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Abstract
In this paper, we consider the following nonlinear Schrödinger equation with an L2-
constraint: {

−�u = λu + μ|u|q−2u + |u|p−2u in R
N ,∫

RN |u|2dx = a2, u ∈ H1(RN ),

where N ≥ 3, a, μ > 0, 2 < q < 2 + 4
N < p < 2∗, 2q + 2N − pN < 0 and λ ∈ R

arises as a Lagrange multiplier. We deal with the concave and convex cases of energy
functional constraints on the L2 sphere, and prove the existence of infinitely solutions
with positive energy levels.
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1 Introduction

In [21, 22], Soave considered the existence and properties of ground states for the
nonlinear Schrödinger equation with combined power nonlinearities

−�u = λu + μ|u|p−2u + |u|q−2u in RN , N ≥ 1, (P)

having prescribed mass ∫
RN

|u|2dx = a2,

under different assumptions on a > 0, μ ∈ R and

2 < q ≤ 2 + 4

N
≤ p ≤ 2∗, q �= p,

i.e. the two nonlinearities have different characters with respect to the L2-critical
exponent p̄ := 2 + 4

N . The cases p > p̄ and p < p̄ are called mass L2-supercritical
and mass L2-subcritical, respectively, which comes from the Gagliardo-Nirenberg
inequality (see [23]). We recall that, for every N ≥ 1 and p ∈ (2, 2∗), there exists a
constant CN ,p depending on N and on p such that

‖u‖p
p ≤ C p

N ,p‖∇u‖pδp
2 ‖u‖p(1−δp)

2 for all u ∈ H1(RN ), (1.1)

where δp := N (p−2)
2p and we denote by CN ,p the best constant in the Gagliardo-

Nirenberg inequality.
Here and in what follows, 2∗ denotes the critical exponent for the Sobolev embed-

ding H1(RN ) ↪→ L p(RN ) (that is, 2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = ∞ if
N = 1, 2).

We look for solutions of problem (P) having a prescribed L2-norm, which are often
referred to as normalized solutions. More precisely, for given a > 0, we look for a
couple of solution (ua, λa) ∈ H1(RN ) × R to problem (P) with∫

RN
|ua |2dx = a2.

The solution ua to the problem (P) corresponds to a critical point of the following C1

functional J : H1
r (RN ) → R

J (u) = 1

2
‖∇u‖22 − μ

p
‖u‖p

p − 1

q
‖u‖qq

restricted to the sphere in L2(RN ):

S(a) =
{
u ∈ H1

r (RN ) : ‖u‖22 = a2
}

.
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Fig. 1 The relationship between functional h and t.

It is clear that for each critical point ua ∈ S(a) of J |S(a) corresponds to a Lagrange
multiplier λa ∈ R such that (ua, λa) solves problem (P). Therefore, to obtain such a
solution, it is necessary to find the critical point of J on the constraint S(a).

In recent decades, the question of finding solutions of nonlinear Schrödinger equa-
tions with prescribed L2-norm has received a special attention. This approach seems
particularly meaningful from the physical point of view, since, in addition to being a
conserved quantity for the time dependent equation, themass has often a clear physical
meaning; For instance, it represents the power supply in nonlinear optics, or the total
number of atoms in Bose-Einstein condensation, two main fields of application of
the nonlinear Schrödinger equations. For more related results on normalized solutions
of nonlinear Schrödinger equations, we refer to [1, 5–7, 14–17, 20, 25, 26] and the
references therein.

Notice that, for the case of 2 < p < p̄ < q ≤ 2∗, Soave [21, 22] applied the
Gagliardo-Nirenberg inequality (1.1) to create the corresponding energy functional
h ∈ C2(R+,R)

h(t) := 1

2
t2 − μCq

N ,qa
(1−δq )q

q
tqδq − C p

N ,pa
(1−δp)p

p
t pδp

such that

J (u) ≥ 1

2
‖∇u‖22 − μCq

N ,qa
(1−δq )q

q
‖∇u‖qδq

2 − C p
N ,pa

(1−δp)p

p
‖∇u‖pδp

2 = h(‖∇u‖2).

Recalling that 2 < q < p̄ < p ≤ 2∗, so that qδq < 2 and 2 < pδp ≤ 2∗. Under
certain conditions of a > 0 and μ > 0, function h has a concave-convex structure
(see Fig. 1).

