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Abstract
Let GS be the graph obtained by attaching a self-loop at every vertex in S ⊆ V (G)

of a simple graph G of order n. In this paper, we explore several new results related
to the line graph L(GS) of GS . Particularly, we show that every eigenvalue of L(GS)

must be at least −2, and relate the characteristic polynomial of the line graph L(G)

of G with the characteristic polynomial of the line graph L(̂G) of a self-loop graph
̂G, which is obtained by attaching a self-loop at each vertex of G. Then, we provide
some new bounds for the eigenvalues and energy of GS . As one of the consequences,
we obtain that the energy of a connected regular complete multipartite graph is not
greater than the energy of the corresponding self-loop graph. Lastly, we establish a
lower bound of the spectral radius in terms of the first Zagreb index M1(G) and the
minimum degree δ(G), as well as proving two Nordhaus–Gaddum-type bounds for
the spectral radius and the energy of GS, respectively.
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1 Introduction

Let G = (V (G), E(G)) be a finite simple graph, where V (G) is the set of vertices
of G, and E(G) is the set of its edges. If |V (G)| = n and |E(G)| = m, we say
that G is a graph of order n and size m. Let V (G) = {v1, v2, . . . , vn} and E(G) =
{e1, e2, . . . , em}. The incidence matrix of G is the matrix B(G) = (bi j )n×m whose
rows and columns are indexed by the vertices and edges of G, respectively. The (i, j)-
th entry bi j of B(G) is equal to 1, if vi is incident with e j , and bi j = 0, if vi and e j
are not incident. The degree of the vertex vi will be denoted by dG(vi ), for 1 ≤ i ≤ n,
while �(G) = max

1≤i≤n
{dG(vi )} and δ(G) = min

1≤i≤n
{dG(vi )} will be the maximum and

the minimum degree of G, respectively. When there is no confusion, we write � and
δ. In addition, if dG(vi ) = r , for each 1 ≤ i ≤ n, G is called an r -regular graph. If
either dG(vi ) = r or dG(vi ) = k, for each 1 ≤ i ≤ n, then G is an (r , k)-bidegreed
graph. If G is a graph that is bipartite and bidegreed, then G is an (r , k)-semiregular
graph.

Let A(G) = (ai j )n×n be the adjacency matrix of G, whose (i, j)-th entry ai j is
defined by ai j = 1, if vi and v j are adjacent vertices, and ai j = 0, otherwise. The
characteristic polynomial PG(x) = det (x In − A(G)) of G is the characteristic poly-
nomial of its adjacency matrix, where In is the n× n identity matrix. The (adjacency)
eigenvalues λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) of G are the eigenvalues of A(G). Since
A(G) is real and symmetric, the eigenvalues of G are all real. If λ1 > λ2 > · · · > λt
are the distinct eigenvalues of G, then the (adjacency) spectrum of G will be denoted

by Spec(G) =
(

λ1 λ2 · · · λt
a1 a2 · · · at

)

, where ai , for 1 ≤ i ≤ t , is the algebraic multiplicity

of the eigenvalue λi . In particular, λ1(G), as the largest eigenvalue of G, is called
the spectral radius (or index) of G, and when there is no confusion of what G is, we

shall only write λ1. It is well-known (see, for example, [6]) that
n
∑

i=1
λi (G) = 0 and

n
∑

i=1
λ2i (G) = 2m. Another frequently used results related to the eigenvalues of a graph

are the Courant-Weyl inequalities and the Interlacing Theorem:

Theorem 1.1 [6, Theorem 1.3.15] Let A and B be n × n Hermitian matrices. Then,

λi (A + B) ≤ λ j (A) + λi− j+1(B), 1 ≤ j ≤ i ≤ n, (1.1)

λi (A + B) ≥ λ j (A) + λi− j+n(B), 1 ≤ i ≤ j ≤ n. (1.2)

Theorem 1.2 [6, Corollary 1.3.12] Let G be a graph with n vertices and eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn, and let H be an induced subgraph of G with m vertices. If the
eigenvalues of H are μ1 ≥ μ2 ≥ · · · ≥ μm, then for i = 1, . . . ,m,

λn−m+i ≤ μi ≤ λi .
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The energy E(G) of G was first introduced by Gutman [9] to be the sum of all
absolute eigenvalues of G:

E(G) =
n

∑

i=1

|λi (G)|. (1.3)

Despite a lot of research have been done on studying different aspects of this graph
invariant, graph energy still remains intriguing to researchers. For more details about
graph energy and its application in mathematical chemistry, we refer the readers to,
for example, [12–14, 18] and references therein.

Let S ⊆ V (G) and |S| = σ , where 0 ≤ σ ≤ n. For G a simple graph of order n
and size m, denote by GS the self-loop graph of G at S, i.e. GS is the graph of order n
and size m, obtained from G by attaching a self-loop (or simply a loop) at each vertex
from the set S. For clarity, m always denotes the number of ordinary edges and the
number of loops σ is not incorporated in m. When σ = 0, we write G instead of GS ,
while when σ = n, we will use the notation ̂G. The adjacency matrix A(GS) of GS

takes the form A(GS) = A(G) + IS , where IS is the “almost” identity matrix, with
exactly σ ones on the main diagonal corresponding to S and all other entries equal
to zero. The (adjacency) eigenvalues λ1(GS) ≥ λ2(GS) ≥ · · · ≥ λn(GS) of GS are
the eigenvalues of the matrix A(GS), and since A(GS) is square and symmetric, these
eigenvalues are reals.

Recently, Gutman et al. [15] has initiated the study of the spectral properties of
A(GS), amongst which we have the following relations.

Lemma 1.3 [15] Let S ⊆ V (G) and |S| = σ. Let GS be a self-loop graph of order n
and size m. Let λ1(GS) ≥ · · · ≥ λn(GS) be the eigenvalues of GS . Then,

(i)
n

∑

i=1

λi (GS) = σ,

(ii)
n

∑

i=1

λ2i (GS) = 2m + σ.

