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Abstract

For any non-negative integer k and any graph G, a subset S € V(G) is said to be
a K r4+1-isolating set of G if G — N[S] does not contain Kj x+1 as a subgraph.
The K i+1-isolation number of G, denoted by ,(G), is the minimum cardinality
of a Ky xy1-isolating set of G. Recently, Zhang and Wu (2021) proved that if G is
a connected n-vertex graph and G ¢ {Ps3, C3, Cg}, then (1 (G) < %n In this paper,
we characterize all extremal graphs attaining this bound, which resolves a problem
proposed by Zhang and Wu (Discrete Appl Math 304:365-374, 2021).
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1 Introduction

In this paper we only consider finite graphs without loops or multiple edges. For a graph
G,weuse V(G) and E(G) to denote the vertex set and edge set of G, respectively. For
any v € V(G), the open neighborhood N¢(v) of v is the set of neighbors of v in G,
and the closed neighborhood Ng[v] of v is the set N (v) U{v}. The degree of a vertex
v € V(G) isdg(v) = |[Ng(v)|, and the maximum degree of G is denoted by A(G).
The open neighborhood of a subset S C V(G) is the set Ng(S) = UveS Ng(W\S,
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and the closed neighborhood of S is the set Ng[S] = Ng(S) U S. For two distinct
vertices u, v € V(G), let dg(u, v) denote the distance between u and v in G. For
any S C V(G), we denote by G[S] and G — S the subgraphs of G induced by S and
V(G)\S, respectively, and write G — s instead of G — {s} if S = {s}. For two disjoint
subsets S, T C V(G), let Eg(S, T) denote the set of edges of G with one endvertex
in S and the other endvertex in 7. When the graph is clear from the context, we may
omit the subscript G from the notation. We use P,, C,, K,, and K| ,—; to denote the
path, the cycle, the complete graph and the star with n vertices, respectively. Let C;"
be the graph obtained by attaching a pendant edge to one vertex of C,, and K, the
graph obtained from K,, by removing one edge. For any positive integer k, we denote
by [k] the set {1, 2, ..., k}. We write A := B to rename B as A.

Let G be a graph and F be a family of graphs. A subset D € V (G) is said to be an
JF-isolating set of G if G — N[D] does not contain any member of F as a subgraph.
The F-isolation number of G, denoted by ¢(G, F), is the minimum cardinality of an
F-isolating set of G. This concept was recently introduced by Caro and Hansberg
[5] as a natural extension of the classical domination problem [7-10]. Recall that
a subset D C V(G) is a dominating set of G if every vertex in V(G) \ D has at
least one neighbor in D. The domination number of G is the minimum cardinality of
a dominating set of G. One can easily see that the { K}-isolation number is just the
domination number. For the sake of brevity, for any non-negative integer k, a { K1 x+1}-
isolating set of G will be called a K y41-isolating set or a k-isolating set of G, and
the { K +1}-isolation number of G will be called the K| x41-isolation number or the
k-isolation number of G. Moreover, we simply write (4 (G) instead of ¢ (G, { K1 k+1})-
Thus, a set D C V(G) is a 0-isolating set of G if G — N[D] consists of isolated
vertices only (i.e., V(G) \ N[D] is an independent set), and a set D C V(G) is a
1-isolating set of G if G — N[ D] consists of isolated vertices and isolated edges only
(i.e., every component of G — N[D] contains at most two vertices).

There have been some interesting results about F-isolation number of graphs.
Caro and Hansberg [35] proved that (;(G) < % for every n-vertex graph G, and

k+2

moreover, (;(G) < k"? when G 2 K k41 is ar—;r n-vertex tree. It was also shown in
[5] that if G 2¢ Cs is a connected graph with n > 3 vertices, then (o(G) < % Borg,
Fenech and Kaemawichanurat [2] proved that if G is a connected n-vertex graph, then
(G, {Ki}) < k"? unless G = K, or k = 2 and G = Cs. Borg [1] showed that if
G # Cjisaconnected n-vertex graph, then «(G, C) < 7 whereC = {Cy : k > 3}. Yan
[14] proved that (G, {K, }) < % for every connected graph G with n > 10 vertices.
More results on F-isolation number of graphs can be found in [3, 4, 6, 11-13, 15, 17].
In 2021, Zhang and Wu [16] investigated (1 (G) for general connected graphs and

derived the following result.

Theorem 1.1 (Zhang and Wu [16]) If G is a connected n-vertex graph and G ¢
{P3, C3, C¢}, then 11(G) < %n Moreover, this bound is sharp.

At the end of their paper, Zhang and Wu [16, Problem 3.2] asked for a complete
characterization of all extremal graphs attaining the bound stated in Theorem 1.1. In
this paper, we resolve this problem. For this purpose, we need to define several families
of graphs.
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Fig.2 The graphs in F

For any positive integer ¢, let F be an arbitrary connected ¢-vertex graph with
V(F) ={u; : 1 <i <t}andlet Hy, Hy, ..., H; be t vertex-disjoint copies of Cg
such that H; := u}u?u?u?ufu?u} for each i € [¢]. Let G be the graph obtained from
F and Hy, H>, ..., H;, in which u; is joined to H; (for each i € [t]) with one of the
following four ways:

(1) u; is only adjacent to ull (see Fig. 1a);

(ii) u; is only adjacent to ull and u,2 (see Fig. 1b);
(iii) u; is only adjacent to u? and u? (see Fig. 1c);
(iv) u; is only adjacent to u;, u? and ui6 (see Fig. 1d).

——

l
For each i € [t], we say that G; := G[V (H;) U {u;}] is a Cg-constituent of G and u;
is the Cg-connection of G; in G. Let F be the set of graphs depicted in Fig. 2. Then,
it is easy to observe that G; € F for each i € [¢] under isomorphism.

Let G; be the set of all graphs which can be constructed from the above ways. (It
is clear that 7 C Gy.) Let G> and G3 be the sets of graphs depicted in Figs.3 and 4,
respectively.

We can now state the main result of this paper.
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Fig.4 The graphs in G3

Theorem 1.2 For any connected n-vertex graph G, we have 11(G) = %n if and only

ifGeG UG UGs.

The rest of the paper is organized as follows. In Sect.2, we state several known
lemmas and introduce some structural properties of the graphs in F, G and Gs. In

Sect. 3, we give the proof of Theorem 1.2.
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2 Preliminaries

In this section, we state several lemmas and observations which will be used in the
next section to prove the main result of this paper.
The following five lemmas were proved in [1, 5, 16].

Lemma 2.1 (Caro and Hansberg [5]) 11 (P,) = ["52] for everyn > 2.
Lemma 2.2 (Caro and Hansberg [5]) ¢1(C,) = |'§'| for everyn > 3.

Lemma 2.3 (Zhang and Wu [16]) Let G be a graph and S be a vertex subset of G. If
D is a dominating set of G[S], then 11(G) < |D| + 11(G — S).

Lemma 2.4 (Zhang and Wu [16]) Let G be a graph and S be a vertex subset of G.
If G[S] has a 1-isolating set D such that E(S\N[D], V(G)\S) = @, then 1;(G) <
D]+ u(G —9).

Lemma 2.5 (Borg [1], Zhang and Wu [16]) If G1, G», ..., G are the distinct
components of a graph G, then 1;(G) = Y _;_, t1(G)).

The next three observations are easy to verify, hence we omit the proofs here.

Observation 2.6 The graphs in F satisfy the following properties:

(i) {u1,u4} is a dominating set of F; for each i € {1,2,4}, and {uz, us} is a
dominating set of F3;
(ii) {u, uq}is a l-isolating set of F; for each i € [4];
(1ii) {uj, ujy3} is a 1-isolating set of F; for each i € [4] and j € [6], where the
subscript j + 3 is taken modulo 6 when j € {4, 5, 6}.

Observation 2.7 The graphs in G, satisfy the following properties:

(i) A; — aj is connected for each i, j € [7], unlessi = j = 1;
(ii)) A;j —a; 2 Cg foreachi, j € [7];
(iii) {aj, ajy3}is a l-isolating set of A; for eachi, j € [7], where the subscript j +3
is taken modulo 6 when j € {4,5,6,7}.

Observation 2.8 The graphs in G3 satisfy the following properties:
(i) Bj — b’]‘- is connected for each i € [3], j € [7] and k € [2];

(ii) {b%, bk 3. b3 K 637 is a l-isolating set of B; for each i € [3], j € [7] and

k € [2], where the subscript j + 3 is taken modulo 6 when j € {4, 5,6, 7}.
The final three lemmas in this section show that every graph in G| U G, U G3 attains
the bound stated in Theorem 1.1.

Lemma2.9 If G € G, then 11(G) = 3|V (G)|.