Naturally, it is known that J has local minima and mountain path geometric struc-
tures on the constraint S(a). Therefore, Soave proved the existence of mountain pass
solutions and local minimum solutions. After that, Alves, Ji and Miyagaki [3] studies
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problem (P) with p ∈ (2 + 4
N , 2∗), q = 2∗ and N ≥ 3, there exists μ∗ > 0 such that

problem (P) admits a couple (ua, λa) ∈ H1(RN )×R
− of weak solutions, where ua is

a radial, positive ground state solution of problem (P) on S(a). In particular, replace
μ|u|p−2u+|u|q−2u by f (u) such that f satisfies some critical growth conditions with
N = 2, then problem (P) admits a couple (ua, λa) ∈ H1(R2)×R

− of weak solutions.
Subsequently, Alves, Ji and Miyagaki in [2] introduced a truncation function in J .
Precisely, they considered the truncated functional

Jχ (u) = 1

2
‖∇u‖22 − μ

q
‖u‖qq − χ (‖∇u‖2)

p
‖u‖p

p,

where χ ∈ C∞
0 (R+, [0, 1]) is nonincreasing and satisfies

χ(t) =
{
1, t ∈ [0, R0],
0, t ∈ [R1,∞).

Here R0 and R1 are given as in Fig. 1. Also by applying the Gagliardo-Nirenberg
inequality (1.1), one shows that

Jχ (u) ≥ h1(‖∇u‖2),

where

h1(t) := 1

2
t2 − μCq

N ,qa
(1−δq )q

q
tqδq − C p

N ,pa
(1−δp)p

p
χ(t)t pδp .

Under certain conditions of a > 0 and μ > 0, from Fig. 1 the image of h1 is as Fig. 2,
which implies that Alves, Ji and Miyagaki in [2] use a minimax theorem for a class
of constrained even functionals that is proved in Jeanjean and Lu [16] to obtain the
multiplicity of the solution of the energy functional Jχ at the negative energy level.
In fact, if Jχ (u) ≤ 0 then ‖∇u‖2 < R0, and J (v) = Jχ (v), for all v in a small
neighborhood of u in H1

(
R

N
)
. Therefore, here the critical points of Jχ are also are

actually the critical points of J .
In addition, this approach turns out to be useful also from the purely mathematical

perspective, since it gives a better insight of the properties of the stationary solutions
for (P), such as stability or instability, can see [9, 10, 21, 22] and the references therein.

Moreover, we refer to [8], where Bartsch andWillem considered themodel problem

{−�u = μ|u|q−2u + λ|u|p−2u,

u ∈ H1
0 (�),

(1.2)

where � is a domain of RN and 1 < q < 2 < p < 2∗. The corresponding energy is
defined on H1

0 (�) by

ϕλ,μ(u) :=
∫

�

[ |∇u|2
2

− μ|u|q
q

− λ|u|p
p

]
dx .
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Fig. 2 The relationship between functional h1 and t.

Then they showed that

• For every λ > 0, μ ∈ R, problem (1.2) has a sequence of solutions {uk} such that
ϕλ,μ (uk) → ∞, k → ∞;

• For every μ > 0, λ ∈ R, problem (1.2) has a sequence of solutions {vk} such that
ϕλ,μ (vk) < 0 and ϕλ,μ (vk) → 0, k → ∞.

Inspired by above results, a natural guess that problem (P) also possesses an
unbounded sequence of solutions {(uk, λk)} ⊂ H1(RN ) × R

− with ‖uk‖22 = a2

for each k ∈ N
+, ‖∇uk‖22 → +∞ and J (uk) → +∞ as k → +∞. So, in this article

we attempted to provide a positive answer. The main results of this paper are stated
as:

Theorem 1.1 Assume that 2 < q < p̄ < p < 2∗, 2q + 2N − pN < 0 and N ≥ 3.
For a > 0 and μ > 0 let us also suppose that

(
μa(1−δq )q

)pδp−2 (
a(1−δp)p

)2−qδq

<

(
q(pδp − 2)

2Cq
N ,q(qδq − pδp)

)pδp−2 (
p(2 − qδq)

2C p
N ,p(qδq − pδp)

)2−qδq (A.1)

and

(
μa(1−δq )q

)pδp−2 (
a(1−δp)p

)−qδq
<

(
q

βmaxC
q
N ,q

)pδp−2 (
p

2C p
N ,p

)qδq

, (A.2)

where βmax defined in (2.1), then problem (P) possesses an unbounded sequence
of pairs of radial solutions {(uk, λk)} ⊂ H1(RN ) × R

− with ‖uk‖22 = a2 for each
k ∈ N

+, ‖∇uk‖22 → +∞ and J (uk) → +∞ as k → +∞.
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It is reasonable to assume (A.1) and (A.2) in the Theorem 1.1, because when we
have (pδp − 2)(1 − δq)q − qδq(1 − p)δp > 0 at 2q + 2N − pN < 0, then there is
a > 0 satisfying both assume (A.1) and (A.2).

