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Abstract
Let BX be a bounded symmetric domain realized as the open unit ball of a JB*-triple
X . First, we extend the definition for pluriharmonic Bloch functions to BX by using
the infinitesimal Kobayashi metric. Next, we develop some methods to investigate
Bloch functions, and composition operators of pluriharmonicBloch spaces onbounded
symmetric domains. The obtained results provide the improvements and extensions
of the corresponding known results.
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1 Preliminaries

For Banach spaces X and Y with norm ‖ · ‖X and ‖ · ‖Y , respectively, let L(X ,Y ) be
the space of all continuous linear operators from X into Y with the standard operator
norm

‖A‖ = sup
x∈X\{0}

‖Ax‖Y
‖x‖X ,
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where A ∈ L(X ,Y ). L(X ,Y ) is a Banach space with respect to this norm. Denote by
X∗ the dual space of the real or complex Banach space X . For x ∈ X\{0}, let

T (x) = {�x ∈ X∗ : �x (x) = ‖x‖X and ‖�x‖X∗ = 1}.

Then the well known Hahn-Banach theorem implies that T (x) �= ∅.

Holomorphic Functions in Complex Banach Spaces

Letψ be a mapping of a domain� ⊂ X into a Banach space Y , where X is a complex
Banach space. We say that ψ is differentiable at z ∈ � if there exists a bounded real
linear operator Dψ(z) : X → Y such that

lim
‖τ‖X→0+

‖ψ(z + τ) − ψ(z) − Dψ(z)τ‖Y
‖τ‖X = 0.

Here Dψ(z) is called the Fréchet derivative of ψ at z. If Y is a complex Banach space
and Dψ(z) is bounded complex linear for each z ∈ �, thenψ is said to be holomorphic
in �. Given domains �1 and �2 in complex Banach spaces X and Y , respectively,
we denote by H(�1,�2) the set of holomorphic mappings from �1 into �2. The set
H(�1,�1) of self-mappings will be abbreviated to H(�1).

Pluriharmonic Functions in Complex Banach Spaces

Let C be the complex plane and let � be a domain in a complex Banach space X .
A C2 mapping f of � into C is said to be pluriharmonic if the restriction of f
to every holomorphic curve in � is harmonic (cf. [3–5, 12, 16, 19, 20, 22, 26]). In
particular, if X = C

n and � is a simply connected domain of Cn , then a function
f : � → C is pluriharmonic if and only if f has a decomposition f = f1 + f2,
where f1, f2 ∈ H(�,C) (see [26]). This decomposition is unique up to an additive
constant. Furthermore, if n = 1, then the pluriharmonic functions are equivalent to
complex-valued harmonic functions (or harmonic mappings) (see [11]). LetPH (�)

denote the set of all pluriharmonic functions of� intoC in the form f = f1+ f2,where
f1, f2 ∈ H(�,C). Note that if X is finite dimensional and � is simply connected,
then PH (�) coincides with the set of all pluriharmonic functions of � into C. In
the following, if we write f = f1 + f2 for f ∈ PH (�), we always assume that
f1, f2 ∈ H(�,C) with f2(0) = 0, where � is a domain in a complex Banach space
X with 0 ∈ �.

JB*-Triples

A complex Banach space X is called a JB*-triple if it admits a continuous Jordan triple
product {·, ·, ·} : X3 −→ X which is symmetric and linear in the outer variables, but
conjugate linear in the middle variable, and satisfies

(i) {x, y, {a, b, c}} = {{x, y, a}, b, c} − {a, {y, x, b}, c} + {a, b, {x, y, c}};
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(ii) a�a is a hermitian operator on X and has non-negative spectrum;
(iii) ‖a�a‖X = ‖a‖2X
for a, b, c, x, y ∈ X , where the box operator a�b : X → X is defined by a�b(·) =
{a, b, ·} and satisfies ‖a�b‖X ≤ ‖a‖X‖b‖X .

