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Abstract
In the continuous setting, Morrey spaces have been studied extensively, especially
since the late 1960s. Meanwhile, Morrey sequence spaces, which are also known as
discrete Morrey spaces, have only been developed by Gunawan et al. since 2018.
In this article, we extend some known results on their inclusion properties and their
(lack of) uniformnonsquareness tomixedMorrey double-sequence spaces, i.e.Morrey
double-sequence spaces equipped with a mixed norm. As in the calculation of three
geometric constants of Morrey spaces by Gunawan et al. in 2019, we also compute
three geometric constants, namelyVonNeumann-Jordan constant, James constant, and
Dunkl-Williams constant for mixed Morrey double-sequence spaces. These constants
measure uniformlynonsquareness of anyBanach space.Through the values of the three
constants, we reveal that mixed Morrey double-sequence spaces are not uniformly
nonsquare. A relation between mixed Morrey double-sequence spaces and mixed
Morrey spaces is also discussed.
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1 Introduction: Morrey Sequence Spaces

The ’continuous’ Morrey spaces Mp
q = Mp

q (Rn) were introduced by C. B. Morrey
[19]. A function f on R

n belongs to Mp
q (1 ≤ p ≤ q < ∞) if and only if

‖ f ‖Mp
q

:= sup
a∈Rn ,r>0

|B(a, r)| 1q − 1
p

(∫
B(a,r)

| f (y)|pdy
)1/p

< ∞.

Here, B(a, r) is the ball centered at a ∈ R
n and of radius r > 0. While continuous

Morrey spaces have been developed since the 1930s (see [21, 22] and references
therein), discrete Morrey spaces or Morrey sequence spaces �

p
q = �

p
q (Z) (1 ≤ p ≤

q < ∞) were first studied by Gunawan et al. [9] and have attracted many researchers
since then (see, for examples, [3, 11, 12]).

A sequence {x j } := {x j } j∈Z belongs to �
p
q if and only if

‖{x j }‖�
p
q

:= sup
m∈Z,N∈N0

|Sm,N | 1q − 1
p

⎛
⎝ ∑

j∈Sm,N

|x j |p
⎞
⎠

1/p

< ∞.

Here, Sm,N = {m − N ,m − N + 1, . . . ,m − 1,m,m + 1, . . . ,m + N − 1,m + N }.
Note that for p = q, we have �

p
p = �p.

One property that Morrey spaces have is the inclusion property [8, 20]. For Morrey
sequence spaces �

p
q , the following theorem is found in [12]:

Theorem 1.1 [12] Let 1 ≤ p1 ≤ q1 < ∞ and 1 ≤ p2 ≤ q2 < ∞. Then �
p2
q2 ⊆ �

p1
q1 if

and only if q2 ≤ q1 and
p1
q1

≤ p2
q2

.

Remark 1.2 Note that, the inclusion results in [12] are more general than Theorem
1.1, namely, including the results on sequences defined in higher dimension Z

n , the
quasi-Banach case (0 < p1, q1, p2, q2 < 1), and compactness of embedding. An
extension of this inclusion result to weak type Morrey sequence space can be found
in [7]. In this paper, we shall concentrate on the case of Morrey sequence spaces as
Banach spaces and also the sequence with index in Z only.

We note from the above theorem that for a fixed q ∈ [1,∞), the largest Morrey
sequence space is �1q .

Besides the inclusion property, geometric properties of Morrey spaces, which are
seen through some geometric constants, are quite interesting.

The Von Neumann-Jordan constant CNJ(X) (see [15]), the James constant CJ (X)

(see [13]) and the Dunkl-Williams constant CDW(X) (see [4]) for a Banach space X
are given by

CNJ(X) := sup

{
‖x + y‖2X + ‖x − y‖2X

2(‖x‖2X + ‖y‖2X )
: x, y ∈ X \ {0}

}
,

CJ(X) := sup {min{‖x + y‖X , ‖x − y‖X } : x, y ∈ X , ‖x‖X = ‖y‖X = 1} ,
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and

CDW(X) := sup

{‖x‖X + ‖y‖X
‖x − y‖X

∥∥∥∥ x

‖x‖X − y

‖y‖X
∥∥∥∥
X

: x, y ∈ X , x �= 0, y �= 0, x �= y

}
,

respectively. As a consequence of the definition of CNJ(X) and the triangle inequality,
it is well known that 1 ≤ CNJ(X) ≤ 2 for everyBanach space X (see [15, Theorem II]),
and thatCNJ(X) = 1 if and only if X is a Hilbert space. Meanwhile,

