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Abstract

Let {pn}n≥1 and {dn}n≥1 be two sequences of integers such that |pn| > |dn| > 0

and {dn}n≥1 is bounded. It is proven by Deng and Li that the Moran-type Bernoulli

convolution

μ := δp−1
1 {0,d1} ∗ δp−1

1 p−1
2 {0,d2} ∗ · · · ∗ δp−1

1 ...p−1
n {0,dn} ∗ . . .

is a spectral measure if and only if the numbers of factor 2 in the sequence
{ p1 p2...pn

2dn

}
n≥1 are different from each other. Unfortunately, there is a gap in the proof

of the sufficiency. Here we give a new proof to close the gap.

Keywords Moran-type · Bernoulli convolution · One dimension · Spectrality

Mathematics Subject Classification MSC: Primary 42C05 · 42A65; Secondary
28A78 · 28A80

1 Introduction

In the proof of [2, Theorem 4.3 (iii)], the inclusion relationship “{γ + bγ : γ ∈ �} ⊂
∑�n

j=1({0} ∪ Uj )" maybe wrong in some cases. Actually, this inclusion relationship

need a precondition “� j ≤ �n for all j < �n". The following example shows that,
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there are examples that � j > �n holds for at least one integer j < �n for all n > 0.

Hence, the sufficiency of [2, Theorem 1.1] needs to be reproved.

Example Let p2n−1 = 4, p2n = 9 and d2n−1 = 1, d2n = 8 for all n ≥ 1. Then, the

definition of kn and �n shows

k2n = v2(
p1 p2 · · · p2n

2d2n
) = v2(

36n

16
) = 2n − 4, ∀ n ≥ 1,

k2n−1 = v2(
p1 p2 · · · p2n−1

2d2n−1
) = v2(

36n−1 × 4

2
) = 2n − 1, ∀ n ≥ 1.

Also, �2n−1 = 2n + 2 and �2n = 2n for all n ≥ 1. This means ��n−1 > �n for all

n ≥ 1.

We recall the definition of Moran-type Bernoulli convolution. Let {pn}n≥1 and

{dn}n≥1 be two sequences of integers satisfying |pn| ≥ 2, |dn| ≥ 1 and

+∞∑

n=1

|p−1
1 p−1

2 · · · p−1
n dn| < +∞.

The weak limit of the following convolutions is called a Moran-type Bernoulli

convolution

μn = δp−1
1 D1

∗ δp−1
1 p−1

2 D2
∗ · · · ∗ δp−1

1 p−1
2 ···p−1

n Dn
.

And we denote it by

μ = δp−1
1 D1

∗ δp−1
1 p−1

2 D2
∗ · · · ∗ δp−1

1 p−1
2 ···p−1

n Dn
· · · . (1.1)

We shall reprove the sufficiency of the following result (i.e. [2, Theorem 1.1]).

Theorem 1.1 For the measure μ defined by (1.1) with |pn| > |dn| for all n ≥ 2,

assume that the sequence {|dn|}+∞
n=1 is bounded. Then, μ is a spectral measure if and

only if k j 
= ki for all j > i ≥ 1, where

kn = v2

( p1 p2 . . . pn
2dn

)
= v2(p1 p2 . . . pn) − v2(2dn), n = 1, 2, 3, . . . . (1.2)

2 Proof of the Sufficiency of Theorem 1.1

In order to make the proof more readable, we first simplify our model.
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Proposition 2.1 For the measure μ defined by (1.1), there exist two sequences of

integers {cn}∞n=1 and {qn}∞n=1 such that for n ≥ 1, we have gcd(qn, cn) = 1 and

q−1
1 q−1

2 · · · q−1
n cn = p−1

1 p−1
2 · · · p−1

n dn . (2.1)

Furthermore, we have |qn| > |cn| when |pn| > |dn| (n = 1, 2, . . . ). Hence, we can

rewrite μ as

μ = δq−1
1 C1

∗ δq−1
1 q−1

2 C2
∗ δq−1

1 q−1
2 q−1

3 C3
· · · ∗ δq−1

1 q−1
2 ···q−1

n Cn
∗ · · · , (2.2)

where Cn = {0, cn}.
Proof Write g0 = 1, and define inductively

gn = gcd(|gn−1 pn|, |dn|), qn = gn−1 pn
gn

and cn = dn
gn

, ∀ n ≥ 1.

