first part of this paper, we study when the natural mapping

$$
\varphi : Cl_t(A) \to Cl_t(R)
$$

$$
[I] \mapsto [(IR)_t]
$$

is an injective homomorphism. We show that if *B* is a flat *A*-module, then the mapping φ is an injective homomorphism. Also, we prove that the mapping φ is not surjective in general (Remark [2.7\)](#page-5-0). In the second part of this paper, we give a complete description of v-invertible v-ideals (with nonzero trace in *A*) of $A + XB||X||$. First, we show that if $A \subseteq B$ is an extension of integral domains such that *B* is completely integrally closed, then for each divisorial ideal *I* of $R = A + XB||X||$ such that $I \cap A \neq (0)$, there exist a divisorial ideal *J* of *B* and a nonzero ideal $H \subseteq J$ of *A* such that $I = H + XJ[[X]]$ (Proposition [3.2\)](#page-6-0). Based on the above result, we prove that if *I* is a fractional divisorial v-invertible ideal of *R* such that $I \cap A \neq (0)$, then $I = u(J_1 + XJ_2[[X]])$ for some *u* ∈ $q f(R)$, *J*₂ an integral divisorial *v*-invertible ideal of *B* and *J*₁ ⊆ *J*₂ a nonzero ideal of A , where B satisfies \circledast .

2 The *t***-Class Group of A+XB[[X]]**

Let *A* be an integral domain. A fractional ideal *I* of *A* is said to be v*-invertible* (respectively, *t*-invertible, invertible) if $(II^{-1})_v = A$ (respectively, $(II^{-1})_t = A$, $II^{-1} = A$). Following [\[7\]](#page-9-2), we define the *t*-class group of *A*, denoted by $Cl_t(A)$, to be the group $T(A)$ of *t*-invertible fractional *t*-ideals of *A* under *t*-multiplication $(i.e., I \star J := (IJ)_t$ modulo its subgroup $P(A)$ of principal fractional ideals, that is, $Cl_t(A) = T(A)/P(A)$. When *A* is a Krull domain, then the *t*-class group and the

divisor class group coincide. We denote by [*I*] the equivalence class of a *t*-invertible *t*ideal *I* of *A*. Let $A \subseteq B$ be an extension of integral domains and $R = A + XB||X||$. In this section we show that the natural mapping φ : $Cl_t(A) \to Cl_t(R)$; $[I] \mapsto [(IR)_t]$ is an injective homomorphism. To prove it, we need the following lemmas.

Lemma 2.1 *Let* $A \subseteq B$ *be an extension of integral domains and* $R = A + XB||X||$. *Let* F_1 *(respectively, F₂) be a fractional ideal of A (respectively, B) such that* $F_1 \subseteq F_2$. *Then* $F_1 + X F_2 || X ||$ *is a fractional ideal of R and*

$$
(F_1 + XF_2 \llbracket X \rrbracket)^{-1} = F_1^{-1} \cap F_2^{-1} + XF_2^{-1} \llbracket X \rrbracket.
$$

Proof Let $I = F_1 + XF_2[[X]]$. Since $F_1 \subseteq I$, we obtain $I^{-1} = R : I \subseteq R : F_1$, where $R: F_1 = \{g \in qf(R), gF_1 \subseteq R\}$. This implies that $I^{-1} \subseteq K[[X]]$, where $K = q f(B)$. Indeed, let $u \in I^{-1}$ and $\alpha \in F_1 \setminus (0)$. Since $u F_1 \subseteq R$, $u = \frac{\alpha u}{\alpha} \in$ 1 $\frac{-R}{\alpha}$ ⊆ *K*[[*X*]].

Now we show that $u \in I^{-1}$ if and only if $u(0)F_1 \subseteq A$ and $uF_2[[X]] \subseteq B[[X]]$. (⇒) Let $u \in I^{-1}$. Since $uI \subseteq R$, we get $uF_1 + uXF_2[[X]] \subseteq A + XB[[X]]$. Chose *X* = 0, we obtain *u*(0)*F*₁ ⊆ *A*. Moreover, *uF*₂ $[$ *X* $]$ \subseteq *B* $[$ *X* $]$.