Proof Let G1, Ga, ..., G, be the Cg-constituents of G, and for each i € [¢], let u;
be the Cg-connection of G; and H; := u}u?u?u?ufu?u} be the copy of C¢ in G;.
Then |V (G)| = 7¢. It is easy to see that for any 1-isolating set D of G, we must have
|[DNV(G;)| = 2foreachi € [¢], which implies that ¢; (G) > 2¢. On the other hand,
we notice that {u;, u? : 1 <1 <t}isa l-isolating set of G (by Observation 2.6(ii)),

and thus ¢; (G) < 2t. Hence, we conclude that (1 (G) = 2t = %IV(G)l. O
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Lemma 2.10 If G € Gy, then 11(G) = 2 = 2|V (G)|.

Proof Since G € G, we have G = A; for some i € [7], and hence |V (G)| = 7. Itis
easy to verify that forany j € [7], G — N[a,] contains a component with at least three
vertices, and thus contains a K . This shows that ¢;(G) > 2. On the other hand, it
follows from Observation 2.7(iii) that {a;, a4} is a 1-isolating set of G, which implies
that ¢1 (G) < 2. Therefore, we derive that ({(G) =2 = %lV(G)|. O

Lemma2.11 If G € Gs, then 11(G) = 4 = 2|V (G)|.

Proof Since G € G3, we see that G = B; for some i € [3], and thus |V (G)| = 14.
Then by Observation 2.8(ii), we know that {b1 , b}‘, bﬁ, b%} is a l-isolating set of G,
which means that ({ (G) < 4.

We next show that ¢1(G) > 4. Suppose to the contrary that there exists a 1-isolating
set D of G such that | D| < 3.ThenDﬂ{bjl. 2<j<6)# @andDﬂ{b? 2<j<
6} # ¥; otherwise, either {b}, b}, bl} or {b3, b7, b2} induces a K| in G — N[D],
which contradicts the assumption that D is a 1-isolating set of G. Moreover, since
|D| < 3, we deduce that |[D N {blj‘. :1 < j <7} <1 forsomek € [2]. This implies
that D N {b%, b5} = 0, |Dm{b’; 2<j<6) =1, |Dm{b§"‘ 12<j<6}|>1and
|IDN {b?_k, b;’_k}| < 1. By symmetry between bé and bé and by symmetry between
bé‘ and blg, we may assume that D N {blj‘. 12<j<6}= {b];} for some p € {2, 3, 4}.
If p = 2, then {bif, b’s‘, b’6‘} induces a K12 in G — N[D], a contradiction. If p = 3,
then it follows from |D N {b] %, b37*}| < 1 that either {b%, b%, bX} (if b} % ¢ D) or
{bk, blg, b’7‘} af b;fk ¢ D)induces a K > in G — N[D], again a contradiction. Hence,
we have p = 4. But then, we can derive that either (b, b’g, b’l‘ }Gf b?fk ¢ D) or
{blzc, blg, b]7‘} af bg_k ¢ D) induces a K 2 in G — N[D], giving a contradiction. This
shows that (1 (G) > 4.

Therefore, we conclude that ¢ (G) = 4 = %|V(G)|. O

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Our proof is inductive and follows the line of
that in [16], but the arguments are much more complicated.

First, we prove the following lemma which verifies the necessity of Theorem 1.2
whenn = 7.

Lemma 3.1 Let G be a connected graph with 7 vertices. If 11 (G) = 2, then G € FUGy,.

Proof Since G is connected and |V (G)| = 7, we see that A(G) > 2. If there exists a
vertex v € V(G) such that d(v) > 4, then it follows from |V (G)| = 7 that |V(G —
N[v])| < 2 and thus {v} is a 1-isolating set of G, contradicting the assumption that
t1(G) = 2. Therefore, we have 2 < A(G) < 3.

First, suppose A(G) = 2. Then G € {P7, C7}.Since¢1(P7) = l and (1 (C7) =2 =
11(G), we know that G = C7 = A7 € G».
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Next, suppose A(G) = 3. Let V(G) = {v; : 1 < i < 7} such that
N (v1) = {v2, v3, v4}. Since A(G) = 3 and G is connected, we have G[N[v{]] €
(K13, C3+, K, }. Furthermore, we can conclude that G — N[vi] € {P3, C3}; other-
wise, {v1} is a l-isolating set of G, which contradicts the assumption that ¢1 (G) = 2.
We consider different cases according to the structures of G[N[v{]] and G — N[v{].

Case 1. G[N[v1]] = K 3.

Subcase 1.1. G — N[vi] = C3.

In this subcase, vsvg, v5v7, vev7 € E(G). Since A(G) = 3, we observe that each
vertex in {vs, vg, v7} has at most one neighbor in {vs, v3, v4}. On the other hand, we
also claim that each vertex in {vz, v3, v4} has at most one neighbor in {vs, vg, v7}; oth-
erwise, suppose v; has two neighbors in {vs, v, v7} for some i € {2, 3,4}, then
{v;} is a l-isolating set of G, giving a contradiction. Since G is connected, we
may assume by symmetry that vavs € E(G) and vove, v2v7 ¢ E(G). Note that
|E ({v3, va}, {ve, v7})| < 2. If E({v3, v4}, {vs, v7}) = @, then {v,} is a 1-isolating set
of G, a contradiction. If |E({vs, va}, {vs, v7})| = 1, say v3vg € E(G), then we have
G = A € Gy. If |[E({v3, va}, {vs, v7})| = 2, say v3vg, v4v7 € E(G), then we can
deduce that G = A, € Gs.

Subcase 2.1. G — N[v{] = P;3.

Without loss of generality, suppose vsveg, vev7 € E(G) and vsv; ¢ E(G). Since
A(G) = 3, we notice that vg has at most one neighbor in {v2, v3, v4}.

Suppose first that vs or v7 has two neighbors in {v2, v3, v4}. By symmetry, we may
assume that vsvp, vsv3 € E(G). Then we see that v4v; € E(G); otherwise, {vs} is
a l-isolating set of G, giving a contradiction. If E({vy, v3, va}, {ve, v7}) = {vav7},
then we have G = F3 € F. Assume now that |E({vs, v3, v4}, {vg, v7})| > 2. If
viv; € E(G) for some i € {2,3}, then {v;} is a l-isolating set of G, a contra-
diction. Hence, vpv7, v3v7 ¢ E(G). Moreover, we know that vove, v3vs ¢ E(G);
otherwise, suppose vjvg € E(G) for some i € {2, 3}, then {v;} is a 1-isolating set
of G, again a contradiction. Since |E ({v2, v3, v4}, {ve, v7})| > 2, we can derive that
E({v2, v3, v4}, {v6, v7}) = {vavg, vav7}. Then, it is easy to check that G = As € G,.

Now, suppose each vertex in {vs, v7} has at most one neighbor in {v2, v3, v4}. This
implies that each vertex in {v, v3, v4} also has at most one neighbor in {vs, ve, v7};
otherwise, suppose v; has two neighbors in {vs, vg, v7} for some i € {2, 3, 4}, then
{v;} is a 1-isolating set of G, a contradiction. We further claim that vg has no neighbor
in {v2, v3, v4}; otherwise, suppose vgv; € E(G) for some i € {2, 3, 4}, then {v;} is a
1-isolating set of G, again a contradiction. Since G is connected, we may assume by
symmetry that vovs € E(G) and vpvg, v2v7 ¢ E(G). Note that | E({v3, va}, {v7})| <
1. If E({v3, v4}, {v7}) = 0, then {v,} is a 1-isolating set of G, giving a contradiction.
If |E({v3, va}, {v7})] = 1, say v3v7 € E(G), then we have G = F| € F.

Case 2. G[N[v(]] = C7.

Without loss of generality, suppose v2v3 € E(G) and vava, v3v4 ¢ E(G). Since
A(G) = 3, we observe that each vertex in {vz, v3} has at most one neighbor in
{vs, ve, V7).

Subcase 2.1. G — N[v{] = Cs.
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In this subcase, vsvg, vsv7, Vgv7 € E(G) and it follows from A(G) = 3 that each
vertex in {vs, ve, v7} has at most one neighbor in {va, v3, v4}.

First, suppose v4 has two neighbors in {vs, ve, v7}. By symmetry, we may assume
that vqvg, v4v7 € E(G). Note that |E ({va, v3}, {vs})| < 1. If E({v, v3}, {vs}) = 0,
then {v4} is a l-isolating set of G, a contradiction. If |E({v2, v3}, {vs})] = 1, say
vav5 € E(G), then it is straightforward to verify that G = Ag € G,.

Next, suppose v4 has one neighbor in {vs, vg, v7}, say vqv7 € E(G) and
v4Vs5, V4v6 ¢ E(G). Notice that | E ({va, v3}, {vs, ve})| < 2. If E({v2, v3}, {vs, v6}) =
@, then {v4} is a 1-isolating set of G, a contradiction. If |E ({va, v3}, {vs, ve})| = 1,
say vovs € E(G), then we deduce that G = A3 € Gy. If |E({va, v3}, {vs, v6})| = 2,
say vovs, 13V6 € E(G), then we can conclude that G = A4 € G).

