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Abstract
The Garden of Eden theorem is a fundamental result in the theory of cellular automata,
which establishes a necessary and sufficient condition for the surjectivity of a cellular
automaton with a finite alphabet over an amenable group. Specifically, the theorem
states that such an automaton is surjective if and only if it is pre-injective, where
pre-injectivity requires that any two almost equal configurations with the same image
under the automaton must be equal. This paper focuses on establishing the Garden
of Eden theorem over a ϕ-cellular automaton by demonstrating both Moore theorem
and Myhill theorem over ϕ-cellular automata are true. These results have significant
implications for the theoretical framework of the Garden of Eden theorem and its
applicability across diverse groups or altered versions of the same group. Overall, this
paper provides a more comprehensive study of ϕ-cellular automata and extends the
Garden of Eden theorem to a broader class of automata.

Keywords ϕ-Cellular automata · The Garden of Eden theorem · Surjectivity ·
Pre-injectivity

Mathematics Subject Classification 37B10 · 37B15 · 68Q80 · 43A07

1 Introduction

Cellular automata [4, Chapter 1] have been extensively studied in mathematics due
to their various applications in fields such as complexity theory, symbolic dynamics,
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and modeling complex systems. These constructs can be described as maps between
prodiscrete topological spaces, and possess important characteristics such as being
determined by a finite memory set and a local defining function.

If G is a group and A is a finite set, known as an alphabet, the configuration space
over G and A, denoted by AG , is the set of all functions x : G → A. We endow AG

with the prodiscrete topology, i.e. the product topology of the discrete topology of A,
and with the shift action of G on AG given by

g · x(h) := x
(
g−1h

)
, ∀x ∈ AG , g, h ∈ G.

A cellular automaton over AG is a function σ : AG → AG that satisfies the
following conditions: there exists a finite subset R ⊆ G, referred to as the memory
set of σ , and a local function μ : AR → A such that

σ(x)(g) = μ
((

g−1 · x
)∣∣∣

R

)
for all x ∈ AG and g ∈ G.

In the beginning, the Garden of Eden theorem is a result in the theory of cellular
automata which states that a cellular automaton is surjective if and only if it satisfies
a weak form version of injectivity, called pre-injectivity. The theorem was originally
proved byMoore andMyhil in the early 1960s for cellular automatawith finite alphabet
over the groups Z

d . Indeed, the surjectivity implies pre-injectivity for such cellular
automata was first proved by Moore in [7], and Myhill [8] obtained the converse
implication shortly after. In 1993, Machì and Mignosi [9] obtained that the Garden
of Eden theorem is still valid over any finitely generated groups with subexponential
growth. Later, Ceccherini-Silberstein, Machì and Scarabotti [5] proved in 1999 that
every amenable groups satisfies the Garden of Eden theorem. The recent results of
Bartholdi [2] and [1] finally showed that the class of groups that satisfies the Garden
of Eden theorem is precisely the amenable groups.

Theorem 1 (The Garden of Eden theorem) Let G be an amenable group and let B be
a finite set. Let σ : BG → BG be a cellular automaton. Then one has

σ is surjective ⇐⇒ σ is pre-injective.

In the pursuit of advancing our understanding of cellular automata, Castillo-
Ramirez et al in [3] introduced a new concept known asGeneralizedCellularAutomata
(GCA), taking a different approach than the so-called sliding block codes [6]. In their
work, the focus is on defining a generalized cellular automaton τ : AG → AH , where
H is an arbitrary group, through the utilization of a group homomorphismϕ : H → G.
This interesting extension opens new avenues for studying cellular automata within
the context of diverse mathematical structures.

Let T ,G be two groups. A finite-to-one surjective homomorphism ϕ : T → G
means that for a surjective homomorphism ϕ : T → G, there exists a positive integer
k ≥ 1 such that the cardinality of each pre-image of ϕ is no more than k, that is,∣∣ϕ−1(g)

∣∣ ≤ k for all g ∈ G.
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In this paper, we delve into their definition of Generalized Cellular Automata,
exploring its implications and applications. Our primary contribution lies in proving
the Garden of Eden Theorem for the generalized cellular automata. The Garden of
Eden Theorem holds significance as it sheds light on the fundamental properties and
possibilities inherent in this extended class of cellular automata. We obtain:

Theorem 2 (The Moore theorem over a ϕ-cellular automaton) Assume G is an
amenable group, T is a group that is homomorphic to G, and B is a finite set. Let
σ : BG → BT be a ϕ-cellular automaton, where ϕ : T → G is a finite-to-one
surjective homomorphism. Then, we have the following implication:

σ is surjective 
⇒ σ is pre-injective.

Theorem 3 (The Myhill theorem over a ϕ-cellular automaton) Assume G is an
amenable group, T is a group that is isomorphic to G, and B is a finite set. Let
σ : BG → BT be a ϕ-cellular automaton, where ϕ : T → G is an isomorphic map.
Then, we have the following implication:

σ is pre-injective 
⇒ σ is surjective.