The energy E(GS) of GS [15] of order n and |S| = σ is defined as

E(GS) =
n

∑

i=1

∣

∣

∣λi (GS) − σ

n

∣

∣

∣ . (1.4)

Since the research topics related to the energy of self-loop graphs are relatively
new, we refer the readers to the several papers that have been published on this subject
so far: [1–3, 17, 19, 25, 26]. Application-wise, self-loop graphs have also classically
been found to manifest in mathematical chemistry, cf. [10, 11, 20].

In the paper, we adapt commonly used notations in Spectral Graph Theory. The
complement G of a graph G is the graph with the same set of vertices as G such that
two distinct vertices in G are adjacent whenever they are not adjacent in G. The line
graph L(G) of a graph G is the graph whose vertices are the edges of G, with two
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vertices in L(G) adjacent whenever the corresponding edges in G have exactly one
vertex in common. Kn is the complete graph of order n, while the completemultipartite
graph Kn1,n2,...,nk is the complement of the graph G = Kn1 ∪̇ Kn2 ∪̇ · · · ∪̇ Knk , where
∪̇ stands for disjoint union. If n1 = n2 = · · · = nk = p, we will use the label

Kk×p. The first Zagreb index M1(G) of G is defined as [16]: M1(G) =
n
∑

i=1
d2G(vi ),

while the first Zagreb index M1(GS) of GS is [26]: M1(GS) =
n
∑

i=1
d2GS

(vi ), where

dGS (vi ) is the degree of the vertex vi in GS . In particular, if v ∈ S, then dGS (v) =
dG(v)+2. In Sect. 4, wewill also discuss semiregular graphs, for clarity, we explain the
notion of semiregular matrices, cf. [28]. A nonnegative matrix A is row-regular (resp.
column-regular) if all of its row (resp. column) sums are equal. A is row-semiregular
(resp. column-semiregular) if there exists a permutation matrix P such that PT AP =
(

0 B
C 0

)

where B and C are both row-regular (resp. column-regular). Then, the matrix

A is said to be regular (resp. semiregular) if A is both row-regular and column-
regular (resp. row and column-semiregular). For the remaining basic terminology and
additional details, the reader is referred to [5] and [6].

The paper is organized as follows. In Sect. 2, we establish that E(G \ S) < E(GS)

for a set S of independent vertices in G, and prove several results related to the line
graph L(GS) of GS . Here, we show that every eigenvalue of L(GS) must be not less
than −2. The relation between the characteristic polynomials of the line graph L(̂G)

of ̂G and its counterpart L(G) is derived. In Sect. 3, some bounds on the eigenvalues of
a self-loop graph are given, together with some lower bounds on its energy. Moreover,
we show that the energy of a connected regular complete multipartite graph is not
greater than the energy of the corresponding self-loop graph. In Sect. 4, besides an
upper bound, we give a lower bound for the spectral radius of a self-loop graph in
terms of M1(G) and δ(G). We also present two Nordhaus–Gaddum-type bounds for
the spectral radius of GS . In Sect. 5, a Nordhaus–Gaddum-type bound for the energy
of a self-loop graph in terms of its order and the number of loops is exposed.

2 The Line Graph of a Self-Loop Graph

Let Mm,n be the set of m × n complex matrices, and let M ∈ Mm,n . We write M�

for the Hermitian adjoint of M . The singular values s1(M) ≥ s2(M) ≥ · · · ≥ sn(M)

of a matrix M are the square roots of the eigenvalues of MM�. Since A = A(G) is a
real and symmetric square matrix, it holds that si (A) = |λi (G)|, for 1 ≤ i ≤ n, and
hence the energy of G of order n is the sum of the singular values of its adjacency
matrix [23].

In [8], the following theorem regarding the singular values of a matrix has been
proved:
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Theorem 2.1 [8, Theorem 2.2] For a partitioned matrix C =
(

A X
Y B

)

, where both

A and B are square matrices, we have:

∑

j

s j (A) +
∑

j

s j (B) ≤
∑

j

s j (C).

Recall that vertices, or edges, of a graph are said to be independent if they are
pairwise non-adjacent.

Theorem 2.2 Let G be a graph of order n (n ≥ 2), and let S be a set of independent
vertices in G, such that |S| = σ , 1 ≤ σ ≤ n − 1. Let GS be the graph obtained by
attaching a loop at each vertex in the set S. Then,

E(G \ S) < E(GS),

where G \ S is the graph obtained from G by deleting all vertices from the set S.

Proof The adjacency matrix A(GS) of GS is of the following form

A(GS) =
(

A(G \ S) MT

M Iσ

)

,

where the matrix M = (mi j )σ×(n−σ) satisfies that mi j = 1 if the vertex i ∈ S is
adjacent to the vertex j ∈ V (G) \ S, and mi j = 0, otherwise.

By Theorem 2.1, we find:

E(G \ S) + σ =
n−σ
∑

i=1

|λi (A(G \ S))| +
σ

∑

i=1

|λi (Iσ )| =
n−σ
∑

i=1

si (A(G \ S)) +
σ

∑

i=1

si (Iσ )

≤
n

∑

i=1

si (A(GS)) =
n

∑

i=1

|λi (A(GS))| =
n

∑

i=1

∣

∣

∣λi (A(GS)) − σ

n
+ σ

n

∣

∣

∣

<

n
∑

i=1

∣

∣

∣λi (A(GS)) − σ

n

∣

∣

∣ + σ = E(GS) + σ,

where the last inequality follows from the fact that A(GS) has at least one non-positive
eigenvalue [1, Theorem 2.6]. ��

In a similar way, one can prove the following statement:

Theorem 2.3 Let G be a graph of order n (n ≥ 2), and let Q be a set of vertices which
form a clique in G, such that |Q| = σ , 1 ≤ σ ≤ n − 1. Let GQ be a graph obtained
by attaching a loop at each vertex in the set Q. Then

E(G \ Q) < E(GQ).