It is clear that for any n ≥ 1, we have gcd(qn, cn) = 1 and (2.1). By writing

Cn = {0, cn}, we have

δq−1
1 q−1

2 ···q−1
n Cn

= δp−1
1 p−1

2 ···p−1
n Dn

,

which implies that (2.2) holds.

If |pn| > |dn|, noting |gn−1 pn| ≥ |pn|, it is obvious that |qn| > |cn|. ��
The above Proposition 2.1 shows that, in order to prove the sufficiency of Theorem

1.1, without loss of generality, we can assume that gcd(dn, pn) = 1. By the argument

in [2], wewill always assume that [2, (2.9)] holds without loss of generality. Therefore,

we shall assume that the following conditions hold in the sequel:

pn ≥ 2, dn ≥ 1, gcd(dn, pn) = 1,
p1 p2 · · · pn

2dn
∈ N, ∀ n ≥ 1. (2.3)

The following Proposition 2.2 is obviously true.

Proposition 2.2 Let ν be a probability measure and its support has finite cardinality

N . If L2(ν) has an orthogonal set {e2π iλx : λ ∈ 	} and #	 is at least N , then 	 is a

spectrum of ν and #	 = N.

Wewill continue to use notations �n, kn, Un, tn, rn defined in [2] and the constant

c is defined in [2, Lemma 4.1 (i)]. Given a nonzero integer n, we denote by θ(n) the

odd part of n, i.e. θ(n) = n
2ν2(n) . Then, we rewrite

Un = 2knθ(p1 p2 · · · p�n )(2Z + 1), n ≥ 1. (2.4)
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The following set will play an important role in the sequel

I = {n : �n = n}. (2.5)

Lemma 2.3 Assume that (2.3) holds and ki 
= k j for all i > j ≥ 1. Then, we have the

following statements.

(i). #I = +∞.

(ii). Let B be a finite nonempty subset of positive integers. Then, � := ∑

j∈B
{0, a j } is

a spectrum (with cardinality 2#B) of ∗ j∈Bδp−1
1 p−1

2 ···p−1
j D j

for any a j ∈ Uj .

(iii). Let B be a finite nonempty subset of positive integers. Assume that	 ⊂ ∑

j∈B
({0}∪

Uj ) is a spectrum of the probability measure ∗ j∈Bδp−1
1 p−1

2 ···p−1
j D j

. For any m ≥
max{� j : j ∈ B} and λ ∈ 	, we take an integer bλ ∈ p1 p2 · · · pmZwith b0 = 0.

Then, the set {λ + bλ : γ ∈ 	} is also a spectrum of the probability measure

∗ j∈Bδp−1
1 p−1

2 ···p−1
j D j

. Furthermore, we have {γ +bλ : γ ∈ 	} ⊂ ∑

j∈B
({0}∪Uj ).

Proof (i) It is sufficient to prove that for any integer N > 0, there exists a positive

integer n > N such that �n = n.

Indeed, since {dn}n≥1 is bounded, there is an integer z0 such that kn ≥ z0 for all

n > 0. Hence, there is an integer n > N such that kn = min{k j : j > N }. Since
ki 
= k j for all i > j ≥ 1, we see that kn < k j for all j > n. Hence, the definition of

�n shows �n = n. The conclusion is proven.

(ii) Suppose B = { j1, j2, · · · , js} with k j1 < k j2 < · · · < k js . From [2, Lemma

4.2], it follows that ki < k j implies �i ≤ � j . Then, the definition of Un shows

Ujt +
∑

t<i≤s

({0} ∪Uji ) = Ujt , t = 1, 2, . . . , s − 1. (2.6)

For any ξ = ∑

j∈B
ξ j and η = ∑

j∈B
η j ∈ � with ξ j , η j ∈ {0, a j } and ξ j 
= η j for at

least one j ∈ B, it is easy to see ξ − η ∈ ∑

j∈B
{0, ±a j }. Write t = min{i : ξ ji 
=

η ji , 1 ≤ i ≤ s}. Then, we have ξ − η ∈ Ujt + ∑

t<i≤s
({0} ∪Uji ). From (2.6) it follows

ξ − η ∈ Ujt . This implies ξ − η ∈ Ujt and #� = 2s . Furthermore, ξ − η ∈ Ujt shows

that ξ − η is a zero point of the Fourier transformation of the probability measure

∗ j∈Bδp−1
1 p−1

2 ···p−1
j D j

, i.e.
∏

j∈B
δ̂p−1

1 p−1
2 ···p−1

j D j
(ξ − η) = 0.

