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Abstract
For any real number y, let [y] be the largest integer not exceeding y. Petrov and Tolev
conjectured that there exists a constant c0 > 1 such that if 1 < c < c0, then every
sufficiently large natural number N can be represented as

N = [pc] + [mc],

where p is a prime andm is a natural number having at most 2 prime factors. And, they
proved thatwhen c is close to 1, specificallywhen 1 < c ≤ 1485/1484 = 1.00067 . . . ,

every sufficiently large natural number N can be represented as N = [pc]+[mc]with
m having at most 53 prime factors.
In this paper, we show that if 1 < c ≤ 1.0198, then every sufficiently large natural
number N can be written as N = [pc] + [mc], where p is a prime and m is a natural
number having at most 10 prime factors. This improves the result of Petrov and Tolev.

Keywords Additive problem · Sieve · Fractional powers

Mathematics Subject Classification Primary 11D85 · Secondary 11N36

1 Introduction

The famous Goldbach conjecture states that any even number greater than 2 can be
written as the sum of two prime numbers. Let Pr denote an almost-prime with at most
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r prime factors counted with multiplicity. In 1966, Chen [2] announced his remarkable
theorem–Chen’s theorem: every sufficiently large even integer N can written as

N = p + P2,

where and in what follows p, with or without subscript, is a prime. And the detail was
published in [3].

The ancient Waring problem says that for every natural number k ≥ 2 there exists
a positive integer s = s(k) such that every natural number is a sum of at most s kth
powers of natural numbers. In 1934, Segal [12] generalized the Waring problem to
fractional exponents. And, he showed that for any fixed real number c > 1, there
exists a positive integer s = s(c) such that every sufficiently large natural number N
can be written as

N = [xc1] + [xc2] + · · · + [xcs ],

where x1, x2, . . . , xs are non-negative integers. On the other hand, some mathemati-
cians consider that how large c can be for the fixed s ≥ 2. In 1973, Deshouillers [4]
proved that if 1 < c < 4/3, then every sufficiently large natural number N can be
represented as

N = [xc1] + [xc2],

where x1 and x2 are non-negative integers. Later, the domain of c was improved to
1 < c < 55/41 and 1 < c < 3/2, respectively by Gritsenko [7] and Konyagin [9]. In
addition, in 2009, Kumchev [10] proved that if 1 < c < 16/15, then every sufficiently
large natural number N can be represented as

N = [pc] + [mc], (1.1)

where m is a positive integer. Recently, the range of c obtained by Kumchev was
improvedbyYu [14] to 1 < c < 11/10.Furthermore, Petrov andTolev [11] proved that
if 1 < c < 29/28, then every sufficiently large natural number N can be represented
as (1.1) with m is an almost prime with at most [52/(29 − 28c)] + 1 prime factors.
Inspired by Chen’s theorem, Petrov and Tolev [11] proposed the following interesting
conjecture:

Conjecture 1.1 There exists a constant c0 > 1 such that if 1 < c < c0, then every
sufficiently large natural number N can be represented as

N = [pc] + [Pc
2 ].

In the present paper, we improve the results of Petrov and Tolev when c close to 1.
And, we state our theorem in the following.
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Theorem 1.1 Suppose that 1 < c ≤ 1.0198. Then every sufficiently large natural
number N can be represented as

N = [pc] + [mc],

where p is a prime and m is an almost prime with at most 10 prime factors.

Remark 1.1 While our method does not yield a general formula for the number of
prime factors of m in terms of c, for every specific c ∈ (1, 29/28), one can apply our
method to get an improvement to Petrov and Tolev’s result.

2 Notation and Preliminaries

From now on, let N be a sufficiently large natural number and

1 < c ≤ 1.0198, θ = 1

c
be the positive real numbers. Put

P = δN θ , δ = 10−9.

Put e(y) = e2π iy . As usual, μ(n) denotes the Möbius function. Let ρ(t) = 1
2 − {t},

where {t} is the fractional part of t . Define (ξ+
d ) and (ξ−

d ) the upper bound and lower
bound beta-sieves of level D respectively (see Chapter 11 of [5]), for which we have

∑

d|n
ξ−(d) ≤

∑

d|n
μ(d) ≤

∑

d|n
ξ+(d). (2.1)

For z ≥ 2, define

P(z) =
∏

p<z

p and V (z) =
∏

p<z

(
1 − 1

p

)
.