123



117 Page 6 of 22 S. Akbari et al.

Let G be a graph of order n (n ≥ 2), and let GS be the self-loop graph of G such
that S ⊆ V (G) and |S| = σ . Following [21], we can define:

Definition 2.4 The line graph L(GS) of GS is a graph whose vertices are the edges
of GS , with two vertices in L(GS) adjacent whenever the corresponding edges in GS

have exactly one vertex in common. Each loop attached at a vertex v in GS is the
vertex with a loop in L(GS), and this vertex is adjacent to those vertices in L(GS)

which correspond to the edges of GS incident with the vertex v in GS .

Let us notice that vertices with loops in L(GS) form a set of independent vertices,
as well as that the line graph L(G) of G is an exact (i.e. induced) subgraph of L(GS).

From the definition, it follows that the adjacency matrix A(L(GS)) of L(GS) is of
the following form

A(L(GS)) =
(

A(L(G)) MT

M Iσ

)

.

Here, M stands for the loop-edge adjacency matrix. Precisely, if GS is a self-loop
graph of order n, size m and |S| = σ , then M = (mi j )σ×m , where mi j = 1 if the
loop i is adjacent to the edge j in L(GS), and mi j = 0 otherwise. Observe that when
σ = n, then M = B(G), where B(G) is the incidence matrix of G.

Corollary 2.5 Let G be a graph of order n (n ≥ 2). Suppose ∅ 
= S ⊆ V (G). Then,

E(L(G)) < E(L(GS)).

Proof The proof follows from Theorem 2.2 applied to the set S of vertices with loops
in L(GS). ��

The incidencematrix B(GS) ofGS can be defined in full analogywith the incidence
matrix B(G) of G. Suppose that G is a graph of order n and size m, with the set of
vertices V (G) = {v1, v2, . . . , vn}, and the set of edges E(G) = {e1, e2, . . . , em}.
Let L = {em+1, em+2, . . . , em+σ } be the set of loops of GS . The incidence matrix
B(GS) = (bSi j ) of GS is an n × (m + σ) matrix defined as

bSi j =
{

1, if vi and e j are incident;
0, otherwise.

Actually, B(GS) = (B(G) | N ), where N can be interpreted as the vertex-loop inci-
dence matrix of GS . Precisely, N is a n × σ matrix, such that in each column of N
there is exactly one 1, and all other entries are equal to 0.

We find it is convenient to define the incidencematrix of a self-loop graphGS in this
way. Namely, if we were to define the signless Laplacian matrix Q(GS) = (qi j )n×n

of GS by analogy with how the Laplacian matrix of a self-loop graph is defined in [2],
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i.e.

qi j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if vertices vi and v j are adjacent,
0, if vertices vi and v j are not adjacent,
dG(vi ) + 1, if i = j and vi ∈ S,

dG(vi ), if i = j andvi /∈ S,

we would obtain that B(GS)B(GS)
T = Q(GS). An analogous relation holds for the

corresponding matrices of graphs without loops, i.e., B(G)B(G)T = Q(G), where
Q(G) is the signless Laplacian matrix of G, see [6, Equation (7.29)].

Theorem 2.6 For every eigenvalue λ of L(GS), λ ≥ −2.

Proof Let NT = (ni j )σ×n and B(G) = (b jk)n×m . The (i, k)-th entry of the matrix
NT B(G) is equal to

∑n
p=1 ni pbpk . The addition ni pbpk , for every p = 1, 2, . . . , n, is

equal to 1 when ni p = 1 and bpk = 1, which means that both the loop i and the edge
k are incident with the vertex p in G, i.e. that the loop i is adjacent to the edge k in
L(GS). Since there is at most one loop attached at each vertex of G, it follows that
NT B(G) = M . So, we have:

B(GS)
T B(GS) =

(

B(G)T B(G) B(G)T N
NT B(G) NT N

)

=
(

A(L(G)) + 2Im MT

M Iσ

)

= A(L(GS)) + 2 Im,

since B(G)T B(G) = A(L(G))+2Im (see [6, Equality (1.2)]). Here, Im is the square
matrix of order m + σ with exactly m ones on the main diagonal, and all other entries
equal to zero, i.e.

Im =
(

Im OT

O O

)

.

For any vector x ∈ R
m+σ , we find

xT B(GS)
T B(GS) x = (B(GS)x)

T B(GS) x ≥ 0,

which means that B(GS)
T B(GS) is a positive-semidefinite matrix. By applying

Inequality (1.2) from Theorem 1.1 to matrices B(GS)
T B(GS) and −2 Im , we obtain

λm+σ (L(GS)) ≥ λm+σ (B(GS)
T B(GS)) + λm+σ (−2 Im) ≥ −2.

��
The following statement will be used in the proof of Theorem 2.8.
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Lemma 2.7 [6, Equation (2.29)] Let M be a non-singular square matrix. If Q is also
a square matrix, then,

det

(

M N
P Q

)

= det(M) det(Q − P M−1 N ).

Theorem 2.8 Let G be a graph of order n and size m. Then,

PL(̂G)(λ) = (λ − 1)n−mλm PL(G)

(

λ2 − λ − 2

λ

)

.