(←) Assume that $u(0)F_1 ⊆ A$ and $uF_2[[X]] ⊆ B[[X]]$. We prove that $u ∈ I^{-1}$. As $u \in K[[X]]$, we can write $u = \sum^{\infty}$ *i*=0 $a_i X^i$, where $a_i \in K$. It is clearly that

$$
uI = uF_1 + XuF_2[[X]] \subseteq u(0)F_1 + (\sum_{i=1}^{\infty} a_i X^i)F_1 + XuF_2[[X]].
$$

Moreover, $\left(\sum_{i=1}^{\infty} a_i X^i \right) F_1 = (u - u(0)) F_1 \subseteq u F_1 + u(0) F_1$. Then $u F_1 + u(0) F_1 \subseteq$ *B*[[*X*]], because *uF*₁ ⊆ *uF*₂ ⊆ *B*[[*X*]] and *u*(0)*F*₁ ⊆ *A* ⊆ *B*[[*X*]]. This implies that $\overline{(\sum_{i=1}^{\infty}]}$ *i*=1 $a_i X^i$) $F_1 \subseteq B[[X]]$. Now let *P* be an element of (\sum^{∞} *i*=1 $a_i X^i$) F_1 . Then there exists

an element α of F_1 such that $P = X(\sum^{\infty}$ *i*=1 $a_i X^{i-1}$)α. Since (\sum^{∞} *i*=1 $a_i X^i$) $F_1 \subseteq B[[X]],$

 $\overline{(\sum_{i=1}^{\infty}]}$ *i*=1 $a_i X^{i-1}$) $\alpha \in B[[X]]$. Thus $P \in XB[[X]]$, and so (\sum^{∞} *i*=1 $a_i X^i$) $F_1 \subseteq X B \llbracket X \rrbracket$. This shows that

$$
uI \subseteq u(0)F_1 + XuF_2[[X]] + (\sum_{i=1}^{\infty} a_i X^i)F_1
$$

\n
$$
\subseteq A + XB[[X]]
$$

\n
$$
= R.
$$

Hence $u \in I^{-1}$.

Now *u* ∈ *I*⁻¹ if and only if *u*(0)*F*₁ ⊆ *A* and *uF*₂[[*X*]] ⊆ *B*[[*X*]] which equivalent to *u*(0) ∈ F_1^{-1} and $u \in (F_2[[X]])^{-1}$. But $(F_2[[X]])^{-1} = F_2^{-1}[[X]]$. Hence $u \in I^{-1}$ if and only if *u* ∈ $F_1^{-1} \cap F_2^{-1} + XF_2^{-1}[[X]]$.

Example 2.2 Let $A = \mathbb{Z}$, $B = \mathbb{Z}[i]$ and $R = \mathbb{Z} + X\mathbb{Z}[i]$ $\llbracket X \rrbracket$. Let $I = 2\mathbb{Z} + (1 +$ $i)$ *X* $\mathbb{Z}[i]$ $\llbracket X \rrbracket$. We show that *I* is a divisorial ideal of *R*, i.e., $I_v = I$.

It is clear that *I* is an ideal of *R*. Now by Lemma [2.1,](#page-2-0)

$$
I^{-1} = \frac{1}{2}\mathbb{Z}\bigcap((1+i)\mathbb{Z}[i])^{-1} + X((1+i)\mathbb{Z}[i])^{-1}[[X]]
$$

= $\frac{1}{2}\mathbb{Z}\bigcap(1+i)^{-1}\mathbb{Z}[i] + (1+i)^{-1}X\mathbb{Z}[i][[X]].$

But if $x \in \frac{1}{2}\mathbb{Z} \cap \frac{1}{1+i}\mathbb{Z}[i]$, then $x = \frac{1}{2}r = \frac{1}{1+i}u$, with $r \in \mathbb{Z}$ and $u \in \mathbb{Z}[i]$. This implies that $(1 + i)r = 2u$. Write $u = \alpha + i\beta$. Then $2\alpha = r$ and $2\beta = r$ thus 2 divided *r*, and so $x = \alpha \in \mathbb{Z}$. Hence $I^{-1} = \mathbb{Z} + X \frac{1 - i}{2} \mathbb{Z}[i][[\![X]\!]]$. Again by Lemma [2.1,](#page-2-0)

$$
I_{\nu} = (I^{-1})^{-1}
$$

= $\mathbb{Z} \bigcap ((1+i)^{-1} \mathbb{Z}[i])^{-1} + X((1+i)^{-1} \mathbb{Z}[i])^{-1} \llbracket X \rrbracket$
= $\mathbb{Z} \bigcap (1+i) \mathbb{Z}[i] + (1+i) X \mathbb{Z}[i] \llbracket X \rrbracket$
= $2\mathbb{Z} + (1+i) X \mathbb{Z}[i] \llbracket X \rrbracket$
= I.