It is easy to see that the support of themeasure∗ j∈Bδp−1
1 p−1

2 ···p−1
j D j

has cardinality at

most 2s . Proposition 2.2 shows that� is a spectrumof themeasure∗ j∈Bδp−1
1 p−1

2 ···p−1
j D j

and #� = 2s = 2#B .
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(iii) Note a fact that for all j ∈ B, the integer p1 p2 · · · p j is a period of δ̂p−1
1 ···p−1

j D j
.

Form ≥ max{� j : j ∈ B} ≥ j ,we have δ̂p−1
1 ···p−1

j D j
(x+λ+bλ) = δ̂p−1

1 ···p−1
j D j

(x+λ)

for all x ∈ R, j ∈ B and λ ∈ 	. Hence

∑

γ∈{λ+bλ:λ∈	}

∣∣∣∣∣∣

∏

j∈B
δ̂p−1

1 ···p−1
j D j

(x + γ )

∣∣∣∣∣∣

2

=
∑

λ∈	

∣∣∣∣∣∣

∏

j∈B
δ̂p−1

1 ···p−1
j D j

(x + λ)

∣∣∣∣∣∣

2

, ∀ x ∈ R.

That means that the first conclusion in (iii) is proven by using [2, Proposition 2.3].

For any λ ∈ 	, it can be written as λ = ∑

j∈B
b j with b j ∈ ({0} ∪ Uj ). Let B =

{ j1, j2, · · · , js}with k j1 < k j2 < · · · < k js as in (ii) and define t = min{i : b ji 
= 0}.
Then, (2.6) shows λ ∈ Ujt . Since m ≥ max{� j : j ∈ B}, the definition ofUj implies

that Uj + bλ = Uj for all j ∈ B, which implies λ + bλ ∈ Ujt . Hence, we have

{λ + bλ : λ ∈ 	} ⊂ ∑

j∈B
({0} ∪ Uj ) for any bλ ∈ p1 p2 · · · pmZ with b0 = 0. The

second conclusion in (iii) is proven. ��

The following two lemmas deal with the possible case that � j > �n for some

j < �n .

Lemma 2.4 Assume that kn 
= km for all n 
= m and (2.3) holds. Furthermore, assume

that there exists a positive integer n0 such that for any n ≥ n0 there exists an integer

jn < �n satisfying � jn > �n.

(i) . For any i ≥ n0, there is at least one member of the group pi , pi+1, · · · , pi+c

which is an odd integer larger than or equal to 3.

(ii) . There exists a positive integer N1 ≥ 0 such that

dn
θ(p�i+1 · · · pn) ≤ 1, n0 ≤ i ≤ n − N1. (2.7)

(iii) . For any n ≥ n0 + c, we have v2(pn) < max{v2(d j ) : j > 0}.

Proof (i) Given i ≥ n0, suppose pi , pi+1, · · · , pi+c are all even. From the assump-

tion gcd(pn, dn) = 1, it is clear that di , di+1, · · · , di+c are all odd. Hence,

ki < ki+1 < · · · < ki+c, which implies �i = i since [2, Lemma 4.1 (i)] shows

i ≤ �i ≤ i + c. On the other hand, however, our assumption shows for the integer i ,

there is a positive integer j < �i such that � j > �i . Then, we have k j > k� j > ki .

In virtue of �i = i , we have j < i . Since pi is even and di is odd, we have

ki = v2(p1 p2 · · · pi ) − 1 > v2(p1 p2 · · · p j ) − 1 ≥ k j , which leads to a contra-

diction. Therefore, at least one member of pi , pi+1, · · · , pi+c is odd which is larger

than or equal to 3. The conclusion (i) is proven.
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(ii) Choose a positive integer s > 0 such that 3s ≥ max{dn : n > 0}. Thus for i ≥ n0,

we have

max{dn : n > 0}
p�i+1 p�i+2 · · · p�i+sc

≤ 1.

It is clear that we finish the proof by taking N1 = sc.