Corollary 4 (The Garden of Eden theorem over a ϕ-cellular automaton) Assume G is
an amenable group, T is a group that is isomorphic to G, and B is a finite set. Let
σ : BG → BT be a ϕ-cellular automaton, where ϕ : T → G is an isomorphic map.
Then, we have the following equivalence:

σ is surjective ⇐⇒ σ is pre-injective.

The structure of this paper is as follows. In Sect. 2, we provide a review of some
definitions. Section3 establishes the equivalence between the existence of Garden of
EdenConfigurations andGarden of Eden Patterns on a ϕ-cellular automaton. Section4
introduces the property that a ϕ-cellular automaton σ : BG → BT satisfies, which
states that if two configurations, x and x ′, coincide on U , then their mappings σ(x)
and σ

(
x ′) also coincide on U−R . In Sect. 5, we focus on a key property of ϕ-cellular

automata for a finite-to-one surjective homomorphism ϕ, which states that applying
a ϕ-cellular automaton to a set of configurations does not increase the entropy of the
set. Finally, in Sect. 6, we provide proofs of the Moore and Myhill theorems over a
ϕ-cellular automaton by showing the equivalence between surjectivity, pre-injectivity,
and the maximality of the entropy of the ϕ-cellular automaton’s image.

2 Preliminaries

In this section,wewill build upon prior knowledge of amenable group theory, topology,
classical cellular automata over groups, generalized cellular automata over groups, and
the classical Garden of Eden theorem.

We have utilized a number of definitions and theorems proposed by Castillo-
Ramirez et al. in their paper [3]. Among these,we pay special attention toDefinitions 1,
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2, and Lemmas 1, 2, 4, which lay important theoretical foundations for our subsequent
research work. We have compiled these definitions and theorems in this section.

Let us begin by introducing some definitions and notations. Throughout the rest of
this paper, let B denote a finite set, while G and T denote groups. We will assume
that |B| is greater than or equal to 2, and that the set {0, 1} is included in B. This
assumption is important, as the case where |B| = 1 is trivial and lacks interest.

Definition 1 [4, Chapter 1] A cellular automaton over the group G and the alphabet
B is a mapping σ : BG → BG that satisfies the following properties: there exists a
finite subset R ⊂ G and a mapping μ : BR → B such that for all x ∈ BG and g ∈ G,
we have

σ(x)(g) = μ
((

g−1x
)∣∣∣

R

)

Here,
(
g−1x

)∣∣
R represents the restriction of the configuration g−1x to R. The set

R is referred to as the memory set, and μ is known as the local defining mapping for
σ .

Definition 2 [3, Definition 1] Let ϕ : T → G be a homomorphism. A ϕ-cellular
automaton over two homomorphic groups G, T and the alphabet B is a map σ :
BG → BT satisfying the following property: there exist a finite subset R ⊂ G and a
map μ : BR → B such that for all x ∈ BG and t ∈ T , the equation

σ(x)(t) = μ
((

ϕ
(
t−1

)
x
)∣∣∣

R

)
(1)

holds, where
(
ϕ

(
t−1

)
x
)∣∣

R denotes the restriction of the configuration ϕ
(
t−1

)
x to R.

The finite subset R mentioned above is commonly referred to as a "memory set," and
the map μ is known as a "local defining map" for the ϕ-cellular automaton.

Example 1 Let’s set G = 2Z, T = Z, and B = Z/2Z. The map ϕ : T → G is defined
as ϕ(n) = 2n for all n ∈ T . Now, consider the ϕ-cellular automaton σ : BG → BT ,
which is defined by

σ(x)(n) = x(2n) + x(2n + 2)

for all x ∈ BG and n ∈ T . This ϕ-cellular automaton operates over Z and Z/2Z, with
a memory set R = {0, 2}, and a local defining map μ : BR → B given by

μ(y) = y(0) + y(2) for all y ∈ BR

Example 2 Let’s set G = Z, T = {0, 1} × Z, and B = {0, 1}. The map ϕ : {0, 1} ×
Z −→ Z is defined as ϕ(a, n) = n for all (a, n) ∈ T . Now, consider the ϕ-cellular
automaton σ : BG → BT , which is defined by

σ(x)(a, n) = x(n) = x(ϕ(a, n)) = ϕ
(
(a, n)−1

)
x(0)
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for all x ∈ BG and (a, n) ∈ T . Then σ is a ϕ-cellular automaton with memory set
R = {0} and local defining map μ = idR .

Lemma 5 Let G, T be two groups. Suppose B is a finite set and ϕ : T → G is a group
homomorphim. Let σ : BG → BT be a ϕ-cellular automaton with memory set R, and
let t ∈ T . Then σ(x)(t) only depends on the restriction of x to ϕ(t)R.

Proof This follows directly from (1) because
(
ϕ

(
t−1

)
x
)
(r) = x(ϕ(t)r) for all r ∈

R. �
Definition 3 [3, Definition 2] Let G, T be two groups and suppose ϕ : T → G is
a group homomorphim. Let B be a finite set. A map σ : BG → BT is said to be
ϕ-equivariant if

tσ(x) = σ(ϕ(t)x) for all x ∈ BG , t ∈ T .