Proof Since the adjacency matrix A(L(̂G)) of L(̂G) is of the form

A(L(̂G)) =
(

In B(G)

B(G)T A(L(G))

)

,

by Lemma 2.7, we obtain:

PL(̂G)(λ) = det
(

λIm+n − A(L(̂G))
)

= det ((λ − 1)In) det
(

λIm − A(L(G)) − B(G)T ((λ − 1)In)
−1B(G)

)

= (λ − 1)n det

(

λIm − A(L(G)) − 1

λ − 1
B(G)T B(G)

)

= (λ − 1)n det

(

λIm − A(L(G)) − 1

λ − 1
(A(L(G)) + 2Im)

)

= (λ − 1)n det

(

λ2 − λ − 2

λ − 1
Im − λ

λ − 1
A(L(G))

)

= (λ − 1)n−mλm det

(

λ2 − λ − 2

λ
Im − A(L(G))

)

= (λ − 1)n−mλm PL(G)

(

λ2 − λ − 2

λ

)

.

��

3 Some New Bounds for the Eigenvalues of Self-Loop Graphs and its
Energy

In this section, some bounds for the eigenvalues of a self-loop graph are exposed,
together with some lower bounds for the energy of such a graph. We start with the
following statement:

Theorem 3.1 Let G be a graph of order n, whose eigenvalues with respect to the
adjacency matrix are λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). Let GS be the self-loop graph
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of G, such that S ⊆ V (G) and |S| = σ (0 ≤ σ ≤ n). Then, for the eigenvalues
λi (GS), 1 ≤ i ≤ n, of GS the following holds

λi (G) ≤ λi (GS) ≤ λi (G) + 1, 1 ≤ i ≤ n. (3.1)

The left-hand side inequality in (3.1) is attained for σ = 0, while the right-hand side
inequality for σ = n.

Proof The adjacency matrix A(GS) of GS is of the form A(GS) = A(G)+IS , where
A(G) is the adjacency matrix of G, while IS is a matrix with exactly σ ones on the
main diagonal and all other entries equal to zero. The eigenvalues of IS are [1]σ and
[0]n−σ .
Let us suppose that 0 < σ < n. Then, for i = j , from Inequality (1.1), we find

λi (GS) ≤ λi (G) + 1, 1 ≤ i ≤ n,

while from Inequality (1.2), we obtain

λi (GS) ≥ λi (G), 1 ≤ i ≤ n.

For the equalities, we adopt the argument of [15, Lemma 1, proof]: the case when
σ = 0 is clear because GS coincides with G; when σ = n, λi (GS) = λi (G) + 1 due
to A(GS) = A(G) + In . ��
Remark 3.2 Since λ1(G) ≤ �, using Theorem 3.1, we obtain λ1(GS) ≤ �+1, which
is given by [1, Theorem 5.1].

Corollary 3.3 Let GS be the self-loop graph of a graph G of size m, and λ1(GS) be
the spectral radius of GS . Then,

λ1(GS) ≤ 1

2
(1 + √

1 + 8m). (3.2)

Proof By Stanley’s Inequality in [27], λ1(G) ≤ 1
2 (−1 + √

1 + 8m). The inequality
(3.2) follows immediately from Theorem 3.1. ��

Let us recall the following statement.

Theorem 3.4 [1, Theorem 5.2] Let G be a connected graph of order n and size m. If
S ⊆ V (G) with |S| = σ, then

λ1(GS) ≥ 2m

n
+ σ

n
.

If G is a (k, k + 1)-bidegreed graph for some k ∈ N, such that

dG(v) =
{

k, if v ∈ S,

k + 1, if v ∈ V (G)\S,

123



117 Page 10 of 22 S. Akbari et al.

where dG is the degree of vertices of G, then λ1(GS) = 2m

n
+ σ

n
.

Theorem 3.5 Let G be a graph of order n (n ≥ 2) and S ⊆ V (G), |S| = σ . Then,

E(GS) ≥ 2λ1(GS) − 2σ

n
.

The equality is attained if GS = K σ
n , where K σ

n is a graph obtained by attaching a
loop at each of σ (0 ≤ σ ≤ n) chosen vertices of the complete graph Kn.

Proof Let λ1(GS) ≥ λ2(GS) ≥ · · · ≥ λn(GS) be the eigenvalues of GS , and let k

(1 ≤ k ≤ n) be the greatest integer such that λk(GS) ≥ σ
n . Since

n
∑

i=1
λi (GS) = σ , we

have
n
∑

i=1

(

λi (GS) − σ
n

) = 0. So,

E(GS) =
n

∑

i=1

∣

∣

∣λi (GS) − σ

n

∣

∣

∣ = 2
k

∑

i=1

(

λi (GS) − σ

n

)

≥ 2
(

λ1(GS) − σ

n

)

,

since according to Theorem 3.4, it holds that λ1(GS) ≥ σ
n . The second part of the

statement can be verified by the direct computation using the results of Theorem 4.12
in the next section. ��

Using Theorems 3.4 and 3.5, it follows:

Corollary 3.6 Let G be a connected graph of order n (n ≥ 2) and size m, and let
S ⊆ V (G) and |S| = σ (0 ≤ σ ≤ n). Then

E(GS) ≥ 4m

n
.

Now, let us recall the statements which we will use in the proof of Corollary 3.9.

Theorem 3.7 [6, Theorem 3.2.1] Let λ1(G) be the index of a graph G, and let d be
its average degree. Then d ≤ λ1(G) ≤ �. Moreover, d = λ1(G) if and only if G is
regular. For a connected graph G, λ1(G) = � if and only if G is regular.

Theorem 3.8 [5, Theorem 6.7] A graph has exactly one positive eigenvalue if and only
if its non-isolated vertices form a complete multipartite graph.

Corollary 3.9 Let G be a regular complete multipartite graph. Then, for every S ⊆
V (G), E(GS) ≥ E(G).

