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Abstract

Forl < p < oo, let L p(./\/l, 7) be the non-commutative L ,-space associated with a
von Neumann algebra M, where M admits a normal semifinite faithful trace t. Using
the trace 7, Banach duality formula and Gateaux derivative, this paper characterizes
an element a € L, (M, ) such that

lall, = inf{la + bl : b € By},

where B, is a closed linear subspace of L ,(M, 7) and || - ||, is the norm on L , (M, 7).
Such an a is called B,-minimal. In particular, minimal elements related to the finite-
diagonal-block type closed linear subspaces

0]

B p = @ e,-Se,-
i=1
(converging with respect to || - ||,) are considered, where {e;}7°, is a sequence of
mutually orthogonal and 7-finite projections in a o -finite von Neumann algebra M,
and S is the set of elements in M with t-finite supports.
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1 Introduction

The non-commutative L ,-space theory was laid out in the 1950s by Segal [26] and
Dixmier [12]. It is the intersection of operator theory and classical L”-space theory,
as well has been widely studied, extended and applied. In this paper, we explore the
minimal elements in a non-commutative L ,-space, which are closely related to the
orthogonality in metric geometry.

Suppose ‘H is a Hilbert space and X is its closed linear subspace. For & € H, there
exists a unique kg € K such that

lh — kol = dist(h, ) = inf{||h — k|| : k € K},

where || - || is the norm induced by the inner product of H. Replacing & — ko with hg,
one has

lholl = inf{llho + k| : k € K}.

Such an Ay is called K-minimal [25, Definition 5.2].

In the absence of inner product, Birkhoff [6] and James [15] study the orthogonality
in a normed linear space, firstly. Suppose X" is a normed linear space over C and
X,y € X, then x is said to be Birkhoff-James orthogonal to y if

lx]l < llx + Ay]| for all A € C.

Thereafter, with the help of Hahn—Banach Theorem, Lumer [19] and Giles [14] carry
over the notion of inner product on a Hilbert space to the semi-inner-product on a
normed linear space, put forward that x and y in a continuous semi-inner-product
space are Birkhoff—James orthogonal if and only if their semi-inner-product is 0 [14,
Theorem 2]. Let ) be a closed linear subspace of X. Then xo € X is said to be
Y-minimal if it is Birkhoff-James orthogonal to each y € ), or equivalently, if

lxoll = inf{[lxo + yll - y € V}.

The existence of minimal elements allows the description of minimal length curves
(curves with minimal length joining fixed endpoints) of metric geometry in homoge-
neous spaces, and the characterization of minimal elements in various Banach spaces
has attracted the attention of many scholars. For instance, [13] studies minimal ele-
ments and the corresponding minimal length curves of a homogeneous space P in a
C*-algebra context. [3, 4, 18, 22, 32] are devoted to characterizing and constructing
D,,(R)-minimal hermitian matrices in M, (C), in the sense of operator norm, where
M, (C) is the algebra of complex n x n matrices and D, (R) is the algebra of real
diagonal n x n matrices. For the study of minimal length curves in an infinite dimen-
sional manifold, as well as the corresponding works on D (K (H))-minimal compact
operators, one can refer to [2, 9, 10, 21, 31], where H is a complex separable Hilbert
space with an orthonormal basis {£;}7°,, K (H) is the algebra of compact operators
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on H, and
D(K(H)) ={D € K(H) : (D§;,&;) =0wheni # j}

is the set of diagonal compact operators. Moreover, [5, 28] study the best approximation
and orthogonality in Hilbert C*-modules, which are closely related to minimal ele-
ments. Recently, with the help of semi-inner-product, minimal elements in p-Schatten
ideals are explored in [7, 8]. With a view to the geometric property of orthogonality
in a non-commutative L ,-space, illuminated by the idea of [7, 8], this paper devotes
to characterizing an element a € L, (M, 7) such that

lall, = inf{lla +bll, : b € By},

where || ||, is the normon L , (M, t) and B,, is a closed linear subspace of L , (M, 7).

