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Abstract
Let A ⊆ B be an extension of integral domains, B[[X ]] be the power series ring over
B, and R = A + XB[[X ]] be a subring of B[[X ]]. In this paper, we give a complete
description of v-invertible v-ideals (with nonzero trace in A) of R. We show that if B
is a completely integrally closed domain and I is a fractional divisorial v-invertible
ideal of R with nonzero trace over A, then I = u(J1+X J2[[X ]]) for some u ∈ q f (R),

J2 an integral divisorial v-invertible ideal of B and J1 ⊆ J2 a nonzero ideal of A.

Keywords t-ideal · t-invertible ideal · Class group

Mathematics Subject Classification 13A15 · 13C20 · 13G05

1 Introduction

Let A be an integral domain with quotient field K . Let F(A) be the set of nonzero
fractional ideals of D. For an I ∈ F(A), set I−1 = {x ∈ K | x I ⊆ A}. Themapping
on F(A) defined by I �→ Iv = (I−1)−1 is called the v-operation on A. A nonzero
fractional ideal I is said to be a v-ideal or divisorial if I = Iv, and I is said to be v-
invertible if (I I−1)v = A. For properties of the v-operation the reader is referred to [8,
Section 34]. However, we will be mostly interested in the t-operation defined onF(A)

by I �→ It = ∪{Jv, J is a nonzero finitely generated fractional subideal of I }. (For
properties of the t-operation the reader may consult [1]).A fractional ideal I is called a
t-ideal if I = It . A t-ideal (respectively, v-ideal) I has t- (respectively, v-) finite type
if I = Jt (respectively, I = Jv) for some finitely generated fractional ideal J of A.

The set of v-ideals may be a proper subset of the set of t-ideals. A fractional ideal I is
said to be t-invertible if (I I−1)t = A. The set T (A) of t-invertible fractional t-ideals
of A is a group under the t-multiplication I�J := (I J )t , and the set P(A) of nonzero
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principal fractional ideals of A is a subgroup of T (A). Following [7], we define the
t-class group of A, denoted Clt (A), to be the t-group of t-invertible fractional t-ideals
of A under t-multiplication modulo its subgroup of principal fractional ideals that is,
Clt (A) = T (A)/P(A).The t-class group of an integral domain was studied by many
authors ([7–11]).

Let A ⊆ B be an extension of integral domains. In [2], the authors study when
the natural mapping ϕ : Clt (A) → Clt (A + XB[X ]); [I ] �→ [I (A + XB[X ])] is an
isomorphism. They showed that if B is an integrally closed domain and qf(A) ⊆ B,

then Clt (A) ∼= Clt (A + XB[X ]) ([2, Theorem 4.7]). Also, the authors study the
form of v-invertible (respectively, t-invertible) ideals of the polynomial ring of the
form A + XB[X ]. Let A ⊆ B be an extension of integral domains such that B
is an integrally closed domain and A + XB[X ]. The authors proved that if I is a
fractional divisorial v-invertible ideal of R, then I = u(J1 + X J2[X ]) for some
u ∈ q f (A + XB[X ]), J2 an integral divisorial v-invertible ideal of B and J1 ⊆ J2 a
nonzero ideal of A ([2, Theorem 2.3]). In this paper, we extend these results to the ring
of formal power series of the form A + XB[[X ]]. In particular, we give a relationship
between v-invertible v-ideals of an integral domain and those of its power series ring
of the form A + XB[[X ]].

Let A ⊆ B be an extension of integral domains, B[[X ]] be the power series ring
over B, and R = A+XB[[X ]]. In the first part of this paper, we study when the natural
mapping

ϕ : Clt (A) → Clt (R)

[I ] �→ [(I R)t ]

is an injective homomorphism.We show that if B is a flat A-module, then the mapping
ϕ is an injective homomorphism. Also, we prove that themapping ϕ is not surjective in
general (Remark 2.7). In the second part of this paper, we give a complete description
of v-invertible v-ideals (with nonzero trace in A) of A+XB[[X ]]. First, we show that if
A ⊆ B is an extension of integral domains such that B is completely integrally closed,
then for each divisorial ideal I of R = A+ XB[[X ]] such that I ∩ A 	= (0), there exist
a divisorial ideal J of B and a nonzero ideal H ⊆ J of A such that I = H + X J [[X ]]
(Proposition 3.2). Based on the above result, we prove that if I is a fractional divisorial
v-invertible ideal of R such that I ∩ A 	= (0), then I = u(J1 + X J2[[X ]]) for some
u ∈ q f (R), J2 an integral divisorial v-invertible ideal of B and J1 ⊆ J2 a nonzero
ideal of A, where B satisfies �.

