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Abstract
In this paper, we present a probabilistic extension of the Fubini polynomials and
numbers associated with a random variable satisfying some appropriate moment con-
ditions. We obtain the exponential generating function and an integral representation
for it. The higher order Fubini polynomials and recurrence relations are also derived.
A probabilistic generalization of a series transformation formula and some interesting
examples are discussed. A connection between the probabilistic Fubini polynomials
and Bernoulli, Poisson, and geometric random variables are also established. Finally,
a determinant expression formula is presented.
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1 Introduction

Recently, certain polynomials and numbers have received growing attention in many
branches of mathematics, computer science, and physics. More specifically, the study
on the Stirling numbers of the second kind has progressed significantly during the past
few decades. The Stirling numbers of the second kind, denoted by S(n, k), count the
total number of partitions of a set of n elements into k non-empty disjoint subsets and
play an important role in combinatorics. It is defined by (see [34])

S(n, k) = 1

k!
k∑

j=0

(−1)k− j
(
k

j

)
jn . (1.1)

Its exponential generating function is given by (see [34, Chapter 9])

∞∑

n=k

S(n, k)
tn

n! = (et − 1)k

k! , t ∈ C, (1.2)

where C is the set of complex numbers. For more details on the Stirling numbers of
the second kind and its properties, one may refer to Comtet [10] and Gould [34].
A number of polynomials are defined through S(n, k). For instance, the Bell polyno-
mials Bn(x) are defined as (see [16] and [21])

Bn(x) =
n∑

k=0

S(n, k)xk .

An alternate expression for Bn(x) is

Bn(x) =
∞∑

k=0

kn
e−x xk

k! = E(Yn(x)), (1.3)

which is the nth order moment of the Poisson variable Y (x) with mean x > 0. Here
E denotes the mathematical expectation.
Besides the Bell polynomials, the Fubini polynomials are also applied in various
disciplines of the applied sciences and combinatorics. These polynomials are also
known as the geometric polynomials or the ordered Bell polynomials. Through the
Stirling numbers of the second kind, Fubini polynomials are defined by the relation
(see [2, 9, 33, 38])

Wn(x) =
n∑

k=0

k!S(n, k)xk . (1.4)

The exponential generating function of Wn(x) is

∞∑

n=0

Wn(x)
tn

n! =
[
1 − x

(
et − 1

) ]−1
. (1.5)
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Note that, when x = 1, (1.4) yields

Wn = Wn(1) =
n∑

k=0

S(n, k)k!, (1.6)

which are called Fubini numbers (see [6, 8]) and satisfy the recurrence relation (see
[13])

Wn =
n∑

k=1

(
n

k

)
Wn− j . (1.7)

Recently, Adell and Lekuona [5] defined a probabilistic version of the Stirling numbers
of the second kind. Let Y be a real valued random variable (rv) having finite moment
generating function (mgf) and {Y j } j≥0 be a sequence of independent and identically
distributed (i.i.d.) random variables (rvs) with distribution as that of the rv Y . Define
S0 = 0 and S j = Y1 + Y2 + · · · + Y j , j ≥ 1. The probabilistic Stirling numbers of
the second kind SY (n, k), associated with the rv Y , is defined via the relation

SY (n, k) = 1

k!
k∑

j=0

(−1)k− j
(
k

j

)
ESnj . (1.8)

Its exponential generating function is (see [1] and [5])

∞∑

n=k

SY (n, k)
tn

n! =
(
EetY − 1

)k

k! , t ∈ C. (1.9)

When Y is degenerate at 1, (1.8) and (1.9) reduce to (1.1) and (1.2), respectively. They
obtained the moments of S j as (see [1])

ESnj =
n∧ j∑

k=0

SY (n, k)( j)k, (1.10)

where n ∧ j = min{n, j} and ( j)k = j( j − 1) · · · ( j − k + 1) is the falling factorial.
Soni et al. [36] discussed the probabilistic Bell polynomials defined by

BY
n (x) =

n∑

k=0

SY (n, k)xk, (1.11)

which has the exponential generating function

e
(
EetY−1

)
=

∞∑

n=0

BY
n (x)

tn

n! . (1.12)
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An alternative representation of BY
n (x) in terms of the Poisson moments is given by