We briefly describe the contents of this paper. Section 2 lists some basic notions and
prevalent results we will use throughout this paper. Section 3 provides the semi-inner-
product on L, (M, 1) specifically and characterizes 53 ,-minimal elements in terms of
disjoint supports and the trace . Section4 describes 3,-minimal elements through
the Gateaux derivative of norm || - ||, and the Banach duality formula, respectively.
In Sect.5, minimal elements related to the finite-diagonal-block type closed linear
subspaces

00
Bp = @eié‘ei
i=1

(converging withrespectto || - || ,) of L ,(M, 7) are taken into account, where {¢;}{°, is
a sequence of mutually orthogonal and t-finite projections in a o -finite von Neumann
algebra M, and S is the set of elements in M with t-finite supports.

2 Preliminaries

In this section we give some basic concepts and prevalent results on non-commutative
L ,-spaces. One can refer to [23, Chapter 34] and [29] for more details.

e Denote by M a von Neumann algebra acting on a Hilbert space H and by M its
positive part. A trace on M is a map 7 : M4 — [0, oo] satisfying

1) t(x+Ary) =1t(x) + At(y),forx,y €e My and A € Ry;
2) t(x*x) = t(xx¥), for x € M.

Moreover, 7 is said to be normal if sup; t(x;) = t(sup, x;) for each bounded
increasing net {x;};cx in M ; to be semifinite if for any non-zero x € M there
is a non-zero y € My such that y < x and 7(y) < oo; and to be faithful if
x € My with t(x) = 0 implies that x = 0. In the rest of this paper, the von
Neumann algebra M always admits a normal semifinite faithful trace t. Denote
by P (M) the set of projections in M, namely, e € P(M) if e = ¢? = e*. There
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120 Page4of17 Y. Zhang, L. Jiang

always exists an increasing net {e;};cp C P (M) such that t(e¢;) < oo for each
i € A and ¢; — [ with respect to the strong operator topology, where I is the
identity of M.

e For x € M, let x = u|x| be its polar decomposition, where u is a partial isometry
from (ker x)* onto ranx and |x| = (x*x)% is the absolute value of x. Denote
by /(x) = uu* and r(x) = u*u the left and right support for x, respectively. If
x € My, thenl(x) = r(x) and we write the support as s(x). Set

St ={xeM;i:t(sx)) < oo},

and let S be the linear span of Sy, namely, the set of elements in M with 7-
finite support. If x € S and 0 < p < oo, then |x|? € S. Moreover, define

lxllp, = r(|x|”)%, then || - ||, isanorm on S when 1 < p < oo and is a quasi-
normon S when 0 < p < 1. The completion of (S, || - || ,), denoted by L ,(M, 1),
is called the non-commutative L ,-space associated with (M, 7). In this paper
we focus on the case 1 < p < oo, for which L,(M, t) forms a Banach space.
For the sake of convenience, we set Ly, (M, 7) = M equipped with the operator
norm.

e Letl < p < oo and take x € L,(M, 7). Then x is a closed densely defined
operator on H. More specifically, its domain D(x) is dense in H and its graph
G(x) = {(&,x&) : £ € D(x)} is closed in H & H. The adjoint x* of x is defined
such that (xf, g) = (f,x*g) forall f € D(x) and g € D(x*), where D(x*) =
{g e H: f— (xf,g)iscontinuous on D(x)}.If x = x*, then x is said to be self-
adjoint. Similar to bounded linear operators, x has a unique polar decomposition
X = u|x|, where u is a partial isometry from (ker x)+ onto x(D(x)). In addition,
the left and right supports for x can be defined. For more details on closed densely
defined operators one can refer to [11, Chapter X] and [24, Chapter 13].

The following Lemma 2.1 is crucial to this paper.

Lemma 2.1 [23, 29] The following statements hold:

(1) S is a strongly dense involutive ideal of M. Moreover, for x € M, x € S if and
only if there is an e € P(M) with t(e) < oo such that exe = x.

2) |tx)] < llx|l1 for x € S. Moreover, T can be extended to a continuous linear
functional on L1(M, 7).