This shows that *I* is a divisorial ideal of *R*.

Let $A \subseteq B$ be an extension of integral domains. Following [\[3](#page-9-4)], we say that *B* is *t*-linked over A, if for each finitely generated fractional ideal *I* of *A* with $I^{-1} = A$, we have $(IB)^{-1} = B$.

Lemma 2.3 *Let* $A \subseteq B$ *be an extension of integral domains and* $R = A + XB||X||$. If *B* is *t*-linked over A, then the extension $A \subseteq R$ is *t*-linked.

Proof Let *I* be a finitely generated fractional ideal of *A* such that $I^{-1} = A$. Since $IR \subseteq I + (IB)$ [*X*], then by Lemma [2.1,](#page-2-0)

$$
I^{-1} \cap (IB)^{-1} + X(IB)^{-1}[[X]] = (I + (IB)([X]])^{-1} \subseteq (IR)^{-1}.
$$

But *B* is *t*-linked over *A*, then $R = A + XB||X|| = I^{-1} \cap (IB)^{-1} + X(IB)^{-1}||X||$ \subseteq (*IR*)⁻¹, and hence *R* ⊆ (*IR*)⁻¹.

Now we will show that $(IR)^{-1}$ ⊂ *R*. Let *u* be an element of $(IR)^{-1}$. It is easy to prove that $u \in L + XK[[X]],$ where $L = qf(A)$ and $K = qf(B)$. Put $u =$ $\sum_{i=0}^{\infty} a_i X^i \in L + XK[[X]]$, and let $\alpha \in I$. Since $\alpha u = \sum_{i=0}^{\infty} (\alpha a_i) X^i \in R$, $\alpha a_0 \in A$, *i*=0 and hence *a*₀ ∈ *I*⁻¹. Moreover, if *r* ∈ *IB*, then *urX* ∈ *u*(*IR*) ⊆ *R*. This implies that for each $i \geq 1$, $ra_i \in B$. Therefore for each $i \geq 1$, $a_i \in (IB)^{-1}$. Hence $u \in I^{-1} + X(I B)^{-1}[[X]] = A + X B[[X]] = R$ since *B* is *t*-linked over *A*. Hence $(IR)^{-1} = R$.

$$
\varphi: Cl_t(A) \to Cl_t(R)
$$

$$
[I] \mapsto [(IR)_t]
$$

is an homomorphism.

Proof Follows from Lemma [2.3](#page-3-0) and [\[3,](#page-9-4) Theorem 2.2]. □

Let $A \subseteq B$ be an extension of integral domains and *I* a finitely generated ideal of *A*. It well known that $I.A[[X]] = (I A)[[X]] = I[[X]]$. Using the same proof we can prove that $I.B[[X]] = (IB)[[X]].$

Lemma 2.5 *Let* $A \subseteq B$ *be an extension of integral domains such that* B *is a flat* A *module, I an ideal of A and R* = $A + XB[[X]]$. We assume that I and I⁻¹ are v-ideals *of finite type. Then* $(IR)_v = I + X(IB)[X]$.

Proof Since *I* and I^{-1} are v-ideals of finite type, $I = J_v$ and $I^{-1} = L_v$ for some finitely generated ideals *J* and *L* of *A*. Since $JR = J + X(JB)[[X]]$, by Lemma [2.1,](#page-2-0)

$$
(JR)^{-1} = (J + X(JB)[X]]^{-1}
$$

= $J^{-1} \cap (JB)^{-1} + X(JB)^{-1}[[X]]$
= $J^{-1} \cap J^{-1}B + X(J^{-1}B)[[X]]$
= J^{-1} ,

where the third equality follows from the fact that *B* is a flat *A*-module. Again apply Lemma [2.1,](#page-2-0) $(JR)_v = J_v \cap (J^{-1}B)^{-1} + X(J^{-1}B)^{-1}[[X]].$ Since $L_v = I^{-1} = J^{-1}$,

$$
(J^{-1}B)^{-1} = (L_vB)^{-1} = (LB)^{-1} = L^{-1}B = J_vB,
$$

where the second equality follow from the proof of $[5,$ Proposition 2.2]. So

$$
(JR)_v = J_v \cap (J_v B) + X(J_v B) \llbracket X \rrbracket = J_v + X(J_v B) \llbracket X \rrbracket = I + X(IB) \llbracket X \rrbracket.
$$

