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Abstract

This manuscript demonstrates robust optimality conditions, Wolfe and Mond—Weir
type robust dual models for a robust mathematical programming problem involving
vanishing constraints (RMPVC). Further, the theorems of duality are examined based
on the concept of generalized higher order invexity and strict invexity that establish
relations between the primal and the Wolfe type robust dual problems. In addition,
the duality results for a Mond—Weir type robust dual problem based on the concept of
generalized higher order pseudoinvex, strict pseudoinvex and quasiinvex functions are
also studied. Furthermore, numerical examples are provided to validate robust opti-
mality conditions and duality theorems of Wolfe and Mond—Weir type dual problems.
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1 Introduction

Mathematical optimization problems involving data uncertainty are being analyzed
using the popular deterministic paradigm namely robust optimization. This is an
upcoming field of research which enables scholars to resolve a host of optimiza-
tion issues, especially in the face of real world scenarios where the data input for a
mathematical model is often noisy or uncertain as a result of measurement inaccura-
cies and also in industrial settings. The constraint and objective functions are regarded
as members of "uncertainty sets" in function space as part of this new approach. The
readers may refer to [1-4] to gain more insights on robust optimization problems.
Robust optimization problems have broad spectrum of applications in every day life
situations namely forestry management [5], internet routing [6], agriculture [7] and
scheduling of electric vehicles aggregator [8].

The mathematical programming problems involving vanishing constraints (MPVC)
emerged as a challenging topic due to its applications in several frontiers of present day
research viz., topology design problems [9], economic dispatch problems [10], robot
motion planning problems [11], optimal control and structural optimization prob-
lems [12]. Recently, a number of good studies have spurred interest in this difficult
class of optimization problems. Achtziger and Kanzow [13] introduced an appropriate
enhancement of the standard Abadie constraint qualification and also a related opti-
mality criteria and showed thereby that the enhanced constraint qualification satisfies
the given moderate presumptions. Hoheisel et al. [14] developed a new MPVC-tailored
penalty function that was precise in the given reasonable presumptions and was used
to derive appropriate optimality conditions for MPVCs. Mishra et al. [15] constructed
the Wolfe and the Mond—Weir type dual models for (MPVC) and examined the usual
results of duality amongst the primal and the corresponding dual model based on the
presumptions of convexity, strict convexity, pseudoconvexity, strict pseudoconvexity
and quasiconvexity, respectively.

Kazemi and Kanzi [16] extended Achtziger and Kanzow’s [13] work by propos-
ing some constraint qualifications for a structure involving nonsmooth vanishing
constraints. Furthermore, the applications of the above constraint qualifications for
numerous types of stationary conditions to (MPVC) were also examined. For a single
objective mathematical programming problem with vanishing constraints, Khare and
Nath [17] studied the Fritz-John type stationary criteria to derive an enhanced Fritz-
John type stationary criteria catering to the concept of enhanced M-stationarity with
a modern constraint qualification. Later, Hu et al. [18] introduced the new Wolfe and
Mond-Weir type duals to (MPVC), without computing the index set. Using the same
presumptions of Mishra et al. [15], the duality results were proved with regard to the
primal and its associated new dual models. Recently, Ahmad et al. [19] formulated
a new mixed type dual model which unifies to the dual model of Hu et al. [18] for
(MPVC) without the index set. Also, they discussed the duality results amongst the
(MPVC) with its mixed type dual model based on generalized convexity. In recent
times, lot of attention drew many researchers for developing modern ways to examine
the solvability of the mathematical programming problems using some related vec-
tor optimization problems/modified objective function methods and the readers are
advised to refer to [20-23].

@ Springer



Robust Mathematical Programming Problems Involving... Page30f38 123

Duality is an essential factor for optimization problems since the weak duality
furnishes a lower bound to the objective function value of the primal problem. Wolfe
proposed the conventional duality [24], whereas Mond and Weir pioneered the Mond—
Weir duality [25] for scalar functions that are differentiable. By using the assumptions
of generalized convexity, Tung [26] discussed Karush—-Kuhn-Tucker optimality and
duality of Wolfe and Mond—Weir to semi-infinite programming issues having vanish-
ing constraints. Alternatively, Wang and Wang [27] studied Wolfe and Mond—Weir
type theorems of duality for a nondifferentiable semi-infinite interval-valued optimiza-
tion problem having vanishing constraints (IOPVC) based on generalized convexity
presumptions. Later, Su [28] constructed Wolfe and Mond—Weir type duals with
respect to contingent epiderivatives in real Banach spaces, for nonsmooth mathe-
matical programming problems having equilibrium constraints (NMPEC). Recently,
Antczak [29] discussed optimality and Mond—Weir duality results using invexity, for
category of differentiable semi-infinite multi-objective programming problems with
vanishing constraints.

The above works motivate in addressing a robust mathematical programming prob-
lem involving vanishing constraints via strongly invex functions. As per the authors
knowledge, there is no work focusing on robust mathematical programming problems
using vanishing constraints in the literature. Consequently, the current research study
investigates the conditions of optimality and duality results for (RMPVC). This docu-
ment specifies a few basic and fundamental concepts in Sect.2. Section 3, establishes
the results of duality amongst the primal (RMPVC) and its associated Wolfe type
robust dual model based on the presumptions of generalized higher order invexity
and strict invexity. The duality results amongst the primal (RMPVC) and its associ-
ated Mond—Weir type robust dual model based on the presumptions of generalized
higher order pseudoinvex, strict pseudoinvex and quasiinvex functions are discussed
in Sect.4. Section 5, deals with special cases. Section 6, concludes the above analysis.

2 Preliminaries

Consider the below mentioned robust mathematical programming problem involving
vanishing constraints (RMPVC):

(RMPVC) min fo(mo)
mpeR”

subject to

Ye (o, 00) <0,Ve € Q, Vo, € Q,

D, (m9) =0,e € Yo, Yo ={1,2,...,y},

we(m0) 2 0,6 € Ko, Ko ={1,2,...,k},

Ce(mo)me () < 0,6 € Ko, Ko ={1,2,...,k},
where fp : R” — R is a Lipschitz continuous function, ¥, : R* x R? — R, ¢ € Q,
where Q is an arbitrary index set (possibly infinite), & = (P, $,..., P,) : R" —
RY, ¢ = (¢1, &, ..., ) : R" - Rfband o = (w1, @2,..., %) : R" — RK
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are all continuously differentiable functions and o, € R? is an uncertain parameter
of the convex compact set Q. C R?, ¢ € Q. The uncertainty set-valued function
Q:Q = RP,is given Q(e) := Qg, Ve € Q, so,

graph(Q) = {(g, 0¢) : 0, € Q¢, 6 € Q}

and o € Q means that o is a choice of 2 thatis, o : Q = R? and o, € 2., Ve € Q.
All through this article, A represents the robust feasible region of the (RMPVC)
and defined as:

A ={mp e R": Ye(mo, 00) <0,Ve € Q, Vo, € Q,
@, (m9) =0, ¢ € Yy,
we(mp) > 0, ¢ € Ky,
Le (o) (o) < 0, ¢ € Ko}

Definition 1 An n-dimensional open ball with radius rg is the set of points whose
distance is less than ry from a fixed point in Euclidean n-space. It is clear that the open
ball with centre 7y and radius rq is described as follows:

Ay (o) = {Po : |90 — ol < 1o}

When n = 1 or n = 2, the open ball is an open interval or an open disk, respectively.

Definition 2 A point 77y € A is termed as a robust local minimum of the (RMPVC),
if and only if there is an open ball A (7, rg) with centre 77y and radius 9 > 0 such
that

fo(o) < fo(mo), Yo € A N A(g, ro).

A point 77p € A is termed as a robust global minimum of the (RMPVC), if and only
if

fo(to) < fo(mo), Vo € A.

Let 79 € A be any robust feasible point of (RMPVC). The sequel will make use of
the following index sets.

@y (170) ={e : I 0, € Q; such that ¥, (579, 0,) = 0} and
Q¢ (70) ={o¢e € Q¢ : Y (70, 05) = 0}.

po (o) ={1,2,...,y},

@+ (7o) ={e : we(710) > 0},

@o(70) ={e : @ (770) = 0},
@+0(0) ={e : @ (710) > 0, & (70) = 0},
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@+ (10) ={& : w:(70) > 0, ¢ (770) < O},
@0+ (10) ={& : w:(70) = 0, ¢ (770) > 0},
@00 (70) ={e : @ (7o) = 0, & (70) = 0},
@o—(770) ={e : @ (710) = 0, (7o) < 0}.

The subsequent Lagrangian function and its gradient are used throughout this article:

OWo, v, £,07,0°) = foB0) + Y veWe(Wo, 00) + Y &P (D) — Y oF we (Do)

e€Q €Yy e€Ko
+ ) 0fee (Do),
e€Ko
Where’ v = (US)EGQ € R(Q)» 08 € Qé‘7 E = (éls 527 ey sy)» Qw =

©7.,05,....07), 05 = (05,05, ..., 0;) and

VO (90, v.8.07.0°) = VfolPo) + Y veVie(Bo.00) + Y £ Ve (Do)
e€eQ e€eYy

— > 0P V(o) + . 05 VE(9).

