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Abstract

For any real number y, let [y] be the largest integer not exceeding y. Petrov and Tolev
conjectured that there exists a constant cg > 1 such that if 1 < ¢ < ¢, then every
sufficiently large natural number N can be represented as

N = [p]+ [m°],

where p is a prime and m is a natural number having at most 2 prime factors. And, they
proved that when cis close to 1, specifically when 1 < ¢ < 1485/1484 = 1.00067 . ..,
every sufficiently large natural number N can be represented as N = [p€] 4+ [m€] with
m having at most 53 prime factors.

In this paper, we show that if 1 < ¢ < 1.0198, then every sufficiently large natural
number N can be written as N = [p“] + [m€], where p is a prime and m is a natural
number having at most 10 prime factors. This improves the result of Petrov and Tolev.
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1 Introduction

The famous Goldbach conjecture states that any even number greater than 2 can be
written as the sum of two prime numbers. Let P, denote an almost-prime with at most
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r prime factors counted with multiplicity. In 1966, Chen [2] announced his remarkable
theorem—Chen’s theorem: every sufficiently large even integer N can written as

N=p+ P,

where and in what follows p, with or without subscript, is a prime. And the detail was
published in [3].

The ancient Waring problem says that for every natural number k > 2 there exists
a positive integer s = s(k) such that every natural number is a sum of at most s kth
powers of natural numbers. In 1934, Segal [12] generalized the Waring problem to
fractional exponents. And, he showed that for any fixed real number ¢ > 1, there
exists a positive integer s = s(c) such that every sufficiently large natural number N
can be written as

N = [x{14+ 51+ - - + [x{],

where x1, x2, ..., xg are non-negative integers. On the other hand, some mathemati-
cians consider that how large ¢ can be for the fixed s > 2. In 1973, Deshouillers [4]
proved that if 1 < ¢ < 4/3, then every sufficiently large natural number N can be
represented as

N = [x{1+ [x5],

where x| and x, are non-negative integers. Later, the domain of ¢ was improved to
1 <c<55/41 and 1 < ¢ < 3/2, respectively by Gritsenko [7] and Konyagin [9]. In
addition, in 2009, Kumchev [10] proved thatif 1 < ¢ < 16/15, then every sufficiently
large natural number N can be represented as

N = [pl+ [m°], (1.1)

where m is a positive integer. Recently, the range of ¢ obtained by Kumchev was
improvedby Yu[14]to1 < ¢ < 11/10. Furthermore, Petrov and Tolev [11] proved that
if 1 < ¢ < 29/28, then every sufficiently large natural number N can be represented
as (1.1) with m is an almost prime with at most [52/(29 — 28¢)] + 1 prime factors.
Inspired by Chen’s theorem, Petrov and Tolev [11] proposed the following interesting
conjecture:

Conjecture 1.1 There exists a constant co > 1 such that if 1 < ¢ < c, then every
sufficiently large natural number N can be represented as

N =[p1+[P5].

In the present paper, we improve the results of Petrov and Tolev when ¢ close to 1.
And, we state our theorem in the following.
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Theorem 1.1 Suppose that 1 < ¢ < 1.0198. Then every sufficiently large natural
number N can be represented as

N = [p1+[m"],

where p is a prime and m is an almost prime with at most 10 prime factors.

Remark 1.1 While our method does not yield a general formula for the number of
prime factors of m in terms of ¢, for every specific ¢ € (1,29/28), one can apply our
method to get an improvement to Petrov and Tolev’s result.

2 Notation and Preliminaries

From now on, let N be a sufficiently large natural number and

1
1 <c<1.0198, 6 =-
c
be the positive real numbers. Put
P =8N’ 5§=10".

