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Abstract
The main result of this paper is to establish a weighted second-order Adams-type
inequality on the whole set of R4. As an application of this result, we prove the
existence of a solution for a Kirchhoff-type equation involving non-linearity with
subcritical or critical exponential growth. In the critical case, the associated energy
loses its compactness. To avoid this problem, we add an asymptotic condition to the
nonlinearity
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1 Introduction andMain Results

We first give an outline of Trudinger-Moser inequalities in classical Sobolev spaces
of the first order. We also discuss Adams inequalities in higher-order Sobolev spaces.

In the literature, the notion of critical exponential growth is linked to Trudinger-
Moser inequalities. For bounded domains� ⊂ R

N, and in the Sobolev spaceW 1,N
0 (�)

, these inequalities [32, 36] are given by

sup∫
� |∇u|N≤1

∫

�

eα|u| N
N−1

dx < +∞ if and only if α ≤ αN ,

where αN = ω
1

N−1
N−1 with ωN−1 is the area of the unit sphere SN−1 inRN . Later, the

Trudinger-Moser inequality was improved to weighted inequalities [10, 12]. When
the weight is of logarithmic type, Calanchi and Ruf [11] extend the Trudinger-
Moser inequality and proved the following results in the weighted Sobolev space,
W 1,N

0,rad(B, ρ) = closure{u ∈ C∞
0,rad(B) | ∫

B |∇u|Nρ(x)dx < ∞}, where B denote

the unit ball of RN , N ≥ 2.

Theorem 1.1 [11]

(i) Let β ∈ [0, 1) and let ρ given by ρ(x) = (
log 1

|x |
)β(N−1)

, then

∫

B
e|u|γ dx < +∞, ∀ u ∈ W 1,N

0,rad(B, ρ), if and only if γ ≤ γN ,β

= N

(N − 1)(1 − β)
= N ′

1 − β

and

sup
u∈W 1,N

0,rad (B,ρ)
∫
B |∇u|Nw(x)dx≤1

∫

B
eα|u|γN ,β

dx < +∞ ⇔ α ≤ αN ,β = N [ω
1

N−1
N−1(1 − β)] 1

1−β

where ωN−1 is the area of the unit sphere SN−1 in R
N and N ′ is the Hölder

conjugate of N .
(i i) Let ρ given by ρ(x) = (

log e
|x |
)N−1

, then

∫

B
exp{e|u| N

N−1 }dx < +∞, ∀ u ∈ W 1,N
0,rad(B, ρ)

and

sup
u∈W 1,N

0,rad (B,ρ)

‖u‖ρ≤1

∫

B
exp{βeω

1
N−1
N−1 |u| N

N−1 }dx < +∞ ⇔ β ≤ N ,
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where ωN−1 is the area of the unit sphere SN−1 in R
N and N ′ is the Hölder

conjugate of N .

These types of results are mainly derived from calculations involving integrals and
series. These types of calculations are currently at the heart of the mathematical news
(see [21, 22, 33, 34]). Also, we like to recall, for instance, the study made by [8], [9],
[14] and reference therein.

The Theorem 1.1 has allowed the exploration of second-order weighted elliptic
problems in dimensions where N ≥ 2. As a result, Calanchi et al. [13] established
the existence of a non-trivial radial solution for an elliptic problem defined on the
unit ball inR2, where the non-linearities exhibit double exponential growth at infinity.
Following this, Deng et al. studied the following problem

{−div(σ (x)|∇u(x)|N−2∇u(x)) = f (x, u) in B
u = 0 on ∂B,

(1.1)

where B is the unit ball in R
N , N ≥ 2 and the nonlinearity f (x, u) is continuous

in B × R and has critical growth in the sense of Theorem 1.1. The authors have
proved that there is a non-trivial solution to this problem, using the mountain pass
Theorem. Similar results are proven by Chetouane and Jaidane [15, 24] and Zhang
[38]. Furthermore, problem (1.1), involving a potential, has been studied by Baraket
and Jaidane [7]. Also, we point out that recently, Abid et al. and Jaidane [1, 25] have
proved the existence of a nontrivial solution for the following logarithmic weighted
Kirchhoff problem

⎧
⎨

⎩
−g

( ∫

B
τ(x)|∇u|N + V (x)|u|Ndx

)
div(τ (x)|∇u|N−2∇u + V (x)|u|N−2u) = f (x, u) in B

u = 0 on ∂B,

where B is the unit ball inRN , N ≥ 2, theweight τ(x) =
(
log e

|x |
)β(N−1)

, with β =
1 or β ∈ [0, 1), the reaction term f (x, u) is continuous in B × R and behaves like

exp
(
eαt

N
(N−1) ) or eαt

N
(N−1)(1−β)

, as t → +∞, for some α > 0 and the potential V
is a positive and continuous function on B. The authors proved that there is a non-
trivial solution to this problem using Nehari method and weighted Trudinger-Moser
inequality [11].

TheseKirchhoff-type equations are inspired by the followingwell-knownKirchhoff
problem [26]

ρ
∂2u

∂t2
−
( P0
h

+ E

2L

∫ L

0
|∂u
∂x

|2dx
)∂2u

∂x2
= f (x, u), (1.2)

where ρ, P0, h, E, L represent physical quantities. This model extends the classical
D’Alembert wave equation by considering the effects of the changes in the length of
the strings during the vibrations. We call (1.2) a nonlocal problem since the equation
contains an integral over [0, L]which makes the study of it interesting. Later, Lions in
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his pioneering work [29] presented an abstract functional analysis framework to (1.2).
We mention that non-local problems also arise in other areas, for instance, biological
systems where the function u describes a process that depends on the average of itself
( for example, population density), see for instance [3, 4] and its references.

In recent years, Aouaoui and Jlel [6] have extended the work of Calanchi and Ruf
to the whole R2 space, by considering the following weight

υβ(x) =
⎧
⎨

⎩

(
log

(
e

|x |
))β

if |x | < 1,

χ(|x |) if |x | ≥ 1,
(1.3)

where, 0 < β ≤ 1 and χ : [1,+∞[→]0,+∞[ is a continuous function such that
χ(1) = 1 and inf

t∈[1,+∞[ χ(t) > 0. The authors consider the space Eβ as the space of

all radial functions of the completion of C∞
0

(
R
2
)
with respect to the norm

‖u‖2Eβ
=
∫

R2
|∇u|2υβ(x)dx +

∫

R2
u2dx = |∇u|2L2(R2,υβ)

+ |u|2L2(R2)
.

The authors proved the following result:

Theorem 1.2 Let β ∈ (0, 1) and ωβ be defined by (1.3). For all u ∈ Eβ , we have

∫

R2

(

e|u|
2

1−β − 1

)

dx < +∞.

Moreover, if α < τβ , then

sup
u∈Eβ ,‖u‖Eβ

≤1

∫

R2

(

eα|u|
2

1−β − 1

)

dx < +∞ (1.4)

where τβ = 2
[
2π(1 − β)

] 1
1−β

. If α > τβ , then

sup
u∈Eβ ,‖u‖Eβ

≤1

∫

R2

(

eα|u|
2

1−β − 1

)

dx = +∞.

We now give an historic of second order Adams inequalities. For bounded domains
� ⊂ R

4, in [2, 35] the authors extended the Trudinger Moser inequality to the higher
order space W 2,2

0 (�) and obtained

sup
u∈S

∫

�

(eαu2) − 1)dx < +∞ ⇔ α ≤ 32π2
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where

S = {u ∈ W 2,2
0 (�) | (

∫

�

|�u|2dx) 12 ≤ 1}.

When � is replaced by the whole space R
4, Ruff and Sani [35] established the

corresponding Adams type inequality as follows:

sup
‖u‖W2,2≤1

∫

�

(eαu2) − 1)dx < +∞ ⇔ α ≤ 32π2 (1.5)

where ‖u‖2W 2,2(R4)
=
∫

R4
|�u|2dx + 2

∫

R4
|∇u|2dx +

∫

R4
u2dx .