TheMöbius Transformations in Bounded Symmetric Domains

Let � be a domain in a complex Banach space X . Denote by Aut(�) the set of
biholomorphic automorphisms of �. A domain � ⊂ X is said to be homogeneous
if for each x, y ∈ �, there exists f ∈ Aut(�) such that f (x) = y. Every bounded
symmetric domain in a complex Banach space X is homogeneous. Conversely, the
open unit ball B of X admits a symmetry s(z) = −z at 0 and if B is homogeneous,
then B is a symmetric domain. The Euclidean unit ball Bn in C

n , the polydisk D
n in

C
n and the classical Cartan domains are bounded symmetric domains in C

n . Banach
spaces with homogeneous open unit ball are precisely the JB∗-triples. In fact, every
bounded symmetric domain in a complex Banach space is biholomorphic to the open
unit ball of a JB∗-triple [7]. We refer to [6, 7] for more details of JB∗-triples and
bounded symmetric domains.

Throughout this paper,we useBX to denote the bounded symmetric domain realized
as the open unit ball of a JB∗-triple X . For every x, y ∈ X , the Bergman operator
BX (x, y) ∈ L(X) is defined by

BX (x, y)z = z − 2(x�y)(z) + {x, {y, z, y}, x} (z ∈ X).

For ‖x‖X < 1, the operator BX (x, x) has non-negative spectrum (see [6, Lemma
2.5.21]) and hence the square roots BX (x, x)±1/2 exist. For each element a in the
open unit ball BX of X , the Möbius transformation ga ∈ Aut(BX ), induced by a, is
given by

ga(x) = a + BX (a, a)1/2(IX + x�a)−1(x), (1.1)

with g−1
a = g−a , ga(−a) = 0, ga(0) = a and Dga(0) = B(a, a)1/2.

Throughout this paper,we use the symbolC to denote the various positive constants,
whose value may change from one occurrence to another.

2 Introduction andMain Results

The Kobayashi Metric and Pluriharmonic Bloch Functions

For a JB∗-triple X , let

κX (z, w) = inf {η > 0 : ∃φ ∈ H(D,BX ), φ(0) = z, Dφ(0)η = w}
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be the infinitesimal Kobayashi metric on BX , where D := B
1 is the unit disk in C.

Then κX (0, w) = ‖w‖X for all w ∈ X , and

κX (z, w) = ‖Dg−z(z)w‖X = ‖BX (z, z)−1/2w‖X , z ∈ BX , w ∈ X , (2.1)

where g−z ∈ Aut(BX ) is the Möbius transformation induced by −z given by (1.1)
and BX (·, ·) is the Bergman operator. Furthermore, for z ∈ BX and w ∈ X , we have

κX (z, w) ≤ ‖w‖X
1 − ‖z‖2X

. (2.2)

The Kobayashi metric ρ on BX , which is the integral form of the infinitesimal
Kobayashi metric κX and generalizes the Poincaré metric ρD on D, can be described
by a Möbius transformation: ρ(a, b) = tanh−1 ‖g−a(b)‖X for a, b ∈ BX , where
g−a ∈ Aut(BX ) is the Möbius transformation induced by −a given by (1.1) (cf. [7,
8]). In particular, ρ(a, 0) = tanh−1 ‖a‖X . Moreover, for z, w ∈ BX , we have

ρ(z, w) = 1

2
log

1 + ‖ϕz(w)‖X
1 − ‖ϕz(w)‖X ,

where ϕz ∈ Aut(BX ) with ϕz(z) = 0 (see [7, Theorem 3.5.9]).
In [25], Bergman metric plays an essential role in the definition and equivalent

conditions for (holomorphic) Bloch functions in finite dimensional case. On bounded
symmetric domains BX realized as the open unit balls of JB*-triples X , the Bergman
metric is not available in general. So, Chu et al. [8] used the infinitesimal Kobayashi
metric instead to circumvent this difficulty. Similarly, we generalize the definition of
Bloch functions for holomorphic functions on BX to pluriharmonic functions BX as
follows.

Definition 1 Let BX be a bounded symmetric domain realized as the open unit ball of
a JB*-triple X . A function f = f1 + f2 ∈ PH (BX ) is called a pluriharmonic Bloch
function if

sup{Q f (z) : z ∈ BX } < ∞,

where

Q f (z) = sup

{
|Df1(z)x + Df2(z)x |

κX (z, x)
: x ∈ X \ {0}

}
.

