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Abstract
Let {pn}n>1 and {d,},>1 be two sequences of integers such that |p,| > |d,| > 0
and {d},>1 is bounded. It is proven by Deng and Li that the Moran-type Bernoulli

convolution

* 0 Y PR

=00,y * O py o) ¥ F Opr (0.4
is a spectral measure if and only if the numbers of factor 2 in the sequence

{%}nzl

of the sufficiency. Here we give a new proof to close the gap.

are different from each other. Unfortunately, there is a gap in the proof
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1 Introduction

In the proof of [2, Theorem 4.3 (iii)], the inclusion relationship “{y +b, : y € I'} C
fo’: ({0} U U;)" maybe wrong in some cases. Actually, this inclusion relationship
need a precondition “¢; < £, for all j < ¢,". The following example shows that,
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there are examples that £; > £, holds for at least one integer j < £, for all n > 0.
Hence, the sufficiency of [2, Theorem 1.1] needs to be reproved.

Example Let p2,—1 =4, pon =9 and dyy—1 = 1, dp, = 8 forall n > 1. Then, the
definition of k,, and ¢,, shows

P1P2 " P 36"
ko, = — ) = =2n—4, VYn>1,
m = v2( 2, ) = va( 6 ) =2n n>
e Pane 36" 1 x 4
kop_1 = UZ(M) — vz(—x) =2n—1, VYn>1.
21 2

Also, £,—1 = 2n + 2 and £5,, = 2n for all n > 1. This means £,,_1 > £, for all
n>1.

We recall the definition of Moran-type Bernoulli convolution. Let {p,},>1 and
{dn}n>1 be two sequences of integers satisfying |p,| > 2, |d,| > 1 and

+o00

1 -1 _
> py py eyl < oo
n=1

The weak limit of the following convolutions is called a Moran-type Bernoulli

convolution

SR, .

=4 %6 1 - —1 -1 —lpy .
Hn =0, p, * 051,71, Py oy o Dy

And we denote it by

=5 _ *8 1 — k..o %d -1 — _ 1.1
W= 0pr D, *Opr py Dy PPy pn D (.1

We shall reprove the sufficiency of the following result (i.e. [2, Theorem 1.1]).

Theorem 1.1 For the measure w defined by (1.1) with |p,| > |d,| for all n > 2,

assume that the sequence {|d, |};§ is bounded. Then, i is a spectral measure if and

only ifkj # ki forall j > i > 1, where

k, = Uz(l’lpz-upn

= ):vg(plpz...pn)—vz(Zd,,), n=1,23.... (12
n

2 Proof of the Sufficiency of Theorem 1.1
In order to make the proof more readable, we first simplify our model.
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Proposition 2.1 For the measure u defined by (1.1), there exist two sequences of

integers {cn}oo | and {qn}C>o | such that for n > 1, we have gcd(qy, ¢,) = 1 and
-1 -1 - -1 -1 -
ar'ay o ay e =pypy e py @1
Furthermore, we have |q,| > |cn| when |p,| > |d,| (n = 1,2, ...). Hence, we can
rewrite |L as
=4 —1Cl * 8 1C2 * (Sql—]qz—|q3—|c3 sk Sql_lqz_lmq,flCn Koo, 2.2)

where C,, = {0, ¢, }.
Proof Write go = 1, and define inductively

En1Pn onde, =2 vl

n 8n

&n = ged(|gn—1pPnl, ldnl), gn =

It is clear that for any n > 1, we have gcd(g,, ¢;,) = 1 and (2.1). By writing
C, =10, ¢,}, we have

[ S R S 1 1 -
91 1‘12 1""]71 lcn Py ll’zl . an’

which implies that (2.2) holds.
If [pn] > |dn|, noting [g,—1pn| = | pal, it is obvious that |g,| > |cp]. o

The above Proposition 2.1 shows that, in order to prove the sufficiency of Theorem
1.1, without loss of generality, we can assume that gcd(d,,, p,) = 1. By the argument
in [2], we will always assume that [2, (2.9)] holds without loss of generality. Therefore,
we shall assume that the following conditions hold in the sequel:

Pip2-- Pn

Dn =2, dy > 1, ng(dn» pn) =1, 2d,

eN, Vn>l. (2.3)

The following Proposition 2.2 is obviously true.

Proposition 2.2 Let v be a probability measure and its support has finite cardinality
N. If L>(v) has an orthogonal set {*™** : % € A} and #A is at least N, then A is a
spectrum of v and #A = N.