Put e(y) = ¢*™Y. As usual, (n) denotes the Mdbius function. Let p(t) = % — {1},
where {t} is the fractional part of ¢. Define (Sj') and (&, ) the upper bound and lower
bound beta-sieves of level D respectively (see Chapter 11 of [5]), for which we have

YE@<) nd) <) & @. @1

din din dln

For z > 2, define

P@=]]p and V(z)=l_[<1—l>~

p<z pP<z p

Then, by Theorem 11.12 of Friedlander and Iwaniec [5], we have

+
> D v ) o 22)
d|P(2)
and
> D2 v (e +e, 23)
d|P(z)

where F(s) and f(s) are the standard upper and lower bound functions of the linear
sieve, and

log D
§=—
log z
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Lemma 2.1 For F(s) and f(s), We have

2eY
F(s) = ,O<s<3
311 r—1
Fs) = ( oe= D )>,3§s§5;
?11 r—1 5=3 Jog(t — 1
Fis) = ( og( >/ logt — 1)
t 2 t
1

u—1
/ —log , 5<s<7;
+2 u [+1

f()=0, 0<s <2

2e” 1 —1
f(s):%’ 2<s <4
S

2eY s=lgr =1 -1
f(s)=L<1og(s—1)+/ —/ Mdu), 4<5<6:
N 3 t Jo u

4 s—1 t—1 _
f(s)=zi<log(s—1)+/ ﬂ/ logu -1 ,,
g 3 rJ2 u

S741 t—1 521 —1
+/ og( )d / _log” 1()ng14>, 6<s<8.
y t 42 U u+2

Proof See [8, (3.11) and (3.12)]. O

‘We denote
D = NT",

where n = n(c) > 0is a constant. Let

=Y & > <logp>p(—$(1v+j—[pf])9), j=0,1. (4

d|P(z) P<p=<2P

Lemma 2.2 Let

§<9<1’ n < 290 — 28
29 26
Then we have
20—1
2, X1 K (log—N)z’ j=0,1
Proof See (23), (24), (71), and (73) of [11]. O
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Lemma 2.3 (Vaaler’s theorem) For each H > 2 there are numbers ¢, 1| < h < H,
and d,, 0 < h < H, such that

pt)y= > crelht) + Au(t),

1<|h|<H

where

Ag@)) < Y dpe(hr)

0<|h|<H

and

1 1
—, |d —.
len| < ] ldn| < 7

Proof See [13].

Lemma 2.4 (Van der Corput’s Theorem) Suppose that ¥ is a real valued function with
two continuous derivatives on interval I. Suppose also that there is some ) > 0 such
that

[9"] =< A
onl. Then
D e@m) < 1AM 42712
nel
Proof See [6, Theorem 2.2]. ]

3 A Key Mean Estimation

In this section, we prove a mean estimation similar to Lemma 2.2, which plays a
crucial role in the proof of Theorem 1.1.

1
From now on, we take z = N20. Let

RO = &f 3 o~ vt j—m)), =01, G

d|P(2) meMy

where

Mi={m=pi-pe:1—Q2)H)VN —1<p--p
<1 =8N +1,z<p << ). (3.2)
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By the prime number theorem, we have

IMi| < (14 0(1)) Z
ZSPlS"'SPk—]S(%)%
(1= 8N + 1 (1 - @9))'N — 1

Taking x = (1 —8°)?N? +1in[1, (4.29)] and by some routine arguments we get that
0

Mul (1 =0 = (1= @D +oage

, (3-3)

where

/199 dn /tl 1 dtz /t" -4l dti_3 /lk3l log(tx—2 — Ddtx—2
cr = . —_— .
k k k-3 J2 k-2

To compute the bound c; we used the Mathematica technical computing software. For
example, we use the following code to calculate c1;.

Nintegrate [(Log[t9 — 11/t9)*(1/t8)*(1/t7)*(1/t6)*(1/t5)*(1/t4)*(1/t3)*(1/t2)*(1/t1),
{t1, 10, 199}, {t2, 9, t1 — 1}, {t3, 8, 2—1}, {t4, 7, t3 -1}, {t5, 6, t4 — 1}, {16, 5,
t5—1}, {t7,4,t6 — 1}, {t8,3,t7—1}, {t9, 2, t8§ — 1}]

In fact, the estimate of ¢ for k > 15 has already been given in [1, (4.30)]. Whatever,
we have

c11 < 0.580195, c12 < 0.185152, c13 < 0.052602, c14 < 0.018655,
c15 < 0.003088, c16 < 0.000646, c17 < 0.000124, c13 < 0.000011,
cx < 0.000001 for 19 <k < 199.