(iii) Suppose v2(pn) ≥ max{v2(d j ) : j > 0} for some n ≥ n0 + c. For any j and m

with j < n ≤ m, we have km = v2(p1 p2 · · · pm) − 1 − v2(dm) ≥ v2(p1 p2 · · · p j ) +
v2(pn) − 1 − v2(dm) ≥ v2(p1 p2 · · · p j ) − 1 ≥ k j . In fact, by the assumption that

km 
= k j , we have km > k j . Let ks = max{k j : n0 ≤ j ≤ n − 1}. According to the

definition of �s , we have �s = n − 1.

On the other hand, however, for the integer s, there exits a positive integer j0 with

j0 < �s such that � j0 > �s , which implies � j0 ≥ n. Noting that j0 < n, according to

the above argument, we get k� j0
> k j0 , which is a contradiction to the definition of

� j0 . The statement (iii) is proven. ��
Lemma 2.5 Assume that kn 
= km for all n 
= m and (2.3) hold. Furthermore, assume

that there exists a positive integer n0 such that for any n ≥ n0 there exists an integer

jn < �n satisfying � jn > �n. Then, there are small constants ε > 0and θ0 > 0 such that

for any n1 and n2 ∈ I with n2 > n1+N1, there exists a spectrum	 =∑n2
i=n1+1{0, ai }

of ∗n2i=n1+1δp−1
1 p−1

2 ···p−1
i Di

such that

inf
λ∈	, |y|≤θ0

⎧
⎨

⎩

c∏

j=1

∣∣∣∣mp−1
n2+1···p−1

n2+ j Dn2+ j

( λ

p1 p2 · · · pn2
+ y
)
∣∣∣∣

⎫
⎬

⎭
> ε. (2.8)

Proof We first construct the spectrum 	. Write D = max{dn : n ≥ 1} and S = {i :
n1 + 1 ≤ i ≤ n2}. We divide the set S into two parts S1 and S2, where

S1 =
{
i ∈ S : Dθ(p1 · · · p�i )

θ(p1 · · · pn2+1)
≥ 1

}
and S2 =

{
i ∈ S : Dθ(p1 · · · p�i )

θ(p1 · · · pn2+1)
< 1

}
.

Take

ai =
{
2ki θ(p1 · · · pn2+c), i ∈ S1,

2ki θ(p1 · · · p�i ), i ∈ S2.
(2.9)

[2, Lemma 4.1 (i)] shows that n2 + c ≥ �i for all i ∈ S1. By the definition ofUn , it

is clear that ai ∈ Ui for all i ∈ S. Then, Lemma 2.3 shows that 	 =∑n2
i=n1+1{0, ai }

is a spectrum of ∗n2i=n1+1δp−1
1 p−1

2 ···p−1
i Di

. By the definition of the function θ , for i ∈ S1

we have

dn2+ j ai
p1 · · · pn2+ j

= θ(dn2+ j )θ(pn2+ j+1 · · · pn2+c)

2kn2+ j+1−ki
∈ 2ki−kn2+ j−1(2Z + 1). (2.10)
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According to the definition of S2, we have �i ≤ n2 for any i ∈ S2. Thus we have

dn2+ j ai
p1 · · · pn2+ j

= 2ki−kn2+ j−1θ(dn2+ j )

θ(p�i+1 · · · pn2+ j )
, i ∈ S2. (2.11)

Given λ =
n2∑

i=n1+1
bi ∈ 	with bi ∈ {0, ai }(n1 +1 ≤ i ≤ n2), write ki1 = min{ki :

i ∈ S1, bi 
= 0} when the set {i : i ∈ S1, bi 
= 0} is not empty. According to (2.10)

and the assumption that ki 
= k j for any i 
= j , we have

⎧
⎨

⎩

∑
i∈S1

dn2+ j bi
p1···pn2+ j

∈ 2ki1−1−kn2+ j (2Z + 1), {i : i ∈ S1, bi 
= 0} 
= ∅,
∑

i∈S1

dn2+ j bi
p1···pn2+ j

= 0, {i : i ∈ S1, bi 
= 0} = ∅.
(2.12)

Let ki2 = max{ki : i ∈ S2, bi 
= 0} when the set {i : i ∈ S2, bi 
= 0} is not empty.