Then, by Theorem 11.12 of Friedlander and Iwaniec [5], we have

∑

d|P(z)

ξ+(d)

d
≤ V (z) (F(s) + o(1)) (2.2)

and

∑

d|P(z)

ξ−(d)

d
≥ V (z) ( f (s) + o(1)) , (2.3)

where F(s) and f (s) are the standard upper and lower bound functions of the linear
sieve, and

s = log D

log z
.
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Lemma 2.1 For F(s) and f (s), We have

F(s) = 2eγ

s
, 0 < s ≤ 3;

F(s) = 2eγ

s

(
1 +

∫ s−1

2

log(t − 1)

t

)
, 3 ≤ s ≤ 5;

F(s) = 2eγ

s

(
1 +

∫ s−1

2

log(t − 1)

t
+

∫ s−3

2

log(t − 1)

t
dt

∫ s−1

t+2

1

u
log

u − 1

t + 1

)
, 5 ≤ s ≤ 7;

f (s) = 0, 0 < s ≤ 2;
f (s) = 2eγ log(s − 1)

s
, 2 ≤ s ≤ 4;

f (s) = 2eγ

s

(
log(s − 1) +

∫ s−1

3

dt

t

∫ t−1

2

log(u − 1)

u
du

)
, 4 ≤ s ≤ 6;

f (s) = 2eγ

s

(
log(s − 1) +

∫ s−1

3

dt

t

∫ t−1

2

log(u − 1)

u
du

+
∫ s−4

2

log(t − 1)

t
dt

∫ s−2

t+2

1

u
log

u − 1

t + 1
log

s

u + 2
du

)
, 6 ≤ s ≤ 8.

Proof See [8, (3.11) and (3.12)]. ��
We denote

D = Nη,

where η = η(c) > 0 is a constant. Let

	 j =
∑

d|P(z)

ξ−
d

∑

P<p≤2P

(log p)ρ
(

− 1

d
(N + j − [pc])θ

)
, j = 0, 1. (2.4)

Lemma 2.2 Let

28

29
< θ < 1, η <

29θ − 28

26
.

Then we have

	0, 	1 � N 2θ−1

(log N )2
, j = 0, 1.

Proof See (23), (24), (71), and (73) of [11]. ��
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Lemma 2.3 (Vaaler’s theorem) For each H ≥ 2 there are numbers ch, 1 ≤ h ≤ H ,

and dh, 0 ≤ h ≤ H , such that

ρ(t) =
∑

1≤|h|≤H

che(ht) + 
H (t),

where

|
H (t)| ≤
∑

0≤|h|≤H

dhe(ht)

and

|ch | � 1

|h| , |dh | � 1

H
.

Proof See [13].

Lemma 2.4 (Van der Corput’s Theorem) Suppose that ϑ is a real valued function with
two continuous derivatives on interval I . Suppose also that there is some λ > 0 such
that

|ϑ ′′| 	 λ

on I . Then

∑

n∈I
e(ϑ(n)) � |I |λ1/2 + λ−1/2.

Proof See [6, Theorem 2.2]. ��

3 A KeyMean Estimation

In this section, we prove a mean estimation similar to Lemma 2.2, which plays a
crucial role in the proof of Theorem 1.1.

From now on, we take z = N
1

200 . Let

R(k)
j =

∑

d|P(z)

ξ+
d

∑

m∈Mk

ρ
(

− 1

d
(N + j − [mc])θ

)
, j = 0, 1, (3.1)

where

Mk = {m = p1 · · · pk : (1 − (2δ)c)θ N θ − 1 ≤ p1 · · · pk
< (1 − δc)θ N θ + 1, z ≤ p1 ≤ · · · ≤ pk}. (3.2)
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By the prime number theorem, we have

|Mk | ≤ (1 + o(1))
∑

z≤p1≤···≤pk−1≤
(

(1−δc)θ Nθ +1
p1 ...pk−2

) 1
2

( (1 − δc)θ N θ + 1

p1 . . . pk−1 log
(1−δc)θ N θ+1

p1...pk−1

− (1 − (2δ)c)θ N θ − 1

p1 . . . pk−1 log
(1−(2δ)c)θ N θ−1

p1...pk−1

)

Taking x = (1− δc)θ N θ + 1 in [1, (4.29)] and by some routine arguments we get that

|Mk | ≤((1 − δc)θ − (1 − (2δ)c)θ + o(1))ck
N θ

log N θ
, (3.3)

where

ck =
∫ 199

k−1

dt1
t1

∫ t1−1

k−2

dt2
t2

· · ·
∫ tk−4−1

3

dtk−3

tk−3

∫ tk−3−1

2

log(tk−2 − 1)dtk−2

tk−2
.