€€KQ SE]K()

We define the subsequent index sets for mp € A:

gy o) = {e€Q:v >0},
Pd(m0) = e € po(m0) : & > O},
¢e (o) = {& € po(mo) : & < 0},
9, (m0) = {& € @oy (m0) : 07 > O},
®o4 (o) = {e € o+ (o) : 07 < 0},
Poo(m0) = {& € poo(mo) : @7 > 0}, 1))
q()(no) = {e € p10(m) : 07 > 0},
@y (o) = {&e € p1—(m0) : 07 > 0},
@i (m0) = {e € po—(m) : 07 > 0},
@l (o) = {& € pyo(mo) : 0t > 0},
91T (0) = (e € 91— (m0) : 0 > 0}.

The following Definitions 3 and 4, and Theorem 1 below are given on the lines of
Achtziger and Kanzow [13] and Lee and Lee [2].

Definition3 Let 77y € A be a robust feasible point of the (RMPVC). The Abadie
constraint qualification, represented by (ACQ) is said to be fulfilled at 7, iff B(7g) =
©®(79), where the standard tangent cone of (RMPVC) at 7 is

v

k
Ty — T

B(rtg) = {do e R": 3{nf) € A, 3} | 0, 1§ — 7 and — do},
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and the associated linearized cone of the (RMPVC) at 7 is

O (o) = {do e R" :Vy (%0, 0:) " do < 0, £ € gy (o). 0c € Qs

Vo, (770) dy =0, ¢ € Yo,

Ve (7t0) dy = 0, & € o4 (),

Ve (70) " dy > 0, & € oo (7o) U o (770),

Ve (t0) dy <0, ¢ € §0+o(ﬁo)}~

Definition4 Let 79 € A be a robust feasible point of the (RMPVC). The modified
Abadie constraint qualification (VC-ACQ) is said to be fulfilled at 77, iff ©V € (779) <

B(7o), where the associated VC-linearized cone of the (RMPVC) at g is

0" (1) = {do € R" :V (50, o) ' dy < 0, & € gy (70), 0e € Qe,

Vo, (770) dy =0, ¢ € Yo,

Ve (7t0) dy = 0, & € o4 (7o),

Ve (770) dy > 0, & € poo(70) U go—(70),

Ve (o) dy < 0, & € oo (ito) U §0+o(7?0)}-

Theorem 1 Let 7ty € A be a robust local minimum of the (RMPVC) such that the (VC-
ACQ) holds at 7. Then one can find (Vg)eeq € ]RS(_@),& € R(e € ¢y), 07, 9§ €

R(e € Ky) such that
VO (%, v, &, 07,0°) =0

and

Ve > 0, Y (700, 0¢) <0, U ¥, (70, 0:) =0, (¢ € Q, 0, € Qp),
. (770) = 0, (¢ € 9o (70)),

of =0, (¢ € 9 (70)),

of >0, (g € goo(70) U go—(70)),

o7 s free, (¢ € oyt (70)),

0¢ = 0. (2 € ¢o4.(70) U go—(770) U g (770)).

0¢ = 0. (¢ € goo(7t0) U ¢10(0)).

@

3

The conditions of optimality and the theorems of duality, among other areas of math-
ematical programming, heavily rely on the following generalized invexity notions. In

Joshi’s [30] lines, we state the following Definitions 5 to 7.
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Definition 5 Let fy : Ml — R be continuously differentiable function, where Ml C R”
is any nonempty set. Then fj is termed as higher order strongly (strict) invex function
at 79 € M with regard to the kernel function g : MXM — R” on M, if for any
7o € M, there exist some h > 0 such that Vi > 0, we have

fo(mo) — fo(to) = (>)(V fo(0). no (o, 70)) + hllno(ro. 7o) |-

Definition 6 Let fp : Ml — R be continuously differentiable function, where Ml € R”
is any nonempty set. Then f is termed as higher order strongly (strict) pseudoinvex
function at 779 € M with regard to the kernel function ng : MIXM — R” on M, if for
any o € M, there exist some h > 0 such that Vi > 0, we have

(V fo(0), no (o, 70)) + hllno(mo, 7o) = 0 == fo(mo) = (=) fo(Fo).

Definition 7 Let fy : Ml — R be continuously differentiable function, where Ml C R”
is any nonempty set. Then fj is termed as higher order strongly quasiinvex function
at 79 € M with regard to the kernel function iy : MXM — R” on M, if for any
7o € M, there exist some h > 0 such that V¢ > 0, we have

fo(mo) < foro) == (V fo(F0). no(o. 70)) + hllno (o, 7o) || < 0.

Theorem 2 (Robust sufficient optimality conditions) Suppose that 7t is a robust fea-
sible point of the (RMPVC), there exist (Ug)gc@ € RSFQ), & € R(e € ¢y), 07, g§ €
R(e € Ko) such that conditions (2) and (3) hold at 7ty. Assume that fo, Ve (e € (p;,'(.)),
Dy (e € 9 (), —Pe (e € g (1)), = (e € 940()Up1— () Ugoo()Ugo—()Ugy, (1)),

we(e € ¢y (), —Le(e € @ot+()), Le(e € @oo(-) U @ro() U go—() Uey_()) are
higher order strongly invex functions at 7y € A with regard to the common kernel
function ng. Then 7 is a robust local minimum of the (RMPVC).

Proof Suppose that conditions (2) and (3) hold at 77 with (vg)eeq € Ri@, & eR(s e
), 07, g§ € R(e € Ky). It follows from (2) that

VO (o, v, &, 07, 0%) = V folfo) + ) ve Ve (o, o) + Y & Ve (o)

e€Q geYy
— Y 0P V. (ito) + Y 0f Ve (o) = 0. )
EEING) e€Ko

§uppose that 77 is not a robust local minimum of the (RMPVC), that is, there exists
Yo such that

foBo) < folto). 5)
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By using the higher order strong invexity of ¥, (¢ € <p$(.)), b (e € (pg(.)), —d. (e €
95 (), —me(e € 910() U pp_ () Ugoo() Ugo—() Ugd, (), me(e € g5, (),
—8e(e € 90+(.), Ce(e € @oo() U @i0(.) Ugo—(.) Ugy_(.), with regard to the
common kernel function ng, at 7y € A, which leads to
Ve Gio, 02) + (Ve (o, 00), no(Bo, 70)) + hell o (Fo, 7o)
< e (Do, 0e) <0,
ﬁg >0,v, >0,¢e € gol'/t(;)o),
Do o) + (Ve Gi0), no(Bo. 70)) + e [mo(Bo, 7o)l = @e(Fo) = 0, e > 0,
£ > 0,¢ € g (Do),
P4 (o) + (V@ Gio), no(Bo. 70)) + iellno(Bo, o)l = Be(Fo) = 0, e >0,
£ <0.¢ € g5 (Do),
— o (o) — (Ve (o), mo(o, 70)) = (o)™ llno (Do, 70) | < ~ e (Bo) = 0,
(he)” >0,
07 = 0.6 € p10(B0) Upr— (Do) Ugoo(Do) U go— (Do) U g, (D).
— @ (710) — (Vame (70). n0 (Do, 70)) — (he)™ [0 (Do. 70) || < —we (Do) =0,
(he)” >0,
07 <0,e € g, (D).
6 (o) + (V& (o), mo(Bo, 70)) + (o) Imo(Bo, 7o)l = & (Bo) > 0. (o) > 0,
0f =0, € por (Do),
6 (o) + (V& (o), mo(Bo, 7)) + (o) o (Bo, 7o)l = & (Bo) = 0, (o) >0,
0! >0, ¢ € p0(Do) Upoo(Do),
6 o) + (V& Gio), mo (o, 7)) + (o) oo, 70 < & (Bo) < 0, (o) >0,
0! >0, ¢ € go— (Do) Uy (Do),

which yields

D v (o, 00) + Y EPe(to) — Y oF we(Ho) + Y 05 L (o)

86@ SEYO SGKO SGKQ
+(O) vV (o, 00) + Y EVPe(Ho) — Y oF Ve (o)
eeQ e€eYy e€Ko
+ Y 05 VEe (). no(Do. 70))
&‘GKO

which yields vehy||no(Do, 70) ||
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+Ehellno (o, 7o)l — 0F (he)™ o (Do, 7o) "
+0¢ (he)* 1m0 (Do, 70) || < 0. (©6)

By using the higher order strong invexity of fy at 77g, with regard to the kernel function
N0, we get

fo(0) + (V fo(#0), no(Do, 7%0)) + hlino (Do, 7o) I* < fo(Do). (7
On adding (6) and (7), we have

O (0, v, &, 07, 0°) + (VO (#0, v, £, 07, 0°), 10 (Do, 770)) + h° o (Do, 7o) I
< fo(Do),

where

h® o (Do, 7o) I = vehe n0(Do, Fo) I + Echellno (Do, 7o) — 0F (he) lIno (Do, 7o) |1
+08 (he)* o (Do, 7o) I + Rllno (Do, 7o) I

From (4), it follows that
O (0, v, £, 07, 0°) < fo(Do),
which leads to

fo@o) = fo(to).
which contradicts (5). Hence, 7 is a robust local minimum of the (RMPVC). O

The Theorem 2 (robust sufficient optimality conditions) is justified with an illustration
mentioned below (Fig. 1).

Example 1

1
(RMPVC-1) min fy(mp) = =9 — 2
JTUER 2

subject to
Ve (0, 0¢) = —emG + 0.0 < 0,Ve € Q = [0, 1],
Vo, € [—¢+2,¢ + 2],
@1 (o) = 7o = 0,
¢1 (o) (o) = (7o + 7)o < 0,
withn =1,6 e Q =[0, 1], y =0, k = 1. Clearly, fo(7p) = %m) — 2 is Lipschitz
continuous in R. The robust feasible solution set of the (RMPVC-1) is represented by

A, where
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— folro)=m/2-2

fo(770)
2»
0 T
K -2
S
-4
-6
-10 -5 0 5 10

T

Fig. 1 Graphical view of the objective function of the problem (RMPVC-1)

A={mpeR: —eng +o.my <0, m9 > 0, mo (o + n&) < 0}.