2 The t-Class Group of A+XB[[X]]

Let A be an integral domain. A fractional ideal I of A is said to be v-invertible
(respectively, t-invertible, invertible) if (I I−1)v = A (respectively, (I I−1)t = A,
I I−1 = A). Following [7], we define the t-class group of A, denoted by Clt (A),

to be the group T (A) of t-invertible fractional t-ideals of A under t-multiplication
(i.e., I�J := (I J )t ) modulo its subgroup P(A) of principal fractional ideals, that
is, Clt (A) = T (A)/P(A). When A is a Krull domain, then the t-class group and the
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divisor class group coincide.We denote by [I ] the equivalence class of a t-invertible t-
ideal I of A. Let A ⊆ B be an extension of integral domains and R = A+ XB[[X ]]. In
this section we show that the natural mapping ϕ : Clt (A) → Clt (R); [I ] �→ [(I R)t ]
is an injective homomorphism. To prove it, we need the following lemmas.

Lemma 2.1 Let A ⊆ B be an extension of integral domains and R = A + XB[[X ]].
Let F1 (respectively, F2) be a fractional ideal of A (respectively, B) such that F1 ⊆ F2.
Then F1 + XF2[[X ]] is a fractional ideal of R and

(F1 + XF2[[X ]])−1 = F−1
1 ∩ F−1

2 + XF−1
2 [[X ]].

Proof Let I = F1 + XF2[[X ]]. Since F1 ⊆ I , we obtain I−1 = R : I ⊆ R : F1,
where R : F1 = {g ∈ q f (R), gF1 ⊆ R}. This implies that I−1 ⊆ K [[X ]], where
K = q f (B). Indeed, let u ∈ I−1 and α ∈ F1\(0). Since uF1 ⊆ R, u = αu

α
∈ 1

α
R

⊆ K [[X ]].
Now we show that u ∈ I−1 if and only if u(0)F1 ⊆ A and uF2[[X ]] ⊆ B[[X ]].

(⇒) Let u ∈ I−1. Since uI ⊆ R, we get uF1 + uXF2[[X ]] ⊆ A + XB[[X ]]. Chose
X = 0, we obtain u(0)F1 ⊆ A. Moreover, uF2[[X ]] ⊆ B[[X ]].

(⇐) Assume that u(0)F1 ⊆ A and uF2[[X ]] ⊆ B[[X ]]. We prove that u ∈ I−1.

As u ∈ K [[X ]], we can write u =
∞∑

i=0

ai X
i , where ai ∈ K . It is clearly that

uI = uF1 + XuF2[[X ]] ⊆ u(0)F1 + (

∞∑

i=1

ai X
i )F1 + XuF2[[X ]].

Moreover, (

∞∑

i=1

ai X
i )F1 = (u − u(0))F1 ⊆ uF1 + u(0)F1. Then uF1 + u(0)F1 ⊆

B[[X ]], because uF1 ⊆ uF2 ⊆ B[[X ]] and u(0)F1 ⊆ A ⊆ B[[X ]]. This implies that

(

∞∑

i=1

ai X
i )F1 ⊆ B[[X ]]. Now let P be an element of (

∞∑

i=1

ai X
i )F1. Then there exists

an element α of F1 such that P = X(

∞∑

i=1

ai X
i−1)α. Since (

∞∑

i=1

ai X
i )F1 ⊆ B[[X ]],

(

∞∑

i=1

ai X
i−1)α ∈ B[[X ]]. Thus P ∈ XB[[X ]], and so (

∞∑

i=1

ai X
i )F1 ⊆ XB[[X ]]. This

shows that

uI ⊆ u(0)F1 + XuF2[[X ]] + (

∞∑

i=1

ai X
i )F1

⊆ A + XB[[X ]]
= R.