Compared with [8], which works in a bounded region and has some compactness,
while we work in the whole space and lack compactness, so additional restrictions
are needed to ensure compactness. In addition, our method of proving is different,
we are not a direct generalization of [8]. Compared with [2], we both adopted the
truncation method, but the parts we truncated were different. On the one hand, the
energy functional has an extra local term by truncating, which brings some difficulties
to our subsequent estimation and compactility proof, while in [2], we can clearly see
that when ‖∇u‖22 is bounded, Jχ = J is satisfied, that is, the local term has no effect
on the proof. On the other hand, ‖∇u‖22 has at least k solutions at the negative energy
level, and we have multiple solutions at the positive energy level.

In the proof of Theorem 1.1 we shall work on the space H1
r (RN ), because it has a

compact embedding. Moreover, by Palais’ principle of symmetric criticality, see [18],
we know that the critical points of J in H1

r (RN ) are in fact critical points in whole
H1(RN ). To prove the Theorem 1.1 we shall adapt for our case a truncation function
found in Peral Alonso [19, Chapter 2, Theorem 2.4.6].

2 Preliminaries

We recall the functional h:

h(t) := 1

2
t2 − μCq

N ,qa
(1−δq )q

q
tqδq − C p

N ,pa
(1−δp)p

p
t pδp .

Since a > 0, μ > 0 and qδq < 2 < pδp, we have that h(0+) = 0− and h(+∞) =
−∞. The following proposition states the role of assumption (A.1).

Proposition 2.1 ([21, See Lemma 5.1.]) Under assumption (A.1), the function h has
a local strict minimum at negative level and a global strict maximum at positive level.
Moreover, there exist 0 < R0 < R1 < ∞, depending on a > 0 and μ > 0, such that
h(R0) = 0 = h(R1) and h(t) > 0 iff t ∈ (R0, R1), (see Fig.1).

Under assumptions to (A.1), the function ĥ has a global strict maximum at positive
level, and there exist 0 < R1 < R2 < ∞, depending on a > 0, such that ĥ(R2) = 0,
where

ĥ(t) = 1

2
t2 − C p

N ,pa
(1−δp)p

p
t pδp ,

and

R2 =
(

p

2C p
N ,p

) 1
pδp−2

a
− (1−δp )p

pδp−2 .
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For 0 < R0 < R1 < ∞, fix τ : R+ → [0, 1] as being a C∞ function that satisfies

τ(x) =
{
0 if x ≤ R0,

1 if x ≥ R1.

From proposition 2.1 we know that for the function h, we have R0 and R1 dependent
of a > 0 and μ > 0 such that h1(R0) = 0 = h1(R1) and h(t) > 0 iff t ∈ (R0, R1).
For any fix μ > 0, we define the following functional H , denoted by

H(R, a) = 1

2
R2 − μCq

N ,qa
(1−δq )q

q
Rqδq − C p

N ,pa
(1−δp)p

p
R pδp = h(R).

For any a1, a2 > 0 that satisfies a1 > a2, there is obviously

H(R0(a2), a1) > H(R0(a2), a2) = 0 = H(R1(a2), a2) < H(R1(a2), a1).

According to the structure of functional h, we can obtain

R0(a2) > R0(a1) and R1(a2) < R1(a1),

therefore, a �→ R(a) := R1(a) − R0(a) is non-increasing and under the assumption
(A.1)R(a) has a lower bound α > 0. Now, under assumption (A.1), for any a > 0 we
can take τ such that τ ′ has a uniform upper bound, and we remember that the uniform
upper bound is β1, where we have τ ′(x) ∈ [0, β1) when x ∈ [0,∞) (Rule out that if
a > 0 is small enough it may not be possible to find τ such that τ ′ has no uniform
upper bound).