We will continue to use notations ¢,,, k,, U,, t,, r, defined in [2] and the constant
c is defined in [2, Lemma 4.1 (i)]. Given a nonzero integer n, we denote by 6(n) the

odd part of n, i.e. 6(n) = Then, we rewrite

21)2(11)

Uy =20(p1p2---pe,)RZ+1), n>1. (2.4)
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The following set will play an important role in the sequel
={n:¥{, =n}. 2.5)

Lemma 2.3 Assume that (2.3) holds and k; # k; for alli > j > 1. Then, we have the

following statements.

(i). # = 4o0.
(ii). Let B be a finite nonempty subset of positive integers. Then, A := )" {0, a;} is
JjEeB
a spectrum (with cardinality 28 ) of *jeBb‘ »7'D; foranya; € Uj.

(iii). Let B be a finite nonempty subset of positive mtegers Assume that A C ) ({0}U
JjEB

Uj) is a spectrum of the probability measure *j638 - E For any m >

[f D
max{{; : j € Byand A € A, wetake anintegerb) € p1p2 - pmZwithbg = 0.
Then, the set {A + by : y € A} is also a spectrum of the probability measure

Furthermore we have {y +b, : y € A}y C Y ({0}UU;).
JjEB

*jEngrlp;1'~~p
Proof (i) It is sufficient to prove that for any integer N > 0, there exists a positive
integer n > N such that ¢,, = n.

Indeed, since {dj},>1 is bounded, there is an integer zo such that k, > zo for all
n > 0. Hence, there is an integer n > N such that kK, = min{k; : j > N}. Since
ki # kjforalli > j > 1, we see that k, < k; for all j > n. Hence, the definition of
£, shows ¢, = n. The conclusion is proven.

(ii) Suppose B = {j1, j2, ---, js} withk; < kj, <--- < kj . From [2, Lemma
4.2], it follows that k; < k; implies £; < £;. Then, the definition of U, shows

Ui+ Y {0uU;)=U;, t=12...s—1. (2.6)

t<i<s

Forany & = ) &;andn = ) n; € Awith&;, n; € {0, a;} and &; 3 n; for at

JjEB JjEB
least one j € B, itiseasytosee & —n € Y {0, *a;}. Write t = minf{i : &, #
Jj€B
nj» 1 <i <s}.Then,wehave& —n e U;, + Y ({0}UU}).From (2.6) it follows
t<i<s

& —n e Uj,. Thisimplies§ —n € U, and #A = 2°. Furthermore, § —n € U}, shows
that £ — n is a zero point of the Fourier transformation of the probability measure
*1635 Spylpip; Je [ 5 Syl _—1D_(§ —n) =0.

P JEB Pj %

Itis easy to see that the support of the measure * jcpé has cardinality at

i Py ;D
most 2°. Proposition 2.2 shows that A is a spectrum of the measure * ¢ le’_l !
1 2

and #A = 25 = 2#B,

—1
~p;'Dj
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(iii) Note a fact that for all j € B, the integer py p> - - - p; is a period Ofé\p—lmp—lD..
R N 1 i P
Form > max{{; : j € B} > J,wehave8p1_1.__p;1Dj (x+Ar+by) = 8[,1_1_“[7;11)]_ (x+A)

forallx e R, j € Band A € A. Hence

2 2

> ]_[?ipfl‘_,pjlej @+ = ]_[?s‘prlmp;le (x+M|, VxeR.

ye{r+by:reA} | jeB A€A |jEB

That means that the first conclusion in (iii) is proven by using [2, Proposition 2.3].
For any A € A, it can be written as A = )_ b; with b; € ({0} U U;). Let B =
JjEB
{j1, j2, ==+, Jsywithkj <kj, <--- <kj asin(ii) anddefiner = min{i : b, # 0}.
Then, (2.6) shows A € Uj,. Sincem > max{{; : j € B}, the definition of U; implies
that U; + b), = U; for all j € B, which implies A + b, € Uj,. Hence, we have
{(A+by: 2e A} C Y ({0}UU)) forany by € pips--- puZ with by = 0. The
JjEB
second conclusion in (iii) is proven. O
The following two lemmas deal with the possible case that £; > £, for some
Jj <4,

Lemma 2.4 Assume that k,, # kp, for alln # m and (2.3) holds. Furthermore, assume
that there exists a positive integer nqo such that for any n > nq there exists an integer
Jn < &y satisfying £, > £,.