Lemma 6 [3, Lemma 1] Each ϕ-cellular automaton is ϕ-equivariant, where ϕ : T →
S is a homomorphic map.

Lemma 7 [3, Lemma 2] Each ϕ-cellular automaton is continuous.

If V is a subgroup of G, we can define a configuration in BG to be V -periodic if
v · x = x for all v ∈ V . The set of all V -periodic configurations in BG is denoted by
Fix (V )

Lemma 8 [3, Lemma 4] Let σ : BG → BT be a surjective ϕ-cellular automaton,
with ϕ : T → G being a homomorphism, then ϕ is injective.

SupposeG and T are homomorphic groups, and B is a finite set. Let σ : BG → BT

be a ϕ-cellular automaton, with R as its memory set andμ : BR → B as the associated
defining map. If R′ is a finite subset of G such that R ⊂ R′, then R′ is also a memory
set for σ , and the local defining map associated with R′ is the map μ′: BR′ → B,
given by μ′ = μ ◦ π , where π : BR′ → BR is the canonical projection (restriction
map). This demonstrates that a finite subset of G containing the memory set is also a
memory set for a ϕ-cellular automaton.

3 Garden of Eden Configurations

Suppose we have two groups, G and T , a homomorphic map ϕ : T → G, and a set B.
Let σ : BG → BT be a ϕ-cellular automaton. We define a configuration y ∈ BT as a
"Garden of Eden" configuration for σ if it does not belong to the image of σ . Hence,
when σ is surjective, there are no Garden of Eden configurations.

Next, let � ⊂ T be a finite subset. A pattern π : � → B is considered a Garden
of Eden pattern for σ if there is no configuration x ∈ BG such that σ(x)|� = π .
According to this definition, if π : � → B is a Garden of Eden pattern for σ , then
any configuration y ∈ BT such that y|� = π is also a Garden of Eden configuration
for σ . Therefore, the existence of a Garden of Eden pattern implies the existence of
Garden of Eden configurations, indicating the non-surjectivity of σ . We can show that
the converse is also true when the alphabet set is finite.
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Proposition 9 Consider groups G and T , with ϕ : T → G being a homomorphism,
and let B be a finite set. Let σ : BG → BT be a ϕ-cellular automaton. Assuming that
σ is not surjective, then it follows that σ contains a Garden of Eden pattern.

Proof It is a known fact that the set σ
(
BG

)
is closed in BT under the prodiscrete

topology. Consequently, the set BT \σ (
BG

)
is open in BT . Hence, for a Garden of

Eden configuration y ∈ BT with respect to σ , we can identify a finite subset � ⊂ G
such that

V (y,�) =
{
x ∈ BT : x |� = y|�

}
⊂ BT \σ

(
BG

)
.

In simpler terms, any configuration that extends y|� does not belong to σ
(
BG

)
,

implying that y|� serves as a Garden of Eden pattern for σ . �
Suppose G is a group and B is a set. We define two configurations x1, x2 ∈ BG

to be almost equal if the set {g ∈ G : x1(g) �= x2(g)} is finite. It is evident that this
definition establishes an equivalence relation on the set BG .

A map p : BG → BT is termed pre-injective if it satisfies the condition that if two
configurations x1, x2 ∈ BS are almost equal and p (x1) = p (x2), then x1 = x2. It is
evident from this definition that injectivity implies pre-injectivity. When the group G
is finite, the converse is obviously true. However, in the case of an infinite group G, a
pre-injective map p : BG → BT may not be injective.

Example 3 Let’s consider G = 2Z, T = Z, and B = Z/2Z. Define ϕ : T → G as
ϕ(n) = 2n for all n ∈ T . Now, let’s look at the ϕ-cellular automaton σ : BG → BT

defined by σ(x)(n) = x(2n) + x(2n + 2) for all x ∈ BG and n ∈ T .
We claim that σ is pre-injective. Suppose x1, x2 ∈ BG are two configurations

such that the set � = {n ∈ G : x1(n) �= x2(n)} is a nonempty finite subset of 2Z. Let
n0 be the largest even element in �. Then σ (x1) (n0/2) �= σ (x2) (n0/2), and thus
σ (x1) �= σ (x2). This demonstrates that σ is pre-injective. However, σ is not injective,
since the constant configurations c0, c1 ∈ BG given by c0(n) = 0 and c1(n) = 1 for
all n ∈ 2Z have the same image c0 under σ .

4 Interiors, Closures, and Boundaries

In this part of a groupG, given subsets A andW , the A-interiorW−A and the A-closure
W+A of W are defined as subsets of G, where

W−A = {g ∈ G : gA ⊂ W } and

W+A = {g ∈ G : gA ∩ W �= ∅}

Take notice that
W−A =

⋂
a∈A

Wa−1 (2)
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and
W+A =

⋃
a∈A

Wa−1 = W A−1 (3)

The A-boundary of W is the subset ∂A(W ) of S defined as

∂A(W ) = W+A\W−A.