√
2 ≤ CJ(X) ≤ 2

holds for every Banach space X , and CJ(X) = √
2 if (but not only if) X is a Hilbert

space (see [1, 5]). As for the Dunkl-Williams constant, we have 2 ≤ CDW(X) ≤ 4
and CDW(X) = 2 if and only if X is a Hilbert space (see [4]). Note that the larger the
constant, the lesser round the unit ball in the space. Von Neumann-Jordan constant,
James constant, andDunkl-Williams constant are used to quantify convexity properties
such as strict convexity, uniform convexity, and uniform squareness (see definitions
in Subsection 2.2.3). In particular, CN J (X) < 2 is a necessary condition for uniform
convexity of X (see [16]). Moreover,CN J (X) < 2 is equivalent to uniform squareness
of X (see [23]). In addition, the condition CN J (X) < 2 imply the fixed point property
for nonexpansive mappings on X (see [6]).

For Lebesgue spaces L p = L p(Rn)where 1 ≤ p ≤ ∞, it is known thatCNJ(L p) =
max{22/p−1, 21−2/p} (see [2]) and CJ(L p) = max{21/p, 21−1/p} (see [17]). Mean-
while, for the Dunkl-Williams constant, we know that CDW(L1) = CDW(L∞) = 4
(see [14]).

For continuous Morrey spaces Mp
q and discrete Morrey spaces �

p
q , the following

results are obtained in [10]:

Theorem 1.3 [10] If 1 ≤ p < q < ∞, then

(i) CNJ(M
p
q ) = CJ(M

p
q ) = 2 and CDW(Mp

q ) = 4.
(ii) CNJ(�

p
q ) = CJ(�

p
q ) = 2 and CDW(�

p
q ) = 4.

Note that the three constants take the largest possible values, which mean that both
continuous and discrete Morrey spaces are lacking the nonsquareness property (see
Definition 2.7 for the definition of uniformly nonsquare Banach spaces).

In the following section, we present our results on the inclusion properties and
geometric properties of mixed Morrey double-sequence spaces, which we shall define
below. We shall also discuss the relation between mixed Morrey double-sequence
spaces with mixed ’continuous’ Morrey spaces (see [24] for the inclusion results of
mixed Morrey spaces).

2 MixedMorrey Double-Sequence Spaces

Let 1 ≤ p ≤ q < ∞ and 1 ≤ r ≤ s < ∞. The Morrey double-sequence spaces
with mixed norm �

p
q (�rs) = �

p
q (�rs)(Z

2) is defined to be the set all double-sequences
{xi j } = {xi j }i, j∈Z for which

‖{xi j }‖�
p
q (�rs )

:= ‖{‖{xi j }‖�rs ,i }‖�
p
q , j

< ∞.
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The notation ‖{·}‖�rs ,i means the norm is calculated for a sequence with index i . From
now on, we shall abbreviate the term Morrey double-sequence spaces with mixed
norm by mixed Morrey double-sequence spaces.

2.1 A Key Lemma

We observe that an example of a member of a mixed Morrey double-sequence space
can be obtained by taking the product of two sequences in associatedMorrey sequence
spaces. This fact is given in the following lemma.

Lemma 2.1 Let 1 ≤ p ≤ q < ∞ and 1 ≤ r ≤ s < ∞. Suppose that {yi } ∈ �rs and
{z j } ∈ �

p
q . If xi j := yi z j , then {xi j } ∈ �

p
q (�rs) with

‖{xi j }‖�
p
q (�rs )

= ‖{yi }‖�rs
‖{z j }‖�

p
q
. (1)

Proof The identity (1) follows directly from the definition of mixed Morrey double-
sequence spaces. In fact,

‖{xi j }‖�
p
q (�rs )

= ‖{‖{yi z j }‖�rs,i
}‖�

p
q, j

= ‖{‖{yi }‖�rs ,i· z j }‖�
p
q , j = ‖{yi }‖�rs ,i‖{z j }‖�

p
q , j < ∞.

Thus, {xi j } ∈ �
p
q (�rs) and the identity (1) holds. 	


We shall use this lemma to prove the inclusion property and convexity properties
of mixed Morrey double-sequence spaces.