BY
n (x) =

∞∑

k=0

ESnk
e−x xk

k! . (1.13)

When Y is degenerate at 1, it coincides with (1.3), the famous Dobiński’s formula.
Kim [25] established a connection between the geometric rv and the Fubini polyno-
mials. For p ∈ (0, 1], let Gp be a geometric rv with probability mass function (pmf)
P{Gp = i} = p(1− p)i−1, i ≥ 1. Note that Gp denotes the number of trials needed
for the first success, when a coin with success probability p is tossed. It follows easily
as

E[Gp − 1]n =
∞∑

i=1

(i − 1)n P{Gp = i}

=p
∞∑

i=1

(i − 1)n(1 − p)i−1

=p
∞∑

i=0

in(1 − p)i . (1.14)

For x ≥ 0, let η(x) = (1+ x)−1. Then the connection between the geometric rv Gη(x)

and the Fubini polynomials is

Wn(x) =
∞∑

i=0

in P{Gη(x) = i + 1} = E[Gη(x) − 1]n . (1.15)

As mentioned earlier, a probabilistic representation of the Stirling numbers of the
second kind in terms of i.i.d. rvs is studied by Adell [1] and Adell and Lekuona [5].
These results are very useful in the analytical number theory and in generalizing differ-
ent classical sums of powers of arithmetic progression formulas. Laskin [28] studied
a fractional generalization of the Bell polynomials and the Stirling numbers of the
second kind. Guo and Zhu [14] introduced the generalized Fubini polynomials and
studied their logarithmic properties. Recently, Kim and Kim [19] defined the proba-
bilistic degenerate Bell polynomials associated with random variables. A probabilistic
degenerate extension of the Stirling numbers of the second kind is discussed in [20,
23]. The degenerate Dowling polynomials and their connection to Poisson degenerate
central moments were also covered by Kim and Kim [18] and Kim et al. [22]. Moti-
vated by the work of Adell and Lekuona [5] and Guo and Zhu [14], we consider a
probabilistic generalization of the Fubini polynomials and numbers and explore their
important properties. The connections of these polynomials with the known families
of the probability distributions are explored. A simple determinant formula for the
probabilistic Fubini numbers is also derived along with some combinatorial sums.
The paper is organized as follows. In Sect. 2, we present a probabilistic extension of
the Fubini polynomials and numbers. The exponential generating function, integral
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representation, and some recurrence relations are obtained. A connection between the
higher order probabilistic Fubini polynomials and the negative binomial process is also
discussed. In Sect. 3, we obtain a probabilistic generalization of a series transformation
formula and illustrate it with some examples. A new relationship between the rising
factorial and the Lah numbers is deduced. A connection of the probabilistic Fubini
polynomials with Bernoulli, Poisson, and geometric random variates are discussed in
Sect. 4. Finally, a determinant expression for the probabilistic Fubini numbers and a
combinatorial sum formula is also obtained in Sect. 5.

2 Probabilistic Fubini Polynomials and Numbers

Let G be the set of rvs Y satisfying the following moment conditions

E|Y |n < ∞, n ∈ N0, lim
n→∞

|t |nE|Y |n
n! = 0, |t | < r , (2.1)

where N0 = N ∪ {0}, r > 0, N is the set of natural numbers and E denotes the
mathematical expectation. The condition in (2.1) confirms the existence of themoment
generating function for rv Y (see [7, p. 344]).
Let {Yi }i≥0 be i.i.d. copies of a rv Y ∈ G. By Jensen’s inequality, we have

E|Si |n ≤ i1/nE|Y |n, for n ∈ N,

where Si = Y1 + Y2 + · · · + Yi and S0 = 0.
In view of (1.15), we define the probabilistic Fubini polynomials associated with the
rv Y as

WY
n (x) =

∞∑

i=0

E
[
Sni

]
P{Gη(x) = i + 1}, (2.2)

where Gp follows the geometric distribution with parameter p and η(x) = (1+ x)−1.