Recently, Adams-type inequalities on the logarithmic weighted Sobolev space

W 2,2
0,rad(B, w) = closure{u ∈ C∞

0,rad(B) |
∫

B

(
log(

e

|x |
)β |�u|2dx < ∞}

of radial function in the unit ball B ofR4 has been established. More precisely, in [37]
the authors proved the following result:

Theorem 1.3 [37] Let β ∈ (0, 1) and let w = (log( e
|x | ))

β , then

sup
u∈W 2,2

0,rad (B,w)
∫
B w(x)|�u|2dx≤1

∫

B
eα|u| 2

1−β
dx < +∞ ⇔ α ≤ αβ = 4[8π2(1 − β)] 1

1−β .

This last result permitted the authors in [18, 23] to investigate the following weighted
problem

⎧
⎪⎨

⎪⎩

g
( ∫

B(w(x)|�u|2 + |∇u|2 + V (x)u2)dx
)[

�(w(x)�u) − �u + V (x)u)
] = f (x, u) in B

u = ∂u

∂n
= 0 on ∂B,

when g = 1 or g is not constant and verifying some mild conditions and where
B = B(0, 1) is the unit open ball in R

4, f (x, t) is a radial function with respect to x
and the weight w(x) is given by

w(x) =
(

log
e

|x |
)β

, β ∈ (0, 1)·

The Kirchhoff function g : R
+ → R

+ is a continuous positive function and the
potential V is a positive continuous function on B and bounded away from zero in B.
The authors proved that this problemhas a positive ground state solution. The existence
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result was proved by combining minimax techniques and weighted Trudinger-Moser
inequality.
It should be noticed that several works involving weighted elliptic equations of Kirch-
hof type with critical non-linearities in the sense of Theorem 1.1 or Theorem 1.3 have
been investigated (see [1, 23, 25]).
Recently, Meng et al. [30], studied the following fourth order equation of Kirchhoff
type namely:

�2u − (a + b
∫

RN
|∇u|2dx)�u + V (x)u = f (x, u) in R

N , u ∈ H2(RN ),

with concave-convexe nonlinearities. The authors prove that there are at least two
positive solutions. They used the Nehari manifold, Ekeland variational principle and
the theory of Lagrange multipliers.

Now, we denote by E the space of all radial functions of the completion ofC∞
0 (R4)

with respect to the norm

‖u‖2 =
∫

R4
|�u|2wβ(x)dx +

∫

R4
|∇u|2dx +

∫

R4
u2dx .

where the weight wβ(x) is given by

wβ(x) =
⎧
⎨

⎩

(
log

(
e

|x |
))β

if |x | < 1,

χ(|x |) if |x | ≥ 1,
(1.6)

with 1
4 < β ≤ 1, χ : [1,+∞[→ [1,+∞[ is a continuous function such that χ(1) = 1

and inf
t∈[1,+∞[ χ(t) ≥ 1. Also, we suppose that there exists a positive constant M > 0

such that

1

r8

(∫ r

1
t3χ(t)dt

)(∫ r

1

t3

χ(t)
dt

)

≤ M,∀r ≥ 1, (1.7)

1

r8

(∫ r

1
t3χ(t)dt

)

≤ M,∀r ≥ 1, (1.8)

and

max
r≤t≤4r

χ(t)

min
r≤t≤4r

χ(t)
≤ M,∀r ≥ 1. (1.9)

Wegive some examples of functionsχ : [1,+∞[→ [1,+∞[ satisfying the conditions
(1.7), (1.8) and (1.9):
•Any continuous function χ such that χ(1) = 1 and 1 ≤ inf

t≥1
χ(t) ≤ sup

t≥1
χ(t) < +∞.
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• χ(t) = tδ,−4 < δ < 4.
• χ(t) = 1 + log t .

Since theweightwβ belongs to theMuckenhoupt’s class A2, thenC∞
0

(
R
4
)
is dense

in the space E (see Lemma 1). It follows that the space E can be seen as

E =
{

u ∈ L2
rad

(
R
4
)

,

∫

R4

(|�u|2wβ(x) + |∇u|2)dx < +∞
}

,

endowed with the norm

‖u‖2 =
∫

R4
|�u|2wβ(x)dx +

∫

R4
|∇u|2dx +

∫

R4
u2dx .

We note that this norm is issued from the Euclidean inner product scalar

〈u, v〉 =
∫

B

(
wβ(x)�u�v + ∇u.∇v + uv

)
dx .

We first prove a weighted second order Adams inequality which is similar to (1.5)
in the set of R4 that is:

Theorem 1.4 Let β ∈ ( 14 , 1) and let wβ given by (1.6). Then

(i)

∫

R4

(
e|u|

2
1−β − 1

)
dx < +∞, ∀u ∈ E . (1.10)

(ii)

sup
u∈E‖u‖≤1

∫

R4

(
eα|u| 2

1−β − 1
)
dx < +∞ ⇔ α ≤ αβ = 4[8π2(1 − β)] 1

1−β .

(1.11)

As an application of this last result, we study the non local following weighted
problem

g
(
∫

R4
(wβ(x)|�u|2 + |∇u|2 + u2)dx

)[
�(wβ(x)�u) − �u + u)

] = f (u) in R
4,

(1.12)

where the weight is given by (1.6).The non linearity f (t) is continuous in R and

behaves like exp{αt 2
1−β } as |t | → +∞, for some α > 0 . The Kirchhoff function

g : R+ → R
+ is a continuous positive function which will be specified later.
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In this paper, we set

γ := 2

1 − β
·

We now give some definitions of the notion of the exponential growth for the non-
linearity f . In view of inequality (1.11), we say that f has critical growth at +∞ if
there exists some α0 > 0,

lim|s|→+∞
| f (s)|
eαsγ

= 0, ∀ α such that α > α0 and lim|s|→+∞
| f (s)|
eαsγ

= +∞, ∀
α < α0. (1.13)

According to inequality (1.10), we say that f has subcritical growth at +∞ if

lim|s|→+∞
| f (s)|
eαsγ

= 0, ∀ α > 0.

Let us nowpresent our results. In this paper,we always assume that the nonlinearities
f (t) have critical growth with α0 > 0 or that f (t) has subcritical growth and fulfils
these conditions:

(H1) The non-linearity f : R → R is continuous.

(H2) There exist t0 > 0 and M0 > 0, such that 0 < F(t) =
∫ t

0
f (s)ds ≤ M0

∣
∣ f (t)

∣
∣

for t ≥ t0.

(H3) There exists θ > 4, such that 0 < θF(t) = θ

∫ t

0
f (s)ds ≤ t f (t), ∀t ∈

R \ {0}.
(H4) lim

t→0

f (t)

t
= 0.

(H5) There exist p , p > 4 and A > 0 such that

F(t) ≥ A
|t |p
p

for all t ∈ R.

Wegive an example of such non linearity f . Let f (t) = At p−1+Aα0(γ −1) t
γ−1

p eα0tγ

with f (t) = 0 for t ≤ 0. It is clear that F(t) = A t p
p + A

p e
α0|t |γ .Since, lim

t→+∞
F(t)

f (t)
= 0,

then (H2) is satisfied. Also, the conditions (H4) and (H5) are verified. It is clear that

for t > ( 1
α0(γ−1) )

1
γ the condition (H3) is satisfied.

Now, we define the Kirchhoff function g and set out the conditions for it. The
function g is continuous on R

+ and fulfils the conditions :

(G1) There exists g0 > 0 sucht that g(t) ≥ g0 for all t ≥ 0 and

G(t + s) ≥ G(t) + G(s) ∀ s, t ≥ 0;
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where

G(t) =
∫ t

0
g(s)ds,

(G2)
g(t)

t
is nonincreasing for t > 0.

The assmption (G2) implies that
g(t)

t
≤ g(1) for all t ≥ 1. Also, as a consequence

of (G2), a simple calculation shows that

1

2
G(t) − 1

4
g(t)t is nondecreasing for t ≥ 0. (1.14)

Consequently, one has

1

2
G(t) − 1

4
g(t)t ≥ 0, ∀t ≥ 0. (1.15)

A typical example of a function g fulfilling the conditions
(G1) and (G2) is given by

• g(t) = g0 + at, g0, a > 0.
• g(t) = 1 + ln(1 + t).