By the same token, we have a similar conclusion for any fixed a > 0, for anyμ > 0
we can take τ such that τ ′ has a uniform upper bound β2. Therefore, for any a > 0
andμ > 0 we can take τ such that τ ′ has a uniform upper bound under the assumption
(A.1), which we remember

βmax := max{β1, β2}. (2.1)

Thus we have τ ′(x) ∈ [0, βmax ) when x ∈ [0,∞).
In the sequel, let us consider the truncated functional

JT (u) = 1

2
‖∇u‖22 − μτ(‖∇u‖2)

p
‖u‖qq − 1

p
‖u‖p

p.

Thus

JT (u) ≥ h2(‖∇u‖2),
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Fig. 3 The relationship between functional h2 and t.

where

h2(t) = 1

2
t2 − μCq

N ,qa
(1−δq )q

q
tqδq τ(t) − C p

N ,pa
(1−δp)p

p
t pδp , (see Fig. 3).

The truncated functionalJT and the relationship betweenJT andJ are noteworthy.
By reference [2, See Lemma 3.1] we get the following lemma.

Lemma 2.1 Assume that N ≥ 3, 2 < q < p̄ < p < 2∗ and (A.1) holds, then the
functional JT has some important properties:

(i) JT ∈ C1(H1
r (RN ),R).

(i i) IfJT ≤ 0 then ‖∇u‖22 ≥ R1, andJ (v) = JT (v), for all v in a small neighborhood
of u in H1

r (RN ).

In order to recover some compacity, we will work in E = H1
r (RN ), provided with

the standard scalar product and norm: ‖u‖2H = ‖∇u‖22 +‖u‖22. Here and in the sequel
we write ‖u‖p

p to denote the L p-norm. For convenience, C1,C2, · · · denote various
positive constants.

3 Proof of Theorem 1.1

To prove our conclusion, we use the proof technique in [5], but here our nonlinear
term does not satisfy the conditions in [5]. The main theorem’s proof will follow from
several lemmas. We fix a strictly increasing sequence of finite-dimensional linear
subspaces Vn ⊂ E such that

⋃
n Vn is dense in E .

Lemma 3.1 ( [5, See Lemma 2.1.]) For 2 < r < 2∗ there holds:

μn(r) = inf
u∈V⊥

n−1

∫
RN (|∇u|2 + |u|2)dx

(
∫
RN |u|r dx)2/r = inf

u∈V⊥
n−1

‖u‖2H
‖u‖2r

→ ∞ as n → ∞.
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Here we give the following definition

∫
RN

F(u)dx = μτ(‖∇u‖2)
q

‖u‖qq + 1

p
‖u‖p

p. (3.1)

We introduce now the constant

K = max
u∈H1

r (RN )

∫
RN F(u)dx

‖u‖p
p + ‖u‖qq

,

which is well defined when combined with (3.1). For n ∈ N we define

ρn = Mp/(p−2)
n

L2/(p−2)
,

where

Mn = [μn(q)−q/2 + μn(p)
−p/2]−2/p and L = 3K max

θ>0

(a + θ2)p/2

a + θ p
.

By Lemma 3.1 we have ρn → ∞ as n → ∞. We also define

Bn :=
{
u ∈ V⊥

n−1 ∩ S(a) : ‖∇u‖22 = ρn

}
,

here V⊥
n−1 is the orthogonal complement of Vn−1. Then we have:

Lemma 3.2 bn = infu∈Bn JT (u) → ∞ as n → ∞.

Proof For any a > 0 and u ∈ Bn , because of ρn → ∞ as n → ∞, we have
‖∇u‖22 + a2 > 1 when n is large enough. Since 2 < q < p̄ < p < 2∗ we deduce
using the preceding lemma with r = p and r = q,

JT (u) = 1

2
‖∇u‖22 − μτ(‖∇u‖2)

q
‖u‖qq − 1

p
‖u‖p

p

≥ 1

2
‖∇u‖22 − K‖u‖qq − K‖u‖p

p

≥ 1

2
‖∇u‖22 − K

μn(q)q/2

(
‖∇u‖22 + a2

)q/2 − K

μn(p)p/2

(
‖∇u‖22 + a2

)p/2

≥ 1

2
‖∇u‖22 − K

[
μn(q)−q/2 + μn(p)

−p/2
] (

‖∇u‖22 + a2
)p/2

≥ 1

2
‖∇u‖22 − K

M p/2
n

(
‖∇u‖22 + a2

)p/2

≥ 1

2
‖∇u‖22 − L

3Mp/2
n

(
‖∇u‖p

2 + a2
)

≥ 1

2
ρn − L

3Mp/2
n

ρ
p/2
n
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=
(
1

2
− 1

3

)
ρn → ∞.