Finally, suppose v4 has no neighbor in {vs, ve, v7}. Since G is connected, we may
assume by symmetry that vovs € E(G). But then, we see that {v;} is a 1-isolating set
of G, giving a contradiction.

Subcase 2.2. G — N[v;] = Ps.

Without loss of generality, suppose vsvg, vsv7 € E(G) and vsv; ¢ E(G). Since
A(G) = 3, we know that vg has at most one neighbor in {v2, v3, v4}. If vev; € E(G)
for some i € {2, 3}, then we have G[N[ve]] = K3 and G — N[vg] = P3, and we
are back to Subcase 1.2 by relabeling vg as vy (and relabeling other vertices of G
appropriately). If vgvs € E(G), then we can derive that G[N[ve]] € {K1 3, C;} and
G — N[vg] = C3, and we are back to Subcase 1.1 or Subcase 2.1 by relabeling vg as
v1 (and relabeling other vertices of G appropriately). Therefore, we may assume that
v has no neighbor in {vz, vz, v4}. This implies that v4 has at most one neighbor in
{vs, v7}; otherwise, we conclude that v4vs, v4v7 € E(G) and {vs} is a 1-isolating set
of G, a contradiction.

First, suppose v4 has one neighbor in {vs, v7}, say vav; € E(G) and v4vs ¢ E(G).
Then we deduce that E({vy, v3}, {vs}) # @; otherwise, {v4} is a 1-isolating set of
G, giving a contradiction. By symmetry, we may assume that vovs € E(G). Note
that |E({v3}, {vs, v7})| < 1. If E({v3}, {vs, v7}) = O, then we have G = F, € F.
If E({vs}, {vs, v7}) = {v3vs}, then we see that G = F4 € F. If E({v3}, {vs, v7}) =
{vsv7}, then {v3} is a 1-isolating set of G, a contradiction.

Next, suppose v4 has no neighbor in {vs, v7}. Since G is connected, we may assume
by symmetry that vovs € E(G). But now, it is easy to check that {v,} is a 1-isolating
set of G, a contradiction.

Case 3. G[N[v]| =K, .

Without loss of generality, suppose vyv3, v3v4 € E(G) and vavs ¢ E(G). Since
A(G) = 3, we notice that each vertex in {v2, v4} has at most one neighbor in
{vs, ve, v7} and v3 has no neighbor in {vs, vg, v7}.

Subcase 3.1. G — N[v;] = C;.

In this subcase, vsve, V5vV7, Vov7 € E(G). Since G is connected, we may assume
by symmetry that vovs € E(G). Then we have G[N[vs]] = C; and G — N[vs] = C3,
and we are back to Subcase 2.1 by relabeling vs as v (and relabeling other vertices
of G appropriately).

Subcase 3.2. G — N[v;] = Ps.
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Without loss of generality, suppose vsve, vgv7 € E(G) and vsv7 ¢ E(G). If vgv; €
E(G) forsomei € {2, 4}, then we know that G[N[ve]] = K| 3 and G — N[vg] = C3,
and we are back to Subcase 1.1 by relabeling vg as v (and relabeling other vertices of
G appropriately). Hence, we may assume that vg has no neighbor in {vz, v4}. Since G
is connected, we may further assume by symmetry that vyvs € E(G). Ifvqv7 ¢ E(G),
then {v,} is a 1-isolating set of G, a contradiction. If v4v7 € E(G), then we can derive
that G = F4 € F.

This completes the proof of Lemma 3.1. O

We are now ready to prove Theorem 1.2, which we restate below for convenience.

Theorem 1.2 For any connected n-vertex graph G, we have ¢1(G) = %n if and only if
GeGiUGUGs.

Proof If G € Gy U Gy U G3, then by Lemmas 2.9, 2.10 and 2.11, we conclude that
11(G) = %n This proves the sufficiency of Theorem 1.2.

In the following, we will prove the necessity by induction on 7. Since (1 (G) = %n,
we see that n = 7p for some positive integer p. If n = 7, then it follows from
Lemma 3.1 that G € F U G, € G; U Gy. So we may assume that n > 14.

If A(G) = 2, then G € {P,, C,}. Note that (1 (P,) = (%1 and ¢1(Cp) = [5]
by Lemmas 2.1 and 2.2. Since (%] < (%] < %n when n > 14, we derive a
contradiction to the assumption that (1 (G) = %n

Therefore, we may assume that A(G) > 3. Let v be a vertex in G such that
d(v) = A(G). Then V(G) # N[v]; otherwise, we deduce that {v} is a 1-isolating set
of Gandthus:;(G) =1 < %n (sincen > 14),acontradiction. Define G’ := G—N[v].
Let H be the set of components of G'. For any x € N(v) and any H € H, we say
that x is linked to H or H is linked to x if x has at least one neighbor in H. Let
Hp :={H € H: H € {P3,C3,Cg}} and Hg := H \ 'Hp. Then by Theorem 1.1 and
the induction hypothesis, we conclude that for each H € Hg, 11 (H) < %|V(H )| with
equality if and only if H € G U G U G3.

Note that {v} is a dominating set of G[N[v]]. If Hp = @, then by Lemmas 2.3, 2.5
and Theorem 1.1, we have

2
1@ =l +u@) =1+ Y uH) <1+ Y J|V(H)

HeH, HeHg
1+2( 1 A(G))<1+2( 4) 2 L 2
= -(n—1- —(n—4)=-n—= < =n,
7 - 7 7 T 7

a contradiction. Hence, we may assume that H; # 0.
For any given x € N(v), let Hp » := {H € Hp : H islinked to x only} and
Hg x :={H € Hg : H is linked to x only}. We have two cases to consider.

Case 1. There exists a vertex x € N (v) such that Hp  # 0.
Define Hllwc :={H € Hpx : H € {P3, C3}} and'H%’x :={H € Hpx : H= Cg}. Let
by = |H,;x| and by = |Hl%,x|' Since Hp,x # @, we know that by + by = [Hp | > 1.

For each H € H}?,x, let yy be one neighbor of x in H. For each H € H%’x, let yy be
one neighbor of x in H and zy the unique vertex in H with dy (yy, zg) = 3.
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LetX := {x}U (UHEHM Vv (H)) and let G, be the component of G — X containing

v. Then the components of G — X are G, and the members of H, . We consider two
subcases according to whether G, € {P3, C3, Cg} or not.

Subcase 1.1. G, ¢ {P3, C3, Cg}.
Let D := {x}U{zy : H € Hg’x}. Then D is a 1-isolating set of G[X] and
E(X\N[D], V(G)\X) = . By Lemmas 2.4, 2.5 and Theorem 1.1, we derive that

2
1@ =IDI+uG =X =l+b+ 3 ul)=l+h+ 3 ZIV(H)
HeHy  U{Gy} HeH, «U(Gy}

2 2 1 2
:1+b2+?(n—1—3b1—6b2):?n—?(6b1+5b2—5)§?n. (1)

Since 11 (G) = %n we conclude that all inequalities in (1) should be equalities, which
implies that by = 0, b, = 1 and (1(H) = %|V(H)| for each H € H,y x U {G,).
It follows from b; = 0 and b, = 1 that H,, , contains exactly one member (which
is isomorphic to Cg), and hence |X| = 7 and |D| = 2. Moreover, by the induction
hypothesis, we have H € G UG, UGs foreach H € Hg » U{G,}. We now prove that
G e Ql.

Suppose first that there exists amember H' € Hy  U{G,} suchthat H' € G, UGs,
where the vertices of H' are labeled as shown in Figs. 3 or 4. Let w be one neighbor
of x in H'. Define Y := X U {w}. Then, one can easily see that D is a l-isolating set
of G[Y]and E(Y \ N[D], V(G) \ Y) = #. Note that H' — w ¢ {P3, C3, C¢} (since
|V(H' — w)| € {6, 13} and by Observation 2.7(ii)). If H — w is connected, then by
Lemmas 2.4, 2.5 and Theorem 1.1, we deduce that

u(G) < IDI+u(G=Y)=2+u(H —w) + > L (H)
He(Hg xU{GuD\{H'}
<2+3|V(H’—w)|+ Z g|V(H)|=2+g(n—8)=%n—%<%n,
- 7 7 7 7 77

He(Hg cU{GuD\{H'}

a contradiction. So we may assume that H' — w is not connected. Then by Obser-
vation 2.7(i) and Observation 2.8(i), we see that H' = A| and w = ay. It is easy
to observe that {as} is a 1-isolating set of H' — w, and thus ¢;(H' — w) = 1. By
Lemmas 2.4, 2.5 and Theorem 1.1, we have

1(G) < DI+ u(G—Y)=2+u(H —w) + > 1(H)
HG(Hg,xU{Gv})\{H/}
<241+ > %|V(H)|=3+%(n—14)=%n—1<211,
= 7 7 7 7

He(Hg xU{GuD\{H'}
again a contradiction.
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Now, suppose H € G for each H € H, U {G,}. Let H|, H>, ..., H, be the
members of H, » U {Gy}. For each i € [s], let G;1,Gi2,...,G;, be the Ce-
constituents of H;, and for each j € [#], let u; ; be the Cg-connection of G; ; and
H; :_ul ufjuf]ufjuls] 1] ljbethecopyofCﬁmGl j-Itisclearthat G; ; € F
for each i € [s]and j € [1;].