The class of all pluriharmonic Bloch functions will be denoted by B(BX ).

For each f = f1 + f2 ∈ PH (BX ), let

� f (z) = sup{|Df1(z)x | + |Df2(z)x | : ‖x‖X = 1}, z ∈ BX
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and let

‖ f ‖B(BX ),s = sup
{
� f ◦�(0) : � ∈ Aut(BX )

}
.

By using an argument similar to that in the proof of [8, Lemma 3.2], we have

Theorem 1 Suppose that X is a JB∗-triple. Let f = f1 + f2 ∈ PH (BX ). Then

‖ f ‖B(BX ),s = sup{Q f (z) : z ∈ BX }.

‖ f ‖B(BX ),s will be called theBloch semi-norm of f .We equipB(BX )with a norm,
called the Bloch norm, defined by

‖ f ‖B(BX ) = | f (0)| + ‖ f ‖B(BX ),s ( f ∈ B(BX ))

and call B(BX ) the pluriharmonic Bloch space on BX . Since B(BX ) ∩ H(BX ,C)

is a complex Banach space ([8, Proposition 3.6]), B(BX ) is also a complex Banach
space. We compare sup{Q f (z) : z ∈ BX } and

sup
z∈BX

{
(1 − ‖z‖2X )� f (z)

}

as follows.

Remark 1 (i) If BX = D, then κC(z, w) = |w|/(1− |z|2) for z ∈ D and w ∈ C. So,
we have

sup{Q f (z), z ∈ D} = sup
z∈D

{
(1 − |z|2)� f (z)

}

and Definition 1 coincides with the usual definition of harmonic Bloch functions
(cf. [10]).

(ii) If f = f1 + f 2 ∈ PH (BX ), then, by using (2.2), we have

� f (z) ≤ Q f (z)

1 − ‖z‖2X
.

This implies that if f = f1 + f 2 ∈ B(BX ), then

sup
z∈BX

{
(1 − ‖z‖2X )� f (z)

}
< ∞.

(iii) LetBX = BH be the unit ball of a complexHilbert space H and let f = f1+ f 2 ∈
PH (BH ). Then we can show that

sup
z∈BH

{
(1 − ‖z‖2H )� f (z)

}
< ∞
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implies that f = f1 + f 2 ∈ B(BH ) as in [2, Theorem 3.8].
(iv) In [9, Example 2.10] and [17, Proposition 2.5], it is shown independently that

there exists f ∈ H(D2,C) such that

sup
z∈D2

{
(1 − ‖z‖2∞)‖Df (z)‖

}
< ∞

and

sup
z∈D2

Q f (z) = ∞,

where ‖ · ‖∞ denotes the maximum norm on C2.

Let BX and BY be bounded symmetric domains realized as the unit balls of JB∗-
triples X and Y , respectively. Given a holomorphic mapping φ ∈ H(BX ,BY ), define
the Kobayashi constant of φ by

Kφ := sup
z∈BX

sup
x∈X\{0}

κY (φ(z), Dφ(z)x)

κX (z, x)
.

In contrast to the Bergman constant Bφ defined in [1], we always have Kφ ≤ 1 by the
contractive property of κ (cf. [1, p.682; Open question (3), p.687]).

Proposition 1 Let f = f1 + f2 ∈ PH (BY ) and φ ∈ H(BX ,BY ), where BX and
BY are bounded symmetric domains realized as the unit balls of JB∗-triples X and Y ,
respectively. Then Q f ◦φ(z) ≤ KφQ f (φ(z)) for each z ∈ BX .

For f = f1 + f2 ∈ PH (BX ) and z0 ∈ BX , we define a family Ff (z0) by

Ff (z0) = { f ◦ � − ( f ◦ �)(z0) : � ∈ Aut(BX )}.