Therefore, the robust feasible solution of the (RMPVC-1) is 79 = 0. By straight-
forward calculations, we obtain ¢y = Q, ¢4 = Qo+ = @o— = &, @ = 1,
Ve (7, 0:) = o0, where o, = 1,fore = land o, = 0, for 0 < ¢ < 1,
V(o) = {1}, V() = {1}, no(mo, 7o) = (o — 7'[3). It is seen that 79 = 0
satisfies (VC-ACQ) of the (RMPVC-1). There exist v = 0, of = %, Qf = 0 such
that conditions (2) and (3) of Theorem 1 are satisfied at 779 = 0. Also, the assumptions
of Theorem 2 hold at 7ty = 0. Therefore, 779 = 0 is a robust local minimum of the
(RMPVC-1).

Theorem 3 (Robust sufficient optimality conditions) Suppose that 7t is a robust fea-

sible point of the (RMPVC), there exist (Ug)geQ € RSFQ), & € R(e € ¢y), 07, 95 €
R(e € Ky) such that

VO, v, & 07, 0°) =V folfto) + Y v: Ve (o, 00) + Y & VP (o)

e€Q e€eYy
@ h4 ¢ ~ N
— > e V(o) + Y 0f Vi (o) =0, ®)
c€Ko eeKop
ve = 0, ¥, (770, 0¢) < 0, Ue e (70, 0¢) =0, (¢ € Q, 0 € ), 9
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D (70) = 0, (¢ € pa(70)), (10)

of =0, (e € 91 (700)), 0f = 0, (¢ € @oo(T0) U go—(70)), of is free,

(¢ € o4 (710)), (11)

0f =0, (¢ € po4(70) U o (70) U 94— (70)), 05 = 0, (¢ € 900 (7o) U 910

(70)), (12)
o7 . (70) = 0, 05¢:(70) = 0, & € K. (13)

Further, assume that fy(.) is higher order strongly pseudoinvex function and (¢ €

0y (D), Pele € 9g()), —=Pele € 9g(), —me(e € 9LH() Ul () Ugg() U

(p(;r_(.) u (p&_(.)), we(e € 9y, (), Le(e € @I(;r(.) U (pif(.)) are higher order strongly

quasiinvex functions at 7y € A with regard to the common kernel function ng. Then
770 is a robust local minimum of the (RMPVC).

Proof Suppose that 77 is not a robust local minimum of the (RMPVC), then there
exists Y¢ such that

foBo) < folto). (14)

For 79 € A, (Us)eeq € R(Q), ¢ € Q, we have, Ugwg(éo, 0:) <0,ee€Q, o0, € Q
which in view of (9) implies that

UsWa(éOv 0g) < Uslps(ﬁOa 0¢),

by using the higher order strong quasiinvexity of ¥, (e € (p:[ (.) at g € A, we get

(Vv Gro, 00), moBo. 70)) + hellmo (o, 7)1 < 0, e > 0, v > 0,2 € gif (Fo).
(15)

By similar arguments, we have
(Ve o), m0(Bo, 70)) + hellno (o, Z)I < 0, he > 0,8 > 0, € g (Do),
(Ve o). mo(Bo, 70)) + Bellno (o, A0 2 0, e > 0,8 <0, € g (Do),

— (Ve Gro). moBo, 70)) = (1) 0B, F)I' < 0. (he)™ > 0,07 = 0,2 € ¢ify (Bo)

U g (90) U gy (o)

@ Springer



123  Page 12 0f 38 K. Kummari et al.

U gy (o) U g, (o),
— (Ve G, moBo, 7)) = (o)™ oo, 7o)l = 0, (h)™ > 0,07 = 0,e € @3o(D0),
(V& Go). oo, 7)) + (he)¥ oo, 70} < 0, (h) > 0, f = 0, € 9 (o)
Uit o),

which by definition of index set along with the inequality (15), yields

() eV (o, 00) + Y EVD:(H0) — Y, 0F Ve (o)

c€eQ e€Yy g€k
+ ) 05V (o). no(Do. 70))

SGKO
+ehe 10(Do, #) I + &che 110 (Do, 7' — 0 (he)™ 1m0 (Do, 7o) ||
+0! (he)* o (Do, 7)1 < 0.

Using the above inequality and (8), it follows that

(¥ foto). no(Bo. 70)) + hlno (o, Fo)I = 0,
where

Rllno (Do, 7" = —vehe 100, 70) I — Eche 110 (Do, 70)II*
+07 (he) lIno (Do, 7o) I — 0f (he)* Ino (Do, 7o)l

By using higher order strong pseudoinvexity of fy, with regard to the kernel function
10, We obtain

fo(o) = fo(ito),
which contradicts (14). Hence, 7 is a robust local minimum of the (RMPVC). O

In the next section, we discuss a Wolfe type robust dual model and prove the duality
theorems. The dual model used here is based on the lines of Hu et al. [18].

3 Wolfe type robust dual model
The Wolfe type robust dual model of the (RMPVC) depending on a robust feasible
point 77y € A, represented by (VC-RWD)(779), is provided in this section. The details

are as follows:

max O, v, £, 07, 0%)

subject to
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VO (¥, v,§,07,0°) =0,

ve >0, Ve €Q,

Qag = 8:w: (), 8¢ > 0, Ve € Ko,

0:7 = Xe — 8e8e(10), xe = 0, Ve € K.

(16)

Let S%?V (o) represents the set of all robust feasible solutions of the problem
(VC-RWD) (7o) where S§,(0) = {(D0, v. £, 07,0, x.8) : VO, v, £, 07,
7y —
e°) =0,

ve >0, Ve €Q,
0:° = 8. (m0). 8, = 0, Ve € Ko, (17)
0:” = Xe — 8:8:(m0), xe = 0, Ve € Ko}.

We represent the projection of the set S%;RV (o) on R” by

prSt (o) = {9 € R" : (90, v, £, 07, 0%, X, 8) € Sk (70)}.

For g € A, the new Wolfe type robust dual is independent of the (RMPVC),
we consider the subsequent Wolfe type robust dual problem:

max O, v.£.07. ")
such that (9o, v. £, 07, 0%, x.8) € [ Sy (o). (18)

ToEA

The set of all robust feasible points of the (VC-RWD) is represented by S&, =

N S%?V (7o) and the projection of the set S% on R” is represented by prS&,.
ToEA

Remark 1 Wolfe type dual model exists in literature for a mathematical programming
problem with vanishing constraints (See Mishra et al. [15]) using index sets. These
models are not suitable for numerical solutions to dual problems since they need to
calculate index sets. As a result, Hu et al. [18] recently proposed new Wolfe type
dual model for a mathematical programming problem with vanishing constraints and
established duality outcomes under generalized convexity assumptions that do not
require index set calculations.

Theorem 4 (Weak robust duality theorem) Let mg € A, (J9, v, &, 07, 0%, x, 8) € S%{;g,
be robust feasible points of the (RMPVC) and the (VC-RWD) respectively. Suppose
one of the subsequent cases occurs:

(i) O, v, &,07,0°%) is higher order strongly invex function at 9 € A U prS%/Rg,
with regard to the kernel function no,

(ii) fo, Ve (s € @ (M0)), Pe(e € 9, (m0)), —Pe (e € 9 (M0)), =@ (e € P40(70)U
91— (0) U 900(0) U 90— (0) U ¢, (0)), @e(e € @y, (0)), —Le(e € @01 (0)),
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Le(e € poo(mo) U ¢ro(mo) U @o—(m0) U @1 (o)) are higher order strongly invex
functions at 9y € A U prS%Rﬁv with regard to the common kernel function no. Then

fo(mo) = O, v, &, 07, 0%).

Proof (i) Suppose that

fo(mo) < O, v, &, 07, 0%),

that is,

fo(mo) < fo(B0) + Y veWe (W0, 00) + Y EDe(B0) — Y oF we (o)

e€Q eeYy g€k

+ ) 0kt (19)

EEKQ

Since g € A, it follows that

Ye(mo, 0e) < 0, v > 0,0, € Q, & & @y (m0),
Ye(mo, 0¢) = 0,0 > 0,0, € Q, & € @y (),
@ (m0) = 0,8 € R, ¢ € 9o,
—we(mo) < 0,07 >0, ¢ € ¢y (n0),
—we(m) = 0,07 €R, e € po(mo),
Le(m0) > 0, 0f = 0, & € o+ (70),
¢e(0) = 0, 0% > 0, & € goo(w0) U ¢40(70),
te(m0) < 0,0¢ = 0, & € po(70) U 91— (70),

which leads to,

D vee(mo, 00) + Y EDe(mo) — Y o we(mo) + Y, 05 (o) < 0. (20)

86@ EGYQ SEKQ SEKQ

On adding (19) and (20), we have

fomo) + Y vee(mo. 00) + Y EDe(mo) — . oF we(mo) + Y 05 e (o)

£€Q geYy eeKo eeKo

< fo@0) + Y veWe (@0, 00) + Y &P (Do) — Y of we (Do) + Y _ 0L Le(Mo).

e€Q eeYy eeKo eeKo

21
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That is,
O(mo, v, &, 07, 0%) < O, v,&,07,0°). (22)

By using the higher order strong invexity of ®(., v, £, 07, 0%) with regard to the
kernel function 7, we get

O, v.£,07,¢%) + (VO W, v, &, 07, 0%). no(mo, Ho))
+hllno(mo, Do)l < O, v, £, 07, ¢°).