The proof of the lemma is complete. ��
Lemma 3.3 Assume that N ≥ 3 and 2 < q < p̄ < p < 2∗. Then there exists
0 < ρ0 < R2

0 such that

0 < sup
u∈M1

JT (u) < b0 := inf
u∈M2

JT (u), (3.2)

where

M1 :=
{
u ∈ S(a), ‖∇u‖22 ≤ ρ0/2

}
, M2 :=

{
u ∈ S(a), ‖∇u‖22 = ρ0

}
.

Proof Now, using equation (3.1) and Gagliardo-Nirenberg inequality (1.1) and taking
into account that ‖u‖22 = a2

∫
RN

F(u)dx = μτ(‖∇u‖2)
q

‖u‖qq + 1

p
‖u‖p

p

≤ μCq
N ,qa

(1−δq )q

q
‖∇u‖qδq

2 τ(‖∇u‖2) + C p
N ,pa

(1−δp)p

p
‖∇u‖pδp

2 .

Then we have for ‖∇u‖2 < R0 small enough,

∫
RN

F(u)dx ≤ C p
N ,pa

(1−δp)p

p
‖∇u‖pδp

2 . (3.3)

Next, let 0 < ρ < R0 be arbitrary but fixed and suppose u, v ∈ S(a) are such that
‖∇u‖22 ≤ ρ/2 and ‖∇v‖22 = ρ. Then, for ρ > 0 small enough

JT (v) − JT (u) = 1

2
‖∇v‖22 − 1

2
‖∇u‖22 −

∫
RN

F(v)dx +
∫
RN

F(u)dx

≥ ρ

4
−

∫
RN

F(v)dx

≥ ρ

4
− Cρ pδp

≥ ρ

8
,

using (3.3) and pδp = N (q−2)
2 > 2. The proof of the lemma is complete. ��

In order to set up a min-max scheme, let

ϕ : R × E → E, ϕ(s, u) = s ∗ u,
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be the action of the group R on E defined by

(s ∗ u)(x) = esN/2u(es x) for s ∈ R, u ∈ E, x ∈ R
N .

Observe that s ∗ u ∈ S(a) if u ∈ S(a), and that for u ∈ S(a)

‖∇(s ∗ u)‖22 → 0, JT (s ∗ u) → 0 as s → −∞. (3.4)

Moreover,
∫
RN F(u)dx ≥ 1

p‖u‖p
p for all u ∈ H1(RN ), and therefore

JT (s ∗ u) = 1

2
‖∇(s ∗ u)‖22 −

∫
RN

F(s ∗ u)dx

≤ 1

2
‖∇(s ∗ u)‖22 − 1

p
‖s ∗ u‖p

p

= e2s

2
‖∇u‖22 − e−Nse(Nsp)/2

p
‖u‖p

p → −∞ as s → ∞,

because −Ns + (Nsp)/2 > 2s. As a consequence we obtain for u ∈ S(a) that

‖∇(s ∗ u)‖22 → ∞, JT (s ∗ u) → −∞ as s → ∞. (3.5)

Due to (3.4) and (3.5), there exists sn > 0 such that

γ̃n : [0, 1] × (S(a) ∩ Vn) → S(a), γ̃n(t, u) = (2snt − sn) ∗ u,

satisfies (with ρ0, b0 from Lemma 3.3, bn from Lemma 3.2):

‖∇γ̃n(0, u)‖22 < ρ0 < ρn, ‖∇γ̃n(1, u)‖22 > ρn,

and

0 < JT (γ̃n(0, u)) < max{b0, bn}, JT (γ̃n(1, u)) < bn, (3.6)

uniformly for u ∈ S(a) ∩ Vn . Now we define

�n :=
{

γ : [0, 1] × (S(a) ∩ Vn) → S(a)

∣∣∣∣∣ γ is continuous, odd in u,

γ (0, u) = γ̃n(0, u), γ (1, u) = γ̃n(1, u)

}
.

Clearly we have γ̃n ∈ �n . Here we define the mountain pass value

cn = inf
γ∈�n

max
t∈[0,1]

u∈S(a)∩Vn

JT (γ (t, u)).

For the sake of subsequent lemmas, in the following we recall some properties of
the cohomological index for spaces with an action of the group G = {−1, 1}. This
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index goes back to [11] and has been used in a variational setting in [12]. It associates
to a G-space X an element i(X) ∈ N0 ∪ {∞}. We only need the following properties.