Proof If we suppose that G has k classes of p vertices, i.e. the order n of G is n = k p,

then the spectrum of G is (see [5], p.73): Spec(G) =
(

n − p 0 −p
1 n − k k − 1

)

. So we

find E(G) = 2λ1(G) = 2(n − p). Since G is an (n − p)-regular, |E(G)| = n(n−p)
2 ,

which means E(G) = 4
n |E(G)|. Therefore, the proof follows from Corollary 3.6. ��
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Next, we provide an analogous result to Theorem 3.5. Consequently, the regularity
condition in Corollary 3.9 can be relaxed under certain conditions.

Theorem 3.10 Let G be a graph of order n ≥ 4. Let S ⊂ V (G), where |S| = σ and
1 ≤ σ ≤ n

2 . If the induced subgraph on S is not a complete graph, then

E(GS) ≥ 2λ1(GS).

Proof It holds
∑n

i=1 λi (GS) = σ, so

E(GS) = 2
t

∑

i=1

(

λi (GS) − σ

n

)

, (3.3)

where t is the greatest integer such that λi (GS) ≥ σ
n . Since the induced subgraph on

S is not a complete graph, there are two non-adjacent vertices in S, i.e., 2̂K1 is an
induced subgraph of GS . By Theorem 1.2, we get

λi (GS) ≥ λi (2̂K1) = 1, i = 1, 2.

Thus, it follows from (3.3) and σ ≤ n
2 that

E(GS) ≥ 2λ1(GS) + 2

(

1 − 2σ

n

)

≥ 2λ1(GS).

��
Corollary 3.11 If G is a complete multipartite graph of order n ≥ 4 and S ⊂ V (G),

1 ≤ |S| ≤ n
2 , and the induced subgraph on S is not a complete graph, then E(GS) ≥

E(G).

4 Nordhaus–Gaddum-Type Bounds for Spectral Radius of Self-Loop
Graphs

In this section, we establish Nordhaus–Gaddum-type bounds, as well as some lower
and upper bounds, for the spectral radius of GS . Precisely, we give a new definition of
the complement GS of GS (see Definition 4.3) and find bounds for the sum of some
particular eigenvalues of GS and GS .

We will start with an upper bound for the spectral radius of GS .

Theorem 4.1 Let GS be the self-loop graph of G of order n ≥ 2, size m ≥ 1, and
|S| = σ. Then,

λ1(GS) ≤ σ

n
+

√

σ(n − 1)(n − σ)

n2
+ 2m(n − 1)

n
. (4.1)

Proof In the following, for simplicity, we write λi = λi (GS), i = 1, ..., n. By
Lemma 1.3(i),
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λ1 − σ = −(λ2 + · · · + λn). (4.2)

Thus, by Cauchy-Schwarz Inequality, we have

λ22 + · · · + λ2n ≥ (λ1 − σ)2

n − 1
. (4.3)

Lemma 1.3 and equation (4.3) imply that

2m + σ = λ21 + (λ22 + · · · + λ2n)

≥ λ21 + (λ1 − σ)2

n − 1

= nλ21 − 2σλ1 + σ 2

n − 1
,

or equivalently,

nλ21 − 2σλ1 + σ 2 − (n − 1)(2m + σ) ≤ 0. (4.4)

The roots of nλ21 − 2σλ1 + σ 2 − (n − 1)(2m + σ) = 0 are as follows:

xi = σ

n
±

√

σ 2

n2
− σ 2

n
+ n − 1

n
(2m + σ)

= σ

n
±

√

σ(n − 1)(n − σ)

n2
+ 2m(n − 1)

n
.

It follows from (4.4) that

λ1 ≤ σ

n
+

√

σ(n − 1)(n − σ)

n2
+ 2m(n − 1)

n
.

��

Corollary 4.2 When σ = 0, (4.1) reduces to λ1(G) ≤
√

2m(n − 1)

n
given by Nosal

[24].

Definition 4.3 Let GS be the self-loop graph of G of order n, size m, and S ⊆ V (G)

with |S| = σ. Define the complement GS of GS to be GS, i.e., the graph obtained
from G by attaching loops at (its) vertices belonging to the set S.

This definition of GS satisfies the property GS = GS . There is another possible
definition ofGS recently considered in [26], by takingGS := GV \S .Despite the latter
definition also satisfies GS = GS, our definition of GS gives a natural generalization
of a Nordhaus–Gaddum-type bound for λ1(GS) and λ1(GS), in the sense that we
recover the classical case when σ = 0, see Remark 4.5.
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Theorem 4.4 Let GS be a connected self-loop graph of order n ≥ 2, size m ≥ 1, with
|S| = σ, such that its complement GS of size m is also connected. Let λ1 and λ1 be
the spectral radius of GS and GS, respectively. Then,

n − 1 + 2σ

n
≤ λ1 + λ1 ≤ 2σ

n
+ √

2

√

2σ(n − 1)(n − σ)

n2
+ (n − 1)2. (4.5)

Proof Recall that

m + m = n(n − 1)

2
. (4.6)

By Theorem 3.4, we have λ1 ≥ 2m

n
+ σ

n
, thus

λ1 + λ1 ≥ 2(m + m)

n
+ 2σ

n
= n − 1 + 2σ

n
. (4.7)

This gives the lower bound of (4.5).
Next, we show the upper bound of (4.5). Let

x = σ(n − 1)(n − σ)

n2
+ 2m(n − 1)

n
,

y = σ(n − 1)(n − σ)

n2
+ 2m(n − 1)

n
.

Then, by the property (4.6) again,

x + y = 2σ(n − 1)(n − σ)

n2
+ (n − 1)2. (4.8)

Obviously, we have

√
x + √

y ≤ √
2
√
x + y. (4.9)

Thus, combining (4.1),(4.8),(4.9), we obtain

λ1 + λ1 ≤ 2σ

n
+ √

2
√
x + y

= 2σ

n
+ √

2

√

2σ(n − 1)(n − σ)

n2
+ (n − 1)2.