This implies that $I + X(IB)[[X]] \subseteq (IR)_v$. Now, using Lemma [2.1,](#page-2-0) we can prove that

$$
(I + X(IB)[\![X]\!])_v = I + X(IB)[\![X]\!].
$$

This shows that $(IR)_v \subseteq I + X(IB)[X]]$, and hence $(IR)_v = I + X(IB)[X]]$. \Box

We are now ready to prove the main result of this section.

Theorem 2.6 *Let* $A \subseteq B$ *be an extension of integral domains such that* B *is a flat A-module. Then the mapping*

$$
\varphi: Cl_t(A) \to Cl_t(R)
$$

$$
[I] \mapsto [(IR)_t]
$$

 $\circled{2}$ Springer

is an injective homomorphism.

Proof Since *B* is a flat *A*-module, *B* is *t*-linked over *A*. So by Proposition [2.4,](#page-3-1) the mapping φ is an homomorphism. We show that φ is injective. Let *I* be a *t*-invertible *t*-ideal of *A* such that (IR) *t* is a principal ideal of *R*. We will prove that *I* is principal. Since $(IR)_t$ is principal, $(IR)_t = fR$ for some $f \in (IR)_t$.

Case 1: *I* is an integral ideal of *A*.

As $(I R)_t = f R$, then $(I R)_v = f R$. By Lemma [2.5,](#page-4-0) $(I R)_v = I + X (I B) [[X]]$; so $I = f(0)A$ is a principal ideal of A.

Case 2: *I* is a fractional ideal of *A*.

Let *d* ∈ *A* \setminus (0) such that *dI* ⊆ *A*. Put *I'* = *dI*. Then *I'* is an integral *t*-invertible *t*-ideal of *A*. Moreover, $(I'R)_t = df R$ is a principal ideal of *R*. By case 1, *I'* is a principal ideal of *A*. So *I* is a principal ideal of *A*, and hence φ is injective.

Remark 2.7 Let $A \subseteq B$ be an extension of integral domains and let $\varphi : Cl_{t}(A) \rightarrow$ $Cl_t(R)$ be the natural mapping. Note that φ is not surjective in general. Indeed, let *A* $=\mathbb{Z}, B = \mathbb{Z}[i]$ and $R = \mathbb{Z} + X\mathbb{Z}[i][[X]]$. Assume that φ is surjective.

By [\[6](#page-9-6), Chapter 1, Proposition 2], $\mathbb{Z}[i] = \mathbb{Z} \oplus i\mathbb{Z}$ is a flat \mathbb{Z} -module; so by Theorem [2.6,](#page-4-1) φ is an injective homomorphism, and hence φ is an isomorphism. This implies that

$$
Cl_t(\mathbb{Z}) \cong Cl_t(\mathbb{Z} + X\mathbb{Z}[i][\![X]\!]).
$$

Since $\mathbb Z$ is a PID (principal ideal domain), $Cl_t(\mathbb Z) = 0$ which implies that $Cl_t(\mathbb Z +$ $X\mathbb{Z}[i][[X]]$) = 0. Now we prove that $Cl_i(\mathbb{Z} + X\mathbb{Z}[i][[X]]) \neq 0$, and hence we obtain a contradiction. Let $I = 2\mathbb{Z} + (1 + i)X\mathbb{Z}[i]\mathbb{Z}[X]$.

Claim 1: *I* and I^{-1} are ideals of *R* of *v*-finite type.

It is clear that $(2, (1+i)X) \subseteq I$. Conversely, let $f \in I$. Then $f = 2r + X(1+i)Q$, for some $r \in \mathbb{Z}$ and $Q \in \mathbb{Z}[i][[X]] = \mathbb{Z} + i\mathbb{Z} + X\mathbb{Z}[i][[X]]$. So there exist $s, t \in \mathbb{Z}$ and *h* ∈ $\mathbb{Z}[i][[X]]$ such that $f = 2r + X(1+i)(s + it + Xh) = 2(r - tX) + (1+i)X(s + tY)$ *t* + *Xh*) ∈ (2, (1 + *i*)*X*). Hence *I* = (2, (1 + *i*)*X*). Now, by Example [2.2,](#page-3-2) $I^{-1} = \mathbb{Z}$ $+X\frac{1-i}{2}\mathbb{Z}[i][[X]]$. In the same way, we can show that $I^{-1} = (1, \frac{1-i}{2}X)$.

