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Abstract
For 1 ≤ p < ∞, let L p(M, τ ) be the non-commutative L p-space associated with a
von Neumann algebraM, whereM admits a normal semifinite faithful trace τ . Using
the trace τ , Banach duality formula and Gâteaux derivative, this paper characterizes
an element a ∈ L p(M, τ ) such that

‖a‖p = inf{‖a + b‖p : b ∈ Bp},

whereBp is a closed linear subspace of L p(M, τ ) and ‖·‖p is the norm on L p(M, τ ).
Such an a is called Bp-minimal. In particular, minimal elements related to the finite-
diagonal-block type closed linear subspaces

Bp =
∞⊕

i=1

eiSei

(converging with respect to ‖ · ‖p) are considered, where {ei }∞i=1 is a sequence of
mutually orthogonal and τ -finite projections in a σ -finite von Neumann algebra M,
and S is the set of elements inM with τ -finite supports.
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1 Introduction

The non-commutative L p-space theory was laid out in the 1950s by Segal [26] and
Dixmier [12]. It is the intersection of operator theory and classical L p-space theory,
as well has been widely studied, extended and applied. In this paper, we explore the
minimal elements in a non-commutative L p-space, which are closely related to the
orthogonality in metric geometry.

SupposeH is a Hilbert space and K is its closed linear subspace. For h ∈ H, there
exists a unique k0 ∈ K such that

‖h − k0‖ = dist(h,K) = inf{‖h − k‖ : k ∈ K},

where ‖ · ‖ is the norm induced by the inner product ofH. Replacing h − k0 with h0,
one has

‖h0‖ = inf{‖h0 + k‖ : k ∈ K}.

Such an h0 is called K-minimal [25, Definition 5.2].
In the absence of inner product, Birkhoff [6] and James [15] study the orthogonality

in a normed linear space, firstly. Suppose X is a normed linear space over C and
x, y ∈ X , then x is said to be Birkhoff–James orthogonal to y if

‖x‖ ≤ ‖x + λy‖ for all λ ∈ C.

Thereafter, with the help of Hahn–Banach Theorem, Lumer [19] and Giles [14] carry
over the notion of inner product on a Hilbert space to the semi-inner-product on a
normed linear space, put forward that x and y in a continuous semi-inner-product
space are Birkhoff–James orthogonal if and only if their semi-inner-product is 0 [14,
Theorem 2]. Let Y be a closed linear subspace of X . Then x0 ∈ X is said to be
Y-minimal if it is Birkhoff–James orthogonal to each y ∈ Y , or equivalently, if

‖x0‖ = inf{‖x0 + y‖ : y ∈ Y}.

The existence of minimal elements allows the description of minimal length curves
(curves with minimal length joining fixed endpoints) of metric geometry in homoge-
neous spaces, and the characterization of minimal elements in various Banach spaces
has attracted the attention of many scholars. For instance, [13] studies minimal ele-
ments and the corresponding minimal length curves of a homogeneous space P in a
C*-algebra context. [3, 4, 18, 22, 32] are devoted to characterizing and constructing
Dn(R)-minimal hermitian matrices in Mn(C), in the sense of operator norm, where
Mn(C) is the algebra of complex n × n matrices and Dn(R) is the algebra of real
diagonal n × n matrices. For the study of minimal length curves in an infinite dimen-
sional manifold, as well as the corresponding works on D(K (H))-minimal compact
operators, one can refer to [2, 9, 10, 21, 31], where H is a complex separable Hilbert
space with an orthonormal basis {ξi }∞i=1, K (H) is the algebra of compact operators
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onH, and

D(K (H)) = {D ∈ K (H) : 〈Dξi , ξ j 〉 = 0 when i �= j}

is the set of diagonal compact operators.Moreover, [5, 28] study the best approximation
and orthogonality in Hilbert C*-modules, which are closely related to minimal ele-
ments. Recently, with the help of semi-inner-product, minimal elements in p-Schatten
ideals are explored in [7, 8]. With a view to the geometric property of orthogonality
in a non-commutative L p-space, illuminated by the idea of [7, 8], this paper devotes
to characterizing an element a ∈ L p(M, τ ) such that

‖a‖p = inf{‖a + b‖p : b ∈ Bp},

where ‖·‖p is the norm on L p(M, τ ) andBp is a closed linear subspace of L p(M, τ ).
We briefly describe the contents of this paper. Section2 lists some basic notions and

prevalent results we will use throughout this paper. Section3 provides the semi-inner-
product on L p(M, τ ) specifically and characterizes Bp-minimal elements in terms of
disjoint supports and the trace τ . Section4 describes Bp-minimal elements through
the Gâteaux derivative of norm ‖ · ‖p and the Banach duality formula, respectively.
In Sect. 5, minimal elements related to the finite-diagonal-block type closed linear
subspaces

Bp =
∞⊕

i=1

eiSei

(convergingwith respect to ‖·‖p) of L p(M, τ ) are taken into account, where {ei }∞i=1 is
a sequence of mutually orthogonal and τ -finite projections in a σ -finite von Neumann
algebra M, and S is the set of elements inM with τ -finite supports.