Below are some general properties of the setsW−A,W+A, and ∂A(W ) that we will
frequently utilize in the following discussions.

Proposition 10 [4, Chapter 5] Let G be a group. Let A, A1, A2 and W be subsets of
G. Then the following hold:

(i) (G\W )−A = G\W+A;
(ii) (G\W )+A = G\W−A;
(iii) if a ∈ A, then W−A ⊂ Wa−1 ⊂ W+A;
(iv) if 1G ∈ A, then W−A ⊂ W ⊂ W+A;
(v) if A is nonempty and W is finite, then W−A is finite;
(vi) if A and W are both finite, then W+A and ∂A(W ) are finite;
(vii) if A1 ⊂ A2, then W−A2 ⊂ W−A1 ,W+A1 ⊂ W+A2 and ∂A1(W ) ⊂ ∂A2(W );
(viii) if g ∈ G, then g

(
W−A

) = (gW )−A, g
(
W+A

) = (gW )+A and g (∂A(W )) =
∂A(gW ).

LetG be a group. Recall that if there exists a net
(
Fj

)
j∈J of nonempty finite subsets

of G such that lim j
|Fj\Fj g||Fj | = 0 for all g ∈ G, then

(
Fj

)
j∈J is a right Følner net for

G.

Proposition 11 [4, Chapter 5] Suppose G is a group and
(
Fj

)
j∈J is a net consisting

of nonempty finite subsets of G. Then the following conditions are equivalent:

(a) The net
(
Fj

)
j∈J is a right Følner net for G.

(b) It holds that lim j
|∂A(Fj)||Fj | = 0 for every finite subset A ⊂ G.

Corollary 12 [4, Chapter 5] For a group G, the following conditions are equivalent:

(a) G is amenable;
(b) for every finite subset A ⊂ G and every real number ε > 0, there exists a nonempty

finite subset F ⊂ G such that

|∂A(F)|
|F | < ε (4)

One significant property of ϕ-cellular automata, as stated in the aforementioned
papers, is the following:

One important characteristic of ϕ-cellular automata is that a ϕ-cellular automaton
σ : BG → BT satisfies, which states that if two configurations, x and x ′, coincide on
U , then their mappings σ(x) and σ

(
x ′) also coincide onU−R . In more precise terms,

the following statement holds.
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Proposition 13 Given groups G and T , a homomorphism ϕ : T → G, and a set B,
let σ : BG → BT be a ϕ-cellular automaton with memory set R. If x and x ′ are
elements of BG and there exists a subset � of G such that x and x ′ are equal on � (or
G\�), then the outcomes of σ(x) and σ

(
x ′) will also be equal on the corresponding

sets determined as the preimages of �−R (or G\ (
�+R

)
).

Proof Suppose that x and x ′ coincide on �. If t ∈ ϕ−1
(
�−R

)
, then ϕ(t)R ⊂ � and

therefore σ(x)(t) = σ
(
x ′) (t) by Lemma 1. It follows that τ(x) and τ

(
x ′) coincide

on ϕ−1
(
�−R

)
.

Suppose now x and x ′ coincide on S\�. Then σ(x) and σ
(
x ′) coincide on

ϕ−1
(
(G\�)−R

) = ϕ−1
(
G\�+R

) = T \ϕ−1
(
�+R

)
by the first part of the proof

and Proposition 10(i). �

In simpler terms, this property ensures that if two initial configurations have the
same values within a certain region, their resulting configurations after applying the
ϕ-cellular automaton will also have the same values within the corresponding shifted
region, but in the opposite direction.

Note that this property plays a significant role in understanding the behavior and
dynamics of ϕ-cellular automata, providing insights into how local interactions can
affect the global evolution of these systems.

5 Tilings and Entropy

LetG be a group and let F and F ′ be subsets ofG. A subset L ⊂ G is an
(
F, F ′)-tiling

of G if the sets l F , l ∈ L , are pairwise disjoint, and the sets l F ′ cover G. In other
words, L ⊂ G is an

(
F, F ′)-tiling if the following conditions hold:

(T1) l1F ∩ l2F = ∅ for all l1, l2 ∈ L where l1 �= l2;
(T2) G = ⋃

l∈L lF ′.

Remark 1 Let G be a group and let F and F ′ be subsets of G. If L is an
(
F, F ′)-tiling

of G and if F1 and F ′
1 are subsets of G such that F1 ⊂ F and F ′ ⊂ F ′

1, then it is clear
that L is also an

(
F1, F ′

1

)
-tiling of G.

The Zorn lemma may be used to prove the existence of
(
F, F ′)-tilings for any

subset F of G and for F ′ ⊂ G "large enough". More precisely, we have the following:

Proposition 14 [4, Chapter 5] Let G be a group and let F be a nonempty subset of G.

Let F ′ =
{
g1g

−1
2 : g1, g2 ∈ F

}
. Then there is an

(
F, F ′)-tiling L ⊂ G.