Foreachi € [s]and j € [¢], let

Di i {u) j,ul ), if Gij € (F1, F2, Fa,
S 1, ifGi’j§F3.

Define D* := |J, ;< 1<; j<t; Di.j- Then, it follows from Observation 2.6(i) that D*

SU=S, 12>

is a dominating set of G — X and |D*| = 7(n -7 = n — 2. By Lemma 2.3 and
Theorem 1.1, we know that

1(G) < |D* + 1 (GIX)) < (én - 2) v2=1n @

Since ¢1(G) = %n, we derive that all inequalities in (2) should be equalities, which
shows that ¢; (G[X]) = 2. Then by Lemma 3.1, we have G[X] € F U G,. Notice that
G[X] contains an induced Cg (since G[X] contains the unique member of H;, , which
is isomorphic to Cg) and no graph in G, contains an induced C¢, we further conclude
that G[X] € F.

LetD/'—DU{ul/, l<i<sandl <j<fijand W:={x}U{u;;: 1<
i<sandl < j <g}. Then it is easy to verify that D’ is a 1-isolating set of G (by
Observation 2.6(ii)) and |D'| = 2 + %(n -7 = %n = 11(G). To prove that G € Gy, it
remains to show that N(x) NV (H;) € W foreachi € [s]. If there exists some i € [s]
such thatt; = 1, H; € {F3, F4} and ul.lyl is the unique neighbor of x in H;, then we
exchange the labels of u; ; and ul.l’l (note that in this case, the two vertices u; | and
u il)l are symmetric in H;). After this modification, let w; be one neighbor of x in H;
for each i € [s]. If, for some i € [s], w; can be chosen such that w; = uk for some
j € [t;] and k € [6] (and we further choose w; = u such that k # 1 1f possible),

then D" := (D'\ {u; ;, u; u? }) u {uk+3} (where the superscrlpt k + 3 is taken modulo 6
whenk € {4,5,6})isa 1- 1solat1ng set of G of size 11 (G) — 1, a contradiction. Hence,
we derive that for eachi € [s], w; = u; j forsome j € [t;] G.e., N(x)NV (H;) S W).
This implies that G[W] is connected, and thus G € G; whose Cg-constituents are
G[X],G1.1,G12,---. G145 ---,Gs1,Gs 2, ..., Gy,

Subcase 1.2. G, € {P3, C3, Cg}.
Let Y := X U V(Gy). Then the components of G — Y are the members of H, ..
First, suppose G, € {P3, C3}. Then, it is straightforward to check that D :=
(x}U{zy : H € Hi’x} is a l-isolating set of G[Y] and E(Y\N[D], V(G)\Y) = @.
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By Lemmas 2.4, 2.5 and Theorem 1.1, we deduce that

2
1G) < IDI+0G =) =1+b+ Y alH)<l+bt Y ZIV(H)
HeHg x HeHg «

2 21 2
Iby Z(n—4 = 3by —6b) = Zn — = (6b1 +5b2 + 1) < Zn,

a contradiction.

Next, suppose G, = Cg. Define D := {x,w} U {zyg : H € Hz’x}, where w is
the unique vertex in G, with dg, (v, w) = 3. Then, one can easily see that D is a
l-isolating set of G[Y] and E(Y\N[D], V(G)\Y) = . By Lemmas 2.4, 2.5 and
Theorem 1.1, we have

2
16 =IDI+uG=Y)=2+b+ Y u(H)<2+b+ Y ZIV(H)
HeHg « HeHg

2 2 1 2
=2+b2+§(1’l—7—3b1—6b2)=5n—;(6b1+5b2) < 57’1,

again a contradiction.

Case 2. Hy , = () for every x € N(v).

By the definition of H}, ., we see that each member of H,, is linked to at least two
vertices in N (v). We deal with two subcases according to whether H;, contains some
member that is isomorphic to C3 or Cg.

Subcase 2.1. There exists a member H* € Hj, such that H* € {C3, Cg}.

We choose a vertex x € N(v) such that x € N(V(H*)). Let y be one neighbor
of x in H*. Since H* is linked to at least two vertices in N (v), we observe that
E(V(H*), NWw) \ {x}) # 0. Let x’y’ be an edge in E(V(H*), N(v) \ {x}) with
x" € N(v)\ {x}and y’ € V(H*) (note that it is possible that y’ = y).

Let X := {x} U V(H*) and let G, be the component of G — X containing v. Then
the components of G — X are G, and the members of Hy .

Claim 1 If there exists a member H' € H, , satisfying H' € G1 U Go U G3, then H’
contains a 1-isolating set Dy such that |Dy'| = %|V(H/)| and x € N[Dg'].

Proof Let w be a neighbor of x in H'. We define a subset Dy C V (H') as follows.
First, suppose H' € G;. Let Gy, Ga, ..., G, be the Cg-constituents of H’, and for

each i € [t], let u; be the Cg-connection of G; and H; := ullulzu?ufufu?u} be the

copy of Cg in G;. Then w € V(G;) for some i € [¢]. It is clear that either w = u; or

w = u] for some j € [6]. Let

Dy m { w,uf}, ifw=u,

{w, u{”}, ifw= ulj for some j € [6],
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where the superscript j 4 3 is taken modulo 6 when j € {4, 5, 6}. For each k € [¢] and
k # i, let Dy = {uy, ui}. Define Dy = U1<k<, Dy. Then by Observation 2.6(ii)
and (iii), we conclude that Dy is a 1-isolating set of H'.

Next, suppose H' € G,. Then H' = A; for some i € [7] (where the vertices of
H' are labeled as shown in Fig.3), and w = a; for some j € [7]. Define Dy =
{w, aj43}, where the subscript j + 3 is taken modulo 6 when j € {4,5,6,7}. By
Observation 2.7(iii), we know that Dy is a 1-isolating set of H'.

Finally, suppose H' € G3. Then H' = B; for some i € [3] (where the vertices of
H' are labeled as shown in Fig.4), and w = b']‘. for some j € [7] and k € [2]. Define

Dy = {w, b’]‘.+3, bi_k, b;_k}, where the subscript j + 3 is taken modulo 6 when
j €1{4,5, 6, 7}. Then, it follows from Observation 2.8(ii) that Dy is a 1-isolating set
of H'.

In all three situations, it is straightforward to verify that |Dg/| = %|V(H )| and
x € N[Dy/] (since w € Dy and x € N(w)). O

Claim2 If Hg « # ¥, then v|(H) < 3|V (H)| for each H € Hg .

Proof Suppose to the contrary (and by Theorem 1.1) that there exists a member H' €
H,,x such that ¢ (H') = %lV(H/)l. Then by the induction hypothesis, we have H' €
G1UGUGs.

Let Y := V(H*) U V(Gy) and Z := V(H’) U {x}. Since x'y’ € E(G) with
x' € V(Gy) and y' € V(H*), we notice that G[Y] is connected. This implies that the
components of G — Z are G[Y] and the members of H,  \ {H "}. Moreover, since
H* € {C3, Cg} and x'y’ € E(G), we derive that y" has degree at least 3 in G[Y], and
thus G[Y] ¢ {Ps3, C3, Ce¢}.

By Claim 1, let Dy be a 1-isolating set of H’ such that |[Dy/| = %|V(H/)| and
x € N[Dg]. Then, it is easy to check that Dy is also a 1-isolating set of G[Z] and
E(Z\N[Dy'], V(G)\Z) = . By Lemmas 2.4, 2.5 and Theorem 1.1, we have

2 /
1@ =Dl +uG =2) = ZIVHN+u @YD+ Y7 ul
HeHg x\{H'}

< gIV(H’)|+%|Y|+ Z %IV(H)I = g|V(H’)|+g(n—l—IV(H/)l)
=7 7 7 7 7

HeHg \{H'}
2 2 2
=-n—=- < zn,
7 7 7
a contradiction. O

Claim3 H* = Ce.

Proof Suppose to the contrary that H* = C3. Note that {y} is a dominating set of
G[X].If G, ¢ {P3, C3, Cg}, then by Lemmas 2.3, 2.5 and Theorem 1.1, we conclude
that

HG) <+ uG=X)=1+0qG+ Y uH)
HeHg x
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<1+2|V(G N+ E 2|V(H)| 1+2( 4) 2,1 2
z z 14—y = 2, z
= 7 v 7 7 777 7
HeHg x

giving a contradiction. So we may assume that G, € {P3, C3, C¢}. Define ¥ :=
X U V(Gy). Then the components of G — Y are the members of H, .. Since n > 14
and |Y| € {7, 10}, we deduce that H,  # @.