According to the definition of S2, we have θ(dn2+ j ) ≤ D < θ(p�i+1 · · · pn2+1) for

i ∈ S2. Thus we have θ(dn2+ j ) + 2 ≤ θ(p�i+1 · · · pn2+1). Hence,
θ(dn2+ j )

θ(p�i+1···pn2+1)
≤

θ(dn2+ j )

θ(dn2+ j )+2 ≤ D
D+2 for any i ∈ S2. Also by (2.11) and the assumption that kn 
= km

for any n 
= m, we get

0 ≤
∑

i∈S2

dn2+ j bi
p1 · · · pn2+ j

<
D

D + 2

∑

s≥0

2ki2−1−kn2+ j−s = D

D + 2
2ki2−kn2+ j . (2.13)

Given 1 ≤ j ≤ c, we consider

mp−1
n2+1···p−1

n2+ j Dn2+ j

(
λ

p1 p2 · · · pn2

)
= m{0,1}

(
λdn2+ j

p1 p2 · · · pn2+ j

)
, λ ∈ 	. (2.14)

And then we will deal with two cases.

Case A. {i : i ∈ S1, bi 
= 0} = ∅ or ki1 > kn2+ j .

From (2.12) it is clear that
∑

i∈S1

dn2+ j bi
p1 · · · pn2+ j

∈ Z. (2.15)

Noting that i2 ∈ S2, we see �i2 ≤ n2, which implies kn2+ j > ki2 . In virtue of

(2.13), we get

∑

i∈S2

dn2+ j bi
p1 · · · pn2+ j

∈
(
0,

1

2

D

D + 2

)
.
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Since m{0,1} has period 1, we have

m{0,1}
(

λdn2+ j

p1 p2···pn2+ j

)
= m{0,1}

(
n2∑

i=n1+1

dn2+ j bi
p1···pn2+ j

)

= m{0,1}

(
∑

i∈S2

dn2+ j bi
p1···pn2+ j

)

= m{0,1}(α)

(2.16)

for some α ∈
(
0, 1

2
D

D+2

)
.

Case B. ki1 < kn2+ j .

Without loss of generality, we assume that the set {i : i ∈ S2, bi 
= 0} is not empty.

Otherwise, we have
∑

i∈S2

dn2+ j bi
p1···pn2+ j

= 0. From the definitions of i1 and i2, it follows

that ki1 > ki2 . By (2.13), we get

0 ≤
∑

i∈S2

dn2+ j bi
p1 · · · pn2+ j

<
D

D + 2
2ki2−kn2+ j ≤ D

D + 2
2ki1−kn2+ j−1.

Combining (2.12), this shows there exists an integer z such that

∑

i∈S1∪S2

dn2+ j bi
p1 · · · pn2+ j

= 2ki1−kn2+ j−1(2z + 1 + η)

for some η ∈
(
0, D

D+2

)
.

Given a real number r ∈ R, we denote by ||r || 1
2
the distance between r and it’s

nearest middle point of two neighboring integer points, i.e.

||r || 1
2

= min
z∈Z

{∣∣∣∣r − z − 1

2

∣∣∣∣ ,
∣∣∣∣r − z + 1

2

∣∣∣∣

}
.

Thus the assumption ki1 < kn2+ j implies

∣∣∣
∣∣∣2ki1−kn2+ j−1(2z + 1)

∣∣∣
∣∣∣ 1
2

≥ 2ki1−kn2+ j−1.

By noting that
∣∣∣2ki1−kn2+ j−1η

∣∣∣ < 2ki1−kn2+ j−1 D
D+2 , we get

∣∣∣
∣∣∣

λdn2+ j

p1 p2···pn2+ j

∣∣∣
∣∣∣
1
2

=
∣∣∣
∣∣∣
∑

i∈S1∪S2

dn2+ j bi
p1···pn2+ j

∣∣∣
∣∣∣
1
2

=
∣∣∣
∣∣∣2ki1−kn2+ j−1(2z + 1 + η)

∣∣∣
∣∣∣ 1
2

≥ 2ki1−kn2+ j−1 2
D+2 .