(i) . Foranyi > ny, there is at least one member of the group p;, pi+i1, -, Pitc
which is an odd integer larger than or equal to 3.

(ii) . There exists a positive integer N1 > 0 such that

d
— L <1,ng<i<n-—Nj. (2.7)
O(pe;+1--+ Pn)

(iii) . For any n > ngo + ¢, we have v(p,) < max{va(d;) : j > 0}.

Proof (i) Given i > ng, suppose p;, Pi+1, --* , Di+c are all even. From the assump-
tion ged(pp,,d,) = 1, it is clear that d;, dj11, ---, di+. are all odd. Hence,
ki < kix1 < --- < kit¢, which implies ¢; = i since [2, Lemma 4.1 (i)] shows

i < {; <i+ c.On the other hand, however, our assumption shows for the integer i,
there is a positive integer j < ¢; such that £; > ¢;. Then, we have k; > kgj > kj.
In virtue of ¢; = i, we have j < i. Since p; is even and d; is odd, we have
ki = va(pip2---pi) — 1 > va(p1p2---pj) — 1 = kj, which leads to a contra-
diction. Therefore, at least one member of p;, pit1, ---, pi+c is odd which is larger
than or equal to 3. The conclusion (i) is proven.
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(i1) Choose a positive integer s > 0 such that 3* > max{d,, : n > 0}. Thus fori > ny,
we have

max{d, : n > 0} <1

Pei+1Pei+2 - Pli+sc

It is clear that we finish the proof by taking N| = sc.
(iii) Suppose v2(p,) > max{va(d;) : j > 0} for some n > ng + c. For any j and m
with j <n <m, we have ky = va(p1p2--- pm) — 1 —v2(dm) = v2(p1p2---pj) +
v2(pn) — 1 —v2(dy) = v2(p1p2---pj) — 1 = kj. In fact, by the assumption that
km # kj, we have k,, > k;. Let kg = max{k; : no < j < n — 1}. According to the
definition of £;, we have {;, = n — 1.

On the other hand, however, for the integer s, there exits a positive integer jo with
Jo < £ such that £, > £, which implies £, > n. Noting that jo < n, according to
the above argument, we get kgjo > kj,, which is a contradiction to the definition of

£ j,- The statement (iii) is proven. O

Lemma 2.5 Assume that k,, # kp, for alln # m and (2.3) hold. Furthermore, assume
that there exists a positive integer nqo such that for any n > nq there exists an integer
Jn < &y satisfying £, > £y. Then, there are small constants € > 0and 6y > 0 suchthat
foranyni andny € T withny > n1+ N, there exists a spectrum A = Z:.linﬁ_l {0, a;}
of*?inﬁl(?pl_lpz_u.__pi_ll)i such that

c

. A
inf | |

AEA, |y|=bp | -
Jj=1

m_—1 —1 -
Puy17 Puytj Dot (Plpz Dy

+ y)' > €. (2.8)

Proof We first construct the spectrum A. Write D = max{d, : n > 1} and S = {i :
n1 4+ 1 <i < ny}. We divide the set S into two parts S; and Sy, where
DO(p1---pe)

_1} andSZ:{ieS'M<l}.

Si=14ieS§: :
: {l O(p1- -+ Pny+1)

CO(p1-c Pay1)
Take

. {2’<f9<p1mpm+c), ies,

256(p1---pe), i €S

[2, Lemma 4.1 (i)] shows that ny 4+ ¢ > ¢; for all i € Sy. By the definition of U,,, it

is clear that a; € U; forall i € S. Then, Lemma 2.3 shows that A = Z?inlﬂ {0, a;}

“Ip,- By the definition of the function 6, fori € S

2.9)

is a spectrum of /2 |8

i=m+1%p7 py ep,
we have
dn2+jai _ Q(dn2+j)05(pnzfjl+lkj o pn2+c) c 2ki—kn2+j—l(ZZ + l) (210)
Pl"'Pn2+j 2n2+_/+*t
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According to the definition of Sy, we have ¢; < n, forany i € S;. Thus we have

d . 2ki_kn2+j_10 d i
ot _ @t ). (2.11)
Pl"'pnz-i-j 9(Pe,~+1"'pn2+j)
ny
Giveni = Y b; € Awithb; € {0, a;}(n1+1 <i < ny), write k;, = minfk; :
i=ni+1

i €81, bj #0} when theset {i : i € Sy, b; # 0} is not empty. According to (2.10)
and the assumption that k; # k; for any i # j, we have

Yies, —p‘lejf;] e 2k =1hnati Q7 4 1), {i - i € Sy, bi # 0} # 0, 2.12)
dy jDi / / ’
Yies g =0 i:ied, bi #0}=0.