(3) Forx e L,(M,t)anda,b € M,

Ixllp = Ix*llp = lllx]lp, llaxbllp, < llallllx]lpll&]. ey
(4) (Holder inequality) Suppose 1 < p < oo and % + % = 1. Then
[Tl = lxllpliylg
forx e L,(M,t)andy € Ly(M, 7).

(5) Let {ai}icn be a bounded net in M such that a; — a with respect to the strong
operator topology, then xa; — xa in L ,(M, ) for any x € L,(M, 7).
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3 Characterizations of 3,-Minimal Elements

The aim of this section is to characterize BB,-minimal elements in terms of disjoint
supports and the normal semifinite faithful trace t.

Definition 3.1 Let 1 < p < oo and B, be a closed linear subspace of L ,(M, 7). We
say thata € L,(M, t) is B,-minimal if

lall, = inf{la + bl : b € Bp).

Remark 3.2 With B, as above, suppose a € L, (M, 1) is B,-minimal.

(1) Aais Bp-minimal for all A € C, since

IAall, = IAlllall, = |Alinf{lla + b, : b € By}
=inf{|Aa +bll, : b € B,}.

(2) a* is B,-minimal provided that 3, is *-closed. Indeed, since a is BB,,-minimal,
lall, = lla*||, and B, = By, then

la*ll, = llall, = inf{|[(a +D)|I, : b € By}
=inf{ll(a+b)*|l,: b e B;}
=inf{|la* + b*|, : b* € B)}
= inf{lla* + b, : b € B,}.

(3) Suppose u and v are two unitary operators in M and B, is (u, v)-invariant (namely,
uBpv = Bp), then uav is B,-minimal. Indeed, according to Lemma 2.1 (3), one
has

Ixllp = luuxvv™(l, < lluxvlly < llxllp, ¥x € Lp(M, 1)

so the norm || - || , is unitary invariant. Therefore, ifa € L ,(M, t) is B,-minimal,
then

luavll, = llall, = inf{llu(a + b)vl, : b € By}
= inf{|luav + b, : b € B},

which implies that uav is B,-minimal as well.

Inrecent works, Li et al. [20] and Bottazzi et al. [8] point out that operators x and y in
a p-Schatten ideal have disjoint supports if and only if [|x + y[|, = [|lx[|h +[ly[I5 (0 <
p < 00). Following this idea, we characterize B,-minimal elements in L ,(M, t)
through disjoint supports. Let L; (M, 7) be the set of positive elements in L , (M, 7).

Forx,y e L;(M, 7),x > ymeansthatx —y € L;(M, 7).

Definition 3.3 [29] For a € L,(M, 1), let a = ula| be its polar decomposition,
where u is a partial isometry from (ker a)L onto aD(a), D(a) is the domain of a, and
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lal = (a*a)% is the absolute value of a. We say that [(a) = uu™ is the left support for
a and r(a) = u*u is the right support for a.

Definition 3.4 Let 1 < p < oo and B, be a closed linear subspace of L ,(M, 7). We
say thata € L,(M, t) and B, have disjoint left supports if

l(@)I(b) =0forallb € B,
and have disjoint right supports if
r(a)r(b) =0forall b € B,,,

where /(-) and r(-) mean the left and right supports, respectively.

Theorem 3.5 Let 1 < p < oo and B), be a closed linear subspace of L (M, 1). If
a € L,(M, 1) and B, have disjoint left (or right) supports, then a is B,-minimal.