In view of the first equation in (16), we obtain
O(m0. v, .07, 0%) = O, v, .07, 0°).

which contradicts (22). The theorem is therefore validated.
(ii) By using higher order strong invexity of V. (e € (pl‘/j|r (), Pe(e € (p:g (m0)),
— B¢ (e € 9g (10)), —we (& € P0(10) U (10) Ugoo (710) U (10) Uy, (0)),
we(e € ¢, (70)), —Le(e € @ot(70)), Le(e € @oo(mm0) U @10(mm0) U @o—(7m0) U
¢+—(m0)), with regard to the common kernel function 7, at g € A U prS%;RV,
7o € A and (99, v, &, 07, 0%, x, 8) € SK,, we have

Ve (90, 06) + (Ve (90, 0%, 10 (70, 90)) + he lI10 (770, Do) I
= Ve (0, 0e) <0,
he >0,v, >0,
€€ <P[;(7To),
D (90) + (VP (I0), 10 (70, D)) + he [ m0 (0, Do) ' < Pe () = 0,
he > 0,8 >0,
£ € g (mo),
D, (V) + (VP (D), no (70, Y0)) + hslImo (o, Do)|I' = Pe (o) = 0,
he >0,& <0,
€ € g (1),
—w, (99) — (Vo (99), 1o (0. D0)) — (1) IIno(ro, Do) || < —w (o) < 0,
(he)” > 0,07 >0,
€ € @40(mo)
U — (10) U @00 (170)
Ugo— (70) U ¢ (70).
— @ (90) — (Vae (90), no (w0, 90)) — ()™ o (o, D0)|I' < —we(w0) =0,
(he)” > 0,07 <0,

£ € ¢y, (m0),
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e (90) + (V& (90), 10 (70, 90)) + (he) 1m0 (w0, Do) I > ¢e () > 0, (he)* > 0,
0; =0, ¢ € ot (m0),

e (90) + (Ve (90), 1070, 90)) 4 (he)¢ 100 (0, Y0) || < Lo (m0) = 0,

(he)* > 0,05 >0,

& € @4o(mo) U @oo (o),

2 (90) + (Ve (90), no (0, 90)) + (he)® o (0, D) |I* < &e (o) < O,

(he)* > 0,05 >0,

& € go—(mo) U ¢ _(m0),

which leads to

Y U0, 00) + Y ED (o) — Y of me(Bo) + Y 0L (Do) +

e€Q €Yy ek e€K
) vV (B0, 00) + Y EVD(D0) — Y 0F Ve (Do)
e€eQ e€Yy eeKo
+ ) 08V (B), no (o, 1))
e€Ky
+ughellno (o, Do)l + Ehe o (o, Do) — oF (he)™ Ilno (o, Do)l
+05 (he)¢ lIno (o, Do) |I* < 0. (23)

By using the higher order strong invexity of fy at 99 € AU prS%)jo, with regard to the
kernel function 79, we get

Fo(0) + (V fo(D0), no(mwo, 90)) + lno (o, )" < fo(mo). (24)
On adding (23) and (24), we have

O, v,&,07.0%) + (VOW, v, &, 07, %), no(mo. o)) + h°[Ino(mo, Do)|I*
< fo(mo),

where

h® Ino (o, Do) lI' = vehe o (0, D) + Eshellno (o, 90) I — 0F (he)™ lIno (o, Do)’
+05 (he)* 1o (o, Do) II' + hllno (o, Do)|I".

In view of the first equation in (16), we obtain
O, v,£,07,0°) < folmo).
The theorem is therefore validated. O
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Theorem 5 (Strong robust duality theorem) Let 79 € A be a robust local minimum of
the (RMPVC) such that the (VC-ACQ) is fulfilled at 1to. Then there exist U = (Ug)gseq €

R E cRY, (5)7, (), X, 8 € R¥ such that (o, U, &, (8), (), %, 8) is a robust
feasible point of the (VC-RWD)(5ty) and

D Ve Gro, o) + Y EDe(Ro) — D (8)7 (o) + Y (8)° ¢ (o) = 0.
e€Q €Yy g€k €Ky

(25)

Suppose one of the subsequent cases occurs:

(i) O, v, &, 07, 0%) is higher order strongly invex function at ¥ € AUprSH&J (70)
with regard to the kernel function no,

(i) fo, Y (& € @y (70)), Pe (& € 9 (70)), —Pe (& € g (70)), —we (e € pro(o)U
¢+ (770) U 900 (770) U 90— (70) U ¢y (70)), @ (e € @, (70)), —Le(e € o+ (T0)),
Le(e € @oo(Ito) U 9ro(7t0) U @o—(770) U @1 (5t0)) are higher order strongly invex
functions at g € A U prS]%?V (7t0) with regard to the common kernel function ng. Then

(%0, U, &, (D)7, ©)°¢, %, 8) is a robust global maximum of (VC-RWD)(%y), that is,
O(70. V. &, (0)7. (0)°) = O, v, £, 07, 0°). V(0. v, &, 07, 0%, x.0) € S]&r(ﬁo)

and

fo(to) = (0, U, &, (D)7, (0)°).

Proof Since 71 is arobust local minimum of the (RMPVC) and the (VC-ACQ) holds at
779, from Theorem 1, there exist U = (Ug)eeq € Rg(_@),é eRY, O, (0), x,6 € Rk
such that the conditions (2) and (3) hold and hence (5o, U, &, (3)7, (0)%, X.9) is a
robust feasible point of the (VC-RWD)(77g). By Theorem 4, we get

fo(to) = O, v, &, 07, 0°), V(¥0, v, &, 07, 0%, 1, 8) € Siy(Ft0).  (26)
On adding (25) and (26), we have

(10, U, &, (5)7, (0)*) = O, v, £, 07, 0%),V(¥0, v, &, 07, 0%, X, 8)
€ St (7o), 27)

thatis, (0, U, £, (0)@, (0)°, X, 8) is arobust global maximum of the (VC-RWD)(s0).
Also, the robust local minimum of the (RMPVC) and the robust global minimum of
the (VC-RWD)(77p) are equal. O

Theorem 6 (Converse robust duality theorem) Let 7p € A and (%, U, €, (0)7, )¢,
X, 8) be robust feasible points of the (RMPVC) and the (VC-RWD), respectively such
that

ﬁe‘ﬁs(l%a o¢) > 0,Ve € Q, Vo, € Q,,
£ (F0) =0, & € Yo,
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—(8e)” @ (%) = 0, ¢ € Ko,
(0:)°¢: (o) = 0, ¢ € Ko,
Suppose one of the subsequent cases occurs: 5

(i) O, v, &,07,0°%) is higher order strongly invex function at 99 € A U prS]%v{V
with regard to the kernel function no,

(ii) fo, Ve (e € @ (10)), De(e € 9 (m0)), —Pe (e € 9 (M0)), —we (e € 9T (MU
9T (m0) U @y (0) U o (10) U ¢, (0)), (e € @y (0)), Lele € ¢l (o)) U
(,oj:'_Ir (o)) are higher order strongly invex functions at P € AU prS%% with regard to
the common kernel function ng. Then Do is a robust global minimum of the (RMPVC).

Proof Suppose that 19Vo is not a robust global minimum of (RMPVC), then there exists
7o € A such that

foGo) < foWo). (28)
(i) Since 7y and (o, U, &, (D)7, (0)%, %.5) are the robust feasible points of the

(RMPVC) and the (VC-RWD), respectively. Based on the assumption in the theo-
rem, we arrive at the following inequality

D Ue¥e(Fo,00) + Y EDe(Fo) — Y (37 me(Fo) + Y (8e)° L (o)

0] e€Yy ceKo e€Ko

<0< Vevhe(Po, 00)
e€eQ

+ Y ED (W) — Y (37 @ (o) + Y (8e)° L (o). (29)

eeYy ceKq ceKq

On adding (28) and (29), we have
O (70, U, &, (D)7, (0)°) < O, 0, &, (D)7, (0)°).

By using the higher order strong invexity of @(., v, &, 0@, 0*) with regard to the
kernel function ng at 99 € A U prS]&,, we get

(VO (D, U, &, (0)7, (8)°), no(Fo, 90)) + hllno(Fo, 9o) || < 0,

which contradicts the dual constraint of the (VC-RWD)(7g). The theorem is therefore
validated.
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(i) Since 7o and (%o, U, &, ()™, (0)°, X, 8) are robust feasible points of the
(RMPVC) and the (VC-RWD), respectively. Based on the assumptions in the the-
orem, we arrive at the following inequalities

Ve (70, o) < e (o, %), & € @y (o),
D, (770) = P, (90). & € 93 (7o) U g (7o),
—w, (79) < —we (Do), € € 9 (T0) U g (o) U gy (7o) U @y (7o) U ¢ (7o),
— @ (70) = —we(F0). & € 9y, (7o),
Le(o) < & (90). & € @ (7o) U e T (F0).