2 Preliminaries

In this section we give some basic concepts and prevalent results on non-commutative
L p-spaces. One can refer to [23, Chapter 34] and [29] for more details.

• Denote byM a von Neumann algebra acting on a Hilbert spaceH and byM+ its
positive part. A trace onM is a map τ : M+ → [0,∞] satisfying
(1) τ(x + λy) = τ(x) + λτ(y), for x, y ∈ M+ and λ ∈ R+;
(2) τ(x∗x) = τ(xx∗), for x ∈ M.

Moreover, τ is said to be normal if supi τ(xi ) = τ(supi xi ) for each bounded
increasing net {xi }i∈� in M+; to be semifinite if for any non-zero x ∈ M+ there
is a non-zero y ∈ M+ such that y ≤ x and τ(y) < ∞; and to be faithful if
x ∈ M+ with τ(x) = 0 implies that x = 0. In the rest of this paper, the von
Neumann algebra M always admits a normal semifinite faithful trace τ . Denote
by P(M) the set of projections in M, namely, e ∈ P(M) if e = e2 = e∗. There
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always exists an increasing net {ei }i∈� ⊂ P(M) such that τ(ei ) < ∞ for each
i ∈ � and ei → I with respect to the strong operator topology, where I is the
identity of M.

• For x ∈ M, let x = u|x | be its polar decomposition, where u is a partial isometry

from (ker x)⊥ onto ranx and |x | = (x∗x)
1
2 is the absolute value of x . Denote

by l(x) = uu∗ and r(x) = u∗u the left and right support for x , respectively. If
x ∈ M+, then l(x) = r(x) and we write the support as s(x). Set

S+ = {x ∈ M+ : τ(s(x)) < ∞},

and let S be the linear span of S+, namely, the set of elements in M with τ -
finite support. If x ∈ S and 0 < p < ∞, then |x |p ∈ S. Moreover, define

‖x‖p = τ(|x |p)
1
p , then ‖ · ‖p is a norm on S when 1 ≤ p < ∞ and is a quasi-

norm on S when 0 < p < 1. The completion of (S, ‖·‖p), denoted by L p(M, τ ),
is called the non-commutative L p-space associated with (M, τ ). In this paper
we focus on the case 1 ≤ p < ∞, for which L p(M, τ ) forms a Banach space.
For the sake of convenience, we set L∞(M, τ ) = M equipped with the operator
norm.

• Let 1 ≤ p < ∞ and take x ∈ L p(M, τ ). Then x is a closed densely defined
operator on H. More specifically, its domain D(x) is dense in H and its graph
G(x) = {(ξ, xξ) : ξ ∈ D(x)} is closed in H ⊕ H. The adjoint x∗ of x is defined
such that 〈x f , g〉 = 〈 f , x∗g〉 for all f ∈ D(x) and g ∈ D(x∗), where D(x∗) =
{g ∈ H : f → 〈x f , g〉 is continuous on D(x)}. If x = x∗, then x is said to be self-
adjoint. Similar to bounded linear operators, x has a unique polar decomposition
x = u|x |, where u is a partial isometry from (ker x)⊥ onto x(D(x)). In addition,
the left and right supports for x can be defined. For more details on closed densely
defined operators one can refer to [11, Chapter X] and [24, Chapter 13].

The following Lemma 2.1 is crucial to this paper.

Lemma 2.1 [23, 29] The following statements hold:

(1) S is a strongly dense involutive ideal of M. Moreover, for x ∈ M, x ∈ S if and
only if there is an e ∈ P(M) with τ(e) < ∞ such that exe = x.

(2) |τ(x)| ≤ ‖x‖1 for x ∈ S. Moreover, τ can be extended to a continuous linear
functional on L1(M, τ ).

(3) For x ∈ L p(M, τ ) and a, b ∈ M,

‖x‖p = ‖x∗‖p = ‖|x |‖p, ‖axb‖p ≤ ‖a‖‖x‖p‖b‖. (1)

(4) (Hölder inequality) Suppose 1 ≤ p < ∞ and 1
p + 1

q = 1. Then

|τ(xy)| ≤ ‖x‖p‖y‖q

for x ∈ L p(M, τ ) and y ∈ Lq(M, τ ).
(5) Let {ai }i∈� be a bounded net in M such that ai → a with respect to the strong

operator topology, then xai → xa in L p(M, τ ) for any x ∈ L p(M, τ ).
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3 Characterizations ofBp-Minimal Elements

The aim of this section is to characterize Bp-minimal elements in terms of disjoint
supports and the normal semifinite faithful trace τ .