To compute the bound ck we used theMathematica technical computing software. For
example, we use the following code to calculate c11.
NIntegrate [(Log[t9−1]/t9)*(1/t8)*(1/t7)*(1/t6)*(1/t5)*(1/t4)*(1/t3)*(1/t2)*(1/t1),
{t1, 10, 199}, {t2, 9, t1−1}, {t3, 8, t2−1}, {t4, 7, t3−1}, {t5, 6, t4−1}, {t6, 5,
t5−1}, {t7, 4, t6−1}, {t8, 3, t7−1}, {t9, 2, t8−1}]
In fact, the estimate of ck for k ≥ 15 has already been given in [1, (4.30)]. Whatever,
we have

c11 < 0.580195, c12 < 0.185152, c13 < 0.052602, c14 < 0.018655,

c15 < 0.003088, c16 < 0.000646, c17 < 0.000124, c18 < 0.000011,

ck < 0.000001 for 19 ≤ k ≤ 199.

Hence, we have

199∑

k=11

|Mk | ≤ (0.840654 + o(1))((1 − δc)θ − (1 − (2δ)c)θ )
N θ

log N θ
. (3.4)

Proposition 3.1 Let

28

29
< θ < 1, η <

29θ − 28

26
.

If k ≥ 2, then we have

R(k)
0 + R(k)

1 � N 2θ−1

(log N )3
.
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Proof Let Z ≥ 2 be any fixed integer. From page S43 and S44 of [11], we know that
there exists a series of periodic functions gs(t), s = 0, 1, . . . , 2Z − 1 with a period of
1 and has the following properties:

0 < gs(t) ≤ 1 for
∣∣∣t − s

2Z

∣∣∣ <
1

2Z
, (3.5)

gs(t) = 0 for
1

2Z
<

∣∣∣t − s

2Z

∣∣∣ <
1

2
, (3.6)

and

2Z−1∑

s=0

gs(t) = 1 for all t ∈ R. (3.7)

Furthermore, we have

gs(t) =
∑

|n|≤Z(log N )4

β(s)
n e(nt) + O(N− log log N ), s = 0, 1, . . . , 2Z − 1, (3.8)

where

β(s)
n ≤ 1

2Z
. (3.9)

By Lemma 2.3, we can write

R(k)
j = R(k)

j1 + R(k)
j2 , (3.10)

where

R(k)
j1 =

∑

d≤D

ξ+
d

∑

m∈Mk

∑

1≤|h|≤H

che
(

− h

d
(N + j − [mc])θ

)

and

R(k)
j2 =

∑

d≤D

ξ+
d

∑

m∈Mk


H

(
− h

d
(N + j − [mc])θ

)
.

Let

Wj (v) =
∑

m∈Mk

e(v(N + j − [mc])θ ).

Changing the order of summation together with Lemma 2.3, we obtain

R(k)
j1 �

∑

d≤D

∑

1≤h≤H

1

h

∣∣∣∣Wj

(h
d

)∣∣∣∣ , (3.11)
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and

R(k)
j2 �

∑

d≤D

W (0)

H
+

∑

d≤D

∑

1≤h≤H

1

H

∣∣∣∣Wj

(h
d

)∣∣∣∣ . (3.12)

Hence, by (3.3), we obtain

R(k)
j2 � 1

log N

∑

d≤D

N θ

H
+

∑

d≤D

∑

1≤h≤H

1

H

∣∣∣∣Wj

(h
d

)∣∣∣∣ .

We choose

H = dN 1−θ (log N )3.

Combining (3.10), (3.11) and (3.12), we obtain

R(k)
j � N 2θ−1

(log N )3
+

∑

d≤D

∑

1≤h≤H

1

h

∣∣∣∣Wj

(h
d

)∣∣∣∣ , j = 0, 1. (3.13)

Now, we consider the sum Wj (v). From (3.7) it follows that

Wj (v) �
∑

m∈Mk

e(v(N + j − [mc])θ )
2Z−1∑

s=0

gs(m
c) =

2Z−1∑

s=0

W (s)
j (v),

where

W (s)
j (v) =

∑

m∈Mk

gs(m
c)e(v(N + j − [mc])θ ).