We say that u is a solution to the problem (1.12), if u is a weak solution in the
following sense.

Definition 1.1 A function u is called a solution to (1.12) if u ∈ E and

g(‖u‖2)〈u, ϕ〉 =
∫

R4
f (u) ϕ dx, for all ϕ ∈ E . (1.16)

It is straightforward to see that finding weak solutions to the problem (1.12) is
equivalent to finding non-zero critical points of the following functional on E :

J (u) = 1

2
G(‖u‖2) −

∫

R4
F(x, u)dx, (1.17)

where F(u) =
∫ u

0
f (t)dt .

We prove the following results:
In the critical case, we prove

Theorem 1.5 Assume that the function f has a critical growth at +∞ and satisfies
the conditions (H1), (H2), (H3) and (H4). In addition, suppose that (G1) and (G2)

are satisfied. Then, there exists A0 > 0 such that problem (1.12) has a nontrivial weak
solution for all A > A0.

In the subcritical case, we have :
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Theorem 1.6 Assume that the function f has a subcritical growth at+∞ and satisfies
the conditions (H1), (H2) and (H3) . In addition, suppose that (G1) and (G2) are
satisfied. Then, problem (1.12) has a nontrivial weak solution.

In general, the treatment of fourth-order partial differential equations is an interest-
ing subject. An interest in the investigation of these equations has been stimulated by
their applications in the following fields: in micro-electro-mechanical systems, phase
fieldmodels of multi-phase systems, thin film theory, surface diffusion on solids, inter-
face dynamics, flow in Hele-Shaw cells, see [16, 19, 31]. However many applications
are generated by elliptic problems, such as the study of traveling waves in suspension
bridges, radar imaging (see, for example [5, 28]).

This paper is organized as follows. In Sect. 2, we present some necessary prelimi-
nary knowledge about functional space. In Sect. 3, we prove some preliminary results
that will be useful in our proofs. Section 4 is devoted for the proof of Theorem 1.3.
Section 5 concerned the variational framework of problem (1.12). In Sect. 6, we give
the proof of Therems 1.5 and 1.6.
Through this paper, the constants C or c may change from line to another and we
sometimes index the constants in order to show how they change.

2 Weighted Lebesgue and Sobolev Spaces Setting

Let � ⊂ R
N , N ≥ 2, bounded or unbounded, possibly even equal to the whole RN

and let w ∈ L1(�) be a nonnegative function. To deal with weighted operator, we
need to introduce some functional spaces L p(�,w), Wm,p(�,w), Wm,p

0 (�,w) and
some of their properties that will be used later. Let S(�) be the set of all measurable
real-valued functions defined on � and two measurable functions are considered as
the same element if they are equal almost everywhere. Following Drabek et al. and
Kufner in [17, 27], the weighted Lebesgue space L p(�,w) is defined as follows:

L p(�,w) = {u : � → R measurable;
∫

�

w(x)|u|p dx < ∞}

for any real number 1 ≤ p < ∞.
This is a normed vector space equipped with the norm

‖u‖p,w =
( ∫

�

w(x)|u|p dx
) 1

p
.

Form ≥ 2, letw be a given family of weight functionswτ , |τ | ≤ m, w = {wτ (x) x ∈
�, |τ | ≤ m}.

In [17], the corresponding weighted Sobolev space was defined as

Wm,p(�,w) = {u ∈ L p(�), Dτu ∈ L p(�,w) ∀ 1 ≤ |τ | ≤ m − 1, Dτu

∈ L p(�,w) ∀ |τ | = m}
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endowed with the following norm:

‖u‖Wm,p(�,w) =
( ∑

|τ |≤m−1

∫

�

|Dτu|pdx +
∑

|τ |=m

∫

�

w(x)|Dτu|pdx
) 1

p

,

where wτ = 1 for all |τ | < k, wτ = w for all |τ | = k.
If we suppose also that w(x) ∈ L1

loc(�), then C∞
0 (�) is a subset of Wm,p(�,w) and

we can introduce the space

Wm,p
0 (�,w)

as the closure of C∞
0 (�) in Wm,p(�,w). Moroever, the injection

Wm,p(�,w) ↪→ Wm−1,p(�) is compact.

Also, (L p(�,w), ‖ · ‖p,w) and (Wm,p(�,w), ‖ · ‖Wm,p(�,w)) are separable, reflexive

Banach spaces provided that w(x)
−1
p−1 ∈ L1

loc(�). Then the space

E = {u ∈ L2
rad(R

4) |
∫

R4

(
wβ(x)|�u|2 + |∇u|2)dx < +∞}

is a Banach and reflexive space.
We have the following result

Lemma 1 C∞
0,rad

(
R
4
)
is dense in the space

{

u ∈ L2
rad

(
R
4
)

,

∫

R4

(|�u|2wβ(x) + |∇u|2)dx < +∞
}

·

Proof it suffice to see that ωβ belongs to the Muckenhoupt’s class A2 (we also say
that ωβ is an A2-weight), that is

sup

(
1

|B|
∫

B
wβ(x)dx

)(
1

|B|
∫

B

(
wβ(x)

)−1
dx

)

< +∞,

where the supremum is taken over all balls B ⊂ R
4.

Let r > 0 and x0 ∈ R
4. Denote by B (x0, r) (resp. B(0, r)) the open ball of R4 of

center x0 and radius r (resp. of center 0 and radius r ).
• First case: Suppose that B (x0, r) ∩ B(0, r) �= ∅. Thus, B (x0, r) ⊂ B(0, 3r)

which implies that
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1

|B (x0, r)|2
(∫

B(x0,r)
wβ(x)dx

)(∫

B(x0,r)

dx

wβ(x)

)

≤ c

r8

(∫ 3r

0
wβ(t)t3dt

)(∫ 3r

0

t3

wβ(t)
dt

)

. (2.1)

If 3r < 1, then

c

r8

(∫ 3r

0
wβ(t)t3dt

)(∫ 3r

0

t

wβ(t)
dt

)

= c

r8

(∫ 3r

0
t3(1 − log t)βdt

)(∫ 3r

0

t3

(1 − log t)β
dt

)

.

But, a simple computation gives

lim sup
r→0+

c

r8

(∫ 3r

0
t3(1 − log t)βdt

)(∫ 3r

0

t3

(1 − log t)β
dt

)

< +∞. (2.2)

If 3r ≥ 1, then

c

r8

(∫ 3r

0
ωβ(t)t3dt

)(∫ 3r

0

t3

wβ(t)
dt

)

= c

r8

(∫ 1

0
t3(1 − log t)βdt +

∫ 3r

1
t3χ(t)dt

)

(∫ 1

0

t3

(1 − log t)β
dt +

∫ 3r

1

t3

χ(t)
dt

)

. (2.3)

Since inf
t≥1

χ(t) ≥ 1, then

lim sup
r→+∞

1

r8

∫ 3r

1

t3

χ(t)
dt = 0 < +∞· (2.4)

On the other hand, by (1.8), we infer

lim sup
r→+∞

1

r8

∫ 3r

1
t3χ(t)dt < +∞· (2.5)
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Hence, in view of (2.4), (2.5) and (2.3), it remains to show that

lim sup
r→+∞

1

r8

(∫ 3r

1
t3χ(t)dt

)(∫ 3r

1

t3

χ(t)
dt

)

< +∞.

But this fact can immediately be deduced from (1.8). Combining (2.2) and (2.3),
we deduce from (2.1) that there exists a constant D0 > 0 independent of x0 and r such
that

1

|B (x0, r)|2
(∫

B(x0,r)
ωβ(x)dx

)(∫

B(x0,r)

dx

ωβ(x)

)

≤ D0· (2.6)

• Second case: Suppose that B (x0, r) ∩ B(0, r) = ∅. In this case, we have

|x0|
2

≤ |x | ≤ 2 |x0| ,∀x ∈ B (x0, r) .