Definition 3.1 Let 1 ≤ p < ∞ and Bp be a closed linear subspace of L p(M, τ ). We
say that a ∈ L p(M, τ ) is Bp-minimal if

‖a‖p = inf{‖a + b‖p : b ∈ Bp}.

Remark 3.2 With Bp as above, suppose a ∈ L p(M, τ ) is Bp-minimal.

(1) λa is Bp-minimal for all λ ∈ C, since

‖λa‖p = |λ|‖a‖p = |λ| inf{‖a + b‖p : b ∈ Bp}
= inf{‖λa + b‖p : b ∈ Bp}.

(2) a∗ is Bp-minimal provided that Bp is ∗-closed. Indeed, since a is Bp-minimal,
‖a‖p = ‖a∗‖p and Bp = B∗

p, then

‖a∗‖p = ‖a‖p = inf{‖(a + b)‖p : b ∈ Bp}
= inf{‖(a + b)∗‖p : b ∈ B∗

p}
= inf{‖a∗ + b∗‖p : b∗ ∈ Bp}
= inf{‖a∗ + b‖p : b ∈ Bp}.

(3) Suppose u and v are two unitary operators inM andBp is (u, v)-invariant (namely,
uBpv = Bp), then uav is Bp-minimal. Indeed, according to Lemma 2.1 (3), one
has

‖x‖p = ‖u∗uxvv∗‖p ≤ ‖uxv‖p ≤ ‖x‖p, ∀x ∈ L p(M, τ )

so the norm ‖ · ‖p is unitary invariant. Therefore, if a ∈ L p(M, τ ) is Bp-minimal,
then

‖uav‖p = ‖a‖p = inf{‖u(a + b)v‖p : b ∈ Bp}
= inf{‖uav + b‖p : b ∈ Bp},

which implies that uav is Bp-minimal as well.

In recentworks, Li et al. [20] andBottazzi et al. [8] point out that operators x and y in
a p-Schatten ideal have disjoint supports if and only if ‖x + y‖p

p = ‖x‖p
p +‖y‖p

p (0 <

p < ∞). Following this idea, we characterize Bp-minimal elements in L p(M, τ )

through disjoint supports. Let L+
p (M, τ ) be the set of positive elements in L p(M, τ ).

For x, y ∈ L+
p (M, τ ), x ≥ y means that x − y ∈ L+

p (M, τ ).

Definition 3.3 [29] For a ∈ L p(M, τ ), let a = u|a| be its polar decomposition,
where u is a partial isometry from (ker a)⊥ onto aD(a), D(a) is the domain of a, and
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|a| = (a∗a)
1
2 is the absolute value of a. We say that l(a) = uu∗ is the left support for

a and r(a) = u∗u is the right support for a.

Definition 3.4 Let 1 ≤ p < ∞ and Bp be a closed linear subspace of L p(M, τ ). We
say that a ∈ L p(M, τ ) and Bp have disjoint left supports if

l(a)l(b) = 0 for all b ∈ Bp,

and have disjoint right supports if

r(a)r(b) = 0 for all b ∈ Bp,

where l(·) and r(·) mean the left and right supports, respectively.

Theorem 3.5 Let 1 ≤ p < ∞ and Bp be a closed linear subspace of L p(M, τ ). If
a ∈ L p(M, τ ) and Bp have disjoint left (or right) supports, then a is Bp-minimal.

Proof Recall that for x ∈ L p(M, τ ), l(x) is the projection from H onto ran x and
r(x) is the projection from H onto (ker x)⊥. Since each x in L p(M, τ ) is closed
and densely defined, then (ran x)⊥ = ker x∗, (ran x∗)⊥ = ker x and x = x∗∗ [11,
Proposition X.1.6 and X.1.13].

Suppose that a and Bp have disjoint left supports first. For b ∈ Bp, l(a)l(b) = 0
implies that

ran a ⊂ (ran b)⊥ = ker b∗, ran b ⊂ (ran a)⊥ = ker a∗.

Thus, b∗a = a∗b = 0 and

|a + b|2 = a∗a + a∗b + b∗a + b∗b = |a|2 + |b|2 ≥ |a|2.

According to [16, Lemma 3.2], one has

‖a + b‖p
p = τ(|a + b|2· p

2 ) ≥ τ(|a|2· p
2 ) = ‖a‖p

p,

so a is Bp-minimal.
Using similar techniques, if a and Bp have disjoint right supports, then

ran a∗ = (ker a)⊥ ⊂ (ker b)⊥⊥ = ker b, ran b∗ ⊂ ker a

and so ba∗ = ab∗ = 0 for each b ∈ Bp. Hence

|a∗ + b∗|2 = |a∗|2 + |b∗|2 ≥ |a∗|2,
‖a + b‖p = ‖a∗ + b∗‖p ≥ ‖a∗‖p = ‖a‖p.