Analogy with the holomorphic case in [25, Theorem 3.4] and [8, Theorem 3.8], we
give several characterizations of pluriharmonic Bloch functions in infinite dimensional
bounded symmetric domains as follows by using Theorem 1 and Proposition 1. Let
BX (0, r) = {z ∈ X : ‖z‖ < r}.
Theorem 2 Let X be a JB*-triple and let f = f1 + f2 ∈ PH (BX ). The following
conditions are equivalent:

(1) f ∈ B(BX ).
(2) f is uniformly continuous as a function from the metric space (BX , ρ) to the

metric space (C,Euclidean distance).
(3) The family F f (z0) is bounded on BX (0, r) for 0 < r < 1 and z0 ∈ BX .
(4) ‖ f ‖B(BX ),s < ∞.
(5) The family { f ◦ ψ : ψ ∈ H(D,BX )} consists of harmonic Bloch functions on D

with uniformly bounded Bloch semi-norm.
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(6) The family { f ◦ ψ − ( f ◦ ψ)(0) : ψ ∈ H(D,BX )} is locally uniformly bounded
on D.

For a JB*-triple X and f ∈ PH (BX ), the Lipschitz number of f is defined by

L f = sup
z,w∈BX ,z �=w

| f (z) − f (w)|
ρ(z, w)

.

Actually, the Lipschitz number in this case is given by the Bloch seminorm of f , as
follows (see [1, Theorem 3.1] and [9, Proposition 2.3] in the holomorphic case).

Theorem 3 Let X be a JB*-triple and let f = f1+ f2 ∈ PH (BX ). Then f ∈ B(BX )

if and only ifL f < ∞. Moreover,

‖ f ‖B(BX ),s = L f .

For harmonicmappings f ofD into itself, Colonna [10] proved the following result.

Theorem A ([10, Theorems 3 and 4]) Let f be a harmonic mapping of D into itself.
Then L f ≤ 4/π. The constant 4/π in this inequality can not be improved.

In the following, we extend Theorem A to bounded symmetric domains by using
Theorem 3.

Theorem 4 For a JB*-triple X, let f = f1 + f2 ∈ PH (BX ) with ‖ f ‖∞ =
supz∈BX

| f (z)| < ∞. Then L f ≤ 4‖ f ‖∞/π . The constant 4/π in this inequality
is sharp.

We obtain the following corollary from Theorems 3 and 4.

Corollary 1 Let X be a JB*-triple and let f = f1 + f2 ∈ PH (BX ). If f is bounded
on BX , then f ∈ B(BX ).

Holland-Walsh [15] gave the following characterization of Bloch functions on D.

Theorem B ([15, Theorem 3]) Let f be a holomorphic function on D. Then f is a
Bloch function if and only if

SD( f ) = sup
z,w∈D,z �=w

{
(1 − |z|2)1/2(1 − |w|2)1/2 | f (z) − f (w)|

|z − w|
}

< ∞.

Ren and Tu [21] extended Theorem B to holomorphic functions on B
n of Cn , and

Chu et al. [9] extended it to holomorphic functions on the complex Hilbert balls. It
is also remarked that it can not be extended to holomorphic functions on bounded
symmetric domains (see [9]). In order to extend Theorem B to bounded symmetric
domains, we modify SD( f ) into the following form:

SD( f ) = sup
z,w∈D,z �=w

{
(1 − |φz(w)|2)1/2 | f (z) − f (w)|

|φz(w)|
}

,
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where φa(ζ ), a ∈ D, is the Möbius transformation given by

φa(ζ ) = a − ζ

1 − ζa
, ζ ∈ D.

For a JB*-triple X and f ∈ PH (BX ), we define

S( f ) = sup
z,w∈BX ,z �=w

{
(1 − ‖�z(w)‖2X )1/2

| f (z) − f (w)|
‖�z(w)‖X

}
,

where �a(x) = ga(−x) ∈ Aut(BX ) and ga is the Möbius transformation, induced
by a, given by (1.1). Then, by using S( f ) and Theorem 3, we extend Theorem B to
pluriharmonic functions on bounded symmetric domains BX as follows.

Theorem 5 Let X be a JB*-triple, and let f ∈ PH (BX ). Then f ∈ B(BX ) if and
only if S( f ) < ∞.