(2.17)
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Since i1 ∈ S1, from Lemma 2.4 (i) it follows that i1 > n2 − N1. By Lemma 2.4

(iii), we have

kn2+ j − ki1 = ν2(p1 · · · pn2+ j ) − ν2(2dn2+ j ) − ν2(p1 · · · pi1) + ν2(2di1)

≤ ν2(pi1+1 · · · pn2+ j ) + ν2(di1)

≤ (n2 + j − i1 + 1)max{ν2(dn) : n ≥ 1}
≤ (N1 + c + 2)max{ν2(dn) : n ≥ 1}.

(2.18)

Together with (2.17) and the boundedness of {dn}∞n=1, we conclude that there is a

positive constant 0 < θ < 1
2 such that

∣∣∣∣

∣∣∣∣
λdn2+ j

p1 p2 · · · pn2+ j

∣∣∣∣

∣∣∣∣
1
2

=
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈S1∪S2

dn2+ j bi
p1 · · · pn2+ j

∣∣∣∣∣∣

∣∣∣∣∣∣ 1
2

> θ.

Therefore, combining the conclusions of Case A and Case B we see the modulus

of (2.14) has a positive lower bound. Furthermore, there is a constant ε > 0 such that

c∏

j=1

∣∣∣∣mp−1
�n+1···p−1

�n+ j D�n+ j

(
λ

p1 p2 · · · pn2

)∣∣∣∣ > 2ε, ∀ λ ∈ 	.

Finally, note that

{δp−1
n+1Dn+1

∗ δp−1
n+1 p

−1
n+2Dn+2

∗ · · · ∗ δp−1
n+1···p−1

n+cDn+c
: n > 0}

is a family of probability measures supported on subsets of [0, 1]. Hence, their
Fourier transformations are equi-continuous (cf [2, Definition 4.4 (iii)]). Thus we see

that there is a small positive number θ0 > 0 such that (2.8) holds for some constant

ε > 0. The proof is completed. ��
Furthermore, we have the following Lemma 2.6. For k ≥ 1, we write

μ>k := δp−1
k+1Dk+1

∗ δp−1
k+1 p

−1
k+2Dk+2

∗ · · · .

Lemma 2.6 Assume that kn 
= km for all n 
= m and (2.3) holds. Furthermore, assume

that there exists a positive integer n0 such that for any n ≥ n0, there exists an integer

jn < �n satisfying � jn > �n. Consider the set 	 defined in Lemma 2.5 for n1, n2 ∈ I
satisfying n2 > n1 + N1. There are small positive constants ε1 > 0 and θ1 > 0 such

that for any λ ∈ 	, there exists an integer bλ ∈ Z with b0 = 0 such that

∣∣∣∣μ̂>n2(y + λ + p1 p2 · · · pn2+cbλ

p1 p2 · · · pn2
)

∣∣∣∣ > ε1, ∀ y ∈ [−θ1, θ1], λ ∈ 	. (2.19)
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Proof By [2, Lemma 4.5], there are small positive constants ε′ > 0 and θ0 > θ1 > 0

such that for any λ ∈ 	, there exists an integer bλ with b0 = 0 such that

∣∣∣∣μ̂>n2+c(y + bλ + λ

p1 p2 · · · pn2+c
)

∣∣∣∣ > ε′, ∀ y ∈ [−θ1, θ1]. (2.20)

Recall a fact that the mask functionm{0,1}(x) has period 1. For any λ ∈ 	, we have
∣∣∣μ̂>n2 (y + λ+p1 p2···pn2+cbλ

p1 p2···pn2 )

∣∣∣

=
∣∣∣μ̂>n2+c(y + λ+p1 p2···pn2+cbλ

p1 p2···pn2+c
)

∣∣∣ ·∏c
j=1

∣∣∣∣mp−1
n2+1···p−1

n2+ j Dn2+ j

(
y + λ+p1 p2···pn2+cbλ

p1 p2···pn2
)
∣∣∣∣

=
∣∣∣μ̂>n2+c(y + bλ + λ

p1 p2···pn2+c
)

∣∣∣ ·∏c
j=1

∣∣∣∣mp−1
n2+1···p−1

n2+ j Dn2+ j

(
y + λ

p1 p2···pn2
)
∣∣∣∣ .

(2.21)

Lemma 2.5 shows there are small constants ε > 0 and θ0 such that

c∏

j=1

∣∣∣∣mp−1
n2+1···p−1

n2+ j Dn2+ j

(
y + λ

p1 p2 · · · pn2
)
∣∣∣∣ > ε, ∀ y ∈ [−θ0, θ0]. (2.22)

Letting ε1 = εε′, the inequality (2.19) follows from (2.20), (2.21) and (2.22). The

proof is completed. ��

Now we are in the place to reprove the sufficiency of [2, Theorem 1.1].