Hence,

1

|B (x0, r)|2
(∫

B(x0,r)
wβ(x)dx

)(∫

B(x0,r)

dx

wβ(x)

)

≤
⎛

⎝
sup |x0 |

2 ≤|x |≤2|x0| wβ(t)

inf |x0 |
2 ≤|x |≤2|x0| wβ(t)

⎞

⎠ ≤ sup
τ>0

(
supτ≤t≤4τ wβ(t)

infτ≤t≤4τ wβ(t)

)

· (2.7)

If 4τ < 1, then

supτ≤t≤4τ wβ(t)

infτ≤t≤4τ wβ(t)
= (1 − log τ)β

(1 − log(4τ))β
·

In view of the fact that

sup
0<τ< 1

4

(
1 − log τ

1 − log(4τ)

)β

< +∞,

it follows that

sup
0<τ< 1

4

(
supτ≤t≤4τ wβ(t)

infτ≤t≤4τ wβ(t)

)

< +∞. (2.8)
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If 1
4 ≤ τ < 1, then

supτ≤t≤4τ wβ(t)

infτ≤t≤4τ wβ(t)
≤

sup 1
4≤t≤4 wβ(t)

inf 1
4≤t≤4 wβ(t)

< +∞,

and consequently,

sup
1
4≤τ<1

(
supτ≤t≤4τ wβ(t)

infτ≤t≤4τ wβ(t)

)

< +∞· (2.9)

If τ ≥ 1, then it follows

supα≤t≤4α ωβ(t)

infτ≤t≤4τ ωβ(t)
= supτ≤t≤4τ χ(t)

infτ≤t≤4τ χ(t)
≤ M,

and consequently,

sup
τ≥1

(
supτ≤t≤4τ ωβ(t)

infτ≤t≤4τ ωβ(t)

)

< +∞. (2.10)

Combining (2.8) and (2.9), we deduce from that there exists a constant C2 > 0
independent of x0 and r such that

1

|B (x0, r)|2
(∫

B(x0,r)
wβ(x)dx

)(∫

B(x0,r)

dx

wβ(x)

)

≤ C2. (2.11)

This completes the proof.

3 Some Useful Preliminary Results

In this section, we will derive several technical lemmas for our use later. First we begin
by the radial lemma.

Lemma 2 Let u ∈ E. Then

|u(x)| ≤ 1

π

1

|x | 32
‖u‖ 1

2 for |x | ≥ 1,
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Proof We prove the lemma for all u ∈ C∞
0,rad(R

4) and use density arguments to
conclude. Let φ(s) = u(x), |x | = s. For r ≥ 1, using the Hölder inequality, Young
inequality one has

(φ(r))2 = 2
∫ +∞

r
φ′(s)φ(s)ds ≤ 2

∫ +∞

r
|φ′(s)φ(s)s

3
2 s

−3
2 |ds

≤ 2
(
∫ +∞

r
|φ′(s)|2s3ds) 12 (

∫ +∞

r

|φ(s)|2
s6

s3ds
) 1
2

= 1

π2

(
2π2

∫ +∞

r
|φ′(s)|2s3ds) 12 (2π2

∫ +∞

r

|φ(s)|2
s6

s3ds
) 1
2

≤ 1

π2

1

r3
(
∫

|x |>r
|∇u|2dx) 12 (

∫

|x |>r
u2dx

) 1
2

≤ 1

r3
1

π2 ‖u‖·

We recall that

W 2,2
0,rad(B, w) = closure{u ∈ C∞

0,rad(B) |
∫

B

(
log(

e

|x |
)β |�u|2dx < ∞}.

��
We have the following results.

Lemma 3 Let u be a radially symmetric function in C2
0 (B). Then, we have

(i) [37] For all |x | < 1,

|u(x)| ≤ 1

2
√
2π

|| log( e
|x | )|1−β − 1| 12√
1 − β

∫

B
wβ(x)|�u|2dx

≤ 1

2
√
2π

|| log( e
|x | )|1−β − 1| 12√
1 − β

‖u‖2·

(i i)
∫

|x |<1
e|u|γ dx < +∞, ∀u ∈ W 2,2

0,rad(B, w).

(iii) The following embedding is continuous

E ↪→ Lq(R4) for all q ≥ 2.

(vi) E is compactly embedded in Lq(R4) for all q ≥ 2.

Proof (i) see [37]
(i i) From (i) and using the identity log( e

|x | ) − | log(|x |)| = 1 ∀x ∈ B and the fact

that
√
t − 1 ≤ √

t,∀t ≥ 1, we get

|u(x)|γ ≤ 1

αβ

∣
∣
∣
∣| log(

e

|x | )|
1−β − 1

∣
∣
∣
∣

1
1−β ‖u‖γ ≤ 1

αβ

(
1 + ∣

∣ log(|x |)∣∣) ‖u‖γ .
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Hence, using the fact that the function r �→ r3e
‖u‖γ (1+| log r |)

αβ is increasing, we get

∫

|x |<1
e|u|γ dx≤2π2

∫ 1

0
r3e

‖u‖γ (1+| log r |)
αβ dr≤π2

2
e

‖u‖γ
αβ < +∞, ∀ u ∈ W 2,2

0,rad(B, w).

Then (i i) follows by density.
(i i i) Since wβ(x) ≥ 1, then by Sobolev theorem, the following embedding are

continuous

E ↪→ W
2, N2
rad (R4, wβ) ↪→ W

2, N2
rad (R4) ↪→ Lq(R4) ∀q ≥ 2.

The embedding E → Lq(R4) is compact. In fact, set Q(s) = |s|q and P(s) =
|s|q+ε0 + |s|q−ε0 , where 0 < ε0 < q − 2. Clearly,

Q(s)

P(s)
→ 0 as |s| → +∞, and

Q(s)

P(s)
→ 0 as |s| → 0. Let (un)n ∈ E be such that un ↪→ 0 weakly in E and

un(x) → 0 a.e.x ∈ R
4 . By the continuity of the embedding E ↪→ Lq+ε0(R4) and

E ↪→ Lq−ε0(R4), we obtain that

sup
n

∫

R4
|P(un)| < +∞.

On the other hand, by Lemma 2, un(x) → 0 as |x | → +∞, uniformly in n ∈ N.
Therefore, we can apply the compactness Strauss Lemma, to deduce that Q(un) →
0 strongly in L1(R4).

This concludes the lemma. ��
Lemma 4 [20] Let � ⊂ R

N be a bounded domain and f : � × R a continuous
function. Let {un}n be a sequence in L1(�) converging to u in L1(�). Assume that
f (x, un) and f (x, u) are also in L1(�). If

∫

�

| f (x, un)un|dx ≤ C,

where C is a positive constant, then

f (x, un) → f (x, u) in L1(�).

4 Proof of Theorem 1.4

We first show the first point of the theorem 1.4. We have for all u ∈ E ,

∫

R4
(e|u|

2
1−β − 1)dx =

∫

|x |≥1
(e|u|

2
1−β − 1)dx +

∫

|x |<1
(e|u|

2
1−β − 1)dx . (4.1)
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On one side,

∫

|x |≥1
(e|u|

2
1−β − 1)dx =

+∞∑

k=1

1

k!
∫

|x |≥1
|u| 2k

1−β dx . (4.2)

From Lemma 2, we get

∫

|x |≥1
|u| 2k

1−β dx ≤ 1

π
‖u‖ k

1−β

∫ +∞

1

1

r
3k
1−β

−3
dr = 1

π
‖u‖ k

1−β
1

3k
1−β

− 4

≤ 1

π
‖u‖ k

1−β
1 − β

4β − 1
, for all k ≥ 1;

1

4
< β < 1. (4.3)

Associating (4.2) and (4.3) gives us

∫

|x |≥1
(e|u|

2
1−β − 1)dx ≤ 1

π

1 − β

4β − 1

+∞∑

k=1

‖u‖ k
1−β

k! = 1

π

1 − β

4β − 1
e‖u‖

1
1−β

< +∞.(4.4)

We will now approximate the second integral in (4.1). Set

v(x) =
{
u(x) − u(e1), 0 ≤ |x | < 1,
0, |x | ≥ 1,

(4.5)

where e1 = (1, 0, 0, 0) ∈ R
4. Clearly v ∈ W 2,2

0,rad(B, wβ).
For all ε > 0, we have

|u| 2
1−β = |v + u(e1)|

2
1−β ≤ (1 + ε)|v| 2

1−β +
(
1 − 1

(1 + ε)
1−β
1+β

)− 1+β
1−β |u(e1)|

2
1−β .