Composition Operators in Bounded Symmetric Domains

Let BX and BY be bounded symmetric domains realized as the unit balls of JB∗-
triples X and Y , respectively. For a given φ ∈ H(BX ,BY ), the composition operator
Cφ : PH (BY ) → PH (BX ) is defined by

Cφ( f ) = f ◦ φ,

where f ∈ PH (BY ).
In 1987, Shapiro [23] gave a complete characterization of compact composition

operators onH 2(D), with a number of interesting consequences for peak sets, essen-
tial norm of composition operators, and so on. Recently, the study of composition
operators from one holomorphic Bloch type space to another has attracted much atten-
tion of many mathematicians (see e.g. [1, 8, 9, 18, 24, 27–29]). In particular, Chu et
al. [8, 9], Zhou and Shi [28] investigated the composition operators of holomorphic
Bloch spaces in bounded symmetric domains. It is motivated by these articles that we
first establish the boundedness of a composition operator Cφ between the plurihar-
monic Bloch spaces on infinite dimensional bounded symmetric domains. Since the
operator norm of Cφ depends on the norm of the underlying Banach space, it should
be pointed out that in the literature for finite dimensional domains BX , the operator
Cφ on the Bloch spaces is considered by the Bergman metric, whereas we consider
Cφ on the Bloch spaces by the infinitesimal Kobayashi metric. By using Theorem 3
and Proposition 1, we extend [9, Theorem 3.2], [1, Theorem 3.2 and Corollary 3.1]
and [27, Theorem 2 and Corollary 1] to the following form.

Theorem 6 LetBX andBY be bounded symmetric domains realized as the unit balls of
JB∗-triples X and Y , respectively. Let φ ∈ H(BX ,BY ). Then Cφ : B(BY ) → B(BX )

is bounded and

max {1, ρY (φ(0), 0)} ≤ ‖Cφ‖ ≤ max
{
1, ρY (φ(0), 0) + Kφ

}
.
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If φ(0) = 0, then ‖Cφ‖ = 1.

In [9, Proposition 3.3], Chu et al. obtained a sufficient condition for Cφ to be an
isometry onB(BX ) ∩ H(BX ,C) (cf. [1, Theorem 5.1]). We extend it to the plurihar-
monic case as follows by using Theorem 3.

Theorem 7 Let X be a JB∗-triple, and let φ ∈ H(BX ) with φ(0) = 0. If there is a
sequence {S j } inAut(BX ) such that {φ◦S j } converges locally uniformly to the identity
mapping on BX , then Cφ is an isometry on B(BX ).

For compactness of Cφ , we obtain the following lemma easily.

Lemma 1 Let BX and BY be bounded symmetric domains realized as the unit balls of
JB∗-triples X and Y , respectively. Let φ ∈ H(BX ,BY ). Then Cφ : B(BY ) → B(BX )

is compact if and only if Cφ : B(BY )∩H(BY ,C) → B(BX )∩H(BX ,C) is compact.

By using Lemma 1, many results in [8] related to the compactness of Cφ can be
generalized to the pluriharmonic Bloch type space. We omit the details.

The proofs of Theorems 1−5 and Proposition 1 will be presented in Sect. 3, and
the proofs of Theorems 6 and 7 will be given in Sect. 4.

3 The Kobayashi Metric and Pluriharmonic Bloch Functions

Proof of Theorem 1

Let z ∈ BX \{0} be fixed, and let gz ∈ Aut(BX ) be theMöbius transformation, induced
by z, given by (1.1). Then, by (2.1), we have

|Df1(z)x + Df2(z)x | ≤ � f ◦gz (0)‖Dg−z(z)x‖X ≤ κX (z, x)‖ f ‖B(BX ),s .

Also, we have

|Df1(0)x + Df2(0)x | ≤ ‖x‖X‖ f ‖B(BX ),s = κX (0, x)‖ f ‖B(BX ),s .

This gives sup{Q f (z) : z ∈ BX } ≤ ‖ f ‖B(BX ),s .
On the other hand, for x ∈ X \ {0} and � ∈ Aut(BX ), let

�(x) =
∣∣∣∣∣D( f1 ◦ �)(0)

(
x

‖x‖X
)

+ D( f2 ◦ �)(0)

(
x

‖x‖X
)∣∣∣∣∣ .