Proposition 15 [4, Chapter 5] Let G be an amenable group and let
(
Fj

)
j∈J be a right

Følner net for G. Let E and E ′ be finite subsets of G and suppose that L ⊂ G is an(
E, E ′)-tiling of G. Let us set, for each j ∈ J ,

L j = L ∩ F−E
j = {

l ∈ L : l E ⊂ Fj
}
.
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Then there exist a real number α > 0 and an element j0 ∈ J such that

∣∣L j
∣∣ ≥ α

∣∣Fj
∣∣ for all j ≥ j0.

Let G be an amenable group, F = (
Fj

)
j∈J be a right Følner net for G, and B be

a finite set.
For E ⊂ G, we denote by πE : BG → BE the canonical projection (restriction

map). We thus have πE (x) = x |E for all x ∈ BG .

Definition 4 [4, Chapter 5] Let X ⊂ BG . The entropy entF (X) of X with respect to
the right Følner net F = (

Fj
)
j∈J is defined by

entF (X) = lim sup
j

log
∣∣πFj (X)

∣∣
∣∣Fj

∣∣ .

Here are some immediate properties of entropy.

Proposition 16 [4, Chapter 5] One has

(i) entF
(
BG

) = log |B|;
(ii) entF (X) ≤ entF (Y ) if X ⊂ Y ⊂ BG;
(iii) entF (X) ≤ log |B| for all X ⊂ BG.

A finite-to-one surjective homomorphism can preserve the property of being
amenable groups as the following states:

Proposition 17 Let ϕ : T → G be a finite-to-one surjective homomorphism, G be
an amenable group, F = (

Fj
)
j∈J be a right Følner net for G. Then, T is also an

amenable group, and ϕ−1 (F) = (
ϕ−1

(
Fj

))
j∈J is a right Følner net for T .

Proof There exist a positive integer k ≥ 1, for each subset F ⊂ S, we have

|F | ≤
∣∣∣ϕ−1(F)

∣∣∣ ≤ k|F |. (5)

This implies we can choose for each subset kF ∈ [1, k], such that ∣∣ϕ−1(F)
∣∣ = kF |F |.

For arbitrary t ∈ T , it is obvious that ϕ
(
ϕ−1

(
Fj

) \ϕ−1
(
Fj

)
t
) ⊆ Fj\Fjϕ(t).

Then we have ϕ−1
(
Fj

) \ϕ−1
(
Fj

)
t ⊆ ϕ−1

(
Fj\Fjϕ(t)

)
. Hence

∣∣ϕ−1
(
Fj

) \ϕ−1
(
Fj

)
t
∣∣

∣∣ϕ−1
(
Fj

)∣∣ ≤
∣∣ϕ−1

(
Fj\Fjϕ (t)

)∣∣
∣∣ϕ−1

(
Fj

)∣∣

≤ k
∣∣Fj\Fjϕ (t)

∣∣
∣∣ϕ−1

(
Fj

)∣∣

= k
∣∣Fj\Fjϕ (t)

∣∣
kFj

∣∣Fj
∣∣ (by(5))

≤ k
∣∣Fj\Fjϕ (t)

∣∣
∣∣Fj

∣∣ .
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Since

lim
j

∣∣Fj\Fjϕ(t)
∣∣

∣∣Fj
∣∣ = 0,

we get

lim
j

∣∣ϕ−1
(
Fj

) \ϕ−1
(
Fj

)
t
∣∣

∣∣ϕ−1
(
Fj

)∣∣ = 0.

This shows T satisfies the Følner conditions, with ϕ−1 (F) = (
ϕ−1

(
Fj

))
j∈J being

a right Følner net for it. Thus T is amenable by virtue of the Tarski-Følner theorem. �
Understanding and analyzing the entropy behavior in ϕ-cellular automata is crucial

for studying their information processing capabilities, complexity, and potential appli-
cations in various fields such as cryptography, pattern recognition, and computational
modeling.

Recall that if R is a memory set for a ϕ-cellular automaton σ : BG → BT , then
every finite subset R′ ofG such that R ⊂ R′ is also a memory set for σ . One important
characteristic of ϕ-cellular automata is that the application of a ϕ-cellular automaton
to a set of configurations does not lead to an increase in the entropy of the set. In more
precise terms, the following statement holds:

Proposition 18 Suppose ϕ : T → G is a finite-to-one surjective homomorphism,
where G is an amenable group, and F = (

Fj
)
j∈J is a right Følner net for G. Let

σ : BG → BT be a ϕ-cellular automaton, and let X ⊂ BG. Then the following holds:

entϕ−1(F)(σ (X)) ≤ entF (X).

Proof Let Y = σ(X). Suppose R ⊂ G is a memory set for σ . Upon including 1G in
R by replacing R with R∪{1G}, we may assume that 1G ∈ R. Let� be a finite subset
of G. First observe that σ induces a map

σ� : π�(X) → πϕ−1(�−R)(Y )

defined as follows. If u ∈ π�(X), then

σ�(u) = (τ (x))|ϕ−1(�−R) ,

where x is an element of X such that x |� = u. Note that the fact that σ�(u) does not
depend on the choice of such an x follows from Proposition 13.