Proof Recall that for x € L,(M, 1), I(x) is the projection from H onto Tanx and
r(x) is the projection from H onto (ker x)*. Since each x in L,(M, 1) is closed
and densely defined, then (ran x)* = ker x*, (ranx*)+ = kerx and x = x** [11,
Proposition X.1.6 and X.1.13].
Suppose that a and B, have disjoint left supports first. For b € B, l(a)l(b) = 0

implies that

rana C (ranb)™ = ker b*, ranb C (rana)® = kera*.
Thus, b*a = a*b = 0 and

la +b)* = a*a +a*b + b*a+ b*b = |a|* + |b|* > |a|*.
According to [16, Lemma 3.2], one has

P b
la+ bl =t(a+b*2) > t(la*?) = |lalb,

so a is B,-minimal.
Using similar techniques, if @ and B, have disjoint right supports, then

rana* = (ker a)yt c (ker b)LL =kerb, ranb* C kera
and so ba* = ab* = 0 for each b € BB,,. Hence

la* + b*|* = |a** + [b*|* > |a*|?,
la +bll, = lla* +b*1l, > la*l, = llalp.

The desired result follows. O
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In 1961, Lumer [19] carried over the concept of inner product on Hilbert spaces to
semi-inner-product on normed linear spaces, excepting the conjugate linear property.
Later, G.R. Giles pointed out that every normed linear space can be represented as
a semi-inner-product space with the homogeneity property (see [14, Theorem 1]).
Before moving forward, let us recall revalent notions.

Definition 3.6 [14, Page 437], [19, Definition 1]
(1) Let X be a normed linear space. A mapping [-, -] : X x X — C satisfying

(a) [aX+/32,y]1= alx, yl + Blz, yI;
() lx]l =[x, x]2;
© Ilx, Y11 < [x, x1[y, y1;

forall x,y,z € X and «, B8 € C is called a semi-inner-product on X, and then
(X, [+, -]) is called a semi-inner-product space.

(2) A semi-inner-product space (X, [, -]) is said to have the homogeneity property if
[+, -] also satisfies

d [x,ay] =alx, y]

forallx,y € X and @ € C.
(3) A semi-inner-product space (X, [-, -]) is said to be continuous if

(e) Re([x,y + Ax]) — Re([x, y]) for real A — O,

for every x, y in the unit sphere S(X) = {x € X : ||x| = 1}, where Re([x, y]) is
the real part of [x, y].

Draw on the experience of [8, 27], we show the semi-inner-product on L , (M, 7)
specifically, where M admits a normal semifinite faithful trace r and 1 < p < oo.

Proposition 3.7 Suppose 1 < p < 0. For x,y € L,(M, 1), define

2— —
[x, y1 = Iyl "(y1P~ u*x), )
where y = u|y| is the polar decomposition of y. Then
[ 1:LyM, 1) x L,(M, 1) = C

is a semi-inner-product on L ,(M, T) having the homogeneity property.

Proof Suppose % +1 =1 Take x,y,2€ L,(M,1)anda, B € C. Let us check that
the mapping [, -] de%ned in (2) satisfies (a—d) in Definition 3.6.
(a) For y = u|y| € L,(M, 7) one has ly|P~! e Ly(M, 7), since

r((y177)7) = 7(y17) < oo,
Moreover, using the Holder inequality,

IETE:

—1 —1
= i) ety < i e, < oo
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[y|P~"u*x is in L1 (M, 7). Recall that 7 is linear on L (M, ), one has

[ax + Bz, y1 = Iyll5 Pyl u* (ax + B2))
= allyly Pr(yP urx) + Blly s Pr(ylPurz)
=alx,yl+ Blz, y].

(b) First we claim that u*u|y| = |y|. Indeed, suppose & € rany*, then & =
y*n for some 1 € (ker y*)= N D(y*) = fany N D(y*) and so

ran y*y = ran y* = (ker y)l. 3)
Applying (3) to |y|, one has ran |y| = ran |y|? = ran y*y and thus ran |y| is dense in

(ker y)*. Recall that u*u is the projection onto (ker y)*, u*u|y| = |y| as asserted.
Therefore,

2— _ 2— _
[y, yl = IIyllg PrylP= u*y) = Iylly PrylP~ utulyl)
= lylly Pz(yI?) = ||Y||f,.

(c) Since |y|P~! e Ly (M, 7), it follows from the Holder inequality that

e, Y17 = Iyl 7 }r<|y|f’-‘u*x2>\2
= Iyl (1= ) e,

meanwhile, by Lemma 2.1 (2),

lyi=tur], < [y~ g |

1

= iy, = (ay1P=17)"
1 2 —1
= (1" = (Ivlp)* = Iv15 "

Therefore,
4-2 2p—2
e, Y12 < vl Pyl ",
= lyl21x12 = [x, x][y, y].