Then we have

�(x) = |Df1(�(0))D�(0)x + Df2(�(0))D�(0)x |
κX (�(0), D�(0)x)

≤ Q f (�(0)). (3.1)
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Note that,

sup
{
�(x) : x ∈ X\{0}}

= sup
{
|D( f1 ◦ �)(0)eiθς + D( f2 ◦ �)(0)eiθς | : θ ∈ R, ‖ς‖X = 1

}
= sup

{
|eiθ

(
D( f1 ◦ �)(0)ς + e−2iθ D( f2 ◦ �)(0)ς

)
| : θ ∈ R, ‖ς‖X = 1

}
= sup

{
|D( f1 ◦ �)(0)ς + e−2iθ D( f2 ◦ �)(0)ς | : θ ∈ R, ‖ς‖X = 1

}
= sup

{
|D( f1 ◦ �)(0)ς | + |D( f2 ◦ �)(0)ς | : ‖ς‖X = 1

}
. (3.2)

Combining (3.1) and (3.2) gives

‖ f ‖B(BX ),s ≤ sup{Q f (z) : z ∈ BX }.

This completes the proof. ��

Proof of Proposition 1

Let z ∈ BX and x ∈ X \ {0} be fixed. We only need to show that

|D( f1 ◦ φ)(z)x + D( f2 ◦ φ)(z)x |
κX (z, x)

≤ KφQ f (φ(z)).

If Dφ(z)x = 0, then D( f1 ◦ φ)(z)x + D( f2 ◦ φ)(z)x = 0. So the above inequality
holds. If Dφ(z)x �= 0, then we have

|D( f1 ◦ φ)(z)x + D( f2 ◦ φ)(z)x |
κX (z, x)

= κY (φ(z), Dφ(z)x)

κX (z, x)

×|Df1(φ(z))Dφ(z)x + Df2(φ(z))Dφ(z)x |
κY (φ(z), Dφ(z)x)

≤ KφQ f (φ(z)).

This completes the proof. ��

Proof of Theorem 2

The proof of (2)⇒(3) can be obtained by adapting the proof method of [8, Theorem
3.8]. (4)⇒(1) and (5)⇒(6) follow from Theorem 1 and (1)⇒(2), respectively. By
using the similar reasoning as in the proof of (3)⇒(4), we can obtain (6)⇒(5). Hence
we only need to prove (1)⇒(2), (3)⇒(4) and (4)⇔(5).

We first prove (1)⇒(2). Let C = sup{Q f (z) : z ∈ BX }, and let z1, z2 ∈ BX be
fixed. Suppose that γ : [0, 1] → BX is an arbitrary piecewise C1 smooth curve with
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γ (0) = z1 and γ (1) = z2. Then

| f (z1) − f (z2)| ≤
∫ 1

0
|Df1(γ (t))γ ′(t) + Df2(γ (t))γ ′(t)|dt

≤
∫ 1

0
Q f (γ (t))κX (γ (t), γ ′(t))dt

≤ C
∫ 1

0
κX (γ (t), γ ′(t))dt .

This gives

| f (z1) − f (z2)| ≤ Cρ(z1, z2),

and proves uniform continuity of f as a function between the metric spaces (BX , ρ)

and (C,Euclidean distance).
Next, we prove (3)⇒(4). Let r ∈ (0, 1) be fixed. Then there is a constant M > 0

such that

| f (�(z)) − f (�(0))| ≤ M

for ‖z‖X < r and � ∈ Aut(BX ). By the Schwarz-Pick Lemma for pluriharmonic
functions on bounded symmetric domains ([14, Theorem 4.2]), we have

� f ◦�(0) ≤ 4

π

M

r
, � ∈ Aut(BX ),

which gives ‖ f ‖B(BX ),s ≤ (4M)/(πr).
Now we prove (4)⇒(5). By Proposition 1, we have

Q f ◦ψ(ζ ) ≤ Q f (ψ(ζ )), ζ ∈ D,

which, together with Theorem 1, yields that ‖ f ◦ ψ‖B(D),s ≤ ‖ f ‖B(BX ),s .
At last, we show (5)⇒(4). For any � ∈ Aut(BX ) and x ∈ X with ‖x‖X = 1, let