This completes the proof. ��
Remark 4.5 When σ = 0, (4.5) reduces to the classical Nordhaus–Gaddum-type
bound for the spectral radius of a simple graph G of order n, given by Nosal [24]

n − 1 ≤ λ1 + λ1 ≤ √
2(n − 1). (4.10)
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Now, we will expose the upper bound for λ1 + λ1 in terms of �(G) and δ(G).

Theorem 4.6 Let G be a graph of order n and λ1 and λ1 be the spectral radius of GS

and GS, respectively. Then, we have

λ1 + λ̄1 ≤ n + 1 + (�(G) − δ(G)). (4.11)

Proof By Theorem 3.1, λ1 ≤ �(G) + 1, λ̄1 ≤ (n − 1 − δ(G)) + 1. Thus, we find
(4.11). ��
Remark 4.7 The upper bound of (4.11) improves the upper bound of (4.10) for suffi-
ciently large n and small κ := �(G)− δ(G). More precisely, n+ 1+ κ <

√
2(n− 1)

when

n > 4κ + 9.

The next result asserts a lower bound of the spectral radius of GS in terms of the
first Zagreb index M1(G) and the minimum degree δ(G). Before that, let us recall the
following theorem.

Theorem 4.8 [28, Theorem 3.2] Let A = (ai j ) be an n × n non-negative symmet-

ric matrix with positive row sums r1, r2, . . . , rn . Then, λ1(A) ≥
√

∑n
i=1 ri

2/n with

equality if and only if A is regular or semiregular.

Theorem 4.9 Let GS be a connected graph of order n, size m, and |S| = σ . Let
λ1(GS) be the spectral radius of GS. Let M1(G) and δ(G) be the first Zagreb index
and minimum degree of G, respectively. Then,

λ1(GS) ≥
√

M1(G)

n
+ σ

n
(2δ(G) + 1). (4.12)

In particular, when

(i) GS ∼= ̂Kn, or,
(ii) G is a (k, k+1)-semiregular graph such that dG(v) = k if v ∈ S, dG(v) = k+1

if v ∈ V (G)\S,

then, the equality holds.

Proof By Theorem 4.8, we have
√
nλ1(GS) ≥

√

∑n
i=1 ri

2, where

n
∑

i=1

ri
2 =

∑

v∈S
(dG(v) + 1)2 +

∑

v∈V \S
d2G(v)

= M1(G) + 2
∑

v∈S
dG(v) + σ

≥ M1(G) + σ(2δ(G) + 1). (4.13)
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Thus, we obtain Inequality (4.12). To see that the equality is attainable, we discuss
two cases.

Case 1: GS ∼= ̂Kn . By [1, Theorem 5.1] that asserts that λ1(GS) = n if and only if
GS ∼= ̂Kn, it suffices to check the right side of Inequality (4.12):

√

M1(Kn)

n
+ n(2(n − 1) + 1)

n
= n.

Case 2: Suppose G is a (k, k + 1)-semiregular graph such that dG(v) = k if v ∈ S,

dG(v) = k + 1 if v ∈ V (G)\S. (Such graphs exist, e.g. (K3,2)S with S = M,

|M | = 3.) By Theorem 3.4, we have λ1(GS) = 2m+σ
n = k + 1. Now, observe that for

such graphs,

M1(G) = σk2 + (n − σ)(k + 1)2 = nk2 + (n − σ)(2k + 1).

Thus,

√

M1(G)

n
+ σ(2δ(G) + 1)

n
=

√

k2 + (n − σ)(2k + 1)

n
+ σ(2k + 1)

n
= k + 1.

��
Remark 4.10 (1) When σ = 0, Inequality (4.12) reduces to the classically known

bound λ1(G) ≥ √
M1(G)/n between the spectral radius and the first Zagreb

index of G.

(2) Recently, Shetty and Bhat [26] have obtained many results regarding M1(GS). In
particular, [26, Theorem 7] asserts that

λ1(GS) ≥
√

M1(GS) − 4(m + σ)

n
+ 1

under the same assumption as in Theorem 4.9. One oughts to compare these two
inequalities but with some cautions: our Inequality (4.12) only requires M1(G).

First, observe that

M1(GS) =
∑

v∈V
d2GS

(v) =
∑

v∈S
(dG(v) + 2)2 +

∑

v∈V \S
d2G(v) = M1(G) + 4

∑

v∈S
dG(v) + 4σ.

Thus,

M1(GS) − 4(m + σ) + n

n
= M1(G)

n
+ 4

∑

v∈S dG(v) − 4m + n

n
.

It suffices to compare 4
∑

v∈S dG(v) − 4m + n and σ(2δ + 1). Observe further
that

4
∑

v∈S
dG(v) − 4m = 2

∑

v∈S
dG(v) − 2

∑

v∈V \S
dG(v) ≤ 2σ� + 2σδ − 2nδ.
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Thus,

4
∑

v∈S
dG(v) − 4m + n − σ(2δ + 1) ≤ 2σ� + 2σδ − 2nδ + n − 2σδ − σ

= 2(σ� − nδ) + n − σ.

For 0 ≤ σ < n, as long as

σ

n
≤ 2δ(G) − 1

2�(G) − 1
,

then we have
√

M1(GS) − 4(m + σ)

n
+ 1 ≤

√

M1(G) + σ(2δ + 1)

n
≤ λ1(GS),

i.e., our bound is better than [26, Theorem 7].

Remark 4.11 If GS = ̂Kn is the edgeless full-loop graph of order n, then the equality
in (4.12) holds.

Next, we establish a relation between the eigenvalues of GS and GS . Let us recall
the following statement.

Theorem 4.12 [1, Theorem 2.2] Let (Kn)S be the self-loop complete graph of order
n and |S| = σ. Then, Spec((Kn)S) is determined by the following three cases:

(i) If σ = 0, then Spec((Kn)S) =
(

n − 1 −1
1 n − 1

)

.