Hence, we have

199 9
D IMy| < (0.840654 + o(1)((1 — 897 — (1 — (28))" o
k=11

(3.4)

Proposition 3.1 Let

Ifk > 2, then we have
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Proof Let Z > 2 be any fixed integer. From page S43 and S44 of [11], we know that
there exists a series of periodic functions g(¢),s =0, 1, ...,2Z — 1 with a period of

1 and has the following properties:

Ky 1
0 1)y <1 f ‘t - — ,
<&@ =1 for YARNEYA
) =0 for ‘r s L
=0 for — < |t — — -
£s 27 271 =2
and
2Z—1
Z gs() =1 forall 7 € R.
s=0
Furthermore, we have
gt)y= Y BVemn)+ONTIEEN) 5=01,...,2Z 1,
|n|<Z(log N)*
where
1
(s) <
bu” = 27"

By Lemma 2.3, we can write

RY = RY) + RY

j2>
where
RO=Y"¢f > Y Ch€<——(N+]—[m D )
d<D  meMy 1<|h|<H
and
RO =& > AH(— g(zv +j— [mC])H).
d<D meMy

Let

Wiw)= Y e@®N +j—[mD?).
meMy

Changing the order of summation together with Lemma 2.3, we obtain

(k)<<z Z ‘ <)

d<D l<h<H

)

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)

3.11)
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and
RY « Z ) | D ‘ ( )‘ (3.12)
d<D d<D 1<h<[-1
Hence, by (3.3), we obtain
(k)
’2<<10NZ ) ‘ ()'
d<D 1<h<H
We choose
H =dN'"%(og N)>.
Combining (3.10), (3.11) and (3.12), we obtain
261
*) N 1 h .
RV« ———— 4+ 3 3 —‘W-(—)), j=0.1. (3.13)
J 3 J
(log N) J=h1sn=H h d
Now, we consider the sum W (v). From (3.7) it follows that
27-1 2Z—1
Wi) < Y e +j—[mD) Y gm) =Y W),
meMy s= s=0
where
W)= Y gm)e((N + j — [m“])7).
meMy
By (3.2), (3.8) and (3.9). we have
WP < > gom) < > go(m®)
meMy AN —1<m<BN9+1
N@
c
<+ > Yo Buetm®)| +1
ANY—1<m<BN?+1 1<|n|<Z(log N)*
NY 1
<ty > IHl+1, (3.14)

1<In|<Z(log NY*

where A = (1 — (28))?, B = (1 — )¢ and

H, = Z e(nm®).

AN —1<m<BN9+1
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Let 9, (x) = nx¢. Itis easy to verify that 9/ (x) < nN'~2% uniformly for AN® — 1 <
x < BN? 4+ 1. Hence, by Lemma 2.4, we get

H, < N°(aN'72)172 4 (uN'=2)=12 « (nN)/2. (3.15)
We assume that
Z < N@=DB1og Ny, (3.16)

Then by (3.14), (3.15) and (3.16), we obtain
0 N? N
W; ) (v) < —+ NY2Z121060 N « - (3.17)

Now, we consider the sums Wj(.s)(v) forl1 < s < 2Z — 1. From (3.5) we know
that gz (m®) vanishes unless {m¢} € [(s — 1)/(22), (s + 1)/(2Z)]. Hence, the only
summands in the sums Wy (v) are those for which

=5y 4o,

And in this case we have

and so

N+~ m D) = e(v(N +j —m* + %)9) + 0(”NZG_1 ).