ψ0(ζ ) = �(ζ x), ζ ∈ D. Then ψ0 ∈ H(D,BX ) and

∣∣D( f1 ◦ �)(0)x + D( f2 ◦ �)(0)x
∣∣ = |( f1 ◦ ψ0)

′(0) + ( f2 ◦ ψ0)′(0)|
≤ ‖ f ◦ ψ0‖B(D),s

≤ sup{‖ f ◦ ψ‖B(D),s : ψ ∈ H(D,BX )}
< ∞,

which implies that

‖ f ‖B(BX ),s ≤ sup{‖ f ◦ ψ‖B(D),s : ψ ∈ H(D,BX )} < ∞.

The proof of this theorem is finished. ��
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Proof of Theorem 3

SinceL f ≤ ‖ f ‖B(BX ),s follows from the proof of Theorem 2, we only need to prove
L f ≥ ‖ f ‖B(BX ),s . For � ∈ Aut(BX ), w ∈ BX and any λ ∈ (0, 1), we have

| f (�(λw)) − f (�(0))|
λ

≤ L f
ρ(�(λw),�(0))

λ

= L f
ρ(λw, 0)

λ

= L f
tanh−1(λ‖w‖X )

λ
.

Letting λ → 0+ in the above inequality, we have

|D( f1 ◦ �)(0)w + D( f2 ◦ �)(0)w| ≤ L f ‖w‖X

and hence ‖ f ‖B(BX ),s ≤ L f . This completes the proof. ��

Proof of Theorem 4

We may assume that ‖ f ‖∞ = supz∈BX
| f (z)| ≤ 1. Then, for any � ∈ Aut(BX ), we

have ‖ f ◦ �‖∞ ≤ 1. It follows from [14, Theorem 4.2] that

� f ◦�(0) ≤ 4

π
‖ f ‖∞ ≤ 4

π
,

which, together with Theorem 3, implies that

L f = ‖ f ‖B(BX ),s ≤ 4

π
.

Finally, we show the sharpness part. Without loss of generality, we assume that
‖ f ‖∞ = 1. For a fixed point z0 ∈ BX\{0}, let w0 = z0/‖z0‖ and �w0 ∈ T (w0) be
fixed. For z ∈ BX , set

f (z) = 2

π
arg

(
1 + �w0(z)

1 − �w0(z)

)
.

Then f ∈ PH (BX ) with supz∈BX
| f (z)| ≤ 1. Let r ∈ (0, 1). Since

| f (irw0) − f (0)|
ρ(irw0, 0)

= 2

π

tan−1 2r
1−r2

1
2 log

1+r
1−r

,

123



Characterizations of pluriharmonic Bloch functions... Page 13 of 17 122

we have

lim
r→0+

| f (irw0) − f (0)|
ρ(irw0, 0)

= lim
r→0+

2

π

(
tan−1 2r

1−r2

)′

(
1
2 log

1+r
1−r

)′

= 4

π
.

This completes the proof. ��

Proof of Theorem 5

Assume that f is a pluriharmonic Bloch function in BX . Since

lim
ν→0+

(1 − ν2)1/2

2ν
log

1 + ν

1 − ν
= 1

and

lim
ν→1−

(1 − ν2)1/2

2ν
log

1 + ν

1 − ν
= 0,

we have

C = sup
ν∈(0,1)

(1 − ν2)1/2

2ν
log

1 + ν

1 − ν
< ∞.

Then, by using Theorem 3, we obtain that

(1 − ‖�z(w)‖2X )1/2
| f (z) − f (w)|

‖�z(w)‖X ≤ C
| f (z) − f (w)|
ρ(�z(w), 0)

= C
| f (z) − f (w)|

ρ(z, w)

≤ CL f

= C‖ f ‖B(BX ),s

for any z, w ∈ BX with z �= w. Therefore, we have S( f ) ≤ C‖ f ‖B(BX ),s < ∞.
Next, assume that S( f ) < ∞. Then, for any� ∈ Aut(BX ),w ∈ X with ‖w‖X = 1

and λ > 0, we have

‖��(0)(�(λw))‖ = tanh ρ(��(0)(�(λw)), 0)

= tanh ρ(��(0)(�(λw)),��(0)(�(0)))

= tanh ρ(λw, 0)

= λ.
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Therefore, we have

| f (�(λw)) − f (�(0))|
λ

≤ S( f )

(1 − λ2)1/2
.