(ii) If 0 < σ < n, then

Spec((Kn)S) =
(

(n−1)+
√

(n−1)2+4σ
2 0 −1 (n−1)−

√
(n−1)2+4σ
2

1 σ − 1 n − σ − 1 1

)

.

(iii) If σ = n, then Spec((Kn)S) =
(

n 0
1 n − 1

)

.

Theorem 4.13 Let GS be a graph with self-loops of order n and |S| = σ. Then, for
j = 2, ..., n,

λ j (GS) + λn− j+2(GS) ≤
{

−1, σ = 0,

1, 0 < σ ≤ n.

Proof Let A = A(GS), B = A(GS), and C = A + B. By (1.2) in Theorem 1.1, for
i = 2 and j = 2, ..., n,

λ j (A) + λn− j+2(B) ≤ λ2(C).
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Observe that C can also be expressed as A′ + B ′ where A′ = A((Kn)S) and B ′ = IS .
Then, by (1.1), for i = 2, we have for j ′ = 1 or j ′ = 2,

λ2(C) ≤ λ j ′(A
′) + λ3− j ′(B

′).

By Theorem 4.12. A′ = A((Kn)S) has 3 distinct spectral cases:
Case 1: When σ = 0, A′ = A(Kn) and B ′ = 0n×n . Thus, λ2(C) = λ2(A(Kn)) =

−1.
Case 2: When σ = n, A′ = A(̂Kn) and B ′ = In . Then, C = J + In where J is the

all-ones matrix. Thus, λ2(C) = 1.
Case 3: Suppose 0 < σ < n. If j ′ = 1, then,

λ2(C) ≤ λ1(A
′) + λ2(B

′) =
⎧

⎨

⎩

(n−1)+
√

(n−1)2+4σ
2 + 1, 1 < σ < n,

(n−1)+
√

(n−1)2+4σ
2 , σ = 1.

If j ′ = 2, then, λ2(C) ≤ λ2(A′) + λ1(B ′) ≤ 0 + 1 = 1. Thus, when 0 < σ < n, we
have λ2(C) ≤ 1. ��
Theorem 4.14 [22, Theorem 11] For i = 2, ..., n, λi (G) + λn−i+2(G) ≥ −1 −
2
√
2 s(G), where s(G) = ∑

v∈V (G)

∣

∣dG(v) − 2m
n

∣

∣ .

Thus, a lower bound for λ j (GS) + λn− j+2(GS) follows immediately from Theo-
rems 3.1 and 4.14.

Corollary 4.15 Let GS be a self-loop graph of order n and |S| = σ. Let GS be the
complement of GS . Then, for j = 2, ..., n, λ j (GS)+λn− j+2(GS) ≥ −1−2

√
2 s(G).

5 Nordhaus–Gaddum-Type Bounds for the Energy of a Self-Loop
Graph

In this section, we present a Nordhaus–Gaddum-type bound for the energy of a graph
with self-loops, in terms of its order n and the number of loops σ.

First of all, let us recall some statements that we will use in the proof of Theorem
5.3.

Theorem 5.1 [7] Let X, Y and Z be square matrices of order n, such that X +Y = Z.
Then

n
∑

i=1

si (X) +
n

∑

i=1

si (Y ) ≥
n

∑

i=1

si (Z),

where si (M), i = 1, 2, . . . , n, are the singular values of the matrix M. Equality holds
if and only if there exists an orthogonal matrix P, such that PX and PY are both
positive semi-definite.

123



117 Page 18 of 22 S. Akbari et al.

Theorem 5.2 (Corollary 1.3.13 and Theorem 1.3.14 from [6]) Let A be a real symmet-
ric matrix whose rows and columns are indexed by {1, 2, . . . , n}, and with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Given a partition {1, 2, . . . , n} = �1 ∪̇ �2 ∪̇ · · · ∪̇ �m with
|�i | = ni > 0, consider the corresponding blocking A = (Ai j ), where Ai j is an
ni × n j block. Let ei j be the sum of the entries in Ai j and set B = (ei j/ni ) (note that
ei j/ni is the average row sum in Ai j ). Let us suppose that the block Ai j has constant
row sums bi j , and let B = (bi j ). Then the spectrum of B is contained in the spectrum
of A (taking into account the multiplicities of the eigenvalues).

The matrix B from Theorem 5.2 is known as the quotient matrix (see, for example
[4]). Besides, in case the row sum of each block Ai j is constant, then the partition is
called equitable [4].

Theorem 5.3 Let G be a graph of order n ≥ 2, size m ≥ 1, and S ⊆ V (G), where
|S| = σ , 0 ≤ σ ≤ n. Then,

Ln,σ ≤ E(GS) + E(GS) ≤ Un,σ ,

where

Ln,σ = (σ − 1)

∣

∣

∣

∣

1 − 2σ

n

∣

∣

∣

∣

+ (n − σ − 1)

(

1 + 2σ

n

)

+ 1

2

∣

∣

∣

∣

n − 4σ

n
+

√

(n − 2)2 + 8σ

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

n − 4σ

n
−

√

(n − 2)2 + 8σ

∣

∣

∣

∣

,

and

Un,σ = 2
√
2
√

2σ(n − 1)(n − σ) + (n2 − n)2.

Proof Let λ1(GS) ≥ λ2(GS) ≥ · · · ≥ λn(GS) and λ1(GS) ≥ λ2(GS) ≥ · · · ≥
λn(GS) be the eigenvalues of GS and GS , respectively.

For the upper bound Un,σ , let k1 and k2, 1 ≤ k1, k2 ≤ n, be the greatest inte-
gers such that λk1(GS) ≥ σ

n and λk2(GS) ≥ σ
n . Since

∑n
i=1 λi (GS) = σ , we have

∑n
i=1

(

λi (GS) − σ
n

) = 0, and therefore

E(GS) = 2
k1
∑

i=1

(

λi (GS) − σ

n

)

≤ 2
k1
∑

i=1

(

λ1(GS) − σ

n

)

≤ 2n
(

λ1(GS) − σ

n

)

.