Hence u ∈ I−1.
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Now u ∈ I−1 if and only if u(0)F1 ⊆ A and uF2[[X ]] ⊆ B[[X ]] which equivalent
to u(0) ∈ F−1

1 and u ∈ (F2[[X ]])−1. But (F2[[X ]])−1 = F−1
2 [[X ]]. Hence u ∈ I−1 if

and only if u ∈ F−1
1 ∩ F−1

2 + XF−1
2 [[X ]]. 
�

Example 2.2 Let A = Z, B = Z[i] and R = Z + XZ[i][[X ]]. Let I = 2Z + (1 +
i)XZ[i][[X ]]. We show that I is a divisorial ideal of R, i.e., Iυ = I .

It is clear that I is an ideal of R. Now by Lemma 2.1,

I−1 = 1
2Z

⋂
((1 + i)Z[i])−1 + X((1 + i)Z[i])−1[[X ]]

= 1
2Z

⋂
(1 + i)−1

Z[i] + (1 + i)−1XZ[i][[X ]]. .

But if x ∈ 1
2Z

⋂ 1
1+iZ[i], then x = 1

2r = 1
1+i u,with r ∈Z and u ∈Z[i]. This implies

that (1+ i)r = 2u. Write u = α + iβ. Then 2α = r and 2β = r thus 2 divided r , and
so x = α ∈ Z. Hence I−1 = Z +X 1−i

2 Z[i][[[X ]]. Again by Lemma 2.1,

Iυ = (I−1)−1

= Z
⋂

((1 + i)−1
Z[i])−1 + X((1 + i)−1

Z[i])−1[[X ]]
= Z

⋂
(1 + i)Z[i] + (1 + i)XZ[i][[X ]]

= 2Z + (1 + i)XZ[i][[X ]]
= I .

.

This shows that I is a divisorial ideal of R.

Let A ⊆ B be an extension of integral domains. Following [3], we say that B is
t-linked over A, if for each finitely generated fractional ideal I of A with I−1 = A,

we have (I B)−1 = B.

Lemma 2.3 Let A ⊆ B be an extension of integral domains and R = A+ XB[[X ]]. If
B is t-linked over A, then the extension A ⊆ R is t-linked.

Proof Let I be a finitely generated fractional ideal of A such that I−1 = A. Since
I R ⊆ I + (I B)[[X ]], then by Lemma 2.1,

I−1 ∩ (I B)−1 + X(I B)−1[[X ]] = (I + (I B)[[X ]])−1 ⊆ (I R)−1.

But B is t-linked over A, then R = A + XB[[X ]] = I−1 ∩ (I B)−1 + X(I B)−1[[X ]]
⊆ (I R)−1, and hence R ⊆ (I R)−1.

Now we will show that (I R)−1 ⊆ R. Let u be an element of (I R)−1. It is easy
to prove that u ∈ L + XK [[X ]], where L = q f (A) and K = q f (B). Put u =
∞∑

i=0

ai X
i ∈ L + XK [[X ]], and let α ∈ I . Since αu = ∑∞

i=0(αai )X
i ∈ R, αa0 ∈ A,

and hence a0 ∈ I−1. Moreover, if r ∈ I B, then ur X ∈ u(I R) ⊆ R. This implies
that for each i ≥ 1, rai ∈ B. Therefore for each i ≥ 1, ai ∈ (I B)−1. Hence
u ∈ I−1 + X(I B)−1[[X ]] = A + XB[[X ]] = R since B is t-linked over A. Hence
(I R)−1 = R. 
�
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Proposition 2.4 Let A ⊆ B be an extension of integral domains such that B is t-linked
over A. Then the mapping

ϕ : Clt (A) → Clt (R)

[I ] �→ [(I R)t ]
is an homomorphism.