(d) Observe that oy = (Iz_\“)( |aey|) is the polar decomposition of ay,

2— _
[x. ay] = llaylly "z (laylP~" (gu)*x)
_ _1)— — 2— _
= (Ja|C=PFP=D=Ny@) ||yl Py P urx)
=alx, yl.

The proof is completed. O
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To characterize B,-minimal elements, it is necessary to review some basic
definitions and known results on geometric theory of Banach space.

Let (X, | - ||) be a Banach space. We call xg € S(X) a smooth point of the unit
ball B(X) = {x € X : ||x]|| < 1}, if there is a unique f € X™* such that || f|| = 1 and
f(x0) = 1; and call the norm || - || is Gateaux differentiable at xo € S(X), if for any
yeSAX)and L € R

X0 + A1l = llxoll
A

Dy (y) = xh_%

exists. Accordingly, the Banach space & is said to be smooth if each x € S(&X) is
a smooth point of B(X), and is said to be Gateaux differentiable if | - || is Gateaux
differentiable at each x € S(X). It is well known that X" is smooth if and only if X is
Giteaux differentiable [1, Theorem 2.1].

Lemma 3.8 [23, Corollary 5.2] For 1 < p < 00, L,(M, t) is uniformly convex and
smooth.

Let 1 < p < oo and B, be a closed linear subspace of L,(M, 7). Since the
Banach space L, (M, ) is smooth, in other words, it is Gateaux differentiable, then
the semi-inner product defined in (2) is continuous [14, Theorem 3]. Moreover, by
[14, Theorem 2], a € L,(M, 1) is B,-minimal if and only if

[b,a]l =0forall b e B,
equivalently,
t(lalP~'u*b) = 0 for all b € B,

where a = ua| is the polar decomposition of a. We obtain the following theorem.

Theorem 3.9 Let 1 < p < oo and B), be a closed linear subspace of L ,(M, t). Then
a € L,(M, ) is Bp-minimal if and only if

t(lal”~'u*b) = 0 for all b € B,,

where a = ula| is the polar decomposition of a.

One can simplify Theorem 3.9 when the 3,,-minimal element is self-adjoint. Notice
that a = ula| = |a|u* when a is self-adjoint, moreover, |a|?~2 = a?~2 when p is an
even integer, one has the following corollary.

Corollary 3.10 Let2 < p < oo and B), be a closed linear subspace of L ,(M, 7).
(1) A self-adjoint element a € L,(M, 1) is Bp-minimal if and only if

t(|la|P~%ab) = 0 for all b € B,,.

@ Springer



120 Page100f17 Y. Zhang, L. Jiang

In particular, when p is an even integer, a self-adjoint element a € L,(M, ) is
B,-minimal if and only if

t(@P'b) = 0forall b € B,.
(2) A positive element a € L ,(M, 1) is Bp-minimal if and only if
t(aP~'b) = 0 forall b € B,.
Example 3.11 Let M, (C) be the algebra of complex n x n matrices. For A € M, (C),

denote by A(A) = (A1(A), A2(A), ..., A, (A)) the set of eigenvalues of A, in counting
1

multiplicity. Then ||A]|, = ( Yo i (AP ) ? A class of positive minimal matrices
in M, (C) will be provided below.
Let p = 3, denote B3 = C & 0 and take F = (1 0

0 0) € Bs. The positive Bs-

minimal matrix in M>(C) must have the form <8 aO ), where ayy > 0. Indeed,
22

aip a . .. . . .
suppose A = (al alz) is a positive B3-minimal matrix, where a1, ap» > 0. By
12 d22

Corollary 3.10 (2) one has

2 2
tr(A%E) = tr(A2E?) = (EA’E) = tr (“11 + lan| 0) —0.