2.2 Main Results

2.2.1 Inclusion Properties

Our first result is the following theorem on the inclusion property of mixed Morrey
double-sequence spaces.

Theorem 2.2 Let 1 ≤ p1 ≤ q1 < ∞, 1 ≤ p2 ≤ q2 < ∞, 1 ≤ r1 ≤ s1 < ∞,

and 1 ≤ r2 ≤ s2 < ∞. If q2 ≤ q1,
p1
q1

≤ p2
q2

, s2 ≤ s1, and
r1
s1

≤ r2
s2
, then

�
p2
q2 (�

r2
s2) ⊆ �

p1
q1 (�

r1
s1).

Proof Let x = {xi j } ∈ �
p2
q2 (�

r2
s2). Since �

r2
s2 ⊆ �

r1
s1 with ‖ · ‖

�
r1
s1

≤ ‖ · ‖
�
r2
s2
, we see that

‖{xi j }‖�
r1
s1 ,i ≤ ‖{xi j }‖�

r2
s2 ,i

for every j ∈ Z. The inclusion �
p2
q2 ⊆ �

p1
q1 implies
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‖x‖
�
p1
q1 (�

r1
s1 )

≤ ‖{‖xi j‖�
r2
s2 ,i }‖�

p1
q1 , j

≤ ‖{‖xi j‖�
r2
s2 ,i }‖�

p2
q2 , j = ‖x‖

�
p2
q2 (�

r2
s2 )

< ∞.

Hence, x ∈ �
p1
q1 (�

r1
s1). Thus, �

p2
q2 (�r2s2) ⊆ �

p1
q1 (�

r1
s1) with ‖ · ‖

�
p1
q1 (�

r1
s1 )

≤ ‖ · ‖
�
p2
q2 (�

r2
s2 )
. 	


Remark 2.3 Assume that s1 = s2, r1 < r2, q1 = q2, and p1 < p2. By using a
similar argument as in the proof of Theorem 2.2 in [7], we can construct a sequence
x = {xi } ∈ �

r1
s1 \ �

r2
s2 . Similarly, one can construct y = {y j } ∈ �

p1
q1 \�p2q2 . If zi j = xi y j ,

then z = {zi j } ∈ �
p1
q1 (�

r1
s1) \ �

p2
q2 (�

r2
s2). Thus, the inclusion in Theorem 2.2 is proper

under this assumption.

As the converse of Theorem 2.2, we have the following theorem.

Theorem 2.4 Let 1 ≤ p1 ≤ q1 < ∞, 1 ≤ p2 ≤ q2 < ∞, 1 ≤ r1 ≤ s1 < ∞, and

1 ≤ r2 ≤ s2 < ∞. If �p2q2 (�
r2
s2) ⊆ �

p1
q1 (�

r1
s1), then

1

s1
+ 1

q1
≤ 1

s2
+ 1

q2
.

Proof Let K ∈ N. Define yi :=
{
1, |i | ≤ K ,

0, |i | > K
and z j :=

{
1, | j | ≤ K ,

0, | j | > K
. Let xi j :=

yi z j . Observe that, for k = 1, 2, we have ‖{yi }‖�
rk
sk ,i

= (2K + 1)
1
sk and ‖{z j }‖�

pk
qk , j

=
(2K + 1)

1
qk . Hence, by Lemma 2.1, we obtain

‖{xi j }‖�
p1
q1 (�

r1
s1 )

= (2K + 1)
1
s1

+ 1
q1 and ‖{xi j }‖�

p2
q2 (�

r2
s2 )

= (2K + 1)
1
s2

+ 1
q2 .

Since �
p2
q2 (�

r2
s2) ⊆ �

p1
q1 (�

r1
s1), there must exist a constant C > 0 (see [9]) such that

‖{xi j }‖�
p1
q1 (�

r1
s1 )

≤ C‖{xi j }‖�
p2
q2 (�

r2
s2 )

,

whence

(2K + 1)
1
s1

+ 1
q1

−( 1
s2

+ 1
q2

) ≤ C .

As this is true for every K ∈ N, we conclude that
1

s1
+ 1

q1
≤ 1

s2
+ 1

q2
. 	


2.2.2 Geometric Constants

Now we move to the geometric properties of mixed Morrey double-sequence spaces.
As we have mentioned before, we shall study them through three geometric constants.
Our result is the following.