First, suppose G, € {P3, C3}. Then, one can easily see that {v, y} is a dominating
set of G[Y]. By Lemmas 2.3, 2.5 and Claim 2, we have

(G = v, Y1 +u(G-7Y)

2 2 2

=2 H 2 —|V(H)|=24+-(n—T7) = =n,

+ E u(H) <2+ E 7| (H)| +7(n ) 7"
HEHg‘x HeHg,x

a contradiction.

Next, suppose G, = Cg. Recall that x’y’ is an edge in E(V (H*), N (v) \ {x}) with
x" € Nw)\ {x}and y' € V(H¥) (see the beginning of Subcase 2.1). Then, it is easy
to check that {v, x’} is a 1-isolating set of G[Y] and E(Y \ N[{v, x'}], V(G)\Y) = 0.
By Lemmas 2.4, 2.5 and Claim 2, we see that

2
1@ = o, xXN+uG =Y =2+ ) ul) <2+ ) Z|V(H)

HEHg,x HGHg.x
=2+ =( 10) = 6_2
= n i =2 <o
again a contradiction. O

By Claim 3, let H* := yy1z1zz2y2y. We then consider two subcases according to
whether G, € {P3, C3, Cg} or not.

Subcase 2.1.1. G, ¢ {P3, C3, C¢}.
Notice that {y, z} isadominating setof G[X].If H, , # ¥, thenby Lemmas2.3,2.5,
Theorem 1.1 and Claim 2, we know that

G <y, H+uG-X)=2+u(G)+ Y u(H)
HeHg x

2+2|V(G )+ E 2IV(H)| 2+2( 7) 2

< - — = — — = —

7!V 7 7" 7"
HeHg x

a contradiction. Therefore, we may assume that H, . = @. This shows that V(G) =
X UV(Gy). By Lemma 2.3 and Theorem 1.1, we have

2 2 2
(G =y, 2l +u(G —X) =2+1(Gy) =2+ 7|V(Gv)| =2+ 7(n—7) =g (3)
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Since (1 (G) = %n, we derive that all inequalities in (3) should be equalities, which

means that ¢1(G,) = %|V(GU)|. By the induction hypothesis, we conclude that G,, €
G1UGUGs.

Claim4 E({z, z1,z2}, N() \ {x}) = 7.

Proof Suppose to the contrary that E({z, z1, z2}, N(v) \ {x}) # @. Define Y :=
{x, v, ¥1, »2}. It is clear that {y} is a dominating set of G[Y]. Since V(G — Y) =
{z,z1,22} U V(Gy) and E({z, 21, 22}, N(v) \ {x}) # @, we deduce that G — Y is
connected. Moreover, wehave G—Y ¢ {Ps3, C3, C¢} (since |V(G—Y)| = n—4 > 10).
By Lemma 2.3 and Theorem 1.1, we see that

2 2 2 1 2
tl(G)SI{y}|+L1(G—Y)S1+5|V(G—Y)|=1+;(n—4)=;n—§ <Zn

a contradiction. O

Define X' := {y, y1, y2}. Recall that x'y’ € E(V(H*), N(v)\{x}) with x’ €
N@)\ {x}and y’" € V(H*) (see the beginning of Subcase 2.1). By Claim 4, we know
that E(V(H*), N(v)\{x}) = E(X’, N(v)\{x}) and y’ € X’. Let

{{y,z}, ify' =y,
(v, ¥y}, ify € {y1, y2}.

Claim5 G, € G;.

Proof Suppose to the contrary that G, € G, UG3, where the vertices of G, are labeled
as shown in Figs.3 or 4. Let Y := X U {x'}. Then D is a 1-isolating set of G[Y] with
E(Y\N[D],V(G)\Y) =@ and G — Y = G, — x’. Note that G, — x’ ¢ {P3, C3, C¢}
(since |V (G, — x")| € {6, 13} and by Observation 2.7(ii)). If G, — x’ is connected,
then by Lemma 2.4 and Theorem 1.1, we have

2
(G < IDI+u(G=Y)=2+1(Gy —x") <2+ 7IV(Go — )
2 2 2

2
a contradiction. So we may assume that G, — x’ is not connected. Then by Observa-
tion 2.7(i) and Observation 2.8(i), we derive that G, = A; and x’ = a; (and hence
n = |X| 4+ |V(Gy)| = 14). But then, it is straightforward to verify that D U {a4} is a
1-isolating set of G of size 3, contradicting the assumption that ({(G) = %n =4. 0

Claimé6 G, € F.

Proof Suppose to the contrary that G, ¢ F. Then by Claim 5, we conclude that
[V(Gy)| = 14. Let Gy, Gy, ..., G; (with t > 2) be the Cg-constituents of G,, and
foreachi € [t], let u; be the Cg-connection of G; and H; := ullulzu?uj‘ufu?ull be the

copy of Cg in G;. Define W := {uy : 1 <k <t}.
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Suppose x’ = ulj forsomei € [t]and j € [6].Let D’ := DU{M{H}U{uk, ui 1<
k <t and k # i}, where the superscript j + 3 is taken modulo 6 when j € {4, 5, 6}.
Then by Observation 2.6(ii), one can easily check that D’ is a 1-isolating set of G.
Since |D'| = 3 + %(n —14) = %n -1 < %n, we obtain a contradiction to the
assumption that (1 (G) = %n

Hence, we have x’ € W. Moreover, since the preceding reasoning applies to every
edgex’y’ € E(X’, N(v)\{x}) withx” € N(v)\{x} and y’ € X', we can further deduce
that N(X") N (N (v) \ {x}) € W. We consider two possibilities depending on whether
v € W or not.

e Suppose v € W. Define D* := {z} U {uk,ui :1 <k < t}. Since x € N(v),
N(X") N (N()\{x}) € W and by Observation 2.6(ii), we see that D* is a 1-
isolating set of G. Notice that |[D*| = 1 + %(n -7 = %n —-1< %n, we derive a
contradiction.

e Suppose v ¢ W. Since N(X') N (N()\{x}) € W, we know that N(X') N
(N\{x}) = {u;j} and v = “;j for some i € [¢t] and j € {1, 2, 6}. Define
D* :={x, z, u{+3} U {ug, ui 11 <k <tandk # i}, where the superscript j 4+ 3
is taken modulo 6 when j = 6. Then by Observation 2.6(ii), it is easy to see that
D* is a l-isolating set of G. Since |D*| = 3 + %(n —14) = %n -1< %n, we
also derive a contradiction.

m}

It follows from Claim 6 that n = | X| 4+ |V (G,)| = 14, and thus (1 (G) = %n =4.
Suppose the vertices of G, are labeled as shown in Fig. 2. Observe that the two vertices
u and u] are symmetric in F3 and Fy. Therefore, we may assume that N (X" )NV (G,) #
{u1} when G, € {F3, F4}; otherwise, we can exchange the labels of u and u;.

Claim7 N(X') N V(Gy) = {u).

Proof Suppose to the contrary that N(X’) N V(G,) # {u}. Note that x’ € N(X') N
V(Gy). Since x"y’ can be arbitrarily chosenin E(X’, N (v)\ {x}) (withx" € N (v)\{x}
and y’ € X’), we may assume that x’ # u. If x’ can be chosen such that x’ = u; for
somei € {2,3,4,5, 6}, then it is easy to verify that D U {u; 3} (where the subscript
i + 3 is taken modulo 6 when i € {4, 5, 6}) is a 1-isolating set of G of size 3, giving
a contradiction.

Hence, we have x’ = uy, which shows that N(X') N V(G,) C {u,u1}. If G, €
{F1, F»}, then D U {u4} is a l-isolating set of G of size 3, a contradiction. Therefore,
we derive that G, € {F3, F4}. Since N(X') N V(G,) # {u} (by the assumption) and
N(X') N V(Gy) # {u;} (by the argument before Claim 7), we can further conclude
that N(X') N V(Gy) = {u, u1}. Then, it follows from N(X') N V(G,) € N(v)\{x}
that v € {u2, ug}. By symmetry, we may assume that v = u,. But then, we deduce
that {x, z, ug} is a 1-isolating set of G, again a contradiction. O

Now, we complete the proof of Subcase 2.1.1 by considering all four possibilities
of G,.
e Suppose G, = Fj. Since N(X') N V(G,) € N(v)\{x} and by Claim 7, we see
that E({u}, X') # ¥ and v = u;. This implies that A(G) = d(v) = 4 (since v has
degree 3 in G, and vx € E(G)).
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First, suppose uy € E(G). Then we notice that uy;, uy, € E(G); otherwise,
{x, z, us} is a 1-isolating set of G, contradicting the assumption that ¢1 (G) = 4. If
x has at most one neighbor in {u;, ug}, then {z, u, us} is a 1-isolating set of G, a
contradiction. So we may assume that xu;, xug € E(G). Then, itis straightforward
to check that G = B3 € Gs.