Claim 2: *I* is a v-invertible ideal of *R*.

Note that

$$
II^{-1} = (1, \frac{1-i}{2}X)(2, (1+i)X) = (2, (1+i)X, (1-i)X, X^{2}).
$$

Let *u* ∈ qf(*R*) such that $(2, (1 + i)X, (1 - i)X, X^2)$ ⊆ *uR*. Since 2 ∈ $(2, (1 + i)X,$ $(1-i)X, X^2$) ⊆ *uR*, then $u = \frac{2}{f}$, with $f \in R$ and $X^2 \in (2, (1+i)X, (1-i)X, X^2)$ ⊆ $uR = \frac{2}{f}R$. Thus $X^2 f = 2g$, for some $g = a_0 + a_1X + \cdots + a_nX^n \in R$. This implies that $a_0 = a_1 = 0$, and so $g = X^2 h$, where $h = (a_2 + \cdots + a_n X^{n-2}) \in \mathbb{Z}[i][\![X]\!]$. Then $f(0) = 2h(0) \in \mathbb{Z}$. But $\mathbb{Z}[i] = \mathbb{Z} + i\mathbb{Z}$, then $h(0) = s + it \in \mathbb{Z} + i\mathbb{Z}$. Since $2 h(0) \in \mathbb{Z}$, then $h(0) \in \mathbb{Z}$, and so $1 = uh \in uR$. Thus

$$
(II^{-1})_v = (2, (1+i)X, (1-i)X, X^2)_v = R.
$$

Using claim 1 and 2, it is easy to prove that *I* is a *t*-invertible *t*-ideal of *R*. This implies that $[I] \in Cl_t(R)$. Now we show that $[I] \neq 0$ which equivalent to *I* is not a principal ideal of *R*. Assume the contrary that *I* is principal. Then $I = PR$ for some *P* ∈ *R*. Since 2 ∈ *I*, *P*(0) \neq 0. In fact *P*(0) ∈ { \pm 1, \pm 2}. Moreover, as $(1+i)X ∈ I$, we obtain $P(0) \in {\pm 1}$ which implies that $P(0)$ is a unit in Z. A routine calculation (by induction) shows that *P* is a unit in *R*. This implies that $I = PR = R$, a contradiction. Then $[I] \neq 0$, and hence $Cl_t(\mathbb{Z} + X\mathbb{Z}[i][\![X]\!]) \neq 0$.

3 *v***-Invertible** *v***-Ideals of A+XB[[X]]**

In this section, we investigate a relationship between v-invertible v-ideals of an integral domain and those of its power series ring of the form $A + XB||X||$, where $A \subseteq B$ is an extension of integral domain. We begin this section by the following proposition.

Proposition 3.1 *Let* $A \subseteq B$ *be an extension of integral domain, J an ideal of A and* $R = A + XB||X||.$

(1) If $(JR)_v = R$, then $J_v = A$. *(2) If* $(JR)_t = R$, *then* $J_t = A$.

Proof(1). Assume that $(JR)_v = R$ and let $u \in \text{qf}(A)$ such that $J \subseteq uA$. Then $JR \subseteq uA$ *uAR* ⊆ *uR* which implies that $R = (JR)_v$ ⊆ $(uR)_v = uR$. Thus

$$
A \subseteq \bigcap_{u \in \mathbf{q}\mathbf{f}(A), J \subseteq uA} Au = J_v.
$$

This shows that $A \subseteq J_v \subseteq A$, and hence $J_v = A$. (2). Suppose that $(JR)_t = R$. Then

$$
R = \bigcup \{ (FR)_v, F \subseteq J \text{ of finite type of } A \}.
$$

Thus there exists a finitely generated ideal F_0 of *A* such that $F_0 \subseteq J$ and $1 \in$ $(F_0R)_v$. This implies that $R = (F_0R)_v$. Now, by (1), $(F_0)_v = A$; so

 $A \subseteq \bigcup \{F_v, F \subseteq J \text{ of finite type of } A\} = J_t \subseteq A.$

Hence $A = J_t$.