By using the higher order strong invexity of the function with regard to the common
kernel 19, we have

(Ve (0, 06), n0(Fo, 90)) + he o (o, Fo)lI* < 0, ke > 0,0 > 0,8 € ¢ (o),
(V. (90), n0(Fo, 90)) + hellno(Fo, Jo)lI* < 0, he > 0,& > 0, & € pf (7).
(VO (). n0(Fo, 90)) + hellm0(Fo, Fo)|I' > 0, e > 0,& < 0, ¢ € ¢z (7o),
— (Ve (0), no(Fo. 90)) — (he)™ 0o, Fo) || <0, (he)” > 0, (8e)” >0,
£ € 9 (70)
U @ _(70) U gy (7o) U ¢y (7o)
U ¢g (7o),
— (Ve ($0), no(Fo. 90)) — (he) 1m0 (o, Fo)[I' = 0, (7)™ > 0, (8:)” <0,
& € 9T (0),
(VEe (o). 0o, 90)) + (he)* Ino(Fo, Fo)I* < 0, (he)* > 0, (8)* = 0,8 € ol (7o)
U™ (70).

which leads to

O VYo, 00) + Y EVP(0) — Y (8e)” Ve (d)

eeQ e€Yy c€Ko

+ ) (8e)F Ve (), n0(o, Fo))

SEKO

+0ehe 1070, DI + Eche 110 (o, B0 I — (8)% (7e)™ 1m0 (Fo, F0) I
+(8e)¢ (he)* 1m0 (o, 90) | < 0.

Using the above inequality and the first equation of (16), it follows that
(V¥ fo(B0). no(o. F0)) + h° oo, Fo) ' = O,
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where,

R lIno (o, Do) | = —Vehe In0(Fo, Y0 |1 — Echelln0(Fo, Bo) I
+()” (he) 10 (7o, F0)I* — (8e)° (e)* lm0 (7o, F0) I

By using the higher order strong invexity of fy, with regard to the kernel function 7o,
we get

fo(@o) = fo(Bo).
which contradicts (28). The theorem is therefore validated. O

Theorem 7 (Restricted converse robust duality theorem) Let 779 € A and (%0, U, €,
©)Z, (0)%, X, 8) be robust feasible points of the (RMPVC) and the (VC-RWD), respec-
tively, such that

fo(to) = O (o, U, &, (), (8)°).

Suppose one of the subsequent cases occurs:

(i)O(, 0, €, )7, (0)°) is higher order strongly invex function at Do € A UprS]}})
with regard to the kernel function no,
(ii) fo, Ve(e € gy (0)), Pe(e € % $(0)), —De(e € 9g (0)), —me(e € ¢ (o) U
0 (F0) U g5y (t0) U ¢ (o) U ¢, (0)), @ (e € 9, (0)), e (e € ¢l (F0)) U
(pjr'f (7%0)) are higher order strongly invex functions at Do € AU prS%% with regard to
the common kernel function ng. Then 7 is a robust global minimum of the (RMPVC).

Proof Suppose that 77 is not a robust global minimum of the (RMPVC), then there
exists 779 € A such that

fo(7o) < fo(rto).
Based on the assumptions in the theorem, we arrive at the following inequality
folito) < ©(Wo, 0., (07, (@)°),
which contradicts Theorem 4. The theorem is therefore validated. O

Theorem 8 (Strict converse robust duality theorem) Let 779 € A be a robust local min-
imum of the (RMPVC) such that the (VC-ACQ) is fulfilled at 7t(. Assume the conditions
of Theorem 5 hold and (99, U, &, (0)7, (0)¢, X, 8) is a robust global maximum point
of the (VC- RWD)(]T()) Suppose one of the subsequent cases occurs:

(i) @( v, S ©)7, (0)%) is strictly higher order strongly invex function at 190 €
AU prSW with regard to the kernel function no,
(ii) fo is strictly higher order strongly invex function and (¢ € (p;; (770)), Pe(e €

93 (70)), —Pe(e € 9g (70)), —we (e € 40(T0) U 94— (5F0) U oo(70) U go— () U
Po. (70)), @e(e € ¢y, (70)), —Le(e € @04+ (700)), Le(e € @oo(70) U @0(70) U
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@o— (7o) U (770)) are invex fuvnctions atvy € AU prS%R;%, with regard to the common
kernel function ng. Then 7ty = 0.

Proof (i) Suppose that 779 # . From Theorem 5, we can find U = (Vg)ecq € R(Q),
EeR,(3)7. (0. %.8 € RFsuchthat (%, 0, €. (8) . (5)¢. X §) is arobust global
maximum point of the (VC-RWD)(57(). Thus,

fo(to) = OG0, U, €, (0)7, (0)°) = OWo, U, &, (D)7, (0)°). (30)

By using the robust feasibility of 77 and (D0, U, &, (D)7, (0)¢, X, 8) for the RMPVC)
and (VC-RWD)(7), respectively, we obtain

Ws(ﬁOs 68) < 09 i)&‘ Z 07 08 S Q&‘v & ¢ §0w(7v'[0)7
Ve (70, 00) = 0,0, > 0,0, € 2, € € €01ﬂ(ﬁ0)7
D (o) = 0, & € R, & € o (7o),

— @ (19) <0, (0)F =0, e € ¢i(m0),
— @ (170) =0, (0)7 € R, e € go(i0),

e (770) > 0, (3); =0, & € go (7o),
e (770) = 0, (8)% = 0, & € oo (0) U @10 (0),
e (710) < 0, (8)5 > 0, & € o (70) U p1—(70),

which leads to,

D Ve Glo, 00) + Y EDeGro) — D (8) 7w (o) + Y (8:)°¢:(ro) <0. (31)

e€eQ eeYp g€k g€k

On adding (30) and (31), we have
O (70, U, &, ()7, (8)°) < O, U, &, ()7, (0)°). (32)

By using the strict higher order strong invexity of ©(., U, &, (3)”, (0)°) with regard
to the common kernel function 17, leads to

(VO W0, U, &, ()7, (8)%), noGro, 90)) + hlino (o, do)lI* < 0,
which contradicts the first equation in (16). The theorem is therefore validated.

(ii) By using the strict higher order strong invexity of fy at 9o with regard to the
kernal function 79, we get

foGto) = fo@o) > (V foBo). no(o, 9o} + hllmoGio, o). (33)

By using the higher order strong invexity of ¥.(¢ € (p:;(ﬁo)), [ONENS (p:g (70)),
— D, (¢ € 9g(70)), —we (& € P10(F0) U 94— (70) U p00(7T0) U @o— (70) U ¢ (770)),
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we(e € 9y, (70)), —Le(e € @0+ (70)), Se(e € @oo(iT0) U ¢10(70) U @o- (7o) U
01— (70)) at Yo € AU prSl&,(ﬁo), 779 € A, with regard to common kernel function
no and (99, 0, €, (8)7, ()¢, %, 8) € S (), which leads to

Ve (90, 02) + (Vi (Fo, 02), 10 Gho, 90)) + e o Gro, 90) I
< V(0. 0¢) <0, he > 0,
U, >0,¢€ <p$(7’ro),
e () + (Ve (o), no(o, 90) + e oo, Fo)lI' = @ (i) = 0, > 0,
£ > 0. € o (F0),
e () + (V. (o), no(o, 9) + e oo, Fo)|I' = e (Gio) = 0, > 0,
£ <0, € gy (F0),
— @ (90) = (Ve (90), moGro, F0)) = (h)” Imo(Gro, B0 < — e Go) = 0, (o)™ > 0,
(0:)7 =0, & € pi0(m0)
U @4 (70) U @00 (770)
U go- () U ¢, (o),
= @1.(J0) — (Ve ($0), moGro., F0)) = (he)™ oo, Fo) I = —em Gio) = 0, ()™ > 0,
@07 < 0.¢ € gy, (o),
(o) + (Ve (Fo). no(o, 90)) + (o) oo, Fo)II = (o) > 0, (h) > 0,
@)° = 0. € pos (o).
& (o) + (Ve (Fo), noGo, 90)) + (o) oo, Fo)I < &e(o) = 0, (h) > 0,
(0e)° =0,

& € ¢10(70) U oo (70),
£ (o) + (V& (90). mo(Gio. 9)) + () o Gro, B0 < & Gio) < 0, (ko) > 0,

(0:)" =0,
& € go— (7o) U g4 (100),

which leads to

D U0, 00) + Y EDe (o) — Y (@) me(Wo) + Y (86)° L (o) +

e€Q e€Yy g€k e€K
() 0V, 00) + Y EVD(F0) — Y (8:)7 Ve ()
c€eQ e€eYy e€Ky
+ Y (@6)° Ve (50). no (o, 90))

SGKO

+0ehe 10(GE0, J)I + Eche [110GF0, D)1 — (8) (he)™ lIno (o, 90) I
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+ (8% (he)* [Ino(Gio, Fo) ' < 0. (34)
On adding (33) and (34), we have
O, 0,£, (07, (%) < folito),
which contradicts (30). The theorem is therefore validated. m]

We now re-explore Example 1 to verify the above Theorems.

Example 2

1
(RMPVC-1) min fy(mo) = —mo — 2
JT()ER 2

subject to

Ve (0, 0¢) = —emg + oem < 0,¥e € Q = [0, 1],
Vo, € [—e +2,e+ 2],

w1 (7o) = 1w > 0,

¢1 (o)1 (7m0) = mo(mo + 73) < 0,

(35)

withn = 1,6 € Q =[0,1], y = 0, k = 1. Clearly, fo(7p) = %no — 2 is Lipschitz
continuous in R. Let o, = 1, fore = 1 and 0, = 0, for 0 < ¢ < 1. For any robust
feasible solution mp € A, the Wolfe type robust dual model to condition (35) is shown
as

1
max O, vi, 07, 0}) = SP0=2- 1 (=00% + 90) — 0F Vo + 05 (%0 + 90>

subject to

VO, u1, 07, 05) = L —u1(=200 + 1) — o7 + 0} (1 +21) =0,
Q{ = 811, 81 = 0, (36)
o = x1 — 81 (mo + 7)), x1 = 0.