Let k;, = max{k; : i € S2,b; # 0} when the set {i : i € S, b; # 0} is not empty.

According to the definition of Sp, we have 0(dy,+;) < D < 0(pg;+1--- Pay+1) for

. 0(dny+5)
i € 8. Thus we have 6(dy,+;) +2 < 0(pe,+1--- Pnot1). Hence, m <

0?01?;—3)&2 < DL-i-Z for any i € S;. Also by (2.11) and the assumption that k, # k,
for any n # m, we get

D . i
—2% 0 mHi o (2.13)
D+2

0= dnytjbi D 3 2kl =
Lo P D2

s>0

Given 1 < j < ¢, we consider

A Ay
m -1 -1 |— ) =mpon | ———————— ), r e A. (2.14)
P P i Dy (0.1} .
nptl s Enp+j 2T\ PLP2 - Py P1DP2 """ Pnr+j

And then we will deal with two cases.
Case A.{i: icSy, by 0y =0 orky > kn,yj.
From (2.12) it is clear that

dy, s ibi
Y T ez (2.15)
ieS Pl Pny+j

Noting that i € &y, we see €;, < np, which implies k,,+; > k;,. In virtue of
(2.13), we get

Z—dnﬁjbi elo, 1. D )
2D+2

e P11 Pna+j
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Since mo,1) has period 1, we have

Ay 4 j ) dny+jbi
o, (p|p2~~~pn o) =mon| X 5
2 i=nj+1 2
o [ 3 duyjbi (2.16)
’ 15, PLPng+j

= myo,1)(c)

1 D
for some o € (0, ED_+2)'

CaseB. ki, < kyyq .

Without loss of generality, we assume that the set {i : i € S2, b; # 0} is not empty.

. duy jbi
Otherwise, we have } -2
npy+j

ieS
that k;, > k;,. By (2.13), we get

= 0. From the definitions of i; and iy, it follows

okiy —knytj =1

0 < Z dny+jbi D kiy k) <
S P pue D2 D+2

Combining (2.12), this shows there exists an integer z such that

) _maibi oy kiy 2z+1+mn)
€805, P11 Pna+j

_D_

» D12 )

Given a real number r € R, we denote by ||r||1 the distance between r and it’s
2

for some n € (0

nearest middle point of two neighboring integer points, i.e.

1
r— —It-
£y

1
r—a—=|,

2

[[r]lL = min {
2 Z€Z
Thus the assumption k;; < kj,4 ; implies

szilfknzﬂ-fl(zz_}_ Dl = 2k —Enpsi-1,

1
2

By noting that )2]"'1 “hnpj =1 n‘ < 2k —hny+j =1 DLH, we get
)Ldn2+j _ Z dn2+_jhi
Prpzepupi |1 i€81US) pre-puy+j || 1
- )‘Zkil—knz+_i—1(zz+ 1 +’7)H' (2.17)
2

iy ~Kny j—1_2
Z 20 5
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Since i} € Sj, from Lemma 2.4 (i) it follows that i; > n; — Nj. By Lemma 2.4
(iii), we have

knyvj —kiy =va(p1- - Pnatj) — v2QRdpyqj) —va(pr -+ piy) +v2(2d;)
S v(Pij+1 - Pratj) + v2(diy)
< (my+j—i1+ Dmax{vy(d,) : n > 1}
< (N1 +c+2)max{vy(d,) : n > 1}.