Let *A* be an integral domain. According to [\[12](#page-10-1), Theorem 2.11], *A* is completely integrally closed if and only if for each $f, g \in A[[X]], (A_f A_g)_v = (A_{fg})_v$. Using this result we prove a complete description of v -invertible v -ideals (with nonzero trace in *A*) of *R*. First we need to prove the following proposition.

Proposition 3.2 *Let* $A \subseteq B$ *be an extension of integral domains such that* B *completely integrally closed and* $R = A + XB[[X]]$. *Then for each divisorial ideal I of* R such *that* $I \cap A \neq (0)$, *there exist a divisorial ideal J of B and a nonzero ideal* $H \subseteq J$ *of A* such that $I = H + XJ[[X]].$

 \Box

Proof Let $H = I \bigcap A$ and *J* the ideal of *B* generated the coefficients of all elements of *I*.

It is clear that $H \subseteq J$ and $H \subseteq I$. We show that $X J_v[[X]] \subseteq I$. Let $f, g \in R, g \neq 0$ such that $I \subseteq \frac{f}{g}R$. Let $0 \neq a \in H$. Since $a \in H \subseteq I \subseteq \frac{f}{g}R$, then there exists an *r* ∈ *R*\(0) such that $\frac{a}{r} = \frac{f}{g}$. Let $0 \neq h \in I \subseteq \frac{f}{g}R = \frac{a}{r}R$. Then *rh* ∈ *aR* which implies that $rh ∈ aB[[X]]$. So $(A_{rh})_v ⊆ aB$. By hypothesis *B* is a completely integrally closed domain, then $A_r A_h \subseteq (A_r A_h)_v \subseteq aB$. This implies that $r A_h[[X]] \subseteq aB[[X]]$. Now we show that $rJ[[X]] \subseteq aB[[X]]$. Indeed, if $f \in rJ[[X]]$, then $f = rf_1$ for some $f_1 = \sum_{n=1}^{\infty}$ *i*=0 *a_i* X^i ∈ *J* [[*X*]]. Put $r = \sum^\infty$ *i*=0 $\beta_i X^i$. Then $f = \sum^{\infty}$ *n*=0 $\left(\sum\right)$ *n i*=0 $a_i \beta_{n-i}$)*Xⁿ*. But $a_i = \sum$ *mi k*=0 $\alpha_{i,k} t_{i,k}$ with $t_{i,k} \in B$, $\alpha_{i,k} \in A_{f_{i,k}}$, then

$$
a_i\beta_{n-i}=\sum_{k=0}^{n_i}\alpha_{i,k}t_{i,k}\beta_{n-i}\in A_rA_{f_{i,k}}\subseteq aB.
$$

Which implies that $r J[[X]] \subseteq aB[[X]]$. So

$$
r(J[[X]])_v = (rJ[[X]])_v \subseteq (aB[[X]])_v = a(B[[X]])_v = aB[[X]].
$$

Since $(J[[X]])_v = J_v[[X]], rJ_v[[X]] \subseteq aB[[X]].$ This implies that $\frac{aX}{r_s}B[[X]] \subseteq \frac{a}{r}R$; so $\frac{rXJ_v[[X]]}{r} \subseteq \frac{aX}{r}B[[X]] \subseteq \frac{a}{r}R = \frac{f}{g}R$ which implies that $XJ_v[[X]] \subseteq \frac{f}{g}R$. Thus

$$
XJ_v[[X]] \subseteq \cap_{f,g \in R, I \subseteq \frac{f}{g}} \frac{f}{g}R = I_v = I,
$$

and hence $H + XJ[[X]] \subseteq H + XJ_y[[X]] \subseteq I$. Now we will show that $I \subseteq H + XJ[[X]]$. Let $f \in I$. Then $f = a_0 + \sum_{i=1}^{\infty} a_i X^i$, where $a_0 \in A$ and $a_i \in B$ for each $i \ge 1$. As $J = < A_f$, $f \in I >$, then for each $i \ge 1$, $a_i \in J$; so

$$
\sum_{i=1}^{\infty} a_i X^i = X \sum_{i=1}^{\infty} a_i X^{i-1} \in X J \llbracket X \rrbracket \subseteq X J_v \llbracket X \rrbracket.
$$

Since $XJ_v[[X]] \subseteq I$, $\sum_{i=1}^{\infty} a_i X^i \in I$. This implies that $a_0 = f - \sum_{i=1}^{\infty} a_i X^i$ *a*₀ ∈ *A* ∩ *I* = *H*, and hence *f* ∈ *H* + *X J* [[*X*]. Now we have *i*=1 $a_i X^i \in I$. Thus

$$
H + XJ[[X]] \subseteq H + XJ_v[[X]] \subseteq I \subseteq H + XJ[[X]].
$$

Hence $I = H + XJ[[X]]$ and $J_v = J$.