Proof of the sufficiency of [2, Theorem 1.1].

We shall deal with two cases.

(A) If there is an infinite subset I0 ⊂ I (I is defined in (2.5)) such that �i ≤ n for

any i ≤ n and n ∈ I0. Then, the proof in [2] works by replacing B by I0.
(B) If there are only finitely many n ∈ I such that �i ≤ n for any i ≤ n. Then,

there is an integer n0 > 0 such that for any n ∈ I with n ≥ n0, there exists at least one

integer jn < �n satisfying � jn > �n . Also, as stated in the beginning of this section,

all conditions in (2.3) can be assumed without loss of generality.

Then, we extend the idea of [1, Lemma 2.6] and [1, Theorem 2.7] to construct a

spectrum of μ. This spectrum is different from the one in [2]. Let I1 = {n ∈ I : n >

n0}
We first choose n1 ∈ I1 and define

	1 = {0, a1} + {0, a2} + · · · + {0, an1},

where ai = 2ki θ(p1 · · · p�i ) ∈ Ui for 1 ≤ i ≤ n1. Since I1 is infinite and pn ≥ 2, we

can find a sufficiently large integer n2 ∈ I1 such that n2 > n1 + N1 and

(p1 p2 · · · pn2)−1	1 ⊂
[

− θ1

22
,

θ1

22

]
,
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where N1 and θ1 are defined in Lemma 2.4 and 2.6, respectively. Let ε1 be the constant

in Lemma 2.6 and 	1,2 be a spectrum of ∗n2i=n1+1δp−1
1 p−1

2 ···p−1
i Di

as stated in Lemma

2.5, i.e.

	1,2 = {0, an1+1} + {0, an1+2} + · · · + {0, an2},

where

ai =
⎧
⎨

⎩

2ki θ(p1 · · · pn2+c), if
Dθ(p1···p�i )

θ(p1···pn2+1)
≥ 1,

2ki θ(p1 · · · p�i ), if
Dθ(p1···p�i )

θ(p1···pn2+1)
< 1.

(2.23)

According to Lemma 2.6, for any λ ∈ 	1,2, there exits an integer k1,λ ∈ Z with

k1, 0 = 0 such that

∣∣∣μ̂>n2

( γ

p1 p2 · · · pn2
+ λ + p1 · · · pn2+ck1, λ

p1 p2 · · · pn2
)∣∣∣ > ε1, ∀ γ ∈ 	1, λ ∈ 	1,2.

Lemma 2.3 (ii) and (iii) show that 	2 := {γ + λ + p1 p2 · · · pn2+ck1, λ : γ ∈
	1, λ ∈ 	1,2} is a spectrum of the probability measure δp−1

1 D1
∗ δp−1

1 p−1
2 D2

∗ · · · ∗
δp−1

1 p−1
2 ···p−1

n2 Dn2
. Furthermore, [2, Lemma 4.1] and the definitions of Ui show that

Ui + p1 p2 · · · pn2+ck1, λ = Ui for all i ≤ n2. Hence, by k1, 0 = 0 and the definitions

of 	1 and 	2, we see 	1 ⊂ 	2 ⊂
n2∑

j=1
({0} ∪Uj ). In a word, we have

∣∣∣μ̂>n2

( λ

p1 p2 · · · pn2
)∣∣∣ > ε1, ∀ λ ∈ 	2. (2.24)

Continuing in this way, we can find a strictly increasing sequence {nk}∞k=1 ⊂ I1
and 	k such that the following properties (2.25), (2.26), (2.27) and claim hold.

0 ∈ 	k ⊂ 	k+1 ⊂
nk+1∑

j=1

({0} ∪Uj ), k = 1, 2, · · · , (2.25)

(p1 p2 · · · pnk+1)
−1	k ⊂

[
− θ1

2k+1 ,
θ1

2k+1

]
, k = 1, 2, · · · , (2.26)

∣∣∣μ̂>nk

( λ

p1 p2 · · · pnk
)∣∣∣ > ε1, ∀ λ ∈ 	k, k = 2, 3, · · · . (2.27)

Claim. The set 	k is a spectrum of the probability measure δp−1
1 D1

∗ δp−1
1 p−1

2 D2
∗

· · · ∗ δp−1
1 p−1

2 ···p−1
nk Dnk

for all k = 1, 2, · · · .
Let � =

∞⋃
k=1

	k . We shall prove � is a spectrum of μ.