0 0

and then a;; = ajp» = 0. Moreover, since that
00 x 0 _ 3 3 3 _ 00
(Gam) + (G0)], = btz = (G 0,

00 ). ..
0 a22> is B3-minimal.

3

forallxe(C,A:(

Remark 3.12 (1) The B,-minimal element must exists (considering 0).
(2) From Example 3.11 one can see the 3,-minimal element may not be unique.

4 Banach Duality Formula and Minimal Elements

As an application of the Hahn—Banach Theorem, [9, Proposition 4] and [21, Lemma
4] put forward the Banach duality formula between sets of compact operators and
trace class operators. Then [7, Proposition 3.3] generalizes this result to a p-Schatten
ideal and its dual, i.e. g-Schatten ideal, where % + (17 = 1. The Banach duality formula
connects a Banach space X’ and its dual X'*, which is also a tool to characterize minimal
elements. In this section, we characterize 3,-minimal elements by the Banach duality
formula between L ,(M, 7) and its dual given below.
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Lemma 4.1 (Banach duality formula for non-commutative L ,-space) Let 1 < p < oo
and By, be a closed linear subspace of L ,(M, 7). Denote

B;‘(T) ={yeLyM,1):1(by) =0forallb e By},
where % + é = L. Then fora € Ly(M, 1),
inf{lla + bl : b € By} = sup{|z(ay)| : y € B, Ilylly = 1}. )
Proof Take y € By ™ with ||y|l, = 1. With the help of Holder inequality,
IT(ay)| = It(ay +by)| < lla +bll,lylly = lla + bl
forall b € B, so
sup{[t(ay)| : y € By, |yly =1} <inf{lla +bl, : b € B).
Without loss of generality, suppose a ¢ B, then inf{|la + b|, : B € B,} > 0as B),
is closed. According to the Hahn—Banach Theorem [11, Corollary I11.6.8], there is a
linear functional f € (L,(M, t))* such that || || =1, f1B, = 0and
f(a) = dist(a, By) =inf{|la + b, : b € Bp}.

Since (L,(M, 1))* = Ly(M, ) [23, Page 1464], there exists a unique yp in
L, (M, ) such that

Iyolly = IIF1l = 1and f(-) = z(-yo).
In addition, f|g, = 0 implies that yy € Bﬁ(r). One gets

inf{lla + bll, : b € By} = t(ayo) < sup{lz(ay): y € By, [lyly = 1}.

The equation (4) holds. O

Theorem4.2 Let 1 < p < oo, By, be a closed linear subspace of L,(M, t) and
a(#0) € L,(M, 1). The following two statements hold:

(1) a is B,-minimal if and only if
lall, = sup{|z(ay)| : y € By, lIylly = 1}.

. . . p=lyx
Moreover, the supremum of the right side can be obtained at y, = lal—pl‘l,

lallp

where

a = ulal is the polar decomposition of a;
(2) If a is Bp-minimal, then D,(b) = 0 for all b € B, where D, (b) is the Gdteaux
derivative of || - || at a in the b direction.
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120 Page120f17 Y. Zhang, L. Jiang

Proof (1)Itis obvious from Lemma 4.1 thata € L (M, ) is B,-minimal if and only
if

lall, = sup{lz(ay)| : y € By, lIylly = 1}. )
Let us prove that the supremum of right side of (5) can be obtained at

jal?~

—1
lally

when a is B,-minimal.
According to Theorem 3.9, if a is B,-minimal, then

T(bys) = T(yab) = t(lal”'u*b) =0

p—1
lallp

forall b € B), hence y, € Blf(r). In addition, by the proof of Proposition 3.7 (b) we
know u*ula| = |a|, then

. lalP Ywrula|P=t ja?P?
YaYa = 2p—2 = a2
e lall3’

llall

p—1
|)’Z| = ‘alp—l and
lallp

1

1 1
Ivally = il = (209220 ) (z0alD) T
allg — 9 —\ " o—Da - -
‘ laf =" lally

t(ulalPu*)  t(lalP'uFula))  t(|la|?)