In case of the degeneracy of the rvY at 1, (2.2) leads to the classical Fubini polynomials.
In particular, when Y = 1 and x = 1 in (2.2), we get the nth order moments of the
geometric rvs with probability of success equals 1/2. These moments are well-known
as the Fubini numbers.
Next, we present the exponential generating function for the probabilistic Fubini poly-
nomials.

Proposition 2.1 Let |x (
EetY − 1

) | ≤ 1. Then,

1

1 − x
(
EetY − 1

) =
∞∑

n=0

WY
n (x)

tn

n! . (2.3)
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Proof For the i.i.d. copies of the rv Y , we have, from (2.2),

∞∑

n=0

WY
n (x)

tn

n! =
∞∑

n=0

( ∞∑

k=0

ESnk

(
1

1 + x

)(
x

1 + x

)k
)
tn

n!

=
∞∑

k=0

(
1

1 + x

) (
x

1 + x

)k (
Eet Sk

)

=
∞∑

k=0

(
1

1 + x

) (
x

1 + x

)k (
EetY

)k

= 1

1 − x
(
EetY − 1

) .

Hence, the proposition is proved. 	

The series expansion of (2.3) in the light of (1.9) gives an alternative representation
of the probabilistic Fubini polynomials in terms of the probabilistic Stirling numbers
of the second kind of the following form

WY
n (x) =

n∑

k=0

SY (n, k)k!xk . (2.4)

It may be observed that for x = 1, (2.4) gives a probabilistic generalization of the
classical Fubini numbers given by

WY
n =

n∑

k=0

SY (n, k)k!. (2.5)

We call it the probabilistic Fubini numbers.
When Y follows an exponential distribution with mean 1, we establish a connection
between the probabilistic Fubini polynomials and the Lah numbers of the following
form

WY
n (x) =

n∑

k=0

L(n, k)k!xk . (2.6)

In the literature, (2.6) is termed as 0-Fubini-Lah polynomials (see [35]).
In the following proposition, we give an integral representation for the probabilistic
Fubini polynomials.

Proposition 2.2 Let Y ∈ G. Then

WY
n (x) =

∫ ∞

0
BY
n (xv)e−vdv = EV [BY

n (xV )], (2.7)

where V is the standard exponential rv with probability density function f (v) =
e−v, v ≥ 0 and EV stands for the mathematical expectation for rv V .
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Proof Considering (2.4) and with the help of the gamma integral, we have

EV [BY
n (xV )] =

∫ ∞

0
BY
n (xv)e−vdv

=
∫ ∞

0

(
n∑

k=0

SY (n, k)xkvk
)
e−vdv

=
n∑

k=0

SY (n, k)k!xk

= WY
n (x),

where k! = ∫ ∞
0 vke−vdv. 	


For n and k be two non-negative integers such that n ≥ k, the partial exponential Bell
polynomials Bn,k(x1, x2, . . . , xn−k+1) have the following form (see [10])

Bn,k(x1, x2, x3, ...., xn−k+1) = n!
(∑

�k
n

n−k+1∏

j=1

1

k j !
(
x j
j !

)k j )
,

where the summation is taken over the following set

�k
n =

{
(k1, k2, ...., kn−k+1) :

n−k+1∑

j=1

k j = k,
n−k+1∑

j=1

jk j = n, k j ∈ N0

}
.

A connection between the probabilistic Stirling numbers of the second kind and the
partial exponential Bell polynomials is obtained and is given by (see [36])

SY (n, k) = Bn,k

(
EY ,EY 2, . . . ,EYn

)
. (2.8)

When x = 1, and using (2.8) and Proposition 2.2, we get

WY
n = EV Bn

(
VEY , VEY 2, . . . , VEYn

)
,

where Bn are the complete exponential Bell polynomials which can be expressed in
terms of the partial exponential Bell polynomials as (see [10, p. 133])

Bn(x1, x2, . . . , xn) =
n∑

k=0

Bn,k(x1, x2, . . . , xn−k+1).

It is well-known that geometric distribution is a special case of the negative binomial
distribution. For α > 0 and 0 < p < 1, let Zα

p follows negative binomial distribution
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denoted by NB(α, p) with pmf

P{Zα
p = i} =

(−α

i

)
(p − 1)i pα, i ∈ N0.