Then, from Lemma 3 (i i), we have

∫

|x |<1
e|u|

2
1−β

dx ≤
∫

|x |<1
e(1+ε)|v|

2
1−β

e

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β |u(e1)|

2
1−β

dx

≤ e

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β |u(e1)|

2
1−β ∫

|x |<1
e(1+ε)|v|

2
1−β

dx < +∞·

(4.6)

Using (4.1), (4.4), (4.6) and Lemma 3 (i i), we conclude that

∫

R4
(e|u|

2
1−β − 1)dx < +∞, for all u ∈ E .
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This ends the proof of the first point .
By (4.4) we have

sup
u∈E,‖u‖≤1

∫

|x |≥1
(eα|u|

2
1−β − 1)dx ≤ sup

u∈E,‖u‖≤1

1

π

1 − β

4β − 1
e‖u‖

1
1−β ≤ 1

π

1 − β

4β − 1
e.

(4.7)

Furthermore, by using (4.6) and the radial lemma 3(i i), we obtain

sup
u∈E,‖u‖≤1

∫

|x |≥1
(eα|u|

2
1−β − 1)dx ≤ sup

u∈E,‖u‖≤1
C

1 − β

4β − 1
e‖u‖

1
1−β ≤ C

1 − β

4β − 1
e.

(4.8)

On the other hand, by (4.6) and using the radial lemma 3(i), we get

sup
u∈E,‖u‖≤1

∫

|x |≤1
(eα|u|

2
1−β − 1)dx

≤ sup
u∈E,‖u‖≤1

∫

|x |<1
e

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β |u(e1)|

2
1−β

e(1+ε)|v|
2

1−β
dx

≤ sup
u∈E,‖u‖≤1

∫

|x |<1
e

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β

(c‖u‖)
2

1−β

e(1+ε)|v|
2

1−β
dx

≤ e

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β

(c)
2

1−β

sup
u∈E,‖u‖≤1

∫

|x |<1
e(1+ε)|v|

2
1−β

dx . (4.9)

Let α < αβ . It is evident that there exists ε > 0 such that α(1 + ε) < αβ .
Having in mind that for all u ∈ E u �= 0 with ‖u‖ ≤ 1, we have

‖v‖2
W 2,2

0,rad (B)
=
∫

B
|�v|2

(

log

(
e

|x |
))β

dx

=
∫

B
|�u|2wβ(x)dx ≤ ‖u‖2 ≤ 1, (4.10)

then,

sup
u∈E,‖u‖≤1

∫

|x |<1
eα(1+ε)|v|

2
1−β

dx ≤ sup
{
∫

|x |<1
eα(1+ε)|v|

2
1−β

dx, v ∈ W 2,2
0,rad(w, B),

‖v‖W 2,2
0,rad (B,w)

≤ 1
}
.
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So by (4.9) and Lemma 3 (i i), there exists a positive constantC(β) depending only
on β such that

sup
u∈E,‖u‖≤1

∫

|x |<1
eα|u|

2
1−β

dx ≤ e

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β

(c))
2

1−β

C(β). (4.11)

Combining (4.9) and (4.10), we get

sup
u∈E,‖u‖≤1

∫

|x |<1
(eα|u|

2
1−β − 1)dx < +∞.

Furthermore

∫

|x |≥1
(eα|u|

2
1−β − 1)dx =

+∞∑

k=1

αk

k!
∫

|x |≥1
|u| 2k

1−β dx . (4.12)

Combining (4.3) and (4.12), we infer

sup
u∈E,‖u‖≤1

∫

|x |≥1
(eα|u|

2
1−β − 1)dx < +∞. (4.13)

It follows from (4.9) and (4.13) that

sup
u∈E,‖u‖≤1

∫

R4
(eα|u|

2
1−β − 1)dx < +∞, for allα < αβ.

Let’s consider the case α = αβ . It is clear that (4.8) holds for α = αβ . So, we get

sup
u∈E,‖u‖≤1

∫

|x |≥1
(eαβ |u|

2
1−β − 1)dx < +∞. (4.14)

We shall show that

sup
u∈E,‖u‖≤1

∫

|x |<1
(eαβ |u|

2
1−β − 1)dx < +∞. (4.15)

For this, we consider u ∈ E , u �= 0 such that ‖u‖ ≤ 1 and ε > 0 such that

(1 + ε)1−β = 1
( ∫

|x |<1 |�u|2wβ(x)dx + ∫
|x |<1 |∇u|2dx + ∫

|x |<1 |v|2dx) ·
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Moreover, we have a similar inequality to (4.6) that is

∫

|x |<1
eαβ |u|

2
1−β

dx ≤
∫

|x |<1
eαβ(1+ε)|v|

2
1−β

e
αβ

(
1− 1

(1+ε)

1−β
1+β

)− 1+β
1−β |u(e1)|

2
1−β

dx

≤ e
αβ

(
1− 1

(1+ε)

1−β
1+β

)− β+1
1−β |u(e1)|

2
1−β ∫

|x |<1
e(1+ε)αβ |v|

2
1−β

dx,

(4.16)

where v is given by (4.5). On the other hand, we have from the proof of the radial
Lemma 2,

|u(e1)|
2

1−β ≤ C4

(∫

|x |≥1

(
wβ |�u|2 + |∇u|2 + |u + u(e1) − u(e1)|2

)
dx

) 1
1−β

≤ C4

(∫

R4

(
wβ |�u|2 + |∇u|2 + |u|2)dx

−
∫

|x |<1

(
wβ |�u|2 + |∇u|2 + |u − u(e1) + u(e1)|2

)
dx

) 1
1−β

≤ C4

(

1 −
∫

|x |<1

(
wβ |�u|2 + |∇u|2 + |u − u(e1)|2 + |u(e1)|2

)
dx

) 1
1−β

≤ C4

(

1 − C5 −
∫

|x |<1

(
wβ |�u|2 + |∇u|2 + |u − u(e1)|2

)
dx

) 1
1−β

≤ C4

(

1 −
∫

|x |<1

(
wβ |�u|2 + |∇u|2 + |u − u(e1)|2

)
dx

) 1
1−β

≤ C4
(
1 − 1

(1 + ε)1−β

) 1
1−β · (4.17)

Also,

∫

|x |<1
|(1 + ε)

2
1−β �v|2wβ(x)dx +

∫

|x |<1
|(1 + ε)

2
1−β ∇v|2dx

+
∫

|x |<1
|(1 + ε)

2
1−β v|2dx = 1.