Proof Follows from Lemma 2.3 and [3, Theorem 2.2]. 
�
Let A ⊆ B be an extension of integral domains and I a finitely generated ideal of

A. It well known that I .A[[X ]] = (I A)[[X ]] = I [[X ]]. Using the same proof we can
prove that I .B[[X ]] = (I B)[[X ]].
Lemma 2.5 Let A ⊆ B be an extension of integral domains such that B is a flat A-
module, I an ideal of A and R = A+ XB[[X ]].We assume that I and I−1 are v-ideals
of finite type. Then (I R)v = I + X(I B)[[X ]].
Proof Since I and I−1 are v-ideals of finite type, I = Jv and I−1 = Lv for some
finitely generated ideals J and L of A. Since J R = J + X(J B)[[X ]], by Lemma 2.1,

(J R)−1 = (J + X(J B)[[X ]])−1

= J−1 ∩ (J B)−1 + X(J B)−1[[X ]]
= J−1 ∩ J−1B +X(J−1B)[[X ]]
= J−1,

where the third equality follows from the fact that B is a flat A-module.
Again apply Lemma 2.1, (J R)v = Jv ∩ (J−1B)−1 +X(J−1B)−1[[X ]].
Since Lv = I−1 = J−1,

(J−1B)−1 = (LvB)−1 = (LB)−1 = L−1B = JvB,

where the second equality follow from the proof of [5, Proposition 2.2]. So

(J R)v = Jv ∩ (JvB) + X(JvB)[[X ]]
= Jv + X(JvB)[[X ]]
= I + X(I B)[[X ]].

This implies that I + X(I B)[[X ]] ⊆ (I R)v.Now, using Lemma 2.1, we can prove that

(I + X(I B)[[X ]])v = I + X(I B)[[X ]].

This shows that (I R)v ⊆ I + X(I B)[[X ]], and hence (I R)v = I + X(I B)[[X ]]. 
�
We are now ready to prove the main result of this section.

Theorem 2.6 Let A ⊆ B be an extension of integral domains such that B is a flat
A-module. Then the mapping

ϕ : Clt (A) → Clt (R)

[I ] �→ [(I R)t ]
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is an injective homomorphism.

Proof Since B is a flat A-module, B is t-linked over A. So by Proposition 2.4, the
mapping ϕ is an homomorphism. We show that ϕ is injective. Let I be a t-invertible
t-ideal of A such that (I R)t is a principal ideal of R. We will prove that I is principal.
Since (I R)t is principal, (I R)t = f R for some f ∈ (I R)t .

Case 1: I is an integral ideal of A.

As (I R)t = f R, then (I R)v = f R. By Lemma 2.5, (I R)v = I + X(I B)[[X ]]; so
I = f (0)A is a principal ideal of A.

Case 2: I is a fractional ideal of A.

Let d ∈ A\(0) such that d I ⊆ A. Put I ′ = d I . Then I ′ is an integral t-invertible
t-ideal of A. Moreover, (I ′R)t = d f R is a principal ideal of R. By case 1, I ′ is a
principal ideal of A. So I is a principal ideal of A, and hence ϕ is injective. 
�
Remark 2.7 Let A ⊆ B be an extension of integral domains and let ϕ : Clt (A) →
Clt (R) be the natural mapping. Note that ϕ is not surjective in general. Indeed, let A
= Z, B = Z[i] and R = Z + XZ[i][[X ]]. Assume that ϕ is surjective.
By [6, Chapter 1, Proposition 2], Z[i] = Z ⊕ iZ is a flat Z-module; so by Theorem
2.6, ϕ is an injective homomorphism, and hence ϕ is an isomorphism. This implies
that

Clt (Z) ∼= Clt (Z + XZ[i][[X ]]).
Since Z is a PID (principal ideal domain), Clt (Z) = 0 which implies that Clt (Z +
XZ[i][[X ]]) = 0. Now we prove that Clt (Z + XZ[i][[X ]]) 	= 0, and hence we obtain
a contradiction. Let I = 2Z + (1 + i)XZ[i][[X ]].
Claim 1: I and I−1 are ideals of R of v-finite type.
It is clear that (2, (1 + i)X) ⊆ I . Conversely, let f ∈ I . Then f = 2r + X(1 + i)Q,

for some r ∈ Z and Q ∈ Z[i][[X ]] = Z+ iZ+ XZ[i][[X ]]. So there exist s, t ∈ Z and
h ∈ Z[i][[X ]] such that f = 2r + X(1+ i)(s + i t + Xh) = 2(r − t X)+ (1+ i)X(s +
t + Xh) ∈ (2, (1 + i)X). Hence I = (2, (1 + i)X). Now, by Example 2.2, I−1 = Z

+X 1−i
2 Z[i][[X ]]. In the same way, we can show that I−1 = (1, 1−i

2 X).

Claim 2: I is a v-invertible ideal of R.