(I1) If G acts on S
n−1 via multiplication, then i(Sn−1) = n.

(I2) If there exists an equivariant map X → Y , then i(X) ≤ i(Y ).
(I3) Let X = X0 ∪ X1 be metrisable and X0, X1 ⊂ X be closed G-invariant sub-

spaces. Let Y be a G-space, and consider a continuous map φ : [0, 1]×Y → X
such that each φt = φ(t, ·) : Y → X is equivariant. If φ0(Y ) ⊂ X0 and
φ1(Y ) ⊂ X1, then

i(Im(φ) ∩ X0 ∩ X1) ≥ i(Y ).

Properties (I1) and (I2) are standard andhold also for theKrasnoselskii genus. Property
(I3) has been proven in [4, Corollary 4.11, Remark 4.12].

Wenowneed the following linking property, and it is proved by the above properties.

Lemma 3.4 For every γ ∈ �n, there exists (t, u) ∈ [0, 1] × (S(a) ∩ Vn) such that
γ (t, u) ∈ Bn.

Proof Let Tn−1 : E → Vn−1 be the orthogonal projection, and set

hn : S(a) → Vn−1 × R
+, u �→ (Tn−1u, ‖∇u‖22).

Then clearly Bn = h−1
n (0, ρn). We fix γ ∈ �n and consider the map

φ = hn ◦ γ : [0, 1] × (S(a) ∩ Vn) → Vn−1 × R
+ =: X .

Since

φ0(S(a) ∩ Vn) ⊂ Vn−1 × (0, ρn] =: X0

and

φ1(S(a) ∩ Vn) ⊂ Vn−1 × (ρn,∞] =: X1,

it follows from (I1) to (I3) that

i(Im(φ) ∩ X0 ∩ X1) ≥ i(S(a) ∩ Vn) = dimVn .

If there would not exist (t, u) ∈ [0, 1] × (S(a) ∩ Vn) with γ (t, u) ∈ Bn , then

Im(φ) ∩ X0 ∩ X1 ⊂ (Vn−1 \ 0) × {ρn}.

Now (I1) and (I2) imply that

i(Im(φ) ∩ X0 ∩ X1) ≤ i((Vn−1 \ 0) × {ρn}) = dimVn−1,

contradicting dimVn−1 < dimVn . ��
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It follows from Lemma 3.3 that

cn = inf
γ∈�n

max
t∈[0,1]

u∈S(a)∩Vn

JT (γ (t, u)) ≥ bn = inf
u∈Bn

JT (u) → ∞. (3.7)

Clearly by (3.2) and (3.6) there also holds

cn ≥ b0 > 0. (3.8)

We recall the stretched functional from [15], see also [13]:

J̄T : R × E → R, (s, u) �→ JT (s ∗ u).

Now we define

�̄n :=
{

γ̄ : [0, 1] × (S(a) ∩ Vn) → R × S(a)

∣∣∣∣∣ γ̄ is continuous, odd in u,

ϕ ◦ γ̄ ∈ �n

}
,

where ϕ(s, u) = s ∗ u and

c̄n = inf
γ̄∈�̄n

max
t∈[0,1]

u∈S(a)∩Vn

J̄T (γ̄ (t, u)).

Reference [5, Lemma 2.5], we also have conclusions cn = c̄n for cn and c̄n .
Next, we will show that cn is a critical value of JT , which is an important part of

the proof of Theorem 1.1. We fix n from now on.

Lemma 3.5 There exists a Palais-Smale sequence {unk } forJT at the level cn satisfying
P(unk ) → 0 as k → ∞, where

P(u) = ‖∇u‖22 − δqμτ(‖∇u‖2)‖u‖qq − μτ ′(‖∇u‖2)
q

‖∇u‖2‖u‖qq − δp‖u‖p
p.

(3.9)

Proof For γ ∈ �n there holds by (3.6), (3.7), (3.8), and the definition of �n :

cn ≥ max {b0, bn} > max

{
max

u∈S(a)∩Vn
JT (γ̃n(0, u)) , max

u∈S(a)∩Vn
JT (γ̃n(1, u))

}

= max

{
max

u∈S(a)∩Vn
JT (γ (0, u)), max

u∈S(a)∩Vn
JT (γ (1, u))

}
.