(i) The robust feasible set S,, of the VC-RWD is given by {(d0, vy, oy, Q{, X1,61) :
290(v1 +077) =0,

1
_ ¢
vl = 5 —Q? + o5,
Q% =811 (mp), 61 = 0,

017 = x1 — 8181 (m0), x1 = 0}.
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Also, from condition (35), we get Y = 0 as a robust feasible solution and from
condition (36), we have Qf =0, 01” > 0 and we obtain
O, v1. 07 . 0f) =—-2<0

and it is easy to see that fo(779) = —2 = O (I, vy, oy, ng). It is proved that the
hypothesis of Theorem 6 is fulfilled. From the condition (35), 7o is a robust global
minimum of the (RMPVC). Therefore, Theorem 6 is verified.

(i1) From condition (35), we get 9 = 0, we get

O, v1. 07 . 0f) = —2 < 0.

Since 779 = 0 is the robust feasible point of the (RMPVC) and VC-ACQ holds at 7.
We get fo(y0) = O, v1, oy, Qf). Hence, Theorem 4 is verified.
(iii) Clearly, VC-ACQ is fulfilled at 779 = 0. By Theorem 1, there exist v; € R,

oy, Qf € R such that (0, vy, 0%, Q%, X1, 81) is a robust feasible point of the VC-
ACQ(0) and

V110, 01)) — 07 @1(0) + 05 (0) = 0.

So, (0, U],Q?,Qi, X1,01) is a robust global maximum of the VC-RWD(0) and
fo(0) = =2 = ©(0, vy, 07, 07). Theorem 5 is justified.

In the following section, we discuss the Mond—Weir type robust dual model and
prove the duality theorems. The dual model used here is based on the lines of Hu et
al. [18].

4 Mond-Weir type robust dual model

The Mond-Weir type robust dual of the (RMPVC) depending on a robust feasible
point g € A, represented by the (VC-RMWD)(7g), is provided in this section. The
details are as follows:

max  fo(Jo)
subject to

VO, v,§,07,0°) =0,

ve > 0, v (09, 0e) > 0,Ve € Q, Vo, € Q,

&P (Vo) = 0, Ve € Yo,

0:5¢:(90) = 0, Ve € Ko, (37)

ng = S, w.(m0), 8 > 0, Ve € K,
—0:" @ (Vo) = 0, Ve € Ko,

0:7 = Xe — 8:5:(V0), xe = 0, Ve € K.
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Let S%HW(HO) represents the set of all robust feasible points of the problem (VC-
RMWD)(5t9) where Sy, (0) = {(90, v, &, 07, 0%, x, ) : VO @0, v, £, 07, 0°) =
0,

Ue > 0, uge (D9, 0¢) > 0, Ve € Q, Vo, € g,
£ D, () = 0, Ve € Y,
0:52:(90) > 0, Ve € Ko,
0:° = 8w (o), 8 > 0, Ve € Ko,
— 0:" . (%) > 0, Ve € Ky,

w

0:7 = Xe — 8:8:(m0), Xe = 0, Ve € Ko}

(38)

We represent the projection of the set Sf\RjHW(no) on R" by

PrSiw (o) = (90 € R" : (90, v, &, 07, 0%, . 8) € Sk (70)}.

For my € A, the new Mond—Weir type robust dual is independent of the (RMPVC),
we consider the subsequent Mond—Weir type robust dual problem:

max  fo(%o)
such that (99, v, &, 07, 0%, x,8) € ] Sy (m0)- (39)

ToEA

. . . R
The set of all robust feasible points of (VC-RMWD) is represented by Sy =

ﬂA SH&IW (7o) and the projection of the set SIH\\%HW on R" is represented by prSﬁW.
o€

Remark2 Mond-Weir type dual model exists in literature for a mathematical pro-
gramming problem with vanishing constraints (See, Mishra et al. [15] and Ahmad et
al. [21]) using index sets. These models are not suitable for numerical solutions to dual
problems since they need to calculate index sets. As a result, Hu et al. [18] recently
proposed new Mond—Weir type dual model for a mathematical programming problem
with vanishing constraints and established the results of duality under generalized
convexity assumptions that do not require index set calculations.

Theorem 9 (Weak robust duality theorem) Let my € A, (g, v, &, 07, 0%, x,8) €
S%JIW be robust feasible points of the (RMPVC) and the (VC-RMWD), respectively.
Suppose one of the subsequent cases occurs:
(i) fo(.) is higher order strongly pseudoinvex function and Y ve¥e(.,0¢) +
e€Q

D EDP()— D 0w ()+ D g,f e () is quasiinvex function at 9o € AUprSH&W
e€Yy e€Ko g€k
with regard to the kernel function no,

(i) fo(.) is higher order strongly pseudoinvex function and (¢ € (p:br (70)),
De(e € ¢g(m)), —Pele € 95 (m)), —we(e € @l (m0) U gl () U gy(mo) U
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90— (0) U ¢g, (10)), @ (e € ¢ (m0)), e(@q (m0) U " (0)) are higher order
strongly quasiinvex functions at ¥y € A U prSI%IW with regard to the common kernel
function ng. Then

fo(mo) = fo(Do).
Proof (i) Since my € A and (9p, v, &, 07, 0°, X, 8) € Sﬁw, it follows that

Ve (o, 0¢) < 0,0, > 0,0, € Qe, 6 €Q,
@ (m0) = 0,6 € R, ¢ € ¢o,
—we(mo) < 0,07 >0, ¢ € ¢i(m),
—we(m0) = 0,0, € R, & € o(m),
Le(m0) > 0, 05 = 0, & € o+ (70),
Ze(mo) =0, 05 = 0, & € poo(m) U p40(0),
Ze(mo) < 0,05 = 0,6 € 9o (0) U 94— (m0),

By (37), it implies that

D Ve (o, 00) + Y EPe(mo) — Y oF we(mo) + Y 0fLe (o)

e€Q eeYy e€Ko e€Ko
<Y U0, 00) + Y EDP(D0) — Y of me(B0) + Y 05 te(Do).
e€Q e€Yy e€Ko eeKo

Combining the higher order strongly quasiinvexity of Y v (., o)+ D> & Pe(.)—
ceQ e€eYy

> ofPw()+ ) Q§ ¢ (.) with regard to the kernel function 7o, we have
g€Kop e€Ko

) vV (90, 00) + Y EVDB0) — Y 0 Vo (%)

eeQ e€Yo eeKy

+ ) 08V (9). no(o. D))

€K
+Uehe o (o, Do) I +
Echeno(mo, Do)lI' — oF (he)™ IIno(ro. Do)
+0 (he)* Ino (o, o) < 0.

By using the above inequality and the first equation in (37), we get

(V fo(D0), no (o, 90)) + h°lIno (o, Do) ||' = 0,

where,
h° o (o, Do) Y = —vehellno (o, do)|I' — Eehe 0 (o, V)|
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+07 (he)? lIno (o, Y01 — 0f (he)* o (o, Do)l

By using the higher order strong pseudoinvexity of f with regard to the kernel
function ng, we get

Sfo(mo) = fo(Do).

The theorem is therefore validated.
(ii) Since 779 € A and (Yo, v, &, 07, 0%, x. 8) € Skyyy. it follows that

Ve (10, 0¢) < Y (D0, 0¢), € € ¢y (70), 0% € Qe,

D (10) = Pe(D0), € € pg (10) U 9, (0),
— e (m0) < —@e (Do), & € 9L (T0) U 0T _(0) U ¢y (m0) U g (0) U g, (70).
— we(m0) = —@e (Do), € € ¢y, (70),

£e(m0) < Le(Do), & € 9§ (0) U 917 (m0).

By using the higher order strong quasiinvexity of ¥, (¢ € <p$ (m9)), Pe(e € gog (0)),

— D, (e € pg(m0)), —we(e € 9l(m0) U 9T (0) U gy (0) U @ (770) U @, (10)),
@e (& € ¢y, (70)), Ce ((pia' (o) U wif (7r9)) with regard to the common kernel function
no, we get

(Vihe (90, 02), n0 (0, D0)) + hellno(ro, Do)ll' < 0, he > 0, v, > 0,
£ € ¢y, (o),
(VO (90), no(m0, D0)) + hellno(mo, 9o)lI* < 0, ke > 0, & > 0,
e € ¢ (m0),
(V®, (D), no(m0, Y0)) + helIno(mo, Do)l = 0, he > 0,& <0,
£ € g5 (o).
— (Ve (90). o (0. 90)) — (he)” lIno(ro. do)|I* <0, (he)” > 0,07 >0,
€€ wio(ﬂo) U el_(mo)
U ogo (m0) U ¢ (m0) U g, (0),
— (Ve (90). no(o. 90)) — (he)” lIno(ro. do)|I* = 0, (he)” > 0,07 <0,
& € ¢ (m0),
(Vs (M0), no(mo, 90)) + (he)* o (o, Do)l < 0, (he)® > 0,05 >0,

£ € gl () Ut (mo).

By using the definition of index set in the above inequalities, we get

) eV (B0, 00) + Y EVDB0) — Y 0 Ve (%)

c€Q e€Yy c€Ko
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+ Y 0 Ve (90). no(o. Do)

£€K0
+vehe M0G0, Do) 1" + Echellno (o, Do) I — 0Z (he)® lIno (7o, Do)l
4058 (he)* 1o (o, Bo)|I* < 0.