By (3.2), (3.8) and (3.9). we have

W (0)
j (v) �

∑

m∈Mk

g0(m
c) ≤

∑

AN θ−1≤m<BN θ+1

g0(m
c)

�N θ

Z
+

∣∣∣∣∣∣

∑

AN θ−1≤m<BN θ+1

∑

1≤|n|≤Z(log N )4

βne(nm
c)

∣∣∣∣∣∣
+ 1

�N θ

Z
+ 1

Z

∑

1≤|n|≤Z(log N )4

|Hn| + 1, (3.14)

where A = (1 − (2δ)c)θ , B = (1 − δc)θ and

Hn =
∑

AN θ−1≤m<BN θ+1

e(nmc).
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Let ϑn(x) = nxc. It is easy to verify that ϑ ′′
n (x) 	 nN 1−2θ uniformly for AN θ − 1 ≤

x < BN θ + 1. Hence, by Lemma 2.4, we get

Hn � N θ (nN 1−2θ )1/2 + (nN 1−2θ )−1/2 � (nN )1/2. (3.15)

We assume that

Z � N (2θ−1)/3(log N )−4. (3.16)

Then by (3.14), (3.15) and (3.16), we obtain

W (0)
j (v) � N θ

Z
+ N 1/2Z1/2 log6 N � N θ

Z
. (3.17)

Now, we consider the sums W (s)
j (v) for 1 ≤ s ≤ 2Z − 1. From (3.5) we know

that gs(mc) vanishes unless {mc} ∈ [(s − 1)/(2Z), (s + 1)/(2Z)]. Hence, the only
summands in the sums Ws(v) are those for which

{mc} = s

2Z
+ O

( 1

Z

)
.

And in this case we have

v(N + j − [mc])θ = v
(
N + j − mc + s

2Z

)θ + O
(vN θ−1

Z

)

and so

e(v(N + j − [mc])θ ) = e
(
v
(
N + j − mc + s

2Z

)θ) + O
(vN θ−1

Z

)
.

Hence, we have

W (s)
j (v) = V (s)

j (v) + O
(vN θ−1

Z

∑

m∈Mk

gs(m
c)

)
,

where

V (s)
j (v) =

∑

m∈Mk

gs(m
c)e

(
v
(
N + j − mc + s

2Z

)θ)
. (3.18)

Thus, by (3.17), we get

Wj (v) =
2Z−1∑

s=1

W (s)
j (v) + W (0)

j (v) =
2Z−1∑

s=1

V (s)
j (v) + O(�) + O

(N θ

Z

)
,
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where

� = vN θ−1

Z

∑

m∈Mk

2Z−1∑

s=1

gs(m
c).

By (3.3), (3.5) and (3.6), we have

� � vN 2θ−1

Z log N
.

Now, we have

Wj (v) =
2Z−1∑

s=1

V (s)
j (v) + O

(vN 2θ−1

Z log N
+ N θ

Z

)
. (3.19)

Take

v = h

d
, where 1 ≤ d ≤ D, 1 ≤ h ≤ H = dN 1−θ (log N )3.

Obviously, we have vN 2θ−1 � N θ (log N )3. So we can rewrite (3.19) as

Wj (v) =
2Z−1∑

s=1

V (s)
j (v) + O

(N θ

Z
(log N )2

)
. (3.20)

Combining (3.13) and (3.20), we obtain

R(k)
j � N 2θ−1

(log N )3
+

∑

d≤D

∑

1≤h≤H

1

h

2Z−1∑

s=1

∣∣∣∣V
(s)
j

(h
d

)∣∣∣∣ +
∑

d≤D

∑

1≤h≤H

1

h

N θ

Z
(log N )2.

We choose Z such that

Z 	 dN 1−θ (log N )7.