Then, by Theorem 1.3, there exists C > 0 such that

∫

|x |<1
e(1+ε)αβ |v|

2
1−β

dx < C . (4.18)
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Using (4.17), we get,

∫

|x |<1
eαβ |u|

2
1−β

dx ≤ C exp

(

αβ

(
1 − 1

(1 + ε)
1−β
1+β

)− 1+β
1−β (

1 − 1

(1 + ε)1−β

) 1
1−β

)

·

But the function ϒ : t →
(

1 − 1

t
1−β
1+β

)− 1+β
1−β

(

1 − 1
t1−β

) 1
1−β

defined on (1 +
ε0,+∞), ε0 > 0 is decreasing and verifies lim

t→+∞ ϒ(t) = 1. It follows that ϒ

is bounded and consequently we get

∫

|x |<1
eαβ |u|

2
1−β

dx < +∞. (4.19)

Consequently, (4.15) is valid.
In the next step , we show that if α > αβ , then the supremum is infinite. Now, we will
use particular functions [37], namely the Adams’ functions. We consider the sequence
defined for all n ≥ 3 by

wn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
4 log(e 4

√
n)

αβ

) 1
γ − |x |2(1−β)

2
( αβ

4n

) 1
γ
(
log(e 4

√
n)
) γ−1

γ

+ 1

2( αβ

4 )
1
γ
(
log(e 4

√
n)
) γ−1

γ

if 0 ≤ |x | ≤ 1
4√n

(

log( e
|x | )

)1−β

(
αβ

4 log(e 4
√
n)

) 1
γ

if 1
4√n

≤ |x | ≤ 1
2

ζn if |x | ≥ 1
2

(4.20)

where ζn ∈ C∞
0,rad(B) is such that

ζn(
1

2
) = 1

(αβ

16 log(e
4n)

) 1
γ

(
log 2e

)1−β ,
∂ζn

∂r
(
1

2
) = −2(1 − β)

(
αβ

4 log(e 4
√
n)

) 1
γ

(
log(2e)

)−β

ζn(1) = ∂ζn

∂r
(1) = 0 and ξn ,∇ξn ,�ξn are all o

(
1

[log(e 4
√
n)] 1

γ

)

. Here,
∂ζn

∂r
denotes

the first derivative of ζn in the radial variable r = |x |.
Let vn(x) = wn

‖wn‖ . We have, vn ∈ E , ‖vn‖2 = 1.
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We compute �wn(x), we get

�wn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 − β)(4 − 2β)|x |−2β

(αβ

4n

) 1
γ
(
log(e 4

√
n)
) γ−1

γ

if 0 ≤ |x | ≤ 1
4√n

−(1 − β)

|x |2

(

log( e
|x | )

)−β(

2 + β
(
log e

|x |
)−1

)

(
αβ

4 log(e 4
√
n)

) 1
γ

if 1
4√n

≤ |x | ≤ 1
2

�ζn if |x | ≥ 1
2

So,

‖�wn‖22,w = 2π2
∫ 1

4√n

0
r3|�wn(x)|2

(
log

e

r

)β
dr

︸ ︷︷ ︸
I1

+ 2π2
∫ 1

2

1
4√n

r3|�wn(x)|2
(
log

e

r

)β
dr

︸ ︷︷ ︸
I2

+ 2π2
∫ 1

1
2

r3|�ζn(x)|2
(
log

e

r

)β
dr + 2π2

∫ +∞

1
|�ζn |2χ(r)r3dr

︸ ︷︷ ︸
I3

By using integration by parts, we obtain,

I1 = 2π2 (1 − β)2(4 − 2β)2

(αβ

4n

) 2
γ
(
log(e 4

√
n)
) 2(γ−1)

γ

∫ 1
4√n

0
r3−4β( log

e

r

)β
dr

= 2π2 (1 − β)2(4 − 2β)2

(αβ

4n

) 2
γ
(
log(e 4

√
n)
) 2(γ−1)

γ

[
r4−4β

4 − 4β
(log

e

r

)β
] 1

4√n

0

+ 2π2 β(1−β)2(4−2β)2

( αβ
4n

) 2
γ
(
log(e 4√n)

) 2(γ−1)
γ

∫ 1
4√n

0

r4−4β

4 − 4β

(
log

e

r

)β−1
dr

= o
( 1

log e 4
√
n

)·

Also,

I2 = 2π2 (1 − β)2

(αβ

4

) 2
γ
(
log(e 4

√
n)
) 2

γ

∫ 1
1
2

1
4√n

1

r

(
log

e

r

)−β(2 + β
(
log

e

r

)−1)2
dr

= −2π2 (1 − β)2

(αβ

4

) 2
γ
(
log(e 4

√
n)
) 2

γ

[
β2

−1 − β

(
log

e

r

)−β−1 + 4
(
log

e

r

)−β

+ 4

1 − β

(
log

e

r

)1−β
] 1

2

1
4√n
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= 1 + o
( 1

(log e 4
√
n)

2
γ

) ·

and I3 = o
( 1

(log e 4
√
n)

2
γ

)
. Then ‖�wn‖22,w = 1 + o

( 1

(log e 4√n)
2
γ

)
.

Lemma 5 The Adams’ function given by (4.20) verifies lim
n→+∞ ‖wn‖2 = 1.

Proof We have

‖wn‖2 =
∫

R4
w(x)|�wn|2dx +

∫

R4
|∇wn|2dx +

∫

R4
w2
ndx

= 1 + o
( 1

(log e 4
√
n)

2
γ

)+
∫

0≤|x |≤ 1
4√n

w2
ndx +

∫

4√n≤|x |≤ 1
2

w2
ndx +

∫

|x |≥ 1
2

ζ 2
n dx

+
∫

0≤|x |≤ 1
4√n

|∇wn|2dx
︸ ︷︷ ︸

I ′
1

+
∫

4√n≤|x |≤ 1
2

|∇wn|2dx
︸ ︷︷ ︸

I ′
2

+
∫

|x |≥ 1
2

|∇ζn|2dx
︸ ︷︷ ︸

I ′
3

·

We have,

I ′
1 = 2π2 (1 − β)2

(αβ

4n

) 2
γ
(
log(e 4

√
n)
) 2(γ−1)

γ

∫ 1
4√n

0
r4−2βdr

= 2π2 (1 − β)2

(αβ

4n

) 2
γ
(
log(e 4

√
n)
) 2(γ−1)

γ

[
r5−2β

5 − 2β

] 1
4√n

0

= 2π2 (1 − β)2

(5 − 2β)n
1
4+ β

2
(αβ

4

) 2
γ
(
log(e 4

√
n)
) 2(γ−1)

γ

= o
( 1

n
1
4+ β

2 log e 4
√
n

)·

Also, using the fact that the function r �→ r
(
log e

r

)−2β is increasing on [0, 1], we get

I ′
2 = 2π2 (1 − β)2

(αβ

4

) 2
γ
(
log(e 4

√
n)
) 2

γ

∫ 1
1
2

1
4√n

r
(
log

e

r

)−2β
dr

≤ π2

2

(1 − β)2

(αβ

4

) 2
γ
(
log(e 4

√
n)
) 2

γ

(
log 2e

)−2β

= o

(
1

[log(e 4
√
n)] 1

γ

)
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and I ′
3 = o

( 1

(log e 4
√
n)

2
γ

)
. For |x | ≤ 1

4
√
n
,

w2
n ≤

((

4
log(e 4

√
n)

αβ

) 1
γ + 1

2(αβ

4 )
1
γ
(
log(e 4

√
n)
) γ−1

γ

)2

·

Then,

∫

0≤|x |≤ 1
4√n

w2
ndx ≤ 2π2

((

4
log(e 4

√
n)

αβ

) 1
γ + 1

2(αβ

4 )
1
γ
(
log(e 4

√
n)
) γ−1

γ

)2

∫ 1
4√n

0
r3dr = on(1).

Also,

∫

1
4√n

≤|x |≤ 1
2

w2
ndx = 2π2 1

(
αβ

4 log(e 4
√
n)

) 1
γ

∫ 1
2

1
4√n

r3
(
log(

e

r
)
)2
dr .

Using the fact that
(
log( er )

)2 ≤ ( er )
2, we obtain

∫

1
4√n

≤|x |≤ 1
2

w2
ndx ≤ 2π2 1

(
αβ

4 log(e 4
√
n)

) 1
γ

∫ 1
2

1
4√n

e2rdr = π2 e2

2

(
αβ

4 log(e 4
√
n)

) 1
γ

= on(1).

Finaly,

∫

|x |≥ 1
2

w2
ndx =

∫

|x |≥ 1
2

ζ 2
n dx = on(1).

Then, ‖ wn‖2 = 1 + o
( 1

(log e 4√n)
2
γ

)
.