Note that

I I−1 = (1,
1 − i

2
X)(2, (1 + i)X) = (2, (1 + i)X , (1 − i)X , X2).

Let u ∈ qf(R) such that (2, (1 + i)X , (1 − i)X , X2) ⊆ uR. Since 2 ∈ (2, (1 + i)X ,

(1− i)X , X2) ⊆ uR, then u = 2
f ,with f ∈ R and X2 ∈ (2, (1+ i)X , (1− i)X , X2) ⊆

uR = 2
f R. Thus X2 f = 2 g, for some g = a0 +a1X +· · ·+an Xn ∈ R. This implies

that a0 = a1 = 0, and so g = X2 h, where h = (a2 + · · · + an Xn−2) ∈ Z[i][[X ]].
Then f (0) = 2 h(0) ∈ Z. But Z[i] = Z + iZ, then h(0) = s + i t ∈ Z + iZ. Since
2 h(0) ∈ Z, then h(0) ∈ Z, and so 1 = uh ∈ uR. Thus

(I I−1)v = (2, (1 + i)X , (1 − i)X , X2)v = R.

Using claim 1 and 2, it is easy to prove that I is a t-invertible t-ideal of R. This
implies that [I ] ∈ Clt (R). Now we show that [I ] 	= 0 which equivalent to I is not a
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principal ideal of R. Assume the contrary that I is principal. Then I = PR for some
P ∈ R. Since 2 ∈ I , P(0) 	= 0. In fact P(0) ∈ {±1,±2}.Moreover, as (1+ i)X ∈ I ,
weobtain P(0) ∈ {±1}which implies that P(0) is a unit inZ.Aroutine calculation (by
induction) shows that P is a unit in R.This implies that I = PR = R, a contradiction.
Then [I ] 	= 0, and hence Clt (Z + XZ[i][[X ]]) 	= 0.

3 v-Invertible v-Ideals of A+XB[[X]]

In this section,we investigate a relationship between v-invertible v-ideals of an integral
domain and those of its power series ring of the form A + XB[[X ]], where A ⊆ B is
an extension of integral domain. We begin this section by the following proposition.

Proposition 3.1 Let A ⊆ B be an extension of integral domain, J an ideal of A and
R = A + XB[[X ]].
(1) If (J R)v = R, then Jv = A.

(2) If (J R)t = R, then Jt = A.

Proof(1). Assume that (J R)v = R and let u ∈ qf(A) such that J ⊆ uA. Then J R ⊆
uAR ⊆ uR which implies that R = (J R)v ⊆ (uR)v = uR. Thus

A ⊆
⋂

u∈qf(A),J⊆uA

Au = Jv.

This shows that A ⊆ Jv ⊆ A, and hence Jv = A.

(2). Suppose that (J R)t = R. Then

R =
⋃

{(FR)v, F ⊆ J of finite type of A}.

Thus there exists a finitely generated ideal F0 of A such that F0 ⊆ J and 1 ∈
(F0R)v. This implies that R = (F0R)v. Now, by (1), (F0)v = A; so

A ⊆
⋃

{Fv, F ⊆ J of finite type of A} = Jt ⊆ A.

Hence A = Jt .

�

Let A be an integral domain. According to [12, Theorem 2.11], A is completely
integrally closed if and only if for each f , g ∈ A[[X ]], (A f Ag)v = (A f g)v.Using this
result we prove a complete description of v-invertible v-ideals (with nonzero trace in
A) of R. First we need to prove the following proposition.