Similarly, we find E(GS) ≤ 2n (λ1(GS) − σ
n ), and so

E(GS) + E(GS) ≤ 2n (λ1(GS) + λ1(GS)) − 4σ.

By Theorem 4.4, we get

E(GS) + E(GS) ≤ 2
√
2
√

2σ(n − 1)(n − σ) + (n2 − n)2.
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For the lower bound, Ln,σ , let us denote

X = A(GS) − σ

n
In = A(G) + IS − σ

n
In,

Y = A(GS) − σ

n
In = A(G) + IS − σ

n
In = J − A(G) + IS −

(

1 + σ

n

)

In,

M = X + Y = J + 2IS −
(

1 + 2σ

n

)

In .

Therefore, the matrix M is of the following form:

M =
(

J + (

1 − 2σ
n

)

Iσ J
J J + (− 2σ

n − 1
)

In−σ

)

,

i.e.

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 − 2σ
n 1 1 1 · · · 1

...
. . .

...
... · · · 1

1 1 2 − 2σ
n 1 · · · 1

1 1 1 − 2σ
n · · · 1

...
...

...
...

. . .
...

1 1 1 1 · · · − 2σ
n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Since null
(

M + (

1 − (

2 − 2σ
n

))

In
) ≥ σ − 1, M has eigenvalue 1 − 2σ

n , with multi-
plicity at least σ − 1. Similarly, M has eigenvalue −1− 2σ

n , with multiplicity at least
n − σ − 1. Let us determine the remaining two eigenvalues, x1 and x2, of the matrix
M .

The quotient matrix B which corresponds to the matrix M is

B =
(

σ + 1 − 2σ
n n − σ

σ n − σ − 1 − 2σ
n

)

,

while the characteristic polynomial of the matrix B is

b(x) = x2 +
(

4σ

n
− n

)

x + 4σ 2

n2
− 4σ − 1 + n.

According to Theorem 5.2, the roots of the polynomial b(x) are the two remaining

eigenvalues of the matrix M , i.e. x1,2 = 1
2

(

n − 4σ
n ± √

(n − 2)2 + 8σ
)

.
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Now, we have:

n
∑

i=1

si (M) =
n

∑

i=1

|λi (M)| = (σ − 1)

∣

∣

∣

∣

1 − 2σ

n

∣

∣

∣

∣

+ (n − σ − 1)

(

1 + 2σ

n

)

+ 1

2

∣

∣

∣

∣

n − 4σ

n
+

√

(n − 2)2 + 8σ

∣

∣

∣

∣

+ 1

2

∣

∣

∣

∣

n − 4σ

n
−

√

(n − 2)2 + 8σ

∣

∣

∣

∣

,

i.e.
∑n

i=1 si (M) = Ln,σ . By Theorem 5.1, we obtain

Ln,σ =
n

∑

i=1

si (M) ≤
n

∑

i=1

si (X) +
n

∑

i=1

si (Y ) =
n

∑

i=1

|λi (X)| +
n

∑

i=1

|λi (Y )|

=
n

∑

i=1

|λi (GS) − σ

n
| +

n
∑

i=1

|λi (GS) − σ

n
| = E(GS) + E(GS).

The proof is complete. ��
Remark 5.4 If n

2 < σ ≤ n and n ≥ 2, then the following holds:

• 1 − 2σ
n < 0,

• n+√

(n − 2)2 + 8σ − 4σ
n > n+

√

(n − 2)2 + 8 · n
2 − 4

n ·n = n+√
n2 + 4−4 ≥

2 + √
8 − 4 > 0,

• 4σ
n +√

(n − 2)2 + 8σ −n > 4
n · n2 +

√

(n − 2)2 + 8 · n
2 −n = 2+√

n2 + 4−n >

2 + √
n2 − n > 0,

so the lower bound Ln,σ reduces to

Ln,σ =(σ − 1)

(

2σ

n
− 1

)

+ (n − σ − 1)

(

1 + 2σ

n

)

+ 1

2

(

n +
√

(n − 2)2 + 8σ − 4σ

n

)

+ 1

2

(

4σ

n
+

√

(n − 2)2 + 8σ − n

)

,

i.e. Ln,σ = n − 4σ
n + √

(n − 2)2 + 8σ .

Remark 5.5 If 0 ≤ σ ≤ n
2 and n ≥ 2, then the following holds:

• 1 − 2σ
n ≥ 1 − 2

n · n
2 = 0,

• n − 4σ
n ≥ n − 4

n · n
2 = n − 2 ≥ 0,

and therefore the lower bound Ln,σ reduces to

Ln,σ =(σ − 1)

(

1 − 2σ

n

)

+ (n − σ − 1)

(

1 + 2σ

n

)

+ 1

2

(

n − 4σ

n
+

√

(n − 2)2 + 8σ

)

+ 1

2

∣

∣

∣

∣

n − 4σ

n
−

√

(n − 2)2 + 8σ

∣

∣

∣

∣

,
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i.e. Ln,σ = 3n
2 − 2 + 2σ

(

1 − 1
n − 2σ

n

) + 1
2

√

(n − 2)2 + 8σ + 1
2

∣

∣n − 4σ
n

−√

(n − 2)2 + 8σ
∣

∣

∣, since the function f (σ ) = n − 4σ
n − √

(n − 2)2 + 8σ does not

have a constant sign on the interval
[

0, n
2

]

.
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20. Mallion, R.B., Schwenk, A.J., Trinajstić, N.: A graphical study of heteroconjugated molecules. Croat.

Chem. Acta 46(3), 171–182 (1974)

123



117 Page 22 of 22 S. Akbari et al.
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