From the definition of wn , it is easy to see that

− |x |2(1−β)

2
(αβ

4n

) 1
γ
(
log(e 4

√
n)
) γ−1

γ

+ 1

2(αβ

4 )
1
γ
(
log(e 4

√
n)
) γ−1

γ

≥ 0 for all 0 ≤ |x | ≤ 1
4
√
n
·
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Then, for all 0 ≤ |x | ≤ 1
4√n

, w2
n ≥

(

4
log(e 4

√
n)

αβ

) 2
γ · So, we get

∫

0≤|x |≤ 1
4√n

w2
ndx ≥ 2π2

(

4
log(e 4

√
n)

αβ

) 2
γ
∫ 1

4√n

0
r3dr = on(1)

and using the fact that the function r �→ r3
(
log( er )

)2 is increasing on [0, 1
2 ], we get

∫

1
4√n

≤|x |≤ 1
2

w2
ndx ≥ 2π2 1

(
αβ

4 log(e 4
√
n)

) 2
γ

∫ 1
2

1
4√n

r3
(
log(

e

r
)
)2
dr

≥ π2 1

2n

(
αβ

4 log(e 4
√
n)

) 2
γ

= on(1)

Consequently, 1 + o1
( 1

(log e 4√n)
2
γ

) ≤ ‖wn‖2 ≤ 1 + o2
( 1

(log e 4√n)
2
γ

)
. The Lemma is

proved.

Let vn(x) = wn

‖wn‖ and α = α
αβ

.We have for all 0 ≤ |x | ≤ 1
4√n

, vγ
n ≥

(

4
log(e 4

√
n)

‖wn‖γ αβ

)

·
So when α > αβ , for any u ∈ E , ‖u‖ ≤ 1, we have

sup
u∈E,‖u‖≤1

∫

R4
(eα|u|

2
1−β − 1)dx ≥ lim

n−→+∞

∫

|x |≤ 1
4√n

(eα|vγ
n |

2
1−β − 1)dx

≥ lim
n−→+∞

∫ 1
4√n

0

(
r3e4α log

(
e 4√n

)
− r4

)
dr

≥ lim
n−→∞

π2

2

(e4n

n
− 1

5n
5
4

) = +∞.

Then,

sup
u∈E,‖u‖≤1

∫

R4
(eα|u|

2
1−β − 1)dx = +∞ ∀ α > αβ.

��

5 The Variational Formulation for the Problem (1.12)

Note that, by the hypothesis (H4), for any ε > 0, there exists δ0 > 0 such that

| f (t)| ≤ ε|t |, ∀ 0 < |t | ≤ δ0. (5.1)
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Moreover, since f is critical at infinity, for every ε > 0, there exists Cε > 0 such that

∀t ≥ Cε | f (t)| ≤ ε exp( a|t |γ − 1) with a > α0. (5.2)

In particular, we obtain for q ≥ 2,

| f (t)| ≤ ε

Cq−1
ε

|t |q−1 exp(a |t |γ − 1) with a > α0. (5.3)

Hence, using (5.1), (5.2), (5.3) and the continuity of f , for every ε > 0, for every
q > 2, there exists a positive constant C such that

| f (t)| ≤ ε|t | + C |t |q−1(ea |t |γ − 1
)
, ∀ t ∈ R, ∀ a > α0. (5.4)

It follows from (5.4) and (H3), that for all ε > 0, there exists C > 0 such that

F(t) ≤ ε|t |2 + C |t |q(ea |t |γ − 1
)
, for all t,∀ a > α0 (5.5)

So, by (1.11) and (5.5) the functional J given by (1.17), is well defined. Moreover,
by standard arguments, J ∈ C1(E,R).

5.1 TheMountain Pass Geometry of the Energy

In the sequel, we prove that the functional J has a mountain pass geometry.

Lemma 6 Assume that the hypothesis (H1), (H2), (H3) and (H4) hold. In addition,
assume that (G1) and (G2) are satisfied, then,

there exist ρ, β0 > 0 such that J (u) ≥ β0 for all u ∈ E with ‖u‖ = ρ.

Proof From (5.4), for all ε > 0, there exists C > 0 such that

F(t) ≤ ε|t |2 + C |t |q(ea tγ −1 − 1
)
, for all t ∈ R.

Then, using the last inequality, we get

J (u) ≥ 1

2
G(‖u‖2) − ε

∫

R4
|u|2dx − C

∫

R4
|u|q(ea uγ − 1

)
dx .

From the Hölder inequality and using the following inequality

(
es − 1

)ν ≤ eνs − 1, ∀ s ≥ 0 ∀ν ≥ 1,

and the condition (G1), we obtain

J (u) ≥ g0
2

‖u‖2 − ε

∫

R4
|u|2dx − C(

∫

R4

(
e2a |u|γ − 1

)
dx
) 1

2 ‖u‖q2q . (5.6)
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From the Theorem 1.1, if we choose u ∈ E such that

2a‖u‖γ ≤ αβ, (5.7)

we get

∫

R4

(
e2a |u|γ − 1

)
dx =

∫

R4

(
e2a ‖u‖γ (

|u|
‖u‖ )γ

) − 1
)
dx < +∞.

On the other hand from Sobolev embedding Lemma 3, there exist constants C1 > 0
and C2 > 0 such that ‖u‖2q ≤ C1‖u‖ and ‖u‖22 ≤ C1‖u‖2 . So,

J (u) ≥ g0
2

‖u‖2 − εC1‖u‖2 − C‖u‖q = ‖u‖2(g0
2

− εC1 − C‖u‖q−2),

for all u ∈ E satisfying (5.8). Since q > 2, we can choose ρ = ‖u‖ ≤ (
αβ

2a )
1
γ

and for ε such that
g0
2C1

> ε, there exists β0 = ρ2
(g0
2

− εC1 − Cρq−2) > 0 with

J (u) ≥ β0 > 0. ��
Lemma 7 Suppose that (H1), (H3), (H4), (G1) and (G2) hold. Then there exists e ∈ E
with
J (e) < 0 and ‖e‖ > ρ.

Proof Let u ∈ E\{0}, ‖u‖ = 1 . From the condition (G2), for all t ≥ 1, we have that

G(t) ≤ g(1)

2
t2· (5.8)

It follows from the condition (H3) and (H4) that there exist two positive constants
C1 and C2 such that

F(t) ≥ C1|t |θ − C2t
2, ∀t ∈ R.

Therefore

J (t ū) ≤ g(1)

4
t4 − C1‖ū‖θ

p tθ + C2t
2‖u‖22.

Since, θ > 4, we get that

lim
t→+∞J (t ū) = −∞.

We take e = t̄ ū, for some t̄ > 0 large enough. So, Lemma 7 is proved. ��
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5.2 Palais–Smale Sequences

Consider a (PS)c sequence (un) in E , for some c ∈ R, that is

J (un) = 1

2
G(‖un‖2) −

∫

R4
F(un)dx → c, n → +∞ (5.9)

and

|〈J ′(un), ϕ〉| =
∣
∣
∣g(‖un‖2)〈un, ϕ〉 −

∫

B
f (x, un)ϕdx

∣
∣
∣ ≤ εn‖ϕ‖, (5.10)

for all ϕ ∈ E , where εn → 0, as n → +∞.
It follows from (H3) , (5.9) , (5.10) with ϕ = un and (1.15) , that

g0
(1

4
− 1

θ

)‖un‖2 ≤ J (un) − 1

θ
〈J ′(un), un〉 ≤ c + on(1)‖un‖, ∀n ∈ N.

So the sequence ‖un‖ is bounded in R and

lim sup
n→+∞

‖un‖ ≤ ( 4θc

g0(θ − 4)

) 1
2 . (5.11)

By the mountain pass theorem of Ambrosetti and Rabinowitz, we know that

c = inf
γ∈�

max
t∈[0,1]J (γ (t)) ≥ ρ > 0

where

� := {γ ∈ C([0, 1], E) such that γ (0) = 0 and J (γ (1)) < 0}.

We now look at the behaviour of level c as a function of parameter A, which is given
by the hypothesis (H4).

Lemma 8 For all ε > 0, there exists Aε > 0 such that c < ε , ∀A > Aε .