Hence, we have

R(k)
j � N 2θ−1

(log N )3
+

∑

d≤D

∑

1≤h≤H

1

h

2Z−1∑

s=1

∣∣∣∣V
(s)
j

(h
d

)∣∣∣∣ . (3.21)

Now, we consider the sums V (s)
j (h/d). By (3.8) and (3.18), we have
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V (s)
j

(h
d

)
=

∑

m∈Mk

( ∑

|n|≤Z(log N )4

β(s)
n e(nmc)

)
e
(
v
(
N + j − mc + s

2Z

)θ) + O(N−10)

=
∑

|n|≤Z(log N )4

β(s)
n U

(
N + j + s

2Z
, n,

h

d

)
+ O(N−10)

� 1

Z

∑

|n|≤R

sup
T∈[N ,N+2]

∣∣∣∣U
(
T , n,

h

d

)∣∣∣∣ , (3.22)

where

U = U (T , n, v) =
∑

m∈Mk

e(nmc + v(T − mc)θ ) and R = dN 1−θ (log N )12.

Inserting (3.22) into (3.21), we get

R(k)
0 + R(k)

1 � N 2θ−1

(log N )3
+

∑

d≤D

∑

1≤h≤H

1

h

∑

|n|≤R

sup
T∈[N ,N+2]

∣∣∣∣U
(
T , n,

h

d

)∣∣∣∣ . (3.23)

Recall the definition ofMk in (3.2). Let k ≥ 2 and n = p1 · · · pk ∈ Mk . By some
routine arguments, we can rewrite n as n = rs with

N
θ
200 < r ≤ N

1
2 < s < N

199θ
200 .

In fact, it is easy to see thatU
(
T , n, h

d

)
is a summation similar to (121) in [11]. Through

the same argument as Sect. 3.6 of [11], there is almost no need for adjustment, and we
can get that if

28

29
< θ < 1, δ <

29θ − 28

26
,

then

∑

d≤D

∑

1≤h≤H

1

h

∑

|n|≤R

sup
T∈[N ,N+2]

∣∣∣∣U
(
T , n,

h

d

)∣∣∣∣ � N 2θ−1

(log N )3
.

So, we have

R(k)
0 + R(k)

1 � N 2θ−1

(log N )3
.

This completes the proof. ��
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4 The Proof of Theorem 1.1

To prove the theorem, we consider the lower bound of the sum

� =
∑

P<p≤2P,m∈N
[pc]+[mc]=N

m=P10

(log p).

By the trivial inequality

� ≥
∑

P<p≤2P, m∈N
[pc]+[mc]=N
(m,P(z))=1

(log p) −
∑

P<p≤2P, m∈N
[pc]+[(p1...p10m)c]=N

z≤p1≤...≤p10,(m,P(p10)=1)

(log p)

≥
∑

P<p≤2P, m∈N
[pc]+[mc]=N
(m,P(z))=1

(log p) −
∑

�,m∈N, P<�≤2P
[�c]+[(p1...p10m)c]=N

z≤p1≤...≤p10,(m,P(p10)=1)
(�,P(z))=1

(log �)

=�1 − �2. (4.1)

From (6), (17), (18) and (19) in [11], we know that

�1 ≥ 	 + 	0 − 	1,

where 	 j , j = 0, 1 are defined by (2.4) and

	 ≥ A(N )V (z)( f (s) + o(1))

with

A(N ) = θ
∑

P<p≤2P

(log p)((N − [pc])θ−1 + O(N θ−2))

and

s = log D

log z
.

By Lemma 2.2 and Proposition 3.1, we can take

η = 29θ − 28

26
− ε.

So we have

s = 200(29θ − 28)

26
+ o(1). (4.2)
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From the definition of P and the prime number theorem, we obtain

A(N ) ≥ (δθ(1 − (2δ)c)θ−1 + o(1))N 2θ−1.

Hence, by Lemma 2.2 and the fact

V (z) =
∏

p<z

(
1 − 1

p

)
	 1

log z
	 1

log N
, (4.3)

we get

�1 ≥ (θ(δ(1 − (2δ)c)θ−1) + o(1))N 2θ−1V (z)( f (s) + o(1)). (4.4)

Obviously, we have

�2 ≤
199∑

k=11

∑

�∈N
[�c]+[mc]=N

m∈Mk , (�,P(z))=1

(log �) = (1 + o(1))
199∑

k=11

(log P)	k
2 , (4.5)

where

	k
2 =

∑

�∈N
[�c]+[mc]=N

m∈Mk , (�,P(z))=1

1.

From (2.1), we find

	k
2 =

∑

�∈N
[�c]+[mc]=N

m∈Mk

∑

d|(�,P(z))

μ(d) ≤
∑

�∈N
[�c]+[mc]=N

m∈Mk

∑

d|(�,P(z))

ξ+(d).