(2.18)

Together with (2.17) and the boundedness of {d,,}°° ;, we conclude that there is a

n=1>
positive constant 0 < 6 < % such that

||y e ||,

% ieS1USy P1: Pnatj

P1P2 - Pny+j

1

Therefore, combining the conclusions of Case A and Case B we see the modulus

of (2.14) has a positive lower bound. Furthermore, there is a constant ¢ > 0 such that

- A
m i -1 —— )| > 2¢, VAeA.
1._[1 pzrz+l“'pln+jD5n+j (plpz . pnz) ’
j=
Finally, note that
S -1 *6 —1 -1 keeekd 1 :n>0
{ p,,JranJrl pnilpy,+2Dn+2 pn+1”'pn+0Dn+zr }

is a family of probability measures supported on subsets of [0, 1]. Hence, their
Fourier transformations are equi-continuous (cf [2, Definition 4.4 (iii)]). Thus we see
that there is a small positive number 8y > 0 such that (2.8) holds for some constant
¢ > 0. The proof is completed. O

Furthermore, we have the following Lemma 2.6. For k > 1, we write

=48 -1 *8 1 1 *
K>k Py Dkt 7 TP Prya Dis2

Lemma 2.6 Assume that k,, # ky, for alln # m and (2.3) holds. Furthermore, assume
that there exists a positive integer no such that for any n > ny, there exists an integer
Jn < &y satisfying £;, > £,. Consider the set A defined in Lemma 2.5 forny, np € 1
satisfying no > ni + N1. There are small positive constants &1 > 0 and 01 > 0 such
that for any A € A, there exists an integer by, € 7 with by = 0 such that

A+pip2-- 'Pnz+cb)»
P1P2 " DPny

ooy (v + ) >¢€1, Vyel[=01, 01], A e A, (2.19)
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Proof By [2, Lemma 4.5], there are small positive constants ¢’ > 0 and 6y > 0; > 0
such that for any A € A, there exists an integer b, with by = 0 such that

>¢, Vyel[-01, 6] (2.20)

— A
/fL>n2+c(y + by + )
P1pP2 - Pny+c

Recall a fact that the mask function m g 1) (x) has period 1. For any A € A, we have

— Ap1p2 Pry+cbr
H>ny (y + P1P2 " Pny
—_— A+Pp1P2 Pry+cba c A+P1P2 Pry+cba
= . B e | I B m - — _— =
He>nate (y + P1P2 Pny+e ) Jj=1 pn21+l”'pn21+jD"2+j (y + P1P2"Pny )

o A
= ‘M>n2+c(y + by + m)

=

S
mp;2]+] “‘p;21+iDn2+j (y + P1P2 " Pny ) '
(2.21)
Lemma 2.5 shows there are small constants ¢ > 0 and 6y such that

¢

[

j=1

A

m_—1 —1 + —
pn2+1"'p)12+jD”2+f (y pip2--- an

>e Vyel[—by, 6ol. (2.22)

)

Letting &1 = s¢&’, the inequality (2.19) follows from (2.20), (2.21) and (2.22). The

proof is completed. O

Now we are in the place to reprove the sufficiency of [2, Theorem 1.1].
Proof of the sufficiency of [2, Theorem 1.1].

We shall deal with two cases.

(A) If there is an infinite subset Zog C Z (Z is defined in (2.5)) such that £; < n for
any i <n and n € Zyp. Then, the proof in [2] works by replacing B by Zj.

(B) If there are only finitely many n € 7 such that ¢; < n for any i < n. Then,
there is an integer ng > 0 such that for any n € 7 with n > ny, there exists at least one
integer j, < £, satisfying £;, > £,. Also, as stated in the beginning of this section,
all conditions in (2.3) can be assumed without loss of generality.

Then, we extend the idea of [1, Lemma 2.6] and [1, Theorem 2.7] to construct a
spectrum of w. This spectrum is different from the one in [2]. LetZ) ={n €Z: n >
no}

We first choose 1 € Z; and define

Al = {07 a1}+{0, a2}++{07 anl}v

where a; = Zk"Q(pl <. pg;) € Ui for1 <i < ny. Since 7 is infinite and p, > 2, we
can find a sufficiently large integer n, € Z; such that n, > n; + N and

01 91]

(P1p2-Puy) A1 C [— 2 5%
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where N and 0; are defined in Lemma 2.4 and 2.6, respectively. Let €] be the constant

in Lemma 2.6 and A, be a spectrum of x> 1) -1, as stated in Lemma
1

i=n+1%p7 py e p;
2.5,1.e.
A12 =10, any41} + {0, any42} +--- +1{0, an,},
h
where L .. DO(pi--pg;)
250(p1 -+ puye)s if I ) =1,
@ — Py (2.23)
. .o DO(p1--py;)
256 (p1 "'pfi)’ if O(p1-Pny+1)

According to Lemma 2.6, for any A € A, there exits an integer ki ; € Z with
k1, 0 = O such that