Proof Let ϕ ∈ E \ {0} be such that ϕ ≥ 0 and t > 0. Based on the fact that

g(t) ≤ g(1) + g(1)t, ∀t ≥ 0,

we get,

J (tϕ) ≤ 1

2
G(t2‖ϕ‖2) − At p|ϕ|pp ≤ 1

2
g(1)t2‖ϕ‖2 + 1

4
g(1)t4‖ϕ‖2 − At p|ϕ|pp

:= ψ(t).
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Let,

ψ1(t) = 1

2
g(1)t2‖ϕ‖2 + 1

4
g(1)t2‖ϕ‖2 − At p|ϕ|pp for t ∈ [0, 1]

and

ψ2(t) = 1

2
g(1)t4‖ϕ‖2 + 1

4
g(1)t4‖ϕ‖2 − At p|ϕ|pp for t ≥ 1.

We have,

sup
t≥0

ψ(t) ≤ sup
t∈[0,1]

ψ1(t) or sup
t≥0

ψ(t) ≤ sup
t≥1

ψ2(t)·

The functionψ1 achieves itsmaximumat the point T0 =
(

3
2 g(1)‖ϕ‖2
p A|ϕ|pp

) 1
p−2

for t ∈ [0, 1]

and ψ2 at the point T1 =
(

3g(1)‖ϕ‖2
p A|ϕ|pp

) 1
p−4

. On the other hand, we have

c ≤ sup
t≥0

J (tϕ) ≤ sup
t≥0

ψ1(t) = 3

4
g(1)T 2

0 ‖ϕ‖2 − AT p
0 |ϕ|pp

≤ 3

4
g(1)

( 3
2g(1)‖ϕ‖2
p A|ϕ|pp

) 2
p−2 ‖ϕ‖2 → 0 as A → +∞,

or

c ≤ sup
t≥0

J (tϕ) ≤ sup
t≥0

ψ2(t) = 3

4
g(1)T 4

1 ‖ϕ‖2 − AT p
1 |ϕ|pp

≤ 3

4
g(1)

(
3g(1)‖ϕ‖2
p A|ϕ|pp

) 2
p−4 ‖ϕ‖2 → 0 as A → +∞·

The lemma follows. ��

6 Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.6.
Since J has mountain pass geometry, then there exists a Palais-Smale sequence

(un) ⊂ E at the level c. For n large enough, there exists a constant C > 0 such that

1

2
G(‖un‖2) ≤ C +

∫

R4
F(x, un)dx ·

From (H4), it follows that
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∫

R4
F(x, un)dx ≤ 1

θ

∫

R4
f (x, un)undx

Using (5.10) with ϕ = un , we obtain

∫

R4
f (un)undx ≤ εn‖un‖ + g(‖un‖2)‖un‖2.

Therefore,

1

2
G(‖un‖2) ≤ C + εn

θ
‖un‖ + 1

θ
g(‖un‖2)‖un‖2·

It follows from (1.16) that

1

4
g(‖un‖2)‖un‖2 ≤ 1

2
G(‖un‖2) ≤ εn

θ
‖un‖ + 1

θ
g(‖un‖2)‖un‖2.

Using the condition (G1) and since θ > 4, we get

0 ≤ g0(
1

4
− 1

θ
)‖un |2 ≤ C + εn

θ
‖un‖·

We deduce that the sequence (un) is bounded in E . As consequence, there exists
u ∈ E such that, up to subsequence, un⇀u weakly in E , un → u strongly in Lq(R4),
for all q ≥ 2 and un(x) → u(x) a.e. in R4.
Our goal is to prove that un → u strongly in E . It is sufficient to prove that

lim
n→+∞

∫

R4
f (un)(un − u)dx = 0. (6.1)

Let R > 0, we have

∫

R4

∣
∣ f (un)(un − u)

∣
∣dx =

∫

|x |≥R

∣
∣ f (un)(un − u)

∣
∣dx +

∫

|x |<R

∣
∣ f (un)(un − u)

∣
∣dx .

(6.2)

Using the Hölder inequality, we get

∫

|x |≥R

∣
∣ f (un)(un − u)

∣
∣dx ≤

(∫

|x |≥R
( f (un))

2dx

) 1
2
(∫

|x |≥R
(un − u)2dx

) 1
2 ·
(6.3)
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By (5.3), we have

∫

|x |≥R
( f (un))

2dx ≤ ε

∫

|x |≥R
u2ndx + C(ε)

∫

|x |≥R
(e2a|un |γ − 1)dx

+ C ′(ε)
∫

|x |≥R
|un|q(ea|un |γ − 1)dx (6.4)

Once again, using the Hölder inequality, we obtain

∫

|x |≥R
|un|q(ea|un |γ − 1)dx ≤

(∫

|x |≥R
|un|2qdx

) 1
2
(∫

|x |≥R
(e2a|un |γ − 1)dx

) 1
2

Now, by Lemma 8, there exists A1 > 0 such that

( 4θc

g0(θ − 4)

) 1
2 ≤

(
αβ

2a

) 1
γ

, ∀A > A1.

By (5.11), we have

∀A > A1, lim sup
n→+∞

‖un‖ ≤
(

αβ

2a

) 1
γ ·

It follows that
∫

R4
(e2a|un |γ − 1)dx < +∞.

Hence, using (6.4) and the last result, we get

∫

|x |≥R

∣
∣ f (un)(un − u)

∣
∣dx ≤ Cε + C ′ε

∫

|x |≥R
|un|2qdx · (6.5)

Using the radial lemma we get

∫

|x |≥R
|un|2qdx ≤ c

∫

|x |≥R

1

|x |3q dx ≤ CR3−3q → 0 as R → +∞·

Then, for all ε > 0, there exists Rε > 0 such that

∫

|x |≥Rε

|un|2qdx ≤ ε.

It follows from (6.5) that there exists a positive constant C such that

∫

|x |≥Rε

∣
∣ f (un)(un − u)

∣
∣dx ≤ Cε, ∀n ∈ N. (6.6)
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Furthermore, we have

∫

|x |<Rε

∣
∣ f (un)(un − u)

∣
∣dx ≤

(∫

|x |<Rε

( f (un))
2dx

) 1
2
(∫

|x |<Rε

(un − u)2dx

) 1
2 ·

Since BRε is bounded and using the compact embedding E ↪→↪→ L2(BRε ), we get

|un − u|L2(BRε ) → 0 as n → +∞.

Also, do not forgot that

sup
n

∫

|x |<Rε

(
f (un)

)2
dx < +∞.

It follows that
∫

|x |<Rε

∣
∣ f (un)(un − u)

∣
∣dx → 0 as n → +∞. (6.7)

Choosing R = Rε in (6.2) and combining (6.6) and (6.7) we get

lim sup
n→+∞

∫

R4

∣
∣ f (un)(un − u)

∣
∣dx ≤ Cε.

Since ε is arbitrarily chosen, we deduce that (6.1) holds.
As a direct result, we can state that the point u is a critical point of J at level c > ρ.
Consequently, problem (1.12) has a non-trivial weak solution.
Proof of Theorem 1.5. The energy J has mountain pass geometry, then there exists
a Palais-Smale sequence (un) ⊂ E at the level c. Then, as in the critical case, there
exists u ∈ E such that, up to subsequence, un⇀u weakly in E , un → u strongly in
Lq(R4), for all q ≥ 2 and un(x) → u(x) a.e. in R4.

In the subcritical case (5.2) and (5.3) hold for all a > 0. By taking a ≤ αβ

2

( g0(θ−4)
4θc

) 1
2 ,

its easy to deduce by (1.10) that

sup
n

∫

R4

(
f (un)

)2
dx < +∞

and using the compact embedding E ↪→↪→ L2(R4), we get

|un − u|L2(R4) → 0 as n → +∞.

So,

lim sup
n→+∞

∫

R4

∣
∣ f (un)(un − u)

∣
∣dx = 0.
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Remark 6.1 In the subcritical case, the energy J satisfies the Palais-Smale condition
at all level c ∈ R. But in the critical case, the energy functional loses its compactness

for all levels c such that c ≥ g0(θ − 4)

4θ

( αβ

2α0

)2
.
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