-1 -1 = -1
lallp lallp lallp

Moreover,

T(ayq) =

= llallp-

The desired result is obtained.

(2) By Lemma 3.8 and its previous statements, the norm || - ||, is Gateaux differ-
entiable at each a € L,(M, 7). Moreover, according to [1, Theorem 1.1] and [17,
Proposition 1.3],

la +Axllp — llallp

3 = Ref,(x)

Dy(x) = All_r)%

for x € L,(M, 1), where f,(-) is the unique linear functional on L ,(M, 7) such
that || fz|| = 1 and f,(a) = |la||p. Combined with the first part proof, one gets
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fa(-) = t(-yq) and

1
D,(x) =Re t(xy,) = ﬁRe [x,al.
lallp
Thus, if a € L,(M, 1) is B,-minimal, then D, (b) = 0 forall b € B,. O

Remark 4.3 Let A be a Banach space, 13 be a proper closed linear subspace of A and
a(# 0) € A be B-minimal. A witness to the 3-minimality of a is a linear functional
fon Asuchthat || f]| = 1, flg = 0 and f(a) = |la| [25, Page 2267-2268]. By
the proof of Theorem 4.2, we know that in the non-commutative L ,-space context

n—1,,%
(I < p < 00), T(-y,) is a witness to the B,-minimality of a, where y, = ‘Llll!:“,,_ul d
P

a = ula| is the polar decomposition of a.

5 Minimal Elements Related to Finite-Diagonal-Block Type 1,

Let H be a complex separable Hilbert space with an orthonormal basis {£;}{°,. Make
a partition of Z+ by {L,2,..., L {4+ 1L, 042, ., a0+ 0L M+ 4+ 1, 0+
M4+2,..., A1+ A2+ A3}, ..., such that each set is finite. Set Ag = 0, Ay = Zf:l Ai
and

Ha, =span{é; : Ag1 +1 <10 < A}

Denote by Py, the orthogonal projection from H onto H 4, , and let

W(H) =) Pr.F(H)Py, (6)
k=1

(converging with respect to the operator norm), where F () is the algebra of finite
rank operators on H. The elements of W (H) are compact operators with finite square
matrices of a fixed type in their diagonals, and W (H) is a C*-subalgebra of K (H)
[31]. Such a W(H) is said to be finite-diagonal-block type. As a continuation and
improvement of previous works on D (K (H))-minimal compact operators [2, 9, 10,
21, 31], we characterize minimal elements related to a finite-diagonal-block type
C*-subalgebra of K (H) in [31].

Similar to the W(H) in (6), we can construct a closed linear subspace B, of
L, (M, 1) with finite-diagonal-block type. Some interesting results about minimal
elements related to such a type 3, can be drawn. Two projections e and ez in P (M)
are said to be orthogonal if eje; = 0. It is easy to check that if e; and e, are two
orthogonal projections in P (M), then e1Se; N exSey = {0}.

Theorem 5.1 Let M be a o -finite von Neumann algebra. Take {e; };’il C P(M) such
that

(@) t(e;) < 00;
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(b) eiej =0wheni # j;
(¢) Y72y ei = I, with respect to the strong operator topology.

Set
[e¢]
Bp = @6,‘56,’ (7)
i=1
(converging with respect to || - || ). The following statements hold:

(1) Forl < p <00, a € L,(M, ) is Bp-minimal if and only if
t(jalP"'u*eixe;) = 0forallx € Sandi € Zy,

where a = u|a| is the polar decomposition of a.

2) For2 < p < oo, ifa € L;(M, ) is Bp-minimal, then eiap_lei = 0 for all
i€ Z+.

(3) For2 < p < 00, a € 8 is Bp-minimal implies that a = 0.

We say B, with the form (7) a finite-diagonal-block type closed linear subspace of
Ly(M,1).

Proof 1t is well known that for a o -finite von Neumann algebra M, the sequence of
projections {e;};2 | satisfying (a-c) must exist.