 $\textcircled{2}$ Springer

Our next result give a complete description of v-invertible v-ideals of $A + XB||X||$ with nonzero trace in *A*.

Theorem 3.3 *Let* $A \subseteq B$ *be an extension of integral domains such that* B *is completely integrally closed and* $R = A + XB[[X]]$. Let I be a fractional divisorial v-invertible *ideal of R such that I* ∩ *A* \neq (0). *Then I* = *u*(*J*₁ + *X J*₂[[*X*]]) *for some u* ∈ *qf*(*R*), *J*² *an integral divisorial* v*-invertible ideal of B and J*¹ ⊆ *J*² *a nonzero ideal of A*.

Proof Since *I* is a divisorial ideal of *R* and *B* is completely integrally closed, by Proposition [3.2,](#page-6-0) $I = H + XJ||X||$ for some divisorial ideal *J* of *B* and a nonzero ideal *H* ⊆ *J* of *A*. We show that there exists nonzero $c \in K$ such that $cH \subseteq A$ and c *J* ⊂ *B*.

Let *a* ∈ *H* be a nonzero element. We have aI^{-1} is a divisorial ideal of *R*. Using Lemma [2.1,](#page-2-0) it is easy to prove that $aI^{-1} \cap A \neq (0)$. Then by Proposition [3.2,](#page-6-0) $aI^{-1} =$ $H' + XJ'[X]$ for some divisorial ideal *J'* of *B* and a nonzero ideal $H' \subseteq J'$ of *A*.

$$
aR = a(II^{-1})v
$$

= $(a(II^{-1}))v$
= $(I(aI^{-1}))v$
= $((H + XJ[[X]])(H' + XJ'[[X]]))v.$

.

 $\text{So } (H + XJ[[X]]) (H' + XJ'[X]]) \subseteq aR = aA + aXB[[X]].$ Then $HH' \subseteq aA$ and $JJ' \subseteq aB$. This implies that $\frac{1}{a}HH' \subseteq A$ and $\frac{1}{a}JJ' \subseteq B$.

Let $c \in \frac{1}{a}H'$ be a nonzero element. Then $J_1 = cH \subseteq \frac{1}{a}HH' \subseteq A$ and $J_2 = cJ \subseteq B$. We have $J_1 \neq (0)$ and J_2 is a divisorial ideal of *B*. Since $I = H + XJ[[X]]$, then

$$
I = \frac{1}{c}(cH + XcJ[[X]]) = \frac{1}{c}(J_1 + XJ_2[[X]]) = u(J_1 + XJ_2[[X]]),
$$

where $u = \frac{1}{c} \in qf(R)$. Now we will show that J_2 is v-invertible. By Lemma [2.1,](#page-2-0) we have

$$
I^{-1} = \frac{1}{u} (J_1^{-1} \cap J_2^{-1} + X J_2^{-1} [\![X]\!]).
$$

Thus

$$
II^{-1} \subseteq J_1(J_1^{-1} \cap J_2^{-1}) + XJ_2(J_2^{-1}[[X]])
$$

\n
$$
\subseteq J_1J_1^{-1} + X(J_2J_2^{-1})[[X]]
$$

\n
$$
\subseteq A + XB[[X]]
$$

\n
$$
= R.
$$

Since *I* is v-invertible, we get

$$
R = (J_1 (J_1^{-1} \cap J_2^{-1}) + X (J_2 J_2^{-1}) [[X]])^{-1}.
$$

Again by Lemma [2.1,](#page-2-0) $R = (J_1(J_1^{-1} \cap J_2^{-1}))^{-1} \cap (J_2J_2^{-1})^{-1} + X(J_2J_2^{-1})^{-1}[[X]]$. Then $B[[X]] = (J_2 J_2^{-1})^{-1}[[X]]$, and this implies that $B = (J_2 J_2^{-1})^{-1}$. Hence J_2 is v -invertible.