Clearly σ� is surjective. Indeed, if v ∈ πϕ−1(�−R)(Y ), then there exists x ∈ X
such that (σ (x))|ϕ−1(�−R) = v. Then, setting u = π�(x) we have, by construction,
σ�(u) = v. Therefore, we have

∣∣∣πϕ−1(�−R)(Y )

∣∣∣ ≤ |π�(X)| . (6)
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Observe now that �−R ⊂ �, since 1G ∈ R (cf. Proposition 10(iv)). Thus
ϕ−1

(
�−R

) ⊂ ϕ−1 (�), and πϕ−1(�)(Y ) ⊂ πϕ−1(�−R)(Y ) × Bϕ−1(�)\ϕ−1
(
�−R

)
. This

implies

log
∣∣πϕ−1(�)(Y )

∣∣ ≤ log
∣∣∣πϕ−1(�−R)(Y ) × Bϕ−1(�)\ϕ−1

(
�−R

)∣∣∣
= log

∣∣∣πϕ−1(�−R)(Y )

∣∣∣ + log
∣∣∣Bϕ−1(�)\ϕ−1

(
�−R

)∣∣∣
= log

∣∣∣πϕ−1(�−R)(Y )

∣∣∣ +
∣∣∣ϕ−1 (�) \ϕ−1

(
�−R

)∣∣∣ log |B|
≤ log |π�(X)| +

∣∣∣ϕ−1 (�) \ϕ−1
(
�−R

)∣∣∣ log |B| (by(6)).

As �\�−R ⊂ ∂R(�), we have

ϕ−1 (�) \ϕ−1
(
�−R

)
= ϕ−1

(
�\�−R

)
⊂ ϕ−1 (∂R(�)) ,

so we can deduce that

log
∣∣πϕ−1(�)(Y )

∣∣ ≤ log |π�(X)| +
∣∣∣ϕ−1 (∂R(�))

∣∣∣ log |B|.

By taking � = Fj , this gives us

log

∣∣∣∣πϕ−1
Fj

(Y )

∣∣∣∣
∣∣ϕ−1

(
Fj

)∣∣ ≤ log
∣∣πFj (X)

∣∣
∣∣ϕ−1

(
Fj

)∣∣ +
∣∣ϕ−1

(
∂R(Fj )

)∣∣
∣∣ϕ−1

(
Fj

)∣∣ log |B|

≤ log
∣∣πFj (X)

∣∣
∣∣Fj

∣∣ + k
∣∣∂R(Fj )

∣∣
∣∣Fj

∣∣ log |B| (by(5)).

Since

lim
j

∣∣∂R
(
Fj

)∣∣
∣∣Fj

∣∣ = 0

by Proposition 11, we finally get

entϕ−1(F)(Y ) = lim sup
j

log
∣∣∣πϕ−1(Fj )

(Y )

∣∣∣
∣∣ϕ−1(Fj )

∣∣ ≤ lim sup
j

log
∣∣πFj (X)

∣∣
∣∣Fj

∣∣ = entF (X).

�
The proposition in Reference 16 implies that the maximum entropy value for a

subset X ⊂ BG is log |B|. The subsequent result provides a condition on X that
guarantees its entropy is strictly less than log |B|.
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Proposition 19 [4, Chapter 5] If X ⊂ BG, and there exist finite subsets E and E ′ of
G, along with an

(
E, E ′)-tiling L ⊂ G such that πl E (X) � BlE for all l ∈ L, then

we have

entF (X) < log |B|.

Recall that G acts on the left on BG by the shift (g, x) �→ gx defined by gx
(
g′) =

x
(
g−1g′) for g, g′ ∈ G and x ∈ BG .

Corollary 20 [4, Chapter 5] Let X be a G-invariant subset of BG. Suppose that there
exists a finite subset E ⊂ G such that πE (X) � BE . Then one has entF (X) < log |B|.

6 Proof of The Garden of Eden Theorem on a'-Cellular Automaton

The purpose of this section is to establish the following:

Theorem 21 Let G be an amenable group, T be a group isomorphic to G, B be a
finite set, F = (

Fj
)
j∈J be a right Følner net for G, and σ : BG → BT be a ϕ-

cellular automaton with ϕ : T → G being an isomorphic map. Then the following
are equivalent:

(a) σ is surjective;
(b) entϕ−1(F)

(
σ

(
BG

)) = log |B|;
(c) σ is pre-injective.

We divide the proof of Theorem 21 into several lemmas. In these lemmas, it is
assumed that the hypotheses of Theorem 21 are satisfied: G is an amenable group, T
is a group isomorphic to G, B is a finite set, F = (

Fj
)
j∈J is a right Følner net for

G, and σ : BG → BT is a ϕ-cellular automaton, where ϕ : T → G is a isomorphic
map.