— A+pi--- ky
’M>n2< 4 T p Pny+cKi, &

)‘ >¢e1, YyeA, el
P1p2 " Pny P1pP2 - Pny

Lemma 2.3 (ii) and (iii) show that Ay := {y + A 4+ p1p2- pPoy+ck1, 5 1 ¥V €

1y kO 1 1y ke
1 D Py Py D,
. Furthermore, [2, Lemma 4.1] and the definitions of U; show that

A1, A € A1} is a spectrum of the probability measure Bp -k

(Spf'pz’l Py Dy

Ui+ pip2- - Pnytck1, » = U; forall i < ny. Hence, by k1, 9 = 0 and the definitions
n

of Aj and Ay, wesee A C Ax C Y. ({0} U Uj).In a word, we have

j=1

. A
‘/x>n2< )‘ > e, VAeA,. (2.24)
Pno

pip2- -

Continuing in this way, we can find a strictly increasing sequence {n;};2, C 7
and Ay such that the following properties (2.25), (2.26), (2.27) and claim hold.

Nk+1

0 CAp1 C Y (0YUU), k=1,2,-, (2.25)
j=1
_ 61 01

(P2 P A C [ = 3o 3T ) k=L2ee. (226

— )\‘
‘M>nk(—)’>£1, VieAy, k=2,3,---. (227

pip2- Pu

Claim. The set A is a spectrum of the probability measure 5171—1 D, * 8p171p271 D, *

---*51]17117271”.1];1(11)"1( forallk =1, 2,---.

o0
Let ' = |J Ak. We shall prove I" is a spectrum of u.
k=1
For any a # b € T, from (2.25) it follows that a # b € Ay for some k > O.

Hence, a — b is a zero point of the Fourier transform of 8p koo k

T S
1 D1 py Py D2
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1 . Hence, jt(a — b) = 0, which implies the exponential function set

8ty Py Dy
Er = {e¥7* : 1y € I'} is an orthogonal family of L?(u).

Assume, on the contrary, that I" is not a spectrum of . Then, [2, Proposition 2.3]
shows that Q,, r(xo) < 1 for some xo € R.

Recall that kl_i)n;o(plpz . --p,,k)’lxo =0and ® := {(V:ve ®)(here ® = {u=y, :

n > 1}) is equi-continuous. From (2.26) it follows that
Br = kienjf |=ne (P1P2* Prgey) (A + x0))| — 1 ask — oo. (2.28)
k

Furthermore, from (2.27) it follows that there exists a positive integer ky > 0 such

that for any k > kg and A € Ay, we have

—_— . 1
= (P1P2 -+ Pu) " O+ x0))] = Se1- (2.29)

Let

Qk(x0) = Y IR +x0)P, k=1,2,---.
reAg

According to [2, (2.2)] and (2.29), for k > ko we have

Qi+1(x0) — Qk(x0)
= Y T, Imp,((p1---p) L+ x0))I?

rEA 1\ Ak
= > ILE mp,((pr- ) MO+ x0) Pl A=y (P Pray) ™ A+ x0)) 2
AEAk+1\ Ak
> g6l X TLE! Imp,((pr--- p) ™' O+ x0))
AEA K1\ Ak
(2.30)
The above claim shows
Ng+1 b
S I o prt 0+ xon| =1, k=1,2,--
AeAk41 n=1
Thus (2.30) implies that for any k > ko, we have
1 Nk+1 2
Quni(w) = 0xt0) 2 gef | 1= 3 [ 0, ((p1 -+ p) ™ G+ x0))
kK n=
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On the other hand, by the definition of S in (2.28) for k > 1, we have

Ok (x0) = AZA [15%, Imp, ((p1 -+ pn) " (k4 x0) 2
€Ak

B X I Imp, ((p1-- p) ™' O +Xo))|2-
rEAL

v

By the above inequality, we have

1
Quti(x0) = Qux0) = zef (1= A7 Qux0)) . Yk = k.

Therefore, the limit property in (2.28) shows
liklggf(QkH(xo) — Qk(x0)) =

Together with (2.25), the above inequalities imply
oo
1> Qur(xo) = lim Qx(xo) = Y (Qiy1(x0) — Qx(x0)) = +00,
k—o00 =1

which is impossible. Hence, I" is a spectrum of . The sufficiency of [2, Theorem

1.1] is proven. O
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