Proposition 3.2 Let A ⊆ B be an extension of integral domains such that B completely
integrally closed and R = A + XB[[X ]]. Then for each divisorial ideal I of R such
that I ∩ A 	= (0), there exist a divisorial ideal J of B and a nonzero ideal H ⊆ J of
A such that I = H + X J [[X ]].
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Proof Let H = I
⋂

A and J the ideal of B generated the coefficients of all elements
of I .

It is clear that H ⊆ J and H ⊆ I .Weshow that X Jv[[X ]] ⊆ I .Let f , g ∈ R, g 	= 0
such that I ⊆ f

g R. Let 0 	= a ∈ H . Since a ∈ H ⊆ I ⊆ f
g R, then there exists an

r ∈ R\(0) such that a
r = f

g . Let 0 	= h ∈ I ⊆ f
g R = a

r R. Then rh ∈ aR which
implies that rh ∈ aB[[X ]].So (Arh)v ⊆ aB.Byhypothesis B is a completely integrally
closed domain, then Ar Ah ⊆ (Ar Ah)v ⊆ aB. This implies that r Ah[[X ]] ⊆ aB[[X ]].
Now we show that r J [[X ]] ⊆ aB[[X ]]. Indeed, if f ∈ r J [[X ]], then f = r f1 for

some f1 =
∞∑

i=0

ai X
i ∈ J [[X ]]. Put r =

∞∑

i=0

βi X
i . Then f =

∞∑

n=0

(

n∑

i=0

aiβn−i )X
n . But

ai =
mi∑

k=0

αi,k ti,k with ti,k ∈ B, αi,k ∈ A fi,k , then

aiβn−i =
ni∑

k=0

αi,k ti,kβn−i ∈ Ar A fi,k ⊆ aB.

Which implies that r J [[X ]] ⊆ aB[[X ]]. So

r(J [[X ]])v = (r J [[X ]])v ⊆ (aB[[X ]])v = a(B[[X ]])v = aB[[X ]].

Since (J [[X ]])v = Jv[[X ]], r Jv[[X ]] ⊆ aB[[X ]]. This implies that aX
r B[[X ]] ⊆ a

r R; so
r X Jv[[X ]]

r ⊆ aX
r B[[X ]] ⊆ a

r R = f
g R which implies that X Jv[[X ]] ⊆ f

g R. Thus

X Jv[[X ]] ⊆ ∩ f ,g∈R,I⊆ f
g

f

g
R = Iv = I ,

and hence H+X J [[X ]]⊆ H+X Jv[[X ]]⊆ I .Nowwewill show that I ⊆ H+X J [[X ]].
Let f ∈ I . Then f = a0 +

∞∑

i=1

ai X
i , where a0 ∈ A and ai ∈ B for each i ≥ 1.

As J =< A f , f ∈ I >, then for each i ≥ 1, ai ∈ J ; so
∞∑

i=1

ai X
i = X

∞∑

i=1

ai X
i−1 ∈ X J [[X ]] ⊆ X Jv[[X ]].

Since X Jv[[X ]] ⊆ I ,
∞∑

i=1

ai X
i ∈ I . This implies that a0 = f −

∞∑

i=1

ai X
i ∈ I . Thus

a0 ∈ A ∩ I = H , and hence f ∈ H + X J [[X ]]. Now we have

H + X J [[X ]] ⊆ H + X Jv[[X ]] ⊆ I ⊆ H + X J [[X ]].

Hence I = H + X J [[X ]] and Jv = J . 
�
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Our next result give a complete description of v-invertible v-ideals of A+ XB[[X ]]
with nonzero trace in A.

Theorem 3.3 Let A ⊆ B be an extension of integral domains such that B is completely
integrally closed and R = A + XB[[X ]]. Let I be a fractional divisorial v-invertible
ideal of R such that I ∩ A 	= (0). Then I = u(J1 + X J2[[X ]]) for some u ∈ q f (R),

J2 an integral divisorial v-invertible ideal of B and J1 ⊆ J2 a nonzero ideal of A.

Proof Since I is a divisorial ideal of R and B is completely integrally closed, by
Proposition 3.2, I = H + X J [[X ]] for some divisorial ideal J of B and a nonzero
ideal H ⊆ J of A. We show that there exists nonzero c ∈ K such that cH ⊆ A and
cJ ⊆ B.