Lemma 22 Suppose that σ is not surjective. Then one has entϕ−1(F)

(
σ

(
BG

))
<

log |B|.
Proof By Proposition 9, σ admits a Garden of Eden pattern. This means that there is
a finite subset E ⊂ T such that πE

(
σ

(
BG

))
� BE . The set σ

(
BG

)
is T -invariant

since σ is ϕ-equivariant by Lemma 6. We deduce that ent ϕ−1(F)

(
σ

(
BG

))
< log |B|

by applying Corollary 20. �
Lemma 23 Suppose that

entϕ−1(F)

(
σ

(
BG

))
< log |B|.

Then σ is not pre-injective.
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Proof Let R be a memory set for σ such that 1G ∈ R. Let Y = σ
(
BG

)
. We have

F−R
j ⊂ Fj ⊂ F+R

j by Proposition 10 (iv) and therefore F+R
j \Fj ⊂ ∂R

(
Fj

)
. As

π
ϕ−1(F+R

j )
(Y ) ⊂ πϕ−1(Fj )

(Y ) × Bϕ−1(F+R
j )\ϕ−1(Fj ), it follows that

log
∣∣∣πϕ−1(F+R

j )
(Y )

∣∣∣ ≤ log
∣∣∣πϕ−1(Fj )

(Y )

∣∣∣ +
∣∣∣ϕ−1(F+R

j )\ϕ−1(Fj )

∣∣∣ log |B|
≤ log

∣∣∣πϕ−1(Fj )
(Y )

∣∣∣ +
∣∣∣ϕ−1(∂R

(
Fj

)
)

∣∣∣ log |B|.

Since ϕ is a isomorphic map, we have

log
∣∣∣πϕ−1(F+R

j )
(Y )

∣∣∣
∣∣ϕ−1(Fj )

∣∣ ≤
log

∣∣∣πϕ−1(Fj )
(Y )

∣∣∣
∣∣ϕ−1(Fj )

∣∣ +
∣∣ϕ−1(∂R

(
Fj

)
)
∣∣

∣∣ϕ−1(Fj )
∣∣ log |B|

=
log

∣∣∣πϕ−1(Fj )
(Y )

∣∣∣
∣∣ϕ−1(Fj )

∣∣ +
∣∣∂R

(
Fj

)∣∣
∣∣Fj

∣∣ log |B|.
(7)

As

ent(Y ) = lim sup
j

log
∣∣∣πϕ−1(Fj )

(Y )

∣∣∣
∣∣ϕ−1(Fj )

∣∣ < log |B|

by hypothesis, and

lim
j

∣∣∂R
(
Fj

)∣∣
∣∣Fj

∣∣ = 0

by Proposition 11, we deduce from inequality (7) that there exists j0 ∈ J such that

log

∣∣∣∣πϕ−1(F+R
j0

)
(Y )

∣∣∣∣
∣∣ϕ−1(Fj0)

∣∣ < log |B|. (8)

Let us fix an arbitrary elementa0 ∈ B and denote by Z the finite set of configurations
z ∈ BG such that z(g) = a0 for all g ∈ G\Fj0 . Inequality (8) gives us

∣∣∣∣πϕ−1(F+R
j0

)
(Y )

∣∣∣∣ < |B|
∣∣ϕ−1(Fj0 )

∣∣ = |B|
∣∣Fj0

∣∣ = |Z |.

Observe that σ (z1) and σ (z2) coincide outside ϕ−1(F+R
j0

) for all z1, z2 ∈ Z . Thus

|σ(Z)| =
∣∣∣∣πϕ−1(F+R

j0
)
(σ (Z))

∣∣∣∣ ≤
∣∣∣∣πϕ−1(F+R

j0
)
(Y )

∣∣∣∣ < |Z |.
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This implies that we may find distinct configurations z1, z2 ∈ Z such that σ (z1)
and σ (z2). Since z1 and z2 coincide outside the finite set Fj0 , this shows that σ is not
pre-injective. �
Lemma 24 Suppose that σ is not pre-injective. Then one has

entϕ−1(F)

(
σ

(
BG

))
< log |B|. (9)

Proof Since σ is not pre-injective, we may find two configurations x1, x2 ∈ BG

satisfying σ (x1) = σ (x2) such that the set

� = {g ∈ G : x1(g) �= x2(g)}

is a nonempty finite subset of G. Observe that, for each l ∈ G, the configurations
lx1 and lx2 satisfy σ (lx1) = σ (lx2) (since σ is ϕ-equivariant by Lemma 6) and
{g ∈ G : lx1(g) �= lx2(g)} = l�. Let R be a memory set for σ such that 1G ∈ R.
Then the set

U =
{
r−1r ′ : r , r ′ ∈ R

}

is finite and we have 1G ∈ U . Let E = �+U . By Proposition 14, we may find a finite
subset E ′ ⊂ G and an

(
E, E ′)-tiling L ⊂ G. Consider the subset Z ⊂ BG consisting

of all configurations z ∈ BG such that

z|l E �= (lx1)|l E for all l ∈ L .