Next, suppose by symmetry that uy ¢ E(G) and uy; € E(G). Then we have
uy; € E(G); otherwise, {x, z, u4} is a 1-isolating set of G, giving a contradiction.
If E({x}, {uz, ug}) = @, then {z, u, us} is a 1-isolating set of G, a contradiction. If
|E({x}, {uz, ue})| = 1, say xur € E(G), then either {z, u, x} (if xus € E(G)) or
{z, u, u3} (if xus ¢ E(G)) is a l-isolating set of G, again a contradiction. Hence,
we may assume that |E({x}, {u2, ue})| = 2 (i.e., xuz, xug € E(G)). Then, one
can easily see that G = B, € G3.

e Suppose G, = F5. Since N(X')NV(G,) € N(v)\{x} and by Claim 7, we know

that E({u}, X") # @ and v € {uy, up}. This means that A(G) = d(v) = 4 (since
v has degree 3 in G, and vx € E(G)). By symmetry, we may assume that v = uj.
First, suppose uy € E(G). Since A(G) = 4, we conclude that | E ({u}, {y1, y2})| <
1. If E({u}, {y1, y2}) = 9, then {x, z, u4} is a 1-isolating set of G, a contradiction.
Therefore, we derive that |E({u}, {y1, y2})| = 1. By symmetry, we may assume
that uy; € E(G) and uy, ¢ E(G). Then we have xy,, xug € E(G); otherwise,
{z,u, uq} is a l-isolating set of G, a contradiction. But now, we can deduce that
{x, z, up} is a 1-isolating set of G, again a contradiction.
Next, suppose by symmetry that uy ¢ E(G) and uy; € E(G). Then we see that
E({x}, {z, z1}) # 0; otherwise, {y, u, ua} is a 1-isolating set of G, giving a con-
tradiction. If xz € E(G), then {x, y1, u3} is a 1-isolating set of G, a contradiction.
Hence, we have xz ¢ E(G), and thus E({x}, {z, z1}) = {xz1}. Then, it is easy to
observe that {x, z, u3} is a 1-isolating set of G, again a contradiction.

e Suppose G, = F3. Since N(X) NV (G,) € N(v)\{x} and by Claim 7, we notice
that v € {uz, ug}. By symmetry, we may assume that v = u. But then, we derive
that {x, z, ug} is a 1-isolating set of G, a contradiction.

e Suppose G, = Fjy. Since N(X') N V(G,) € N(v)\{x} and by Claim 7, we

conclude that E({u}, X") # @ and v € {uy, us, ug}. This shows that A(G) =
d(v) = 4 (since v has degree 3 in G, and vx € E(G)), and thus |E({u}, X')| = 1.
If v € {uy, ue}, suppose by symmetry that v = uy, then {x, z, ug} is a 1-isolating
set of G, giving a contradiction. Therefore, we know that v = u;.
First, suppose uy € E(G). Then we deduce that xy;, xy» € E(G); otherwise,
{z, u, ua} is a 1-isolating set of G, a contradiction. This implies that G = B3z € Gs3.
Next, suppose by symmetry that uy ¢ E(G) and uy; € E(G). Then we have
xz1 € E(G); otherwise, {z2, u, us} is a 1-isolating set of G, a contradiction. If
d(x) = 3, then we see that G = B, € G3. So we may assume that d(x) =
A(G) =4.If xu; € E(G) forsome i € {2,3,4,5, 6}, then {x, z2, u;;3} (Where
the subscript i + 3 is taken modulo 6 when i € {4, 5, 6}) is a l-isolating set of G,
a contradiction. Hence, we can derive that x has no neighbor in {u; : 2 <i < 6}.
Moreover, we claim that x also has no neighbor in {z, z2, y2}; otherwise, {x, u, 14}
is a 1-isolating set of G, again a contradiction. Since d(x) = 4, we conclude that
xy1 € E(G). Then, it is easy to verify that G = B3z € G3.

@ Springer



115 Page 180f26 Q. Cuietal.

Subcase 2.1.2. G, € {P3, C3, C¢}.

In this subcase, we have A(G) = d(v) = 3 (since v has degree 2 in G, and
vx € E(G)). Since H* = C¢ and xy € E(G), we know that y has no neighbor in
N (v)\ {x} and each vertex in {y1, y2, 2z, 21, 22} has at most one neighbor in N (v) \ {x}.

Let Y := X U V(G,). Then the components of G — Y are the members of H, ..
Since n > 14 and |Y| € {10, 13}, we deduce that H, , # @.

First, suppose G, = Ps. If each vertex in N(v) \ {x} has at most one neighbor
in {y1, y2}, then we define D := {x, z}; otherwise, if some vertex in N(v) \ {x} is
adjacent to both y; and y,, then we let x” be the other vertex in N (v) \ {x} (and thus
x"y1,x"y, ¢ E(G)) and define

Do {{y, w2}, i E(x"} {z, 21D = 0,
Tl EQ Nz ) # 9.

In all possibilities, one can easily check that D is a l-isolating set of G[Y] and
E(Y\N[D], V(G)\Y) = @. Then by Lemmas 2.4, 2.5 and Claim 2, we have

2
1@ = IDI+0(G=Y)=2+ Y ul) <2+ Y Z|V(H)

HeHg x HeHg x
2 2( 10) 2 6 2
= —(n — =-n—-—=< =-n,
7 7 7 7

a contradiction.

Next, suppose G, = C3. Recall that x'y’ € E(V(H*), N(v)\{x}) with x’ €
N@)\{x}and y’ € V(H*) (see the beginning of Subcase 2.1). If E({z, z1, z2}, N (v)\
{x}) =0, then ¥y’ € {y], y2} and we define D := {y, y'}; otherwise, we may assume
x'y" € E(V(H*), N(v)\ {x}) is chosen such that x" € N(v)\{x}and y’ € {z, z1, 22},
and then define D := {y, x'}. In both possibilities, we see that D is a 1-isolating set
of G[Y] and E(Y\N[D], V(G)\Y) = @. By Lemmas 2.4, 2.5 and Claim 2, we derive
that

2
HG) S IDI+u(G-Y)=2+ > u(H) <2+ Y. SV ()

HeHg x HeHg
24 2m—10)=2n_0 2
= — — =—-n—=-< -n,
7 7"

again a contradiction.

Finally, suppose G, = C¢. Define D := {x, z, w}, where w is the unique vertex in
G, with dg, (v, w) = 3. Then, it is easy to see that D is a 1-isolating set of G[Y] and
E(Y\N[D], V(G)\Y) = ¢. By Lemmas 2.4, 2.5 and Claim 2, we conclude that

2
1@ = IDI+u(G=Y)=3+ } u() <3+ )  ZIV(H)

HeHg HeHg x
34213 =2n_2 22
= — — =—-n—=-< =-n,
7" VA I
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giving a contradiction.

Subcase 2.2. H = P; for every H € Hp.
Let X := N[v]U (UHeHb V(H)). Then the components of G — X are the members
of H,. For the sake of brevity, let A = A(G) and b = [Hp|. Then A > 3 and b > 1
(since Hp, # 0). For each H € Hj, let ygy be the unique vertex of degree 2 in H.
Define S := {v}U{yg : H € Hp}and T := N(v).Itis clear that S is a dominating
set of G[X] and T is a l-isolating set of G[X] with E(X\N[T], V(G)\X) = . By
Lemmas 2.3, 2.4, 2.5 and Theorem 1.1, we know that

2
1G) S ISI+0uG = X)=1+b+ 3 () <1+b+ Y ZIV(H)
HeHg HeH,

2 2 1
1+b+5(n—1—A—3b)=5n—5(2A—b—5) “4)
and

2
W@ S ITI+uG =X)= A+ Y u(H) <A+ Y SIVH)
HeH, HeH,

2 2 1
=A+-n—1—A-=3b)==-n—=(6b+2—5A). 5)
7 7 7
If b < 2A — 5, then by (4), we have
(G) < 2 l(2A b—5) 2
l -n— = —b—-5) < =n,
2 =37""7 7

contradicting the assumption that ¢1(G) = %n On the other hand, if » > %(5 A—=2),
then it follows from (5) that

G <2n-Ltepra_say <2
L -n— = - < —n,
=377 7

again a contradiction. Therefore, we can deduce that 2A —5 < b < é(SA —2). Then
a simple calculation shows that either A =4 andb =3,or A =3 and b € {1, 2}. We
consider three subcases according to the values of A and b.

Subcase 2.2.1. A =4 and b = 3.