Theorem 2.5 If 1 ≤ p < q < ∞ and 1 ≤ r < s < ∞, then CNJ(�
p
q (�rs)) =

CJ (�
p
q (�rs)) = 2 and CDW(�

p
q (�rs)) = 4.
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Proof Weshall beginwithVonNeumann-Jordan constant.Note that,CNJ(�
p
q (�rs)) ≤ 2.

Therefore, we only need to prove that CNJ(�
p
q (�rs)) ≥ 2. Since q > p and s > r , there

exists a positive, even integer n such that n > 2
q

q−p − 1 and n > 2
s

s−r − 1. Define {xi }
and {yi } by

xi :=
{
1, i ∈ {0, n}
0, i /∈ {0, n} and yi :=

⎧⎪⎨
⎪⎩
1, i = 0

−1, i = n

0, i /∈ {0, n}.

Observe that

‖{xi }‖�
p
q

= max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|S0,0|
1
q − 1

p |x0|, |Sn,0|
1
q − 1

p |xn|, |Sn/2,n/2|
1
q − 1

p

⎛
⎜⎜⎝

∑
i∈Sn

2 ,
n
2

|xi |p
⎞
⎟⎟⎠

1
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= max
{
1, (n + 1)

1
q − 1

p 2
1
p

}
.

Since n > 2
q

q−p − 1, we have n + 1 > 2
q

q−p , so (n + 1)
1
q − 1

p 2
1
p < (2

q
q−p )

1
q − 1

p 2
1
p =

1. Consequently, ‖{xi }‖�
p
q

= 1. By a similar argument, we obtain ‖{xi }‖�rs
= 1,

‖{yi }‖�
p
q

= 1, and ‖{yi }‖�rs
= 1.

Now let us define the double-sequences a = {ai j } and b = {bi j } by

ai j = xi x j and bi j = yi y j , (2)

respectively. By virtue of Lemma 2.1, we have

‖a‖�
p
q (�rq ) = ‖{xi }‖�rs ,i‖{x j }‖�

p
q , j = 1 and ‖b‖�

p
q (�rq ) = ‖{yi }‖�rs ,i‖{y j }‖�

p
q , j = 1.

(3)

According to the definition of {xi } and {yi }, we see that

xi + yi =

⎧⎪⎨
⎪⎩
2, i = 0

0, i = n

0, i /∈ {0, n}
and xi − yi =

⎧⎪⎨
⎪⎩
0, i = 0

2, i = n

0, i /∈ {0, n}
.

Hence we have ‖{xi + yi }‖�rs
= 2 and ‖{xi − yi }‖�rs

= 2.
We now calculate ‖a+b‖�

p
q (�rs )

as follows. For every i ∈ Z and fixed j /∈ {0, n}, we
have ai j +bi j = xi ·0+yi ·0 = 0. Therefore, ‖{ai j +bi j }‖�rs ,i = 0 for every j /∈ {0, n}.
Meanwhile, for j = 0, we have ‖{ai j + bi j }‖�rs ,i = ‖{xi + yi }‖�rs

= 2. Similarly, for
j = n, we obtain ‖{ai j + bi j }‖�rs ,i = ‖{xi − yi }‖�rs

= 2. These calculations can be
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summarized as

‖{ai j + bi j }‖�rs ,i =
{
2, j ∈ {0, n}
0, j /∈ {0, n} = 2x j .

Consequently,

‖a + b‖�
p
q (�rs )

= ‖‖{ai j + bi j }‖�rs ,i‖�
p
q , j = ‖{2x j }‖�

p
q , j = 2. (4)

By a similar argument, we also have

‖a − b‖�
p
q (�rs )

= 2. (5)

We combine (3)–(5) to obtain

CNJ (�
p
q (�rs)) ≥

‖a + b‖2
�
p
q (�rs )

+ ‖a − b‖2
�
p
q (�rs )

2(‖a‖2
�
p
q (�rs )

+ ‖b‖2
�
p
q (�rs )

)
= 22 + 22

2(1 + 1)
= 2,

as desired.
As for James constant, we let the sequences a and b be defined by (2). As a

consequence of (4) and (5), we have

CJ (�
p
q (�rs))

= sup{min{‖a + b‖�
p
q (�rs )

, ‖a − b‖�
p
q (�rs )

} : ‖a‖�
p
q (�rs )

= ‖b‖�
p
q (�rs )

= 1} = 2.