Hence, we have

0—1

vN X
W;S)(v):Vj(s)(v)—f-O( — 2 gs(m‘)),
meMy

where

vOw = Y (mC)e(v(N +j—mt i)e) (3.18)

) = &s J 57) ) :

meMy

Thus, by (3.17), we get

2Z-1 2Z-1

5 s N’
Wi =Y W+ w =Y vPw+o@+0o(=).

s=1 s=1

@ Springer



124 Page100f16 G.-L. Zhou, Y. Cai

where
vNO! ey .
E=—0— ) D &),
meM; s=1
By (3.3), (3.5) and (3.6), we have
vNZ@—l
=< ZlogN
Now, we have
2Z-1 20—1 0
vN N
()
W, 4 0( —) 3.19
() = Zl 0 +0(Zoaw 2 (3.19)
Take
h 1-6 3
UZE’ where 1 <d <D, 1 <h<H=dN “(logN)".
Obviously, we have vN¥-1 « N? (log N)3. So we can rewrite (3.19) as
27-1 © N )
S
Wi =Y v+ 0(7(logN) ) (3.20)

s=1
Combining (3.13) and (3.20), we obtain

ZZI

Rﬁk) << N)3 + Z Z Z

d<D 1<h<H s=1

Vo5 )' +3 3 ——(1ogN)2

d<D 1<h<H
We choose Z such that
Z =< dN'"%(ogN).

Hence, we have

R(k) Nza 1 Z ZZ
J N)3
d<D1<h< s=1

V“)( )‘ 3.21)

Now, we consider the sums Vj(s)(h/d). By (3.8) and (3.18), we have
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V() =

Z ( Z ﬁ,gs)e(nmc))e(v(N +j—mc+ %)9) +O(N1)

meMy *|n|<Z(log N)*

K h
Y AU+t D) OO
In|<Z(log N*

1
L= Z sup
Z = TEIN.N+2]

U (T,n, g)‘ (3.22)

where

U=UT.nv)= Y emm+vo(T —m)") and R=dN'*(IogN)".
meM;y

Inserting (3.22) into (3.21), we get

260—1
® ok . N 1
RPO+RP « ———+3 5 -3 sup
0 1 3
(ogN)* = = G2n 1 SR TeIN.N+2]

U(T, n, g)‘ . (323)

Recall the definition of My in (3.2). Letk > 2 andn = p; - -- px € Mj. By some
routine arguments, we can rewrite n as n = rs with

0 1 1999
N20 <r < N2 <5 < N?20

Infact, itis easy to see that U (T, n, %) isasummation similarto (121)in [11]. Through

the same argument as Sect. 3.6 of [11], there is almost no need for adjustment, and we
can get that if

28 296 — 28
— <0<l 6 < —,
29 26
then
1 h N29—1
> Y s fu(ra )< s
i<D1sheH h =g TEIN.N+2] d (log N)
So, we have
*) | pk -
R R —_—
0 TR K Gog N)?
This completes the proof. O
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4 The Proof of Theorem 1.1

To prove the theorem, we consider the lower bound of the sum

r= )  dogp).
P<p<2P,meN
[pCl+[m =N
m=Pyo

By the trivial inequality

r= Y (ogp) - > (log p)

P<p<2P, meN P<p<2P, meN
[p¢1+[mC]=N [P 1+(p1...p1om)“1=N
(m,P(z))=1 z<p1=...<p10,(m, P(p1o)=1)
> Y (logp) - > (log ¢)
P<p<2P, meN ¢,meN, P<{<2P
[pC1+[mC]=N [ET+[(p1-..prom)“]=N
(m,P(z))=1 z=p1=...<p1o,(m, P(pio)=1)
€,P(z))=1
=I't —I'.

From (6), (17), (18) and (19) in [11], we know that
M=+ -3,
where X, j =0, 1 are defined by (2.4) and

2= AMN)V@(f(s) +o(1)

with
ANY=0 Y (ogp)(N —[pD*~" + ON*?)
P<p<2P
and
__logD
"~ logz

By Lemma 2.2 and Proposition 3.1, we can take

_299-28
=" :

So we have

200296 — 28)
§=—

o + o(1).
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From the definition of P and the prime number theorem, we obtain
A(N) > 80(1 — 28!~ + 0(1))N?~1.

Hence, by Lemma 2.2 and the fact

1 1 1
V) = [!:[Z <1 — ;) = logz = logN' “4.3)
we get
T > 060 —2))" N+ o()N*~IV()(f(s) +o(1)). (4.4)

Obviously, we have

199 199

<y > (ogt)=(l+o(1) Y (ogP)%5,  (45)
k=11 £eN k=11
[€€]+[m]=N
meMy, (£,P(z))=1

where

k= > 1.