Let H, = {H1, Hy, H3}. Since H; is linked to at least two vertices in N (v) for each
i € [3]and [N (v)] = A = 4, we see that there must exist a vertex x € N (v) such that
x is linked to at least two members of ;. Without loss of generality, we may assume
that x is linked to both Hy and H». Let y be any vertex in H3. Then, it is easy to observe
that D := {v, x, y} is a 1-isolating set of G[X] and E(X \ N[D], V(G) \ X) = @. By
Lemmas 2.4, 2.5 and Theorem 1.1, we have

2
1(G) < IDI+0(G = X) =3+ Y u(H) <3+ Y Z|V(H)
HeH, HeH,
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34214y = 2n—1<2
= — —_— _ - —_— < p—
7 7" 7"

a contradiction.

Subcase 2.2.2. A =3 and b = 2.

Let Hp = {H1, H>}. Since H; is linked to at least two vertices in N (v) for each
i € [2] and |[N(v)| = A = 3, we derive that there must exist a vertex x € N(v)
such that x is linked to both H; and H;. Then, one can easily see that D := {v, x} is
a l-isolating set of G[X] and E(X\N[D], V(G)\X) = #. By Lemmas 2.4, 2.5 and
Theorem 1.1, we conclude that

2
1G) = IDI+u(G=X)=2+ 3 u(H) =2+ Y Z|V(H)

HeH, HeH,
2 2m—10)=2n-0.2
= — —_ =—-n—=-< =-n,
7 7"

a contradiction.

Subcase 2.2.3. A =3 and b = 1.

Let N(v) = {x1, x2, x3}, and let H* be the unique member of H;, with V(H™*) =
{y1, y2, y3} and y1y2, yoy3 € E(H™). Since A = 3, we know that y, has at most one
neighbor in N (v) and each vertex in {y1, y3} has at most two neighbors in N (v).

Recall that X = N[v]U V(H*) and the components of G — X are the members of
‘Hg. Then, it follows from n > 14 and |X| = 7 that H, # §. Since (1(G) = %n, we
deduce that all inequalities in (4) (by letting A = 3 and b = 1) should be equalities,
which implies that ¢ (H) = %|V(H )| for each H € H. By the induction hypothesis,
we have H € G| U Gy U G3 for each H € H,. For each i € [3], let H;;,x,- ={H €
H, : H is linked to x;}. It is clear that Hg , € H;;,x,- for each i € [3].

Claim 8 For any i € [3] and any member H' € H;,,X[,, there exists a 1-isolating set

Dy of H' such that |Dy/| = %|V(H’)| and x; € N[Dg'].

Proof Since H' € G, UG, UGs, the proof is the same as that of Claim 1 and is omitted
here. o

Claim9 For any i € [3] and any member H' € Hfg,xi’ if there exists a 1-isolating set
D of G[X] such that |D| = 2, x; € D and E(X\N[D], V(G)\X) = @, then H' € G.

Proof Suppose to the contrary that H' € G U G3, where the vertices of H’ are labeled
as shown in Figs. 3 or 4. Let w be one neighbor of x; in H'. Define Y := X U{w}. Since
D is a 1-isolating set of G[X] containing x; and E(X\N[D], V(G)\X) = @, we see
that D is also a 1-isolating set of G[Y] and E(Y \ N[D], V(G) \ Y) = . Notice that
w # a; when H' = Aj (since A = 3). Then, it follows from Observation 2.7(i) and
Observation 2.8(i) that H' —w is connected, which means that the components of G —Y
are H' —w and the members of H, \ { H'}. Moreover, since |V (H' —w)| € {6, 13} and
by Observation 2.7(ii), we derive that H' — w ¢ {P3, C3, C¢}. By Lemmas 2.4, 2.5
and Theorem 1.1, we have
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H(G) < DI+ (G =Y)=2+uH —w)+ Y u(H)
HeH \(H')

<24 2V - w)l+ > 2V =2+ 20— 8) = 2n— 2 < 2
< 7 w = 7n =-n < —n,

7 7 7
HeH\(H')

a contradiction. O
Claim 10 If H, ., # @ for some i € [3], then G € G.

Proof Without loss of generality, suppose that H, ,, # ¥ and let H’ be a member of
Hg x, - Note that [H, i, | < 2 (since A = 3).

LetY := V(H’)U{x} and let G, be the component of G — Y containing v. Since
H* is linked to at least two vertices in N (v), we observe that H* C G,. This shows
that the components of G — Y are G, and the members of H, ,, \ {H'}. By Claim 8,
let Dy be a 1-isolating set of H' such that |Dpy/| = %|V(H’)| and x; € N[Dg].
Then, it is straightforward to verify that Dy is also a l-isolating set of G[Y] and
E(Y\N[Dg'], V(G)\Y) = @. Notice that G, ¢ {P3, C3} (since |V(G,)| = 6). If
G, 2 Cg, then by Lemmas 2.4, 2.5 and Theorem 1.1, we conclude that

2 !
1@G) = IPpl+uG =)= JIVH) +u G+ Yo ulH)

HeHg o \{H'}
2 2 2 2 o2 ,
SSIVAENIHSIVGOI+ 3 SIVEDI = SIVH) + 20— 1= [V(H))
HeHg . \[H')
2 2 2
==-n—=- < zn,
7 7 7

giving a contradiction. So we may assume that G, = Cg. This implies that V(G,) =
X \ {x1}, and thus H, = H, ,, (i.e., ’H;,)xz = H;zm =0).

Without loss of generality, suppose G, := vx2y1y2y3x3v. Since A = 3, we know
that x| has at most one neighborin {x3, x3, y1, y2, y3}.If x;y» € E(G), then we deduce
that H' is the unique member of H, (since A = 3) and Dy U {x;} is a 1-isolating set

of G, which means that

(G) < 1Dyl +1= 2[VH) +1= 20— +1=2n—1<2
L ’ = — = —(n — = —n — < =n,
R =12H 7 7 7 7

a contradiction. Hence, we may further assume that x;y, ¢ E(G). This shows that
G[X] e {F1, F», F3} C F.

Let D := {x1,y2}. Then D is a l-isolating set of G[X] containing x; and
E(X\NI[D], V(G)\X) = ¥ (since Hg = H, x,). By Claim 9, we see that H' € G;.
Since H' can be arbitrarily chosen in H,, we can derive that each member of H,
belongs to Gy. Let Hy, ..., Hy (with s < 2) be the members of H,. For each i € [s],
let Gi 1, Gi2, ..., Gi be the Cg-constituents of H;, and for each j € [#;], letu; ; be
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the Cg-connection of G;; and H; ; := ulj 121 13/ f/ f/ i, bethecopyofC6
in G; ;.
DeﬁneD"_DU{u,j, l<i<sandl <j<g}and W:= {x1} U{u; ;:

I<i<sandl <j <1#}. Then one can easﬂy check that D’ is a 1-isolating set of
G (by Observation 2.6(ii)) and |D'| = 2 + 7(n -7 = n = (1(G). To show that
G € Gy, it remains to prove that N(x;) NV (H;) € W for each i € [s]. If there exists
some i € [s]suchthats; = 1, H; = F3 and ul.l’l is the unique neighbor of x; in H;,
then we exchange the labels of u; ; and ull | (note that in this case, the two vertices u; |
and uil’1 are symmetric in H;). After this modification, let w; be one neighbor of x1 in
H; foreachi € [s].If, forsome i € [s], w; can be chosen such that w; = u for some
j € [t;] and k € [6] (and we further choose w; = u such that k # 1 1f possible),

then it is easy to observe that D" := (D" \ {u; ;, ?’ D U {uf.‘f]’.3 } (where the superscript
k + 3 is taken modulo 6 when k € {4, 5, 6})is a 1-isolating set of G of size ¢1(G) — 1, a
contradiction. Therefore, we deduce that for eachi € [s], w; = u;,; for some j € [#;]
(i.e., N(x1) N V(H;) € W). This implies that G[W] is connected, and thus G € G
whose Cg-constituents are G[X], G1,1,G1,2,..., G145+, Gs1, G52, ..., Gg . O

By Claim 10, we may assume that H, ,, = @ for each i € [3] in the remainder
of the proof. This means that each member of H, is linked to at least two vertices in
N(v).

Claim 11 y, has no neighbor in N (v).

Proof Suppose this is false. Since A = 3, we may assume by symmetry that y,x, €
E(G)and yyx1, yox3 ¢ E(G).Define Y := {x3, y1, ¥2, ¥3}. Then {y,} is adominating
set of G[Y]. Since each member of H, is linked to at least two vertices in N (v), we
conclude that G — Y is connected. Moreover, we have G — Y ¢ {P3, C3, Cg} (since
|[V(G —Y)| =n—4 > 10). By Lemma 2.3 and Theorem 1.1, we know that

2 2 2 1 2
< — < — — = — — = -n— - —
1 (G) =yt +u(G Y),l+7|V(G )| 1+7(n 4) Zh— 5 <z,

giving a contradiction. O
Claim 12 [f y; or y3 has two neighbors in N (v), then G = By € G3.

Proof Without loss of generality, we may assume that yjx, y1x2 € E(G).