When p = η(x) = 1/(1 + x), the mgf of Zα
η(x) is given by

Eet Z
α
η(x) =

∞∑

i=0

(−α

i

)(
− et x

1 + x

)i ( 1

1 + x

)α

= 1

(1 − x (et − 1))α
,

provided t < log (1 + 1/x).
We define the α-th order probabilistic Fubini polynomials as

WY
n (x;α) =

∞∑

i=0

E
[
Sni

]
P{Zα

η(x) = i}, α ∈ N0.

It has following exponential generating function

∞∑

n=0

WY
n (x;α)

tn

n! = 1

(1 − x
(
EetY − 1

)
)α

. (2.9)

Using the series expansion formula 1
(1−x)α = ∑∞

i=0

(−α
i

)
(−x)i , the exponential gen-

erating function (2.9) is simplified as

1

(1 − x
(
EetY − 1

)
)α

=
∞∑

i=0

(−x)i
(−α

i

)(
EetY − 1

)i

=
∞∑

i=0

(−x)i
(−α

i

) ∞∑

n=i

SY (n, i)
tn

n! (using (1.9))

=
∞∑

n=0

n∑

i=0

(
α + i − 1

i

)
i !xi SY (n, i)

tn

n! .

On comparing with (2.9), we get

WY
n (x;α) =

n∑

i=0

(
α + i − 1

i

)
i !xi SY (n, i), (2.10)

which can be viewed as an alternate representation for the αth order probabilistic
Fubini polynomials. We also obtain some identities and interconnections of αth order
probabilistic Fubini polynomials in the subsequent sections.
Next, we obtain some recurrence relations for the probabilistic Fubini polynomials
and also discuss their special cases.
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Proposition 2.3 Let WY
n (x) be the probabilistic Fubini polynomials. Then, we have

WY
n (x) = x

n∑

k=1

(
n

k

)
EY kWY

n−k(x). (2.11)

Proof Using (2.3), we get

∞∑

n=1

WY
n (x)

tn

n! = 1

1 − x
(
EetY − 1

) − 1 = x
(
EetY − 1

)

1 − x
(
EetY − 1

)

= x

( ∞∑

k=0

EY k t
k

k

)( ∞∑

n=k

WY
n−k(x)

tn−k

(n − k)!

)
− x

( ∞∑

n=0

WY
n (x)

tn

n!

)

=
∞∑

n=1

(
x

n∑

k=1

(
n

k

)
EY kWY

n−k(x)

)
tn

n! .

Comparing the coefficients of tn on both sides, we get required result. 	

With the help of the Proposition 2.3, one can deduce recurrence relation for the prob-
abilistic Fubini numbers. In particular, when Y = 1, it reduces to (1.7).

Theorem 2.1 Let Y ∈ G. Then, for n ≥ k ≥ i , we have

WY
n+1(x) = x

n∑

k=0

(
n

k

)
EYn−k+1

k∑

i=0

(
k

i

)
WY

i (x)WY
k−i (x).

Proof Differentiating (2.3) with respect to t on both sides, we get

∞∑

n=0

WY
n+1(x)

tn

n! = d

dt

[
1

1 − x
(
EetY − 1

)
]

= x
E

[
YetY

]
[
1 − x

(
EetY − 1

)]2

= x

( ∞∑

i=0

WY
i (x)

t i

i !

)( ∞∑

k=0

WY
k (x)

tk

k!

) ( ∞∑

n=0

EYn+1 t
n

n!

)

=
∞∑

n=0

(
x

n∑

k=0

(
n

k

)
EYn−k+1

k∑

i=0

(
k

i

)
WY

i (x)WY
k−i (x)

)
tn

n! .

Equating the coefficients of tn , we get the result. 	