Finally, we move to Dunkl-Williams constant. Let t > 0 and let a and b be the
sequences be defined by (2). Define

u = a + b , v = a − b, and w = (1 + t)u + (1 − t)v. (6)

Note that, ‖u + v‖�
p
q (�rs )

= ‖v − u‖�
p
q (�rs )

= 2. We now prove that

‖w‖�
p
q (�rs )

= 2 + 2t . (7)

Observe that

w = (1 + t)u + (1 − t)v = (1 + t)(a + b) + (1 − t)(a − b) = 2a + 2tb.

Therefore,

wi j = 2ai j + 2tbi j = 2xi x j + 2t yi y j .
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Using the definition of {xi } and {yi }, we have

wi0 = 2xi + 2t yi =

⎧⎪⎨
⎪⎩
2 + 2t i = 0

2 − 2t, i = n

0, i /∈ {0, n}

and

win = 2xi − 2t yi =

⎧⎪⎨
⎪⎩
2 − 2t i = 0

2 + 2t, i = n

0, i /∈ {0, n}.

Consequently, ‖wi0‖�rs
= ‖win‖�rs

= 2 + 2t . Using this fact, we obtain

‖‖wi j‖�rs ,i‖�
p
q , j = ‖(2 + 2t){x j }‖�

p
q , j = (2 + 2t)‖{x j }‖�

p
q , j = 2 + 2t,

as desired. Thus, it follows from (7) that

‖u + v‖ + ‖w‖
t‖v − u‖

∥∥∥∥ u + v

‖u + v‖ − w

‖w‖
∥∥∥∥ = 4 + 2t

2t

∥∥∥∥u + v

2
− w

2 + 2t

∥∥∥∥
= 2 + 2t

t

∥∥∥∥ (1 + t)(u + v) − w

2 + 2t

∥∥∥∥
= 2 + t

2t + 2t2
‖2tv‖ = 4t + 2t2

2t + 2t2
‖v‖ = 4 + 2t

1 + t
.

Taking t → 0+, we find that CDW(�
p
q (�rs)) = 4. 	


2.2.3 Convexity Properties

Besides the geometric constants, we also obtain the following results about the
convexity properties of mixed Morrey double-sequence spaces.

Recall that a normed space X is strictly convex if for every x, y ∈ X with ‖x‖ =
‖y‖ = 1 and x �= y we have ‖x + y‖ < 2, and is uniformly convex if for every
ε ∈ (0, 2] there exists a δ ∈ (0, 1) such that for every x, y ∈ X with ‖x‖ = ‖y‖ = 1
and ‖x − y‖ ≥ ε we have ‖x + y‖ ≤ 2(1 − δ). Note that, by definition, uniform
convexity is stronger than strict convexity.

For mixed Morrey double-sequence spaces, we have the following theorem.

Theorem 2.6 If 1 ≤ p < q < ∞ and 1 ≤ r < s < ∞, then �
p
q (�rs) is not strictly

convex. Consequently, �pq (�rs) is not uniformly convex.

Proof Let the sequences a = {ai j } and b = {bi j } be defined as in the proof of Theorem
2.5. Note that, a �= b, ‖a‖�

p
q (�rs )

= 1, ‖b‖�
p
q (�rs )

= 1, and ‖a + b‖�
p
q (�rs )

= 2. Thus,

�
p
q (�rs) is not strictly convex, and accordingly is not uniformly convex. 	
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Wenowdiscuss the lack uniformly nonsquarenes ofmixedMorrey double-sequence
spaces. Let us recall the following definition.

Definition 2.7 [13] A Banach space X is called uniformly nonsquare if there exists a
δ > 0 such that for every x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ 2(1 − δ) we
have ‖x + y‖ ≤ 2(1 − δ).

A necessary and sufficient condition for uniform nonsquareness of a Banach space is
given by the following theorem.

Theorem 2.8 [23] A Banach space X is uniformly nonsquare if and only if CN J (X) <

2.

Based on Theorems 2.5 and 2.8, we obtain the following corollary.

Corollary 2.9 If 1 ≤ p < q < ∞ and 1 ≤ r < s < ∞, then �
p
q (�rs) is not uniformly

nonsquare.