The desired result follows. ��
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In 1961, Lumer [19] carried over the concept of inner product on Hilbert spaces to
semi-inner-product on normed linear spaces, excepting the conjugate linear property.
Later, G.R. Giles pointed out that every normed linear space can be represented as
a semi-inner-product space with the homogeneity property (see [14, Theorem 1]).
Before moving forward, let us recall revalent notions.

Definition 3.6 [14, Page 437], [19, Definition 1]

(1) Let X be a normed linear space. A mapping [·, ·] : X × X → C satisfying

(a) [αx + βz, y] = α[x, y] + β[z, y];
(b) ‖x‖ = [x, x] 12 ;
(c) |[x, y]|2 ≤ [x, x][y, y];
for all x, y, z ∈ X and α, β ∈ C is called a semi-inner-product on X , and then
(X , [·, ·]) is called a semi-inner-product space.

(2) A semi-inner-product space (X , [·, ·]) is said to have the homogeneity property if
[·, ·] also satisfies
(d) [x, αy] = α[x, y]
for all x, y ∈ X and α ∈ C.

(3) A semi-inner-product space (X , [·, ·]) is said to be continuous if

(e) Re([x, y + λx]) → Re([x, y]) for real λ → 0,

for every x, y in the unit sphere S(X ) = {x ∈ X : ‖x‖ = 1}, where Re([x, y]) is
the real part of [x, y].
Draw on the experience of [8, 27], we show the semi-inner-product on L p(M, τ )

specifically, whereM admits a normal semifinite faithful trace τ and 1 < p < ∞.

Proposition 3.7 Suppose 1 < p < ∞. For x, y ∈ L p(M, τ ), define

[x, y] = ‖y‖2−p
p τ(|y|p−1u∗x), (2)

where y = u|y| is the polar decomposition of y. Then

[·, ·] : L p(M, τ ) × L p(M, τ ) → C

is a semi-inner-product on L p(M, τ ) having the homogeneity property.

Proof Suppose 1
p + 1

q = 1. Take x, y, z ∈ L p(M, τ ) and α, β ∈ C. Let us check that
the mapping [·, ·] defined in (2) satisfies (a–d) in Definition 3.6.

(a) For y = u|y| ∈ L p(M, τ ) one has |y|p−1 ∈ Lq(M, τ ), since

τ
(
(|y|p−1)q

)
= τ(|y|p) < ∞.

Moreover, using the Hölder inequality,

∥∥∥|y|p−1u∗x
∥∥∥
1

≤
∥∥∥|y|p−1

∥∥∥
q
‖u∗x‖p ≤

∥∥∥|y|p−1
∥∥∥

q
‖u∗‖‖x‖p < ∞,
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|y|p−1u∗x is in L1(M, τ ). Recall that τ is linear on L1(M, τ ), one has

[αx + βz, y] = ‖y‖2−p
p τ(|y|p−1u∗(αx + βz))

= α‖y‖2−p
p τ(|y|p−1u∗x) + β‖y‖2−p

p τ(|y|p−1u∗z)
= α[x, y] + β[z, y].

(b) First we claim that u∗u|y| = |y|. Indeed, suppose ξ ∈ ran y∗, then ξ =
y∗η for some η ∈ (ker y∗)⊥ ∩ D(y∗) = ran y ∩ D(y∗) and so

ran y∗y = ran y∗ = (ker y)⊥. (3)

Applying (3) to |y|, one has ran |y| = ran |y|2 = ran y∗y and thus ran |y| is dense in
(ker y)⊥. Recall that u∗u is the projection onto (ker y)⊥, u∗u|y| = |y| as asserted.
Therefore,

[y, y] = ‖y‖2−p
p τ(|y|p−1u∗y) = ‖y‖2−p

p τ(|y|p−1u∗u|y|)
= ‖y‖2−p

p τ(|y|p) = ‖y‖2p.

(c) Since |y|p−1 ∈ Lq(M, τ ), it follows from the Hölder inequality that

|[x, y]|2 = ‖y‖4−2p
p

∣∣τ(|y|p−1u∗x)
∣∣2

≤ ‖y‖4−2p
p

( ∥∥|y|p−1u∗∥∥2
q

)
‖x‖2p,

meanwhile, by Lemma 2.1 (2),

∥∥|y|p−1u∗∥∥
q ≤ ∥∥|y|p−1‖q‖u∗∥∥

= ∥∥|y|p−1
∥∥

q = τ
(
(|y|p−1)q

) 1
q

= τ(|y|p)
1
q =

(
‖y‖p

) p
q = ‖y‖p−1

p .