(1) Suppose that 7(|a|? 'u*ejxe;) = 0 forall x € S and i € Z,. Take any
b= Z?il ejxie; € By, where x; € S. Since la|P~tu* € Ly(M, 7), one has

n
lalP~tu* Zeixiei —la|P'u*b
i=1

1

< ||a)P~tu* -0

n
E eixie; —b

i=1

p

when n — o0o. Moreover, as T is continuous on L (M, 1),

n
t(lal?~'w*b) = lim t(lalP~'u* Y eixie)
n—>0o0
i=1
n
= lim Zt(|a|p71u*e,~xie,’)
n—oo n 1
1=

=0.

Using Theorem 3.9 and by the arbitrariness of b, a is B,-minimal. The necessity is
obvious.
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(2) Suppose a € LZ(M, 7) is Bp-minimal. From Corollary 3.10 we know
t(@P~lx) =0forall x € B,. Take x = ¢;, then

-1 -1 -1
T(@f ) = t(@Pef) = t(ejaP"e;) = 0.

One can get that e;a?~'e; = 0, since 7 is faithful and e;a”~'¢; is positive.
(3) Suppose a € Sy is B,-minimal, then 1’((11’_1(2:’:1 €i)) = 0 for each
n € Z4 (Corollary 3.10). Note that a”~! is in Sy and then in L1 (M, 1), accord-
ing to Lemma 2.1 (5) one has lim a?~! e = a?~Vin L{(M, 7). Since 7 is
n—>oo

continuous and faithful on L (M, 1),

o (1)) o

further, a?~! = a = 0. m]

Corollary 5.2 Let M be a finite von Neumann algebra, {e;};_, be mutually orthogonal
projections in P (M) such that t(e;) < coand Y ;_, e; = 1. Set

n
B, :@eiSei, ®)
i=1

where 2 < p < oo. Then B is a closed linear subspace of L,(M, ), and a €
L?,‘(/\/l, 1) is Bp-minimal implies that a = 0.
Proof Obviously, B, is a linear subspace of L, (M, 7). Recall that a finite direct sum
of closed sets is also closed, it is enough to prove that eSe is closed for any ¢ € P (M)
with t(e) < oo.

Take z from the closure of eSe and suppose ex;e — zin L,(M, v) wheni — oo,
where x; € S. Note that

llexie — ezell, = lle(exie)e — ezell, < |lel|llexie — zllpllell,
14 V4 14

so exje — eze in L,(M, t) when i — oo. By the uniqueness of the limit, one has
7z = eze = e(eze)e. On the other hand, since 7(e) < 00, it follows from Lemma 2.1
(1) that eze € S, then z € eSe and eSe is closed in L, (M, 7). Obviously, the B, in
(8) contains identity /. Thus if a € L;(M, 7) is Bp-minimal, then (@~ = 0and
aP~'=a=0. O

Example 5.3 Let 2 < p < oo. Consider M,,(C) and its closed linear subspace
B,=M,, O &M, O)®-- - &M, (C),
where k > 1,1 < u; <n and Zle w; = n. Different from the B3 in Example 3.11,

such a B, contains the identity matrix /,. By Corollary 5.2, the only positive B,-
minimal matrix in M,,(C) is the zero matrix.
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Example 5.4 This example is obtained from [7]. Let H be a complex separable Hilbert
space with an orthonormal basis {£;}7°, and S,(H) be the set of p-Schatten class
operators on H, namely,

Sp(H) ={x € K(R) : ||x]l, < oo},

where [lx||;, = tr(lx|?) = >°72, (1x|P&;, &). Set

]

By, =PeiF (e,

i=1

(converging with respect to || - || ,), where ¢; is the orthogonal projection from H onto
span{§; }. Thatis, B, consists of all diagonal p-Schatten operators. From Theorem 5.1
(1) we know if a € S;‘(H) is B,—minimal (p > 2), then e;aP~le; = 0 for each
i € Z4. Further,

oo oo

tr(a?~ = Z(a”_léi, &) = Z(ap_leié'i, ei&i)

i=1

i=1
oo

=) (eia’ e, &) =0,
i=1

and a must be 0.
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