By exchanging the order of summation, we obtain

	k
2 ≤

∑

d|P(z)

ξ+(d)Gd,k, where Gd,k =
∑

�∈N
[�c]+[mc]=N

m∈Mk , �≡0 (mod d)

1. (4.6)

By the identity

∑

a≤m<b

1 = [−a] − [−b] = b − a − ρ(−b) + ρ(−a),
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we have

Gd,k =
∑

m∈Mk

∑

�∈N
[�c]+[mc]=N
�≡0 (mod d)

1 =
∑

m∈Mk

∑

(1/d)(N−[mc])θ≤�<(1/d)(N+1−[mc])θ
1

=
∑

m∈Mk

(N + 1 − [mc])θ − (N − [mc])θ
d

+
∑

m∈Mk

ρ
(

− 1

d
(N − [mc])θ

)
−

∑

m∈Mk

ρ
(

− 1

d
(N + 1 − [mc])θ

)
. (4.7)

Combining (4.6), (4.7) and the identity

(N + 1 − [mc])θ = (N − [mc])θ + θ(N − [mc])θ−1 + O(N θ−2),

we obtain

	k
2 ≤ R(k) + R(k)

0 − R(k)
1 , (4.8)

where R(k)
j , j = 0, 1 are defined by (3.1) and

R(k) = θ
∑

d|P(z)

ξ+(d)

d

∑

m∈Mk

((N − [mc])θ−1 + O(N θ−2)).

By (2.2) and (3.2), we have

R(k) ≤ θ(2δ)1−cN θ−1
( ∑

m∈Mk

1
)
V (z)(F(s) + o(1)), (4.9)

where

s = 200(29θ − 28)

26
+ o(1).

By (3.4), (4.3), (4.5), (4.8), (4.9) and Proposition 3.1, we have

�2 ≤ (0.840654 + o(1))θ(2δ)1−c((1 − δc)θ − (1 − (2δ)c)θ )F(s)V (z)N 2θ−1.

(4.10)

From (4.1), (4.4) and (4.10), as long as

L = (1 − (2δ)c)θ−1 f (s) − 0.840654δ−1(2δ)1−c((1 − δc)θ

−(1 − (2δ)c)θ )F(s) > 0,
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we can deduce that

� � N 2θ−1

log N
,

which leads to the theorem.Recall that δ = 10−9.By (4.2) andLemma2.1, one can use
the software Mathematica to run the following code, which shows that L[1.0198] >

0.0017884.
F[x_] := Piecewise [{{(2E∧EulerGamma)/x, 0< x<= 3}, {((2E∧EulerGamma)/x)

* (1 + NIntegrate [Log [t−1]/t, {t, 2, x−1}]), 3 <= x < 5}, {((2E∧EulerGamma)/x)
* (1 + NIntegrate [ Log[t−1]/t, {t, 2, x−1}] + NIntegrate [(Log [t−1]/(t * u)) * Log
[(u−1)/(t+1)], {t, 2, x−3}, {u, t+2, x−1}]), 5 <= x<7}}]

f[x_] := Piecewise [{{((2E∧EulerGamma)/x) * Log [x−1], 2 <= x <= 4},
{((2E∧EulerGamma) /x) * (Log [x−1] + NIntegrate [Log [u−1]/(t * u), {t, 3, x−1},
{u, 2, t−1}]), 4 <= x < 6}, {((2E∧Eu lerGamma)/x) * (Log [x−1] + NIntegrate
[Log [u−1]/(t * u), {t, 3, x−1}, {u, 2, t−1}] + NIntegrate [ (Log [t−1]/(t * u)) * Log
[(u−1)/(t + 1)] * Log[x/(u + 2)], {t, 2, x−4}, {u, t + 2, x−2}]), 6 <= x <= 8}} ]

L[x_] := ((1− (2 * 10∧(−9))∧x)∧ (1/x−1)) * f [(200 * (29–28x))/(26x)]− (10∧9)
* (2 * 10∧(−9))∧ (1−x) ((1–10∧(−9x))∧ (1/x)− (1− (2 * 10∧(−9))∧x)∧ (1/x)) F
[(200 * (29–28x))/(26x)] * 0.840654

From [5, Chapter 11], we know that f (s) is an increasing function and F(s) is a
decreasing function. By a trivial argument, we can conclude that L is a decreasing
function about c, which deduces that if 1 < c < 1.0198, then L > 0.0017884. This
completes the proof of the theorem.
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