Therefore,

|[x, y]|2 ≤ ‖y‖4−2p
p ‖y‖2p−2

p ‖x‖2p
= ‖y‖2p‖x‖2p = [x, x][y, y].

(d) Observe that αy = ( α
|α|u)(|αy|) is the polar decomposition of αy,

[x, αy] = ‖αy‖2−p
p τ(|αy|p−1( α

|α|u)∗x)

= (|α|(2−p)+(p−1)−1)(α)‖y‖2−p
p τ(|y|p−1u∗x)

= α[x, y].

The proof is completed. ��
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To characterize Bp-minimal elements, it is necessary to review some basic
definitions and known results on geometric theory of Banach space.

Let (X , ‖ · ‖) be a Banach space. We call x0 ∈ S(X ) a smooth point of the unit
ball B(X ) = {x ∈ X : ‖x‖ ≤ 1}, if there is a unique f ∈ X ∗ such that ‖ f ‖ = 1 and
f (x0) = 1; and call the norm ‖ · ‖ isGâteaux differentiable at x0 ∈ S(X ), if for any
y ∈ S(X ) and λ ∈ R

Dx0(y) = lim
λ→0

‖x0 + λy‖ − ‖x0‖
λ

exists. Accordingly, the Banach space X is said to be smooth if each x ∈ S(X ) is
a smooth point of B(X ), and is said to be Gâteaux differentiable if ‖ · ‖ is Gâteaux
differentiable at each x ∈ S(X ). It is well known that X is smooth if and only if X is
Gâteaux differentiable [1, Theorem 2.1].

Lemma 3.8 [23, Corollary 5.2] For 1 < p < ∞, L p(M, τ ) is uniformly convex and
smooth.

Let 1 < p < ∞ and Bp be a closed linear subspace of L p(M, τ ). Since the
Banach space L p(M, τ ) is smooth, in other words, it is Gâteaux differentiable, then
the semi-inner product defined in (2) is continuous [14, Theorem 3]. Moreover, by
[14, Theorem 2], a ∈ L p(M, τ ) is Bp-minimal if and only if

[b, a] = 0 for all b ∈ Bp,

equivalently,

τ(|a|p−1u∗b) = 0 for all b ∈ Bp,

where a = u|a| is the polar decomposition of a. We obtain the following theorem.

Theorem 3.9 Let 1 < p < ∞ and Bp be a closed linear subspace of L p(M, τ ). Then
a ∈ L p(M, τ ) is Bp-minimal if and only if

τ(|a|p−1u∗b) = 0 for all b ∈ Bp,

where a = u|a| is the polar decomposition of a.

One can simplify Theorem 3.9when theBp-minimal element is self-adjoint. Notice
that a = u|a| = |a|u∗ when a is self-adjoint, moreover, |a|p−2 = a p−2 when p is an
even integer, one has the following corollary.

Corollary 3.10 Let 2 ≤ p < ∞ and Bp be a closed linear subspace of L p(M, τ ).
(1) A self-adjoint element a ∈ L p(M, τ ) is Bp-minimal if and only if

τ(|a|p−2ab) = 0 for all b ∈ Bp.
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In particular, when p is an even integer, a self-adjoint element a ∈ L p(M, τ ) is
Bp-minimal if and only if

τ(a p−1b) = 0 for all b ∈ Bp.

(2) A positive element a ∈ L p(M, τ ) is Bp-minimal if and only if

τ(a p−1b) = 0 for all b ∈ Bp.

Example 3.11 Let Mn(C) be the algebra of complex n × n matrices. For A ∈ Mn(C),
denote by λ(A) = (λ1(A), λ2(A), . . . , λn(A)) the set of eigenvalues of A, in counting

multiplicity. Then ‖A‖p =
( ∑n

i=1 |λi (A)|p
) 1

p
. A class of positive minimal matrices

in M2(C) will be provided below.

Let p = 3, denote B3 = C ⊕ 0 and take E =
(
1 0
0 0

)
∈ B3. The positive B3-

minimal matrix in M2(C) must have the form

(
0 0
0 a22

)
, where a22 ≥ 0. Indeed,

suppose A =
(

a11 a12
a12 a22

)
is a positive B3-minimal matrix, where a11, a22 ≥ 0. By

Corollary 3.10 (2) one has

tr(A2E) = tr(A2E2) = tr(E A2E) = tr

(
a2
11 + |a12|2 0

0 0

)
= 0,

and then a11 = a12 = 0. Moreover, since that

∥∥∥∥

(
0 0
0 a22

)
+

(
x 0
0 0

)∥∥∥∥
3

= 3
√

|x |3 + a3
22 ≥ a22 =

∥∥∥∥

(
0 0
0 a22

)∥∥∥∥
3

for all x ∈ C, A =
(
0 0
0 a22

)
is B3-minimal.