By using the above inequality and the first equation in (37), we have

(V fo(D0), no (o, 90)) + h°llno (o, 9o)|I' = 0,

where,

h° o (o, Do)|I© = —vehellno(o, Do)l — &che lIno (o, Do)
+07 (he)™ |0 (o, Do) ||' — 0% (he)¢ Ino (o, Do) .

By using the higher order strong pseudoinvexity of fp, with regard to the kernel
function 79, we get

fo(mo) = fo(Do).
The theorem is therefore validated. O

Theorem 10 (Strong robust duality theorem) Let 779 € A be a robust local minimum
of the (RMPVC) such that the (VC-ACQ) is fulfilled at 7to. Then there exist U =
Weeeg € BRI, ()7, ()%, %.5 € R¥ such that Gro. 0., ()7 ()%, %.8) is a
robust feasible point of the (VC-RMWD)(5%), that is, (30, U, £, (0)@, ()%, %.8) €
S%HW (79). Moreover, Theorem 9 holds, then (7, U, é, (©)7, (8)%) is a robust global
maximum of the (VC-RMWD)(7tp).

Proof Since 779 € A is a robust local minimum of the (RMPVC) such that the
(VC-ACQ) holds at 7. From Theorem 1, there exist U = (Ug)secq € R(Q) £ e
RY, (Q)w ©)°, X, Se Rk such that the conditions (2) and (3) are satisfied and hence
(70, U, é ©)7, )¢, x, 8) is arobust feasible point of (VC-RMWD)(77). From The-
orem 9, we get

fo(o) = fo(Wo), Y(Do, v, &, 07, 0%, x,8) € Sk (o)

and hence (770, U, é, ©)7, )¢, x, §) is a robust global maximum of (VC-RMWD)
(70). |

Theorem 11 (Converse robust duality theorem) Let 79 € A and (z§0, v, § )7,
©)°, x.9) € SI%JIW be robust feasible points of the (RMPVC) and the (VC-RMWD),
respectively. Suppose one of the subsequent cases occurs:

(i) fo(.) is higher order strongly pseudoinvex function and Y Ug¥e(.,0:) +
e€Q

> E,@,() — 3 ()T () + > (0e) () is quasiinvex function at P €

e€eYy g€k e€Ko
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AU prSﬁIW with regard to the common kernel function no,

(ii) fo(.) is higher order strongly pseudoinvex function and V¥.(e € q){[ (0)),
De(e € 9 (M), —Dele € g (M), —wele € piy(mo) Ul (m0) U gy(0) U
0o (710) U @y, (0)), @e(e € ¢y, (m0)), (@ (w0) U LT (70)) are higher order
strongly quasiinvex functions at Po € AU prSI%IW with regard to the common kernel
function ng. Then Do is a robust global minimum of the (RMPVC).

Proof Suppose that 9 is not a robust global minimum of the (RMPVC), that is, there
exists g € A such that

fo(70) < fo(Bo). (40)

(i) By using the higher order strongly pseudoinvexity of fo(.) with respect to the
common kernel function 7g, we have

(¥ foo), noGro, 9 + hllnoGro, Gl < 0. o
Since 779 € A and (Jo, U, £, ()7, (8)°, X, ) € Skyyy» it follows that

Ve Ve (700, 0¢) < bsl/fs(ﬁVOv 0g), € € Q, 05 € Q,
éeq>s(ﬁ'0) = 55(1)8(50)7 ¢ € Yo,
—(8e)7 @ (710) < —(8e)” @ (Vo). & € Ko,

(8:)° Le(70) < (8)° L (V0), & € Ko,

which leads to

Y U (Fo00) + Y EDe(F0) — Y (87 we(Fo) + Y (8e) Le (o)

£€Q e€Yy c€Ko e€ko
<) e (o, 00) + Y EP(W0) — Y (@) e (o) + Y (8:) ¢ (o).
e€Q e€Yo c€Ko e€Ko

By using the higher order strong quasiinvexity of Y Ug¥e(., 0:) + > £,@,() —
ceQ e€eYy
> @)@ () + Y (8e)¢¢e(.) with regard to the common kernel function 19, we
SEKO SGKQ
get

() 0V (B0, 00) + Y EV Do) — Y (8e)7 Vaoe (o)

e€eQ e€Yy e€Ko
+ ) (8e)° V(o). m0(Fo. %))
SEK()

+0ehe 0o, D)I* + Eche 1100, F)II* — (B:)T (he) o (o, Fo) I
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+ (8e)¢ (he)¢ Ino (7o, Bo) || < 0. (42)

On adding the inequalities (41) and (42), we have

(VO v.& @7, @), moGio, 0)) + h° Ino(Fo, Fo)lI* < 0,
where,

h®lIno (o, o)l = Vehe oo, 90) I + Echellno (o, Y)II* — (Ge)® (he)™ lIno(Fo, Fo) "
+(e) (he) o (o, ) II* + Rlino (o, 90) I,

which contradicts the first equation in (37). The theorem is therefore validated.
(i) Since 779 € A and (99, U, &, (0)@, (0)°, X, 0) € SI&W, it follows that

Ve Ve (R0, 06) < VeWe (90, 00), & € Q, 0 € Qe
E- D, (7o) = & P. (o). & € Yo,

— (8e)7 e (7)) < —(8e)” we(V0), € € Ko,
85¢e(70) < 85¢(Wo). & € Ko.

By using the definition of index set in the above inequalities, we have
Ve (0, 02) < Ve (Do, 0¢), 0% € L, € € @ (0),
. (70) = e (90). £ € 9 (o) U 0 (7).
— £ (70) < —Le(Po). & € @ (7o) U 9T _ (7o) U gy (7o) U e (70) U ¢, (7o),

— ¢e (o) = —L:(P0). & € @q, (o).

Le(Fo) < & (B0). & € o (7o) U ot (F0).

By using the higher order strong quasiinvexity of ¥, (¢ € <p$ (70)), P (¢ € g0$ (70)),

— D, (¢ € 95 (70)), —we (e € (7o) UpT_ (7o) U gy (7o) U ¢y (7o) U ¢ (o)),

@e (e € ¢y, (70)), Ce ((pig (770) ngif (o)) with regard to the common kernel function

no, we get
(V9 (0, 000, n0(Fo, 0)) + hellno(Go, DI < 0, > 0,5 > 0, € 9 Gro),
(Ve o). no(Gio, 90)) + e lno o, I < 0. he > 0.8 > 0,2 € ¢ (7o),
(Ve @0). moGio, 90)) + hellmoGio, I = 0, he > 0,& < 0,6 € g5 (o).

— (Ve (Fo), no(o, o)) = (h)™ Imo(Go, T = 0, ()™ > 0, (6) =0,

@ Springer



Robust Mathematical Programming Problems Involving... Page310f38 123

£ € 9T o(0) U gl (7o)
U @y (7F0) U @ (70)
U ¢g. (7o),
— (Ve (Fo), no(o, o)) = (he)™ oo, DI = 0, ()™ > 0, (6)7 <0,
& € ¢, o(70),
(V6 ), noGo, o)) + Ghe) oo, T < 0, (o) > 0, (@) = 0,
e € 9§ (o) U g™ (o).
By using the definition of index set in the above inequalities, we obtain

() 0V (B0, 00) + Y EV Do) — Y (8:)7 Ve (¥0)

e€eQ e€eYy e€Ky

+ ) (80 VL (o). no(Fo. o))

g€k
+Uehe 10 (o, Fo)|I +
Ehelino (o, Yo)|I' = (86)7 (he)™ llno (o, Fo) I
+(26)* (he)* o (o, Fo) 1" < 0.

By using the above inequality and the first equation in (37), it follows that

(¥ 1o, moGro, $0)) + h° no(o, o)l = 0,
where,

h®lIno (o, Do) I* = —Vehe 0o, J)II* — Eche |10 (o, Do) I
+()7 (he)? IIno (o, 90)I* = (86)* A lIno (o, Fo)|I'-

By using the higher order strong pseudoinvexity of fp, with regard to the kernel
function ng, we get

fo(@0) = fo(¥o),

which contradicts (40). The theorem is therefore validated. O

Theorem 12 (Restricted converse robust duality theorem) Let 779 € A and
(%0, U, &, (D)@, (D), X,0) € SI%JIW be robust feasible points of the (RMPVC) and the
(VC-RMWD), respectively, such that

foGto) = fo(do).

If the hypothesis of Theorem 9 holds at P e AU prS%sHW, then 7 is a robust global
minimum of the (RMPVC).
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Proof Suppose that 77y € A is not a robust global minimum of the (RMPVC), then
there exists 7o € A such that

fo(@o) < fo(mo).

Based on the assumption in the theorem, we arrive at the following inequality

fo(Fo) < fo(¥o),
which contradicts Theorem 9. The theorem is therefore validated. O

Theorem 13 (Strict converse robust duality theorem) Let 79 € A be a robust local
minimum of the (RMPVC) such that the (VC-ACQ) holds at 1t(. Assume the conditions
of Theorem 10 hold and (9, U, &, (D)7, (0)%, %.9) be a robust global maximum of
the (VC-RWD)(5t0). Suppose one of the subsequent cases occurs:

(@) fo(.) is strictly higher order strongly pseudoinvex function and Y, U (., 0¢)+
e€eQ

> E,D.() — 3 (@)@ () + D (0e) L () is quasiinvex function at do € AU
e€eYy g€k g€k

prS wiwy With regard to the common kernel function no,
(@i) fo(.) is strictly higher order strongly pseudoinvex function and ¢ (¢ € gz); (7%0)),
<I>s (e € pf(F0)), —Pele € 9g (), —me(e € @) U el _ (o) U ¢gy (o) U
0-(70) U g, (70)), @e(e € ¢y, (70)), Lelpf (o) U ¢ 1" (o)) are strictly higher
order strongly quasiinvex functions at P € AU prSRW with regard to the common

kernel function ny.
Then 119 = .