LeN
e+ [me]=N
meMy, (L, P(z)=1

From (2.1), we find

H= Y Y wds Yy Y @

LeN d|(¢,P(2)) LeN d|(¢,P(2))
[€¢]+[mC]=N [€¢]+[mc]=N
meM; meMy

By exchanging the order of summation, we obtain

28 < > EY(d)Gan. where Gap = > 1. (4.6)
dIP(2) teN
[£€]+[mC]=N

meMy, £=0 (mod d)

By the identity

Y l=[-dl—[-bl=b—a—p(=b)+ p(-a).

a<m<b
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we have
Gak= 3, > 1= > !
meMy teN meMy (1/d)(N—[mc])f <€<(1/d)(N+1—[mc])?
[eel+me1=N
£=0 (mod d)
_ ¥ (N +1—[mD? — (N — [m])’
meM; d
1 c1\0 1 c1\0
+ Y o=V =) = Y p(— SN+ L=[mD). @D
meMy meMy

Combining (4.6), (4.7) and the identity
(N +1—=[mD" =N = [mD’ + 0N — [mD’~ + 0N,
we obtain

k< RO 4+ RV — R, (4.8)

where R;k), Jj =0, 1 are defined by (3.1) and

RO =6 Y ED S (v e o)
! .
d|P(2) meMy

By (2.2) and (3.2), we have

R(k)§9(28)1’CN9’1< 3 1>V(z)(F(s)+0(1)), (4.9)
meMy

where

200(296 — 28)
§=———

26 4+ o(1).

By (3.4), (4.3), (4.5), (4.8), (4.9) and Proposition 3.1, we have

Iy < (0.840654 + 0(1)0(28)! (1 — 8 — (1 — 28)))F(s)V (z)N¥~1.
(4.10)

From (4.1), (4.4) and (4.10), as long as

L=(1-=@289"""f(s) — 0.8406545 1 (28)!~¢((1 — §°)?
—(1 = @285 F(s) > 0,
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we can deduce that

20—1
r>

)

log N

which leads to the theorem. Recall that§ = 10°. By (4.2) and Lemma 2.1, one can use
the software Mathematica to run the following code, which shows that L[1.0198] >
0.0017884.

F[x_] :=Piecewise [{ {(2E”EulerGamma)/x, 0 < x <=3}, {((2E"EulerGamma)/x)
* (1 + NIntegrate [Log [t —1]/t, {t, 2, x —1}]), 3 <= x < 5}, {((2E"EulerGamma)/x)
* (1 + NIntegrate [ Log[t—1]/t, {t, 2, x —1}] + NIntegrate [(Log [t—1]/(t * u)) * Log
[W=D/t+D], {t, 2, x =3}, {u, t+2, x —1}]), 5 <= x<7}}]

f{x_] := Piecewise [{{((2E"EulerGamma)/x) * Log [x—1], 2 <= x <= 4},
{((2E”EulerGamma) /x) * (Log [x —1] + Nlntegrate [Log [u —1]/(t * v), {t,3,x—1},
{u, 2, t—1}]), 4 <= x < 6}, {((2E"Eu lerGamma)/x) * (Log [x —1] + NlIntegrate
[Log [u—1]/(t * u), {t,3,x—1}, {u, 2, t—1}] + NIntegrate [ (Log [t —1]/(t * u)) * Log
[u=D/t+ )] * Log[x/(u + 2)], {t, 2, x —4}, {u, t +2,x—2}]), 6 <=x <= 8}} ]

Lix_]:=((1—=@2*10"(=9)"x)" (1/x—1)) * £ [(200 * (29-28x))/(26x)] — (10"9)
* (2% 10MN=9N™ (1 —x) (1-10M(=9x)™ (1/x)— (1 —(2 * 10" (=9 x)" (1/x)) F
[(200 * (29-28x))/(26x)] * 0.840654

From [5, Chapter 11], we know that f(s) is an increasing function and F(s) is a
decreasing function. By a trivial argument, we can conclude that L is a decreasing
function about ¢, which deduces thatif 1 < ¢ < 1.0198, then L > 0.0017884. This
completes the proof of the theorem.
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