Remark 3.12 (1) The Bp-minimal element must exists (considering 0).
(2) From Example 3.11 one can see the Bp-minimal element may not be unique.

4 Banach Duality Formula andMinimal Elements

As an application of the Hahn–Banach Theorem, [9, Proposition 4] and [21, Lemma
4] put forward the Banach duality formula between sets of compact operators and
trace class operators. Then [7, Proposition 3.3] generalizes this result to a p-Schatten
ideal and its dual, i.e. q-Schatten ideal, where 1

p + 1
q = 1. The Banach duality formula

connects aBanach spaceX and its dualX ∗, which is also a tool to characterizeminimal
elements. In this section, we characterize Bp-minimal elements by the Banach duality
formula between L p(M, τ ) and its dual given below.

123



Characterizations of Minimal Elements in a Non-commutative… Page 11 of 17 120

Lemma 4.1 (Banach duality formula for non-commutative L p-space) Let 1 ≤ p < ∞
and Bp be a closed linear subspace of L p(M, τ ). Denote

B⊥(τ )
p = {y ∈ Lq(M, τ ) : τ(by) = 0 for all b ∈ Bp},

where 1
p + 1

q = 1. Then for a ∈ L p(M, τ ),

inf{‖a + b‖p : b ∈ Bp} = sup{|τ(ay)| : y ∈ B⊥(τ )
p , ‖y‖q = 1}. (4)

Proof Take y ∈ B⊥(τ )
p with ‖y‖q = 1. With the help of Hölder inequality,

|τ(ay)| = |τ(ay + by)| ≤ ‖a + b‖p‖y‖q = ‖a + b‖p

for all b ∈ Bp, so

sup{|τ(ay)| : y ∈ B⊥(τ )
p , ‖y‖q = 1} ≤ inf{‖a + b‖p : b ∈ Bp}.

Without loss of generality, suppose a /∈ Bp, then inf{‖a + b‖p : B ∈ Bp} > 0 as Bp

is closed. According to the Hahn–Banach Theorem [11, Corollary III.6.8], there is a
linear functional f ∈ (L p(M, τ ))∗ such that ‖ f ‖ = 1, f |Bp = 0 and

f (a) = dist(a,Bp) = inf{‖a + b‖p : b ∈ Bp}.

Since (L p(M, τ ))∗ = Lq(M, τ ) [23, Page 1464], there exists a unique y0 in
Lq(M, τ ) such that

‖y0‖q = ‖ f ‖ = 1 and f (·) = τ(·y0).

In addition, f |Bp = 0 implies that y0 ∈ B⊥(τ )
p . One gets

inf{‖a + b‖p : b ∈ Bp} = τ(ay0) ≤ sup{|τ(ay)| : y ∈ B⊥(τ )
p , ‖y‖q = 1}.

The equation (4) holds. ��
Theorem 4.2 Let 1 < p < ∞, Bp be a closed linear subspace of L p(M, τ ) and
a( �= 0) ∈ L p(M, τ ). The following two statements hold:

(1) a is Bp-minimal if and only if

‖a‖p = sup{|τ(ay)| : y ∈ B⊥(τ )
p , ‖y‖q = 1}.

Moreover, the supremum of the right side can be obtained at ya = |a|p−1u∗
‖a‖p−1

p
, where

a = u|a| is the polar decomposition of a;
(2) If a is Bp-minimal, then Da(b) = 0 for all b ∈ Bp, where Da(b) is the Gâteaux

derivative of ‖ · ‖p at a in the b direction.
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Proof (1) It is obvious from Lemma 4.1 that a ∈ L p(M, τ ) is Bp-minimal if and only
if

‖a‖p = sup{|τ(ay)| : y ∈ B⊥(τ )
p , ‖y‖q = 1}. (5)

Let us prove that the supremum of right side of (5) can be obtained at

ya = |a|p−1u∗

‖a‖p−1
p

when a is Bp-minimal.
According to Theorem 3.9, if a is Bp-minimal, then

τ(bya) = τ(yab) = 1

‖a‖p−1
p

τ(|a|p−1u∗b) = 0

for all b ∈ Bp, hence ya ∈ B⊥(τ )
p . In addition, by the proof of Proposition 3.7 (b) we

know u∗u|a| = |a|, then

ya y∗
a = |a|p−1u∗u|a|p−1

‖a‖2p−2
p

= |a|2p−2

‖a‖2p−2
p

,

|y∗
a | = |a|p−1

‖a‖p−1
p

and

‖ya‖q = ‖y∗
a‖q =

(
τ(|a|(p−1)q)

‖a‖(p−1)q
p

) 1
q

=
(

τ(|a|p)

‖a‖p
p

) 1
q

= 1.