 $\circled{2}$ Springer

Clearly that every Krull domain is completely integrally closed. Using Theorem [3.3,](#page-8-0) we obtain a new characterization of divisorial v-invertible ideals of the power series ring of the form $A + XB \llbracket X \rrbracket$.

Corollary 3.4 Let I be a fractional divisorial v-invertible ideal of $R = A + XB[[X]]$ *such that* $I \cap A \neq (0)$. *Assume that B* is a Krull domain. Then $I = u(J_1 + XJ_2||X||)$ *for some u* \in *q* $f(R)$, J_2 *an integral divisorial v-invertible ideal of B and* $J_1 \subseteq J_2$ *a nonzero ideal of A*.

Recall from [\[4\]](#page-9-7) that an integral domain *A* is called *formally integrally closed* if $(A_{fg})_t = (A_f A_g)_t$ for all $f, g \in A[[X]]\setminus(0)$. It was shown in [\[4](#page-9-7)] that if *A* is formally integrally closed, then *A* is completely integrally closed, but the converse is false in general ([\[4](#page-9-7), Example 3.2]).

Proposition 3.5 *[\[4](#page-9-7), Proposition 3.6] Let A be a formally integrally closed domain. If I* is a finite type v-ideal of $A[[X]]$ with $J \cap A \neq 0$, then $I = J[[X]]$ for some v-ideal *J of A*.

Note that in $[4]$ Anderson and Kang characterized the *v*-ideals of finite type of the power series ring $A[[X]]$ with nonzero trace in *A* in the case when *A* is a formally integrally closed domain. Now, using Proposition [3.2,](#page-6-0) in the particular case when $A = B$, we obtain a new approach to characterize the divisorial ideals of the ring *A*[[*X*]] with nonzero trace in *A*.

Proposition 3.6 *Let A be a completely integrally closed domain and I a fractional divisorial ideal of A*[[*X*]] *such that* $I \cap A \neq (0)$. *Then* $I = J_1 + X J_2$ [[*X*]] *for some nonzero ideal* J_1 *of A and some divisorial ideal* J_2 *of A such that* $J_1 \subseteq J_2$ *.*

Acknowledgements The author would like to thank the referee for his/her careful considerations.

Declaration

Conflict of interest The author states that there is no Conflict of interest.

References

- 1. Anderson, D.D., Anderson, D.F.: Some remarks on star operations and the class group. J. Pure Appl. Alg. **51**, 27–33 (1988)
- 2. Anderson, D.F., Baghdadi, S.E., Kabbaj, S.E.: On the class group of *A*+*X B*[*X*] domains. In: Advances in commutaive ring theory. Lecture notes in pure and Appl. Math. Marcel Dekker **205**, 73–85 (1999)
- 3. Anderson, D.D., Houston, E.G., Zafrullah, M.: t-linked extensions, the t-class group, and Nagat's theorem. J. Pure Appl. Alg. **86**, 109–129 (1993)
- 4. Anderson, D.D., Kang, B.G.: Formally integrally closed domains and the rings $R((X))$ and RX. J. Algebra **200**, 347–362 (1998)
- 5. Anderson, D.F., Ryckaert, A.: The class group of *D* + *M*. J. Pure Appl. Alg. **52**, 199–212 (1988)
- 6. Bourbaki, N.: Algèbre commutative, Chap. 1 to 4. Masson (1985)
- 7. Bouvier, A., Zafrullah, M.: On some class groups of an integral domain. Greek Math. Soc. **29**, 45–59 (1988)
- 8. Gilmer, R.: Multiplicative ideal theory. Maecel Dekker, New York (1972)
- 9. Hamed, A.: The local *S*-class group of an integral domain. Rocky Mt. J. Math. **8**, 1585–1605 (2018)
- 10. Hamed, A., Hizem, S.: On the class group and *S*-class group of formal power series rings. J. Pure Appl. Algebra **221**, 2869–2879 (2017)
- 11. Hamed, A., Kim, H.: Unique factorization and *S*-Picard groups of domains of power series. Comm. Algebra **47**, 3359–3370 (2019)
- 12. Park, M.H., Kang, B.G., Toan, P.T.: Dedekind-Mertens lemma and content formulas in power series rings. J. Pure Appl. Algebra **222**, 2299–2309 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.