Let a ∈ H be a nonzero element. We have aI−1 is a divisorial ideal of R. Using
Lemma 2.1, it is easy to prove that aI−1 ∩ A 	= (0). Then by Proposition 3.2, aI−1 =
H ′ + X J ′[[X ]] for some divisorial ideal J ′ of B and a nonzero ideal H ′ ⊆ J ′ of A.

aR = a(I I−1)v
= (a(I I−1))v
= (I (aI−1))v
= ((H + X J [[X ]])(H ′ + X J ′[[X ]]))v.

.

So (H + X J [[X ]])(H ′ + X J ′[[X ]]) ⊆ aR = aA + aX B[[X ]]. Then HH ′ ⊆ aA and
J J ′ ⊆ aB. This implies that 1

a HH ′ ⊆ A and 1
a J J

′ ⊆ B.

Let c ∈ 1
a H

′ be a nonzero element. Then J1 = cH ⊆ 1
a HH ′ ⊆ A and J2 = cJ ⊆ B.

We have J1 	= (0) and J2 is a divisorial ideal of B.

Since I = H + X J [[X ]], then

I = 1

c
(cH + XcJ [[X ]]) = 1

c
(J1 + X J2[[X ]]) = u(J1 + X J2[[X ]]),

where u = 1
c ∈ q f (R). Now we will show that J2 is v-invertible. By Lemma 2.1, we

have

I−1 = 1

u
(J−1

1 ∩ J−1
2 + X J−1

2 [[X ]]).
Thus

I I−1 ⊆ J1(J
−1
1 ∩ J−1

2 ) + X J2(J
−1
2 [[X ]])

⊆ J1 J
−1
1 + X(J2 J

−1
2 )[[X ]]

⊆ A + XB[[X ]]
= R.

Since I is v-invertible, we get

R = (J1(J
−1
1 ∩ J−1

2 ) + X(J2 J
−1
2 )[[X ]])−1.

Again by Lemma 2.1, R = (J1(J
−1
1 ∩ J−1

2 ))−1 ∩ (J2 J
−1
2 )−1 + X(J2 J

−1
2 )−1[[X ]].

Then B[[X ]] = (J2 J
−1
2 )−1[[X ]], and this implies that B = (J2 J

−1
2 )−1. Hence J2 is

v-invertible. 
�
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Clearly that every Krull domain is completely integrally closed. Using Theorem
3.3, we obtain a new characterization of divisorial v-invertible ideals of the power
series ring of the form A + XB[[X ]].
Corollary 3.4 Let I be a fractional divisorial v-invertible ideal of R = A + XB[[X ]]
such that I ∩ A 	= (0). Assume that B is a Krull domain. Then I = u(J1 + X J2[[X ]])
for some u ∈ q f (R), J2 an integral divisorial v-invertible ideal of B and J1 ⊆ J2 a
nonzero ideal of A.

Recall from [4] that an integral domain A is called formally integrally closed if
(A f g)t = (A f Ag)t for all f , g ∈ A[[X ]]\(0). It was shown in [4] that if A is formally
integrally closed, then A is completely integrally closed, but the converse is false in
general ([4, Example 3.2]).

Proposition 3.5 [4, Proposition 3.6] Let A be a formally integrally closed domain. If
I is a finite type v-ideal of A[[X ]] with J ∩ A 	= 0, then I = J [[X ]] for some v-ideal
J of A.

Note that in [4] Anderson and Kang characterized the v-ideals of finite type of the
power series ring A[[X ]] with nonzero trace in A in the case when A is a formally
integrally closed domain. Now, using Proposition 3.2, in the particular case when
A = B, we obtain a new approach to characterize the divisorial ideals of the ring
A[[X ]] with nonzero trace in A.

Proposition 3.6 Let A be a completely integrally closed domain and I a fractional
divisorial ideal of A[[X ]] such that I ∩ A 	= (0). Then I = J1 + X J2[[X ]] for some
nonzero ideal J1 of A and some divisorial ideal J2 of A such that J1 ⊆ J2.
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