Proof (i). Suppose that 77y # 150.By Theorem 10, there exist U = (Ug)eeq € RS@,% €
RY, (8)7. (8)*. X.6 € RK such that (J, v, £, (8)7. (0)*. X. ) is a robust global
maximum of (VC-RMWD)(77(). Thus,

fGt0) = f (Do) (43)
Since 7o € A and (99, U, £, ()@, (D), %.9) € SMW, it follows that

Ve (0, 00) < 0,0 > 0,00 € Q2,8 €Q,
®(7t9) = 0,& € R, ¢ € Yo,
—we (1) < 0,(0:)7 >0, e € ¢y (70),
—w:(70) = 0, (0:)” € R, & € ¢o(0),
£e(70) > 0, (8:)° =0, & € @o4 (7o),
e(70) = 0, (8:)° = 0, & € @oo(70) U 910(t0),
£e(0) < 0, (8)° =0, & € go— (7o) U ¢4 (),

@ Springer



Robust Mathematical Programming Problems Involving... Page330f38 123

By (37), it implies that

D V(0. 50) + Y EDe(ro) — Y (87 we(Eo) + Y (8e) L (o)

ceQ ) e€eKo ceKy
<Y VYo, 60 + Y ED (o) — D (@) we (o) + Y (8e) ¢ (o).
c€eQ eeYy e€eKo e€eKo

Combining the higher order strongly quasiinvexity of 3 U/ (., Ge)+ Y. & De(.)—
e€Q eeYy

3 (@)@ () + Y (0e)° ¢ (.) with regard to the kernel function 19, we get

e€Ko e€Ko

() 0V (B0, 00) + Y EV Do) — Y (8e)” Ve (H0)

e€Q geYy c€Ky

+ ) (26)° VL (), 100, Fo))

eeKy
+Uehellno (o, 9o) I +
Eche oo, Do)l — (8)7 (he)™ lln0(Gto, Jo) '
+(80)¢ () lI0(Gt0, o) |I* < 0.

By using the above inequality and the first equation in (37), we have

(¥ fo0). no(o. o)) + hlno Gro, I = 0,

By using the strict higher order strong pseudoinvexity of fp with regard to the kernel
function 7o, one gets

fo(to) > fo(do),

which contradicts (43). Thevtheorev:m is therefore Validated.
(ii). Since 77y € A and (99, U, &, (D)7, (0)°, X,0) € Sﬁw, it follows that

Ve (0, 0) < e (90, 0¢), 06 € Qe & € ¢ (7o),

D, (770) = D (Do), & € ¢ (F0) U ¢ (0).
— @, (7t0) < —w.($0). & € 9, (F0) U g (o) U oy (7o) U o (7o) U o, (o).
— e (0) = —w.($0). & € ;. (F0),

£e (o) < (o). & € @ (o) U T (o).

By using the higher order strong quasiinvexity of ¥, (¢ € 901; (719)), @ (e € gojg (70)),
— D, (e € g (710)), —we (e € 9(T0) U9 (o) U 90 (t0) U ¢y (7t0) U @, (70)),
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we(& € @y, (70)), Ce ((pig (770) U(pif (70)) with regard to the common kernel function
no, we get

(V9 0. 00), 1m0 Gro, 50)) + ellmoGro, T < 0, e > 0,5 > 0, € g o),
(V. o). noGo, o)) + hellmo(Gio, oI < 0,5 > 0.& > 0,¢ € o o),
(Ve o), noGro, o)) + hell oo, oI = 0,5, > 0,& <0, € g5 o),

— (Ve (o), mo(Gio, 50)) = (h)” Imo(Gro, B0 < 0, (h)™ > 0, (6) = 0,
e € 9 (o) U g (t0)
U g0 (T0) U @y (0) U ¢ (o),

— (Ve (Fo), noGo, o)) = (h)™ oo, T = 0, (7)™ > 0, (6)” <0,
e € 9, (0),
(V& (o), noGro, o)) + Ghe) oo, I < 0, ()¢ > 0, (@) = 0,
e € g (to) U gt (o).

By using the definition of index set in the above inequalities, we have

() 0V (B0, 00) + Y EVD(0) — Y (8:)7 Vaoe (¥0)

[350) e€Yp e€Ko

+ ) (8 VL (o), no(Fo. 90))

e€eKop
+Uehe 1m0 (o, Fo) I +
Echellno (o, 90) I — (8)7 (7e)™ Ilno(Fo, 9o I
+(8e)¢ (he)¥ lIm0(Gto. o) |I* < 0.

By using the above inequalities and (37), it follows that
(¥ fo(0), no(o, 0)) + llno o, Fo) | = 0,

where,

h° lno (o, Bo)|I© = —UehellnoGro, 9o)||* — Eche l|m0 (o, 90) |
+(8:)7 (he)™ 1m0 (o, D) NI — (36 (he)* o Gro, Do)l

By using the strict higher order strong pseudoinvexity of fy, with regard to the kernel
function 7o, one gets

fo(0) > fo(Bo)
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which contradicts (43). The theorem is therefore validated. O

Let us re-explore Example 2 to verify the above theorems.

Example 3 For any robust feasible 7y € A, the VC-RMWD(7) to the (RMPVC) is
shown as:

1
max  fo(do) = 5190 -2

subject to

VO, u1, 07, 05) = L —ui(=200 + 1) — o7 + 0} (1 +21) =0,
v > 0, vy (Yo, 01) =0,
0} ¢1(%0) = 0] 0 > 0, )
Qf = §1mo, 61 > 0,

—of w1 (Vo) = —o7 Vo = 0,
o7 = x1 —81(mo+73), x1 > 0.

() Let g = 0 and (90, v1. &1, 07 0], x1.81) = (0.5 = oF .07 .0.x1.81) €

SR (7o), that is, 99 = 0 € prSFy,. This implies (0, v, 07, 0,0, x1,81) €

SH&IW(JTO). we have, fo(7g) = —2 = fo(ﬁvo). The hypotheses of Theorem 11 are

easily verified. From condition (35), yy is a robust global minimum of (RMPVC).
(i1) We get, 150 = 0. From condition (44), we get Qf =0, of =0, that is,

O (Yo, v1, 07, Qf) = fo(¥0) + vi¥1 (Do, 01) — o} @1 (Vo) + Qfé“l (¥o) < 0.
foWo) < —vi1¥1 (B0, 01) + of @1 () — 05 ¢1 (V).

From condition (44), we get fo(d9) < 0. So, we obtain fy(9) > fo(¥9), Theorem
9, is verified.

(iii) Since 779 = 0 is the unique solution of (RMPVC) and Ve = {1}, V¢ = {1}
It is easy to see that condition (35) satisfies (VC-ACQ). By Theorem 1, there exist
Lagrange multipliers v; € Ry, 07, 0%, 81, x1 € R such that (0, vi, 07, Qf, 81, X1)
is a robust feasible solution of (VC-RWD)(0). Taking into account fy(d) < 0, we
get (0, vy, o}, Qf, 81, x1) is a robust global maximum of (VC-RMWD)(0) and thus,
Theorem 10 is validated.

5 Special cases

(1) In a scenario, lacking uncertain parameter o and index set in the constraints the
(RMPVC) model reduces to (MVPC1) model of Achtziger and Kanzow [13] and Joshi
[30].

(MPVC1) min fo(mo)
moeR”
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subject to

Ve(mo) <0, €Q,Q=1{1,2,....q9}

O, (mg) =0, € Yo, Yo =1{1,2,...,y},
we(my) >0, € Ko, Kg ={1,2,...,k},
Ce(my)me(mp) <0,6 € Ko, Kg ={1,2,...,k}.

(ii) In the absence of uncertain parameter ¢ in the constraints and the objective function
is single valued, the (RMPVC) model takes the form of (MVPC2) model of Tung [23].

(MPVC2) min fo(o)
moeR”?

subject to

Ve(mo) < 0,Ve € Q,

O, (mg) =0, € Yo, Yo =1{1,2,...,y},
we(mg) >0, € Ko, Kg ={1,2,...,k},
Ce(my)me(mp) <0,6 € Ko, Kg ={1,2,...,k}.

(iii) In the absence of uncertain parameter o in the constraints, the (VC-RWD) and
(VC-RMWD) reduces to (VC-WD) and (VC-MWD) models respectively of Joshi
[30].

6 Conclusion

This manuscript demonstrates robust optimality conditions, Wolfe and Mond—Weir
type robust duals for a robust mathematical programming problem involving vanish-
ing constraints (RMPVC). The results of duality are examined based on the concept
of generalized higher order invexity and strict invexity amongst the primal and the
Wolfe type robust dual problems. In addition, the duality results amongst the primal
and the Mond—Weir type robust dual problems based on the concept of generalized
higher order pseudoinvex, strict pseudoinvex and quasiinvex functions are also studied.
Furthermore, numerical examples are provided to validate robust optimality criteria
and duality theorems of Wolfe and Mond—Weir type duals. Also, by employing the
univexity and generalized univexity presumptions while deriving results of duality for
the mixed type robust dual model of (RMPVC) would be our subsequent study.
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