Suppose y3x3 ¢ E(G). Let Y := {x1, x2, ¥1, ¥2, y3} and let G, be the component
of G — Y containing v. Then the components of G — Y are G, and the members of
Hg\H/ xy- Itisclearthat {y; }isa l-isolating setof G[Y]and E(Y\N[yi], V(G)\Y) =
@. Slnce either |V(G,)| =2 (1ng i =Mor|V(Gy)| = 9(1f'Hg x; 7 ¥), we deduce
that G, ¢ {P3, C3, C¢}. By Lemmas 2.4, 2.5 and Theorem 1.1, we have

0G) <yl +uG -V =1+uG)+ Y.  u(H)

HeH, \Hg 3
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[\

<1+ 2VGI + > 2V =14+ 21— 5) = 2n—
= = = -m—5==-n—=- < zn,
- 7 ! 7 7 77

HeH, \H;,_X}

\]

a contradiction.

Hence, we may assume that y3x3 € E(G). Let Z := {x1, x2, y1, y2} and let G;
be the component of G — Z containing v. Then {y;} is a dominating set of G[Z]
and the components of G — Z are G, and the members of H, \ H, ,,. Note that
either |V (G))| = 3 (if H;M = @) or |V(G,)| > 10 (if Hfg,m # (). This shows that

G, 2 Cg. Moreover, we see that G}, 2 C3 (since vy3 ¢ E(G)). If G, 2 Ps, then by
Lemmas 2.3, 2.5 and Theorem 1.1, we derive that

u@G) <yl +uG -2 =1+uG)+ Y,  u(H)

HeH, \H;”3

S 1+I2VEGI+ Y IV =14 -4y = on— s < 2
= = = -m—4) ==-n—=-<=n,
- 7 v 7 7 7 7

7
HeHN\H .

a contradiction. So we may assume that G, = P3. This implies that V(G)) =
{v, x3, y3} and H;’,’ X3 = @. Since each member of H is linked to at least two vertices
in N(v), we conclude that each member of H, is linked to both x1 and x>. Then, it
follows from A = 3 and Claim 11 that |H,| = 1 and G[X] = F3.

Let H be the unique member of H,. For eachi € [2], let w; be the unique neighbor
of x; in H (since A = 3). Define D := {v, x1}. Then D is a 1-isolating set of G[X]
containing x; and E(X\N[D], V(G)\X) = @. By Claim 9, we have H € G;. We
distinguish two possibilities depending on whether H = F3 or not.

e Suppose H = F3 (where the vertices of H are labeled as shown in Fig.2). Then
n=|X|+|V(H)| = 14, and thus (;(G) = 2n = 4.1f {w, wa} = {u, uy}, then
it is easy to see that G = B; € G3. Therefore, we may assume by symmetry that
w1 ¢ {u,u1}. Then w; = u; for some i € {3,4, 5} (since A = 3). But now, we
know that DU {u; 13} (where the subscript i + 3 is taken modulo 6 when i € {4, 5})
is a 1-isolating set of G of size 3, a contradiction.

e Suppose H 2 F3.Let Gy, Ga, ..., G, be the Cg-constituents of H, and for each
i € [t],let u; be the Cg-connection of G; and H; := u}u?ufu;‘ufu?u} be the copy
of Ce in G;. Define W := {uy : 1 <k <1t}. _

Suppose w; = u] forsomei € [t] and j € [6]. Let D' := DU {uij+3} U {ug, uf :
1 < k < tandk # i}, where the superscript j 4+ 3 is taken modulo 6 when
J € {4, 5, 6}. Then by Observation 2.6(ii), we can deduce that D’ is a 1-isolating
set of G. Since |D'| =3 + %(n —14) = %n —1< %n, we obtain a contradiction
to the assumption that ¢1 (G) = %n

Hence, we have w; € W. By the same argument as that for w; (with D := {v, x1}
being replaced by D* := {v, x»}), we can also show that w, € W. Then, it is
straightforward to verify that D" := {x3} U {uy, u2 : 1 <k <1t}isa l-isolating
set of G (by Observation 2.6(ii)). Since |[D"| = 14+ 2(n —7) = 2n — 1 < 2n,
we also derive a contradiction.
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O

By Claim 12, we may further assume that each vertex in {y;, y3} has at most one
neighbor in N (v) in the following proof. This means that | E ({y1, y3}, N(v))| < 2.0n
the other hand, since H* is linked to at least two vertices in N (v) and by Claim 11, we
see that |E({y1, ¥3}, N(v))| > 2. Therefore, we conclude that |E({y1, 3}, N(v))| =
2. Without loss of generality, we may assume that E({y1, y3}, N(v)) = {y1x1, y3x2}.

Claim13 G[X] = F;.

Proof Suppose to the contrary that G[X] 2 Fi.Thenx;x; € E(G)forsomei, j € [3].
If x1x2 € E(G), then it follows from A = 3 that each member of H, is linked to x3
only (i.e., Hg x; # ¥), giving a contradiction. So we may assume by symmetry that
x1x3 € E(G). Since A = 3 and each member of H, is linked to at least two vertices in
N (v), we know that H g contains exactly one member, say H, which is linked to both
x7 and x3. By Claim 8, let Dy be a 1-isolating set of H such that |Dy| = %|V(H)|
and x» € N[Dg]. Then, it is easy to check that D := Dy U {x1} is a 1-isolating set
of G. Notice that

2 2 2 2

we obtain a contradiction to the assumption that ¢ (G) = %n O
Claim 14 |H,| = 1.

Proof Suppose to the contrary that |,| > 2. Since A = 3 and each member of
‘H is linked to at least two vertices in N (v), we deduce that H, contains exactly
two members, say H; and H,, such that H is linked to both x| and x3 and H; is
linked to both x and x3. By Claim 8, let Dp, be a 1-isolating set of H; such that
|Dp,| = %|V(H1)| and x; € N[Dp, ], and let D, be a 1-isolating set of H such that
|Dp,| = %|V(H2)| and x3 € N[Dg,]. Define D := Dy, U Dy, U {x2}. Then, one
can easily see that D is a 1-isolating set of G. Since

2 2 2 2 2
ID| = |Dg,| +|Dg,| + 1= ?|V(H1)| + ?|V(H2)| +1= ?(n -N+1= ?n -1< ?n,

we derive a contradiction. O

By Claim 14, let H be the unique member of H,. Since H is linked to at least two
vertices in N (v) and by symmetry between x| and xp, we may assume that H is linked
to x1 and at least one vertex in {x», x3}. Define D := {v, x1}. Then D is a l-isolating
set of G[X] containing x; and E(X\N[D], V(G)\X) = @. By Claim 9, we have
H e G;. Let G, Gy, ..., G; be the Cg-constituents of H, and for each i € [7], let
u; be the Cg-connection of G; and H; := u}u%u?u;‘ufu?ul] be the copy of C¢ in G;.
Let w be the unique neighbor of x| in H (since A = 3). Note that when ¢ = 1 and
H = F3, the two vertices u1 and u} are symmetric in H. Hence, we may assume that
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w # u} when t = 1 and H = F3; otherwise, we can exchange the labels of u; and
ul.

Suppose w = u] forsomei € [t]and j € [6]. Define D" := DU{u{+3}U{uk, uj
1 <k <t and k # i}, where the superscript j+3is taken modulo6 when j € {4, 5, 6}.
Then, it follows from Observation 2.6(ii) that D’ is a 1-isolating set of G. Since
|D'| =3+ %(n —14) = %n -1< %n, we obtain a contradiction to the assumption
that 1 (G) = 2n.

Therefore, we may assume that w = u; for some i € [f]. This (together with
A = 3) shows that Gy 22 Fy for any k € [t]. Let Y := X U V(G;). For each k € [¢]
and k # i, let

{{u;, uy), if Gy € (F1, Fa),
Dk = 2 5 . ~
{ug, up}, it Gy = F3.

Define D* = Ulskgt, ki Dr- Then by Observation 2.6(i), we see that D* is a
dominating set of G — Y and |D*| = %(n —14) = %n — 4. If G; 2 F or
|E({x3}, {u?, ul})| < 1, then {x2,u;,u}} is a l-isolating set of G[Y] (and thus
11(G[Y]) < 3) and it follows from Lemma 2.3 that

* 2 2 2
(@) = ID7+uGIY) = (on—4)+3=c-n—1<cn,

a contradiction. So we may assume that G; = F; and | E ({x3}, {uiz, u?})| =2 (e,
X3ul~2, xgu? € E(G)). Moreover, we have xou; € E(G); otherwise, {x3, y1, uf} isal-
isolating set of G[Y] (and hence ¢1 (G[Y]) < 3) and we can conclude from Lemma 2.3
that

* 2 2 2
(@) = ID7+uGIY) = (on—4)+3=c-n—1<cn,

again a contradiction. Since A = 3, we derive that 1 = 1 and H = Fj. Now, it is
straightforward to verify that G = B; € Gs.
This completes the proof of Theorem 1.2. O
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