Moreover,

τ(aya) = τ(u|a|pu∗)
‖a‖p−1

p

= τ(|a|p−1u∗u|a|)
‖a‖p−1

p

= τ(|a|p)

‖a‖p−1
p

= ‖a‖p.

The desired result is obtained.
(2) By Lemma 3.8 and its previous statements, the norm ‖ · ‖p is Gâteaux differ-

entiable at each a ∈ L p(M, τ ). Moreover, according to [1, Theorem 1.1] and [17,
Proposition 1.3],

Da(x) = lim
λ→0

‖a + λx‖p − ‖a‖p

λ
= Re fa(x)

for x ∈ L p(M, τ ), where fa(·) is the unique linear functional on L p(M, τ ) such
that ‖ fa‖ = 1 and fa(a) = ‖a‖p. Combined with the first part proof, one gets
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fa(·) = τ(·ya) and

Da(x) = Re τ(xya) = 1

‖a‖p−1
p

Re [x, a].

Thus, if a ∈ L p(M, τ ) is Bp-minimal, then Da(b) = 0 for all b ∈ Bp. ��
Remark 4.3 Let A be a Banach space, B be a proper closed linear subspace of A and
a( �= 0) ∈ A be B-minimal. A witness to the B-minimality of a is a linear functional
f on A such that ‖ f ‖ = 1, f |B = 0 and f (a) = ‖a‖ [25, Page 2267–2268]. By
the proof of Theorem 4.2, we know that in the non-commutative L p-space context

(1 < p < ∞), τ(·ya) is a witness to the Bp-minimality of a, where ya = |a|p−1u∗
‖a‖p−1

p
and

a = u|a| is the polar decomposition of a.

5 Minimal Elements Related to Finite-Diagonal-Block TypeBp

LetH be a complex separable Hilbert space with an orthonormal basis {ξi }∞i=1. Make
a partition of Z+ by {1, 2, . . . , λ1}, {λ1 + 1, λ1 + 2, . . . , λ1 +λ2}, {λ1 +λ2 + 1, λ1 +
λ2+2, . . . , λ1+λ2+λ3}, . . . , such that each set is finite. Set�0 = 0,�k = ∑k

i=1 λi

and

H�k = span{ξi : �k−1 + 1 ≤ i ≤ �k}.

Denote by P�k the orthogonal projection from H ontoH�k , and let

W (H) =
∞∑

k=1

P�k F(H)P�k (6)

(converging with respect to the operator norm), where F(H) is the algebra of finite
rank operators onH. The elements of W (H) are compact operators with finite square
matrices of a fixed type in their diagonals, and W (H) is a C*-subalgebra of K (H)

[31]. Such a W (H) is said to be finite-diagonal-block type. As a continuation and
improvement of previous works on D(K (H))-minimal compact operators [2, 9, 10,
21, 31], we characterize minimal elements related to a finite-diagonal-block type
C*-subalgebra of K (H) in [31].

Similar to the W (H) in (6), we can construct a closed linear subspace Bp of
L p(M, τ ) with finite-diagonal-block type. Some interesting results about minimal
elements related to such a type Bp can be drawn. Two projections e1 and e2 in P(M)

are said to be orthogonal if e1e2 = 0. It is easy to check that if e1 and e2 are two
orthogonal projections in P(M), then e1Se1 ∩ e2Se2 = {0}.
Theorem 5.1 Let M be a σ -finite von Neumann algebra. Take {ei }∞i=1 ⊂ P(M) such
that

(a) τ(ei ) < ∞;
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(b) ei e j = 0 when i �= j ;
(c)

∑∞
i=1 ei = I , with respect to the strong operator topology.

Set

Bp =
∞⊕

i=1

eiSei (7)

(converging with respect to ‖ · ‖p). The following statements hold:

(1) For 1 < p < ∞, a ∈ L p(M, τ ) is Bp-minimal if and only if

τ(|a|p−1u∗ei xei ) = 0 for all x ∈ S and i ∈ Z+,

where a = u|a| is the polar decomposition of a.
(2) For 2 ≤ p < ∞, if a ∈ L+

p (M, τ ) is Bp-minimal, then ei a p−1ei = 0 for all
i ∈ Z+.

(3) For 2 ≤ p < ∞, a ∈ S+ is Bp-minimal implies that a = 0.

We say Bp with the form (7) a finite-diagonal-block type closed linear subspace of
L p(M, τ ).

Proof It is well known that for a σ -finite von Neumann algebra M, the sequence of
projections {ei }∞i=1 satisfying (a-c) must exist.