Using the fact cn = c̄n we obtain a sequence
{
γ n
k

}
in �n such that

max
[0,1]×(S(a)∩Vn)

J̄T
(
0, γ n

k

) → cn .
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Now Ekeland’s variational principle implies the existence of a Palais-Smale sequence{
(snk , unk )

}
for J̄T

∣∣
R×S(a)

at the level cn such that snk → 0. From J̄T (s, u) = J̄T (0, s∗
u) and for every ψ ∈ H1(RN ) we deduce

(
∂sJ̄T

)
(s, u) = (

∂sJ̄T
)
(0, s ∗ u) and

(
∂uJ̄T

)
(s, u)[ψ] = (

∂uJ̄T
)
(0, s ∗ u)[s ∗ ψ]

so that
{(
0, snk ∗ unk

)}
is also a Palais-Smale sequence for J̄T

∣∣
R×S at the level cn . Thus

we may assume that snk = 0. This implies, firstly, that
{
unk

}
is a PalaisSmale sequence

for JT at the level cn , and secondly, using ∂sJ̄T
(
0, unk

) → 0 as k → ∞, that is
P(unk ) → 0 as k → ∞. ��
Lemma 3.6 Assume that N ≥ 3 and 2 < q < p̄ < p < 2∗. (A.2) is satisfied for any
a > 0 and μ > 0, if the sequence {uk} in S(a) satisfies J ′

T (uk) → 0,JT (uk) →
c > 0, and P(uk) → 0 as k → ∞, then it is bounded in E and has a convergent
subsequence.

Proof Claim 1: The sequence {uk} is bounded in E .
Suppose {uk} is unbounded, that is, ‖∇uk‖22 → ∞ as k → ∞. As P(uk) → 0 as

k → ∞, we observe that

‖uk‖p
p = 1

δp
‖∇uk‖22 − μδqτ(‖∇uk‖2)

δp
‖uk‖qq − μτ ′(‖∇uk‖2)

qδp
‖∇uk‖2‖uk‖qq + o(1).

Whence

JT (uk) =
(
1

2
− 1

pδp

)
‖∇uk‖22 − μ

q

(
1 − qδq

pδp

)
τ(‖∇uk‖2)‖uk‖qq

+ μτ ′(‖∇uk‖2)
qpδp

‖∇uk‖2‖uk‖qq + o(1),

by the Gagliardo-Nirenberg inequality (1.1) and τ ′(x) ∈ [0, βmax ) we have that

c + 1 ≥ JT (uk) ≥
(
1

2
− 1

pδp

)
‖∇uk‖22 − μ

q

(
1 − qδq

pδp

)
τ(‖∇uk‖2)Cq

N ,qa
(1−δq )q‖∇uk‖qδq

2 ,

this implies that

‖∇uk‖22 ≤ Ca(1−δq )qτ(‖∇uk‖22)‖∇uk‖qδq
2 + C,

since qδq < 2, the boundedness of {uk} follows also in this case.
As {uk} is bounded in H1

r (RN ), and H1
r (RN ) ↪→ Ll(RN ) compactly for l ∈ (2, 2∗),

there exists u ∈ H1
r (RN ) such that up to a subsequence

uk⇀u in H1
r (RN ), uk → u in Ll(RN ) and uk → u a.e. in RN .

Claim 2: The weak limit u is nontrivial, that is, u �≡ 0.
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Since JT (uk) → c �= 0, using the fact that P(uk) → 0 and τ ′(x) ∈
[0, βmax ) for all x ∈ R, we had uk → 0 we would find by strong L p(RN ) and
Lq(RN ) convergence that

JT (uk) = μ

q

(
qδq

2
− 1

)
τ(‖∇uk‖2)‖uk‖qq + μτ ′(‖∇uk‖2)

2q
‖∇uk‖2‖uk‖qq

− 1

p

(
pδq
2

− 1

)
‖uk‖p

p + o(1) → 0,

that is a contradiction.
Claim 3: λk → λ < 0.

By Willem [24, Proposition 5.12], there exists {λk} ⊂ R such that

∫
RN

∇uk · ∇ψdx − μτ(‖∇uk‖2)
∫
RN

|uk |q−2ukψdx −
∫
RN

|uk |p−2ukψdx

− ‖uk‖p
p
μτ ′(‖∇uk‖2)

p

(∫
RN

∇uk · ∇ψdx

) 1
2 =

∫
RN

λkukψdx + o(1)‖ψ‖H ,

(3.10)

for every ψ ∈ H1(RN ), where o(1) → 0 as n → ∞. The choice ψ = uk provides

‖∇uk‖22 − μτ(‖∇uk‖2)‖uk‖qq − μτ ′(‖∇uk‖2)
q

‖∇uk‖2‖uk‖qq − ‖uk‖p
p = λka

2 + o(1).