2.3 An Additional Result: Relation with Continuous Morrey Spaces

As shown in [18], there is a relation between Morrey sequence spaces and Morrey
spaces. From now on, Mp

q denotes Morrey spaces over R.

Theorem 2.10 [18] Let 1 ≤ p ≤ q < ∞. For every a = {a j } ∈ �
p
q , define

a(t) =
⎛
⎝∑

j∈Z
|a j |pχ[ j, j+1)(t)

⎞
⎠

1/p

.

Then, there exist positive constants C1 and C2, independent of a, such that

C1‖a‖�
p
q

≤ ‖a‖Mp
q

≤ C2‖a‖�
p
q
.

Remark 2.11 A relation between Morrey spaces and Morrey sequence spaces is also
given in [12, Remark 2.4].

A relation between mixed Morrey double-sequence spaces and Morrey spaces with
mixed norm is given in the following proposition. Let us recall the definition of mixed
Morrey spaces. The mixed Morrey space Mp

q (Mr
s )(R

2) is the set of all measurable
functions f on R

2 for which

‖ f ‖Mp
q (Mr

s ) = ‖‖ f (x, y)‖Mr
s
‖Mp

q

is finite. In the next proposition and its proof, the notation ‖x‖Mp
q

� ‖x‖�
p
q
means that

there exists a constant C > 0 such that ‖x‖Mp
q

≤ C‖x‖�
p
q
.
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Proposition 2.12 Let 1 ≤ p ≤ q < ∞ and 1 ≤ r ≤ s < ∞. For x = {xi j } ∈ �
p
q (�rs),

define

x(t1, t2) =
⎛
⎝∑

j∈Z

(∑
i∈Z

|xi j |rχ[i,i+1)(t1)

)p/r

χ[ j, j+1)(t2)

⎞
⎠

1/p

, t1, t2 ∈ R.

Then x ∈ Mp
q (Mr

s )(R
2) with ‖x‖Mp

q (Mr
s ) � ‖x‖�

p
q (�rs )

.

Proof Observe that, for every t2 ∈ R, we have

‖x(·, t2)‖Mr
s

=

∥∥∥∥∥∥∥

∥∥∥∥∥∥

⎧⎨
⎩

(∑
i∈Z

|xi j |rχ[i,i+1)(·)
)1/r

χ[ j, j+1)(t2)

⎫⎬
⎭

j

∥∥∥∥∥∥
�p

∥∥∥∥∥∥∥
Mr

s

≤

∥∥∥∥∥∥∥

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥
(∑

i∈Z
|xi j |rχ[i,i+1)(·)

)1/r
∥∥∥∥∥∥
Mr

s

χ[ j, j+1)(t2)

⎫⎪⎬
⎪⎭

j

∥∥∥∥∥∥∥
�p

.

Applying Theorem 2.10 to a j := {xi j }i for each j , we have

‖x(·, t2)‖Mr
s

�
∥∥∥∥
{∥∥{xi j }

∥∥
�rs ,i

χ[ j, j+1)(t2)
}
j

∥∥∥∥
�p

=
⎛
⎝∑

j∈Z
‖xi j‖p

�rs ,i
χ[ j, j+1)(t2)

⎞
⎠

1/p

.

Applying Theorem 2.10 once again to b := {b j } and

b(t2) :=
⎛
⎝∑

j∈Z
|b j |pχ[ j, j+1)(t2)

⎞
⎠

1/p

with b j := ‖{xi j }‖�rs ,i , we obtain

‖x‖Mp
q (Mr

s ) �
∥∥∥∥
∥∥∥∥
{∥∥{xi j }

∥∥
�rs ,i

χ[ j, j+1)(·)
}
j

∥∥∥∥
�p

∥∥∥∥
Mp

q

� ‖‖{xi j‖�rs ,i‖�
p
q , j = ‖x‖�

p
q (�rs )

,

as desired. 	

Remark 2.13 At this time we do not know whether or not we have the inequality
‖x‖�

p
q (�rs )

� ‖x‖Mp
q (Mr

s ) for 1 ≤ p ≤ q < ∞ and 1 ≤ r ≤ s < ∞.

Future works It is interesting to investigate a generalization of our results to mixed
Morrey double-sequence spaces defined on Z

n1 × Z
n2 and the case of quasi-Banach

spaces. In addition, the generalization of our results to other extension ofMorrey spaces
such as weak Morrey spaces and generalized Morrey spaces is worth investigating.
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