(1) Suppose that τ(|a|p−1u∗ei xei ) = 0 for all x ∈ S and i ∈ Z+. Take any
b = ∑∞

i=1 ei xi ei ∈ Bp, where xi ∈ S. Since |a|p−1u∗ ∈ Lq(M, τ ), one has

∥∥∥∥∥|a|p−1u∗
n∑

i=1

ei xi ei − |a|p−1u∗b

∥∥∥∥∥
1

≤
∥∥∥|a|p−1u∗

∥∥∥
q

∥∥∥∥∥

n∑

i=1

ei xi ei − b

∥∥∥∥∥
p

→ 0

when n → ∞. Moreover, as τ is continuous on L1(M, τ ),

τ(|a|p−1u∗b) = lim
n→∞ τ(|a|p−1u∗

n∑

i=1

ei xi ei )

= lim
n→∞

n∑

i=1

τ(|a|p−1u∗ei xi ei )

= 0.

Using Theorem 3.9 and by the arbitrariness of b, a is Bp-minimal. The necessity is
obvious.
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(2) Suppose a ∈ L+
p (M, τ ) is Bp-minimal. From Corollary 3.10 we know

τ(a p−1x) = 0 for all x ∈ Bp. Take x = ei , then

τ(a p−1ei ) = τ(a p−1e2i ) = τ(ei a
p−1ei ) = 0.

One can get that ei a p−1ei = 0, since τ is faithful and ei a p−1ei is positive.

(3) Suppose a ∈ S+ is Bp-minimal, then τ
(

a p−1(
∑n

i=1 ei )
)

= 0 for each

n ∈ Z+ (Corollary 3.10). Note that a p−1 is in S+ and then in L1(M, τ ), accord-
ing to Lemma 2.1 (5) one has lim

n→∞ a p−1 ∑n
i=1 ei = a p−1 in L1(M, τ ). Since τ is

continuous and faithful on L1(M, τ ),

τ(a p−1) = lim
n→∞ τ

(
a p−1

(
n∑

i=1

ei

))
= 0,

further, a p−1 = a = 0. ��
Corollary 5.2 Let M be a finite von Neumann algebra, {ei }n

i=1 be mutually orthogonal
projections in P(M) such that τ(ei ) < ∞ and

∑n
i=1 ei = I . Set

Bp =
n⊕

i=1

eiSei , (8)

where 2 ≤ p < ∞. Then Bp is a closed linear subspace of L p(M, τ ), and a ∈
L+

p (M, τ ) is Bp-minimal implies that a = 0.

Proof Obviously, Bp is a linear subspace of L p(M, τ ). Recall that a finite direct sum
of closed sets is also closed, it is enough to prove that eSe is closed for any e ∈ P(M)

with τ(e) < ∞.
Take z from the closure of eSe and suppose exi e → z in L p(M, τ ) when i → ∞,

where xi ∈ S. Note that

‖exi e − eze‖p = ‖e(exi e)e − eze‖p ≤ ‖e‖‖exi e − z‖p‖e‖,
so exi e → eze in L p(M, τ ) when i → ∞. By the uniqueness of the limit, one has
z = eze = e(eze)e. On the other hand, since τ(e) < ∞, it follows from Lemma 2.1
(1) that eze ∈ S, then z ∈ eSe and eSe is closed in L p(M, τ ). Obviously, the Bp in
(8) contains identity I . Thus if a ∈ L+

p (M, τ ) is Bp-minimal, then τ(a p−1) = 0 and
a p−1 = a = 0. ��
Example 5.3 Let 2 ≤ p < ∞. Consider Mn(C) and its closed linear subspace

Bp = Mμ1(C) ⊕ Mμ2(C) ⊕ · · · ⊕ Mμk (C),

where k ≥ 1, 1 ≤ μi ≤ n and
∑k

i=1 μi = n. Different from the B3 in Example 3.11,
such a Bp contains the identity matrix In . By Corollary 5.2, the only positive Bp-
minimal matrix in Mn(C) is the zero matrix.
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Example 5.4 This example is obtained from [7]. LetH be a complex separable Hilbert
space with an orthonormal basis {ξi }∞i=1 and Sp(H) be the set of p-Schatten class
operators on H, namely,

Sp(H) = {x ∈ K (H) : ‖x‖p < ∞},

where ‖x‖p
p = tr(|x |p) = ∑∞

i=1〈|x |pξi , ξi 〉. Set

Bp =
∞⊕

i=1

ei F(H)ei ,

(converging with respect to ‖ · ‖p), where ei is the orthogonal projection fromH onto
span{ξi }. That is, Bp consists of all diagonal p-Schatten operators. From Theorem 5.1
(1) we know if a ∈ S+

p (H) is Bp−minimal (p ≥ 2), then ei a p−1ei = 0 for each
i ∈ Z+. Further,

tr(a p−1) =
∞∑

i=1

〈a p−1ξi , ξi 〉 =
∞∑

i=1

〈a p−1eiξi , eiξi 〉

=
∞∑

i=1

〈ei a
p−1eiξi , ξi 〉 = 0,

and a must be 0.
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