Recalling that P(uk) → 0, we have

λka
2 = μ(δq − 1)τ (‖∇uk‖2)‖uk‖qq + (δp − 1)‖uk‖p

p + o(1), (3.11)

since 0 < δq , δp < 1, we deduce that {λk} is bounded and λk ≤ 0. We now claim that

lim
k→∞ ‖∇uk‖2 = A > 0.

If not, from Gagliardo-Nirenberg inequality (1.1) we obtain

lim
k→∞

∫
RN

|uk |ldx → 0 for l ∈ (2, 2∗),

then

0 �= c = lim
n→∞JT (uk) = lim

n→∞

[
1

2
‖∇uk‖22 − μτ(‖∇uk‖2)

q
‖uk‖qq − 1

p
‖uk‖p

p

]
= 0.

Next, we proved that up to a subsequence λk → λ < 0. Using the strong L p(RN )

and Lq(RN ) convergence of {uk}, by (3.11) we have that

λa2 = (δq − 1)τ (A)‖u‖qq + (δp − 1)‖u‖p
p,
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since 0 < δq , δp < 1 and τ(A) ≥ 0, we must have λ < 0.
Claim 4: uk → u in H1

r (RN ).
Up to a subsequence, let limn→∞ ‖∇uk‖22 = A2 > 0. Then, u satisfies

‖∇u‖22 − μτ(A)‖u‖qq − μτ ′(A)

q
‖∇u‖2‖u‖qq − ‖u‖p

p = λ‖u‖22. (3.12)

By (3.10) and (3.12), we obtain

‖∇u‖22 − μτ(A)‖u‖qq − μτ ′(A)

p
‖∇u‖2‖u‖qq − λ‖u‖22

= ‖u‖p
p = lim

k→∞ ‖uk‖p
p

= lim
k→∞

[
‖∇uk‖22 − μτ(‖∇uk‖2)‖uk‖qq − μτ ′(‖∇uk‖2)

q
‖∇uk‖2‖uk‖qq − λ‖uk‖22

]

≥ A2 − μτ(A)‖u‖qq − μτ ′(A)

p
A‖u‖qq − λ‖u‖22.

We claim that 1−‖u‖qq μτ ′(A)
q > 0. If not, then q ≤ μτ ′(A)‖u‖qq . From the properties

of function τ , we have the following two cases.
Case 1: If A ∈ (0, R0] ∪ [R1,+∞) then τ ′(A) = 0, we get a contradiction

0 < q ≤ μτ ′(A)‖u‖qq = 0.

Case 2: If A ∈ [R0, R1] then τ ′(x) ∈ [0, βmax ), by Proposition 2.1 and Gagliardo-
Nirenberg inequality (1.1) we have

q ≤ μτ ′(A)‖u‖qq ≤ μβmaxC
q
N ,qa

(1−δq )q‖∇u‖qδq
2

≤ μβmaxC
q
N ,qa

(1−δq )q R
qδq
2

≤ μβmaxC
q
N ,q

(
p

2C p
N ,p

) qδq
pδp−2

a
−qδq

(1−δp )p
pδp−2 a(1−δq )q ,

this contradicts condition (A.2).
Thenwe can deduce that A = ‖∇u‖2 and ‖u‖22 = a2. Up to a subsequence, un → u

strongly in H1
r (RN ). ��

Remark 3.1 When the formulas (A.1)) and (A.2) are satisfied, according to (3.7),
Lemma 3.5 and 3.6 we know that the functional JT has an unbounded sequence of
pairs of radial solutions {(uk, λk)} ⊂ H1(RN ) × R

−.
Proof of Theorem 1.1 FromRemark 3.1, we know the functionalJT has an unbounded
sequence of pairs of radial solutions {(uk, λk)} ⊂ H1(RN )×R

−, where‖∇uk‖22 → ∞
as k → ∞. By Lemma 2.1 we can see that JT (u) = JT (u)when ‖∇u‖22 ≥ R1. Thus,
we can obtain an unbounded subsequence, still denoted as {(uk, λk)}, which is an
unbounded sequence of pairs of radial solutionsan of the problem (P). ��
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