Observe that, for each l ∈ L , we have

πl E (Z) � BlE

since (lx1)|l E /∈ πl E (Z). We deduce that entϕ−1(F)
(Z) < log |B| by applying

Proposition 19. As entϕ−1(F)
(σ (Z)) ≤ entϕ−1(F)

(Z) by Proposition 18, this implies

entϕ−1(F)
(σ (Z)) < log |B|. (10)

Thus, to establish inequality (9), it suffices to prove that σ
(
BG

) = σ(Z). To
see this, consider an arbitrary configuration x ∈ BG and let us show that there is a
configuration z ∈ Z such that σ(x) = σ(z). Let

L ′ = {
l ∈ L : x |l E = (lx1)|l E

}
.

Let z ∈ BG be the configuration defined by

z(g) =
{
lx2(g) if there is l ∈ L ′ such that g ∈ l E,

x(g) otherwise.
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Notice that the configuration z is obtained from x by modifying the values taken
by x only on the subsets of the form l�, where l ∈ L ′ (since, as we have seen above,
lx1 and lx2 coincide outside l� ). By construction, we have z ∈ Z . Let t ∈ T . Let us
shows that σ(x)(t) = τ(z)(t). Suppose first that ϕ(t)R does not meet any of the sets
l�, l ∈ L ′. Then we have z|ϕ(t)R = x |ϕ(t)R . We deduce that σ(z)(t) = σ(x)(t) by
applying Lemma 1.

Suppose now that there is an element l ∈ L ′ such that ϕ(t)R meets l�. This means
that there exists an element r0 ∈ R such that ϕ(t)r0 ∈ l�. For each r ∈ R, we have
ϕ(t)rr−1r0 = ϕ(t)r0 ∈ l�. As r−1r0 ∈ U , this implies

ϕ(t)r ∈ (l�)+U = l�+U (by Proposition10 (viii))

= l E .

Wededuce that ϕ(t)R ⊂ l E . Thus we have σ(x)(t) = σ (lx1) (t) since x |l E = lx1|l E .
Similarly, by applying Lemma 1, we get τ(z)(t) = τ (lx2) (t), since z and lx2 coincide
on l E . As σ (lx1) = σ (lx2), we deduce that σ(x)(t) = σ(z)(t).

Thus σ(z) = σ(x). This shows that σ
(
BG

) = σ(Z) and completes the proof of
the lemma. �
Proof of Theorem 21 If σ is surjective, then σ

(
BG

) = BT and hence
entϕ−1(F)

(
σ

(
BG

)) = entϕ−1(F)

(
BT

) = log |B|. Thus (a) implies (b). Since the
converse implication follows from Lemma 22, we deduce that conditions (a) and (b)
are equivalent. The fact that (c) implies (b) follows from Lemma 23 and the converse
implication follows from Lemma 24. Thus, conditions (b) and (c) are also equivalent.

Proof of Theorem 2 If σ is surjective, we deduce that ϕ is injective by Lemma 8. Thus
ϕ is isomorphic. Thus σ is surjective implies that σ is pre-injective by Theorem 21.

Proofs of Theorem 3 and Carollary 4 These results follows from Theorem 21 immedi-
ately.

Remark 2 ϕ : T → G is a finite-to-one surjective homomorphism in the case of
Moore theorem over ϕ-cellular automata, whereas ϕ is an isomorphic mapping in the
case of the Garden of Eden theorem over ϕ-cellular automata and Myhill theorem
over ϕ-cellular automata. And the Myhill theorem over ϕ-cellular automata is invalid
when ϕ is a finite-to-one surjective homomorphism.

Example 4 Let’s consider G = 2Z, T = Z, and B = Z/2Z. Define ϕ : T → G as
ϕ(n) = 2n for all n ∈ T . We have seen in Example 3 that the ϕ-cellular automaton
σ : BG → BT defined by σ(x)(n) = x(2n) + x(2n + 2) is pre-injective. Since
G = 2Z is amenable„ it follows from the Garden of Eden theorem for a ϕ-cellular
automaton that σ is surjective.

Example 5 Let’s set G = Z, T = {0, 1} × Z, and B = {0, 1}. The map ϕ : {0, 1} ×
Z −→ Z is defined as ϕ(a, n) = n for all (a, n) ∈ T . Now, consider the ϕ-cellular
automaton in Example 2, σ : BG → BT which is defined by

σ(x)(a, n) = x(n)
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for all x ∈ BG and (a, n) ∈ T .
It is clear that ϕ is a finite-to-one surjective homomorhic map. We claim that σ is

injective. Suppose x1, x2 ∈ BG are two configurations such that σ(x1) = σ(x2). Then
we have x1(n) = x2(n) for all n ∈ G, which gives x1 = x2. Thus, σ is injective. And
we can get that σ is pre-injective immediately. However, σ is not surjective, since the
configurations y ∈ BT given by

y(t) =
{
0 if t = (0, 0),

1 otherwise

is a Garden of Eden configuration for σ . This demonstrates that the Myhill theorem
does not hold true for ϕ-cellular automata when ϕ represents a finite-to-one surjective
homomorphism.
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