Letting λ → 0+ and using the arbitrariness of w ∈ ∂BX , we have

� f ◦�(0) ≤ S( f ).

Since � ∈ Aut(BX ) is arbitrary, we have

‖ f ‖B(BX ),s ≤ S( f ).

This completes the proof. ��

4 Composition Operators

Proof of Theorem 6

Let f ∈ B(BY ), and let ρY be the Kobayashi metric on BY . Then, by Theorem 3, we
have

| f (φ(0))| ≤ | f (0)| + | f (φ(0)) − f (0)|
≤ | f (0)| + ‖ f ‖B(BY ),sρY (φ(0), 0).

By Proposition 1, we have

‖ f ◦ φ‖B(BX ),s ≤ Kφ‖ f ‖B(BY ),s,

which implies that Cφ is bounded and

‖Cφ( f )‖B(BX ) ≤ | f (0)| + (ρY (φ(0), 0) + Kφ)‖ f ‖B(BX ),s

≤ max{1, ρY (φ(0), 0) + Kφ}‖ f ‖B(BY ).

The lower estimate follows from an argument similar to that in the holomorphic
case in [9, Theorem 3.2]. This completes the proof. ��

We recall that a sequence { fn} of functions on a domain D ⊂ X locally uniformly
converges to a function f if and only if it uniformly converges on every closed ball
strictly contained in D (cf. [13]), where X is a complex Banach space. By using The-
orem 3, we obtain the following result. For the related investigations of holomorphic
functions, see [1, 8].

Lemma 2 For a JB*-triple X, let { fk} be a sequence of pluriharmonic Bloch func-
tions in a bounded symmetric domain BX converging locally uniformly to some
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f ∈ PH (BX ). If the sequence {‖ fk‖B(BX ),s} is bounded, then f is a pluriharmonic
Bloch function and

‖ f ‖B(BX ),s ≤ lim inf
k→∞ ‖ fk‖B(BX ),s .

Proof of Lemma 2

Since {‖ fk‖B(BX ),s} is bounded,

C = lim inf
k→∞ ‖ fk‖B(BX ),s

exists and is finite. There exists a subsequence { fkl } of { fk} such that

C = lim
l→∞ ‖ fkl‖B(BX ),s .

Let z, w ∈ BX and ε > 0 be fixed. There exists an integer kl such that

| f (z) − fkl (z)| <
ε

2
, | f (w) − fkl (w)| <

ε

2
, ‖ fkl‖B(BX ),s < C + ε.

Then, by Theorem 3, we have

| f (z) − f (w)| < ε + | fkl (z) − fkl (w)| ≤ ε + (C + ε)ρ(z, w).

Letting ε → 0, we have

| f (z) − f (w)| ≤ Cρ(z, w).

This implies that L f ≤ C . By Theorem 3, we obtain that f ∈ B(BX ) and
‖ f ‖B(BX ),s ≤ lim infk→∞ ‖ fk‖B(BX ),s . This completes the proof. ��

Proof of Theorem 7

If f ∈ B(BX ), then L f < ∞ by Theorem 3 and

| f (φ(S j (z))) − f (z)| ≤ L f ρ(φ(S j (z)), z),

which implies that f ◦φ◦S j → f locally uniformly onBX . Since‖ f ◦φ◦S j‖B(BX ),s =
‖ f ◦ φ‖B(BX ),s , applying Lemma 2 to f ◦ φ ◦ S j , we have

‖ f ‖B(BX ),s ≤ lim inf
j→∞ ‖ f ◦ φ ◦ S j‖B(BX ),s

= ‖ f ◦ φ‖B(BX ),s

≤ ‖ f ‖B(BX ),s .
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Therefore, we have

‖ f ◦ φ‖B(BX ),s = ‖ f ‖B(BX ),s .

Since φ(0) = 0, this implies that

‖ f ◦ φ‖B(BX ) = ‖ f ‖B(BX ).

This completes the proof. ��
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