For any a 
= b ∈ �, from (2.25) it follows that a 
= b ∈ 	k for some k > 0.

Hence, a − b is a zero point of the Fourier transform of δp−1
1 D1

∗ δp−1
1 p−1

2 D2
∗ · · · ∗
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δp−1
1 p−1

2 ···p−1
nk Dnk

. Hence, μ̂(a − b) = 0, which implies the exponential function set

E� = {e2π iγ x : γ ∈ �} is an orthogonal family of L2(μ).

Assume, on the contrary, that � is not a spectrum of μ. Then, [2, Proposition 2.3]

shows that Qμ,�(x0) < 1 for some x0 ∈ R.

Recall that lim
k→∞(p1 p2 · · · pnk )−1x0 = 0 and �̂ := {̂ν : ν ∈ �} (here � = {μ>n :

n ≥ 1}) is equi-continuous. From (2.26) it follows that

βk := inf
λ∈	k

|μ̂>nk ((p1 p2 · · · pnk+1)
−1(λ + x0))| → 1 as k → ∞. (2.28)

Furthermore, from (2.27) it follows that there exists a positive integer k0 > 0 such

that for any k ≥ k0 and λ ∈ 	k , we have

|μ̂>nk ((p1 p2 · · · pnk )−1(λ + x0))| ≥ 1

2
ε1. (2.29)

Let

Qk(x0) =
∑

λ∈	k

|μ̂(λ + x0)|2, k = 1, 2, · · · .

According to [2, (2.2)] and (2.29), for k ≥ k0 we have

Qk+1(x0) − Qk(x0)

= ∑

λ∈	k+1\	k

∏∞
n=1 |mDn ((p1 · · · pn)−1(λ + x0))|2

= ∑

λ∈	k+1\	k

∏nk+1
n=1 |mDn ((p1 · · · pn)−1(λ + x0)|2|μ̂>nk+1 ((p1 · · · pnk+1 )

−1(λ + x0))|2

≥ 1
4ε21

∑

λ∈	k+1\	k

∏nk+1
n=1 |mDn ((p1 · · · pn)−1(λ + x0))|2.

(2.30)

The above claim shows

∑

λ∈	k+1

nk+1∏

n=1

∣∣∣mDn (p
−1
1 · · · p−1

n (λ + x0))
∣∣∣
2 = 1, k = 1, 2, · · · .

Thus (2.30) implies that for any k ≥ k0, we have

Qk+1(x0) − Qk(x0) ≥ 1

4
ε21

⎛

⎝1 −
∑

λ∈	k

nk+1∏

n=1

∣∣∣mDn ((p1 · · · pn)−1(λ + x0))
∣∣∣
2

⎞

⎠ .
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On the other hand, by the definition of βk in (2.28) for k ≥ 1, we have

Qk(x0) = ∑

λ∈	k

∏∞
n=1 |mDn ((p1 · · · pn)−1(λ + x0)|2

≥ β2
k

∑

λ∈	k

∏nk+1
n=1

∣∣mDn ((p1 · · · pn)−1(λ + x0))
∣∣2 .

By the above inequality, we have

Qk+1(x0) − Qk(x0) ≥ 1

4
ε21

(
1 − β−2

k Qk(x0)
)

, ∀ k ≥ k0.

Therefore, the limit property in (2.28) shows

lim inf
k→∞ (Qk+1(x0) − Qk(x0)) ≥ 1

4ε
2
1

(
1 − lim

k→∞ β−2
k Qk(x0)

)

= 1
4ε

2
1

(
1 − Qμ,�(x0)

)
> 0.

Together with (2.25), the above inequalities imply

1 > Qμ,�(x0) = lim
k→∞ Qk(x0) ≥

∞∑

k=1

(Qk+1(x0) − Qk(x0)) = +∞,

which is impossible. Hence, � is a spectrum of μ. The sufficiency of [2, Theorem

1.1] is proven. ��
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