Next, the following proposition is a recurrence relation in terms of derivative for the
probabilistic Fubini polynomials.
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Theorem 2.2 For Y ∈ G, we have

d

dx
WY

n (x) =
n∑

k=0

(
n

k

)
EYn−k

k∑

i=0

(
k

i

)
WY

i (x)WY
k−i (x) − WY

k (x)WY
n−k(x). (2.12)

Proof Differentiating (2.3) with respect to x , we get

d

dx

∞∑

n=0

WY
n (x)

tn

n! = EetY − 1

(1 − x
(
EetY − 1

)
)2

= 1

(1 − x
(
EetY − 1

)
)2
EetY − 1

(1 − x
(
EetY − 1

)
)2

.

Making series expansion of 1/
(
1 − x

(
EetY − 1

))2
and with the help of Theorem 2.1,

we get

d

dx

∞∑

n=0

WY
n (x)

tn

n! = 1

(1 − x
(
EetY − 1

)
)2
EetY −

( ∞∑

k=0

WY
k (x)

tk

k!

)( ∞∑

n=0

WY
n (x)

tn

n!

)

=
∞∑

n=0

n∑

k=0

(
n

k

)
EYn−k

k∑

i=0

(
k

i

)
WY

i (x)WY
k−i (x)

tn

n! −
∞∑

n=0

n∑

k=0

(
n

k

)
WY

k (x)WY
n−k(x)

tn

n!

=
∞∑

n=0

n∑

k=0

(
n

k

)
EYn−k

k∑

i=0

(
k

i

)
WY

i (x)WY
k−i (x) − WY

k (x)WY
n−k(x)

tn

n! .

On comparing the coefficients of tn on both sides, the result in (2.12) follows. 	


3 Probabilistic Generalization of a Series Transformation Formula

Spivey [37] recently unveiled a new approach to evaluate combinatorial sums formula
using a finite difference technique. These combinatorial sums can be obtained in terms
of theStirling numbers of the secondkind.Adell andLekuona [3] andAdell [5], studied
the applications of the probabilistic Stirling numbers of the second kind and obtained
the probabilistic extension of some known combinatorial identities. Boyadzhiev [8]
considered a series transformation formula with numerous examples. Let f (x) and
g(x) be two arbitrary functions such that f (x) is entire and g(x) is analytic on D =
{x : r < |x | < R} with 0 ≤ r < R. Then, f (x) and g(x) can be written as

f (x) =
∞∑

n=0

fnx
n, g(x) =

∞∑

n=−∞
gnx

n, (3.1)

where fn and gn denote the nth coefficient of series for the functions f and g, respec-
tively.
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Motivated by Boyadzhiev [8] work, we present, in the next result, a probabilistic
generalization of the series transformation formula. An important feature of this gen-
eralization is that for an appropriate choice of the functions f and g, and for a suitable
rv Y in the class G, several well-known series sums formulas can be obtained in the
closed forms involving some known classical polynomials and probability distribution
functions.

Theorem 3.1 For Y ∈ G, we have

∞∑

i=0

g(i)(0)E f (Si )
xi

i ! =
∞∑

n=0

f (n)(0)

n!
n∑

k=0

SY (n, k)g(k)(x)xk, (3.2)

where Si is sum of i.i.d. copies of the rv Y ∈ G.

Proof Using (1.10), we get

∞∑

i=0

gi (0)

i ! xiESni =
∞∑

i=0

gi (0)

i ! xi
(

n∑

k=0

(
i

k

)
k!SY (n, k)

)

=
n∑

k=0

SY (n, k)
∞∑

i=0

(
i

k

)
k!g

i (0)

i ! xi

=
n∑

k=0

SY (n, k)xk
∞∑

i=k

gi (0)

i ! i ! xi−k

(i − k)!

=
n∑

k=0

SY (n, k)xkg(k)(x).

On multiplying both sides with f (n)(0)/n! and summing over n from 0 to ∞, we get
the result. 	


Remark 3.1 When Y is degenerate at 1, (3.2) reduces to the following series transfor-
mation formula (see [8, Eq. 4.11])

∞∑

i=0

g(i)(0) f (i)
xi

i ! =
∞∑

n=0

f (n)(0)

n!
n∑

k=0

S(n, k)g(k)(x)xk . (3.3)

Example 3.1 For g(x) = ex in (3.2), we get a new identity which is given by

∞∑

i=0

E f (Si )
xi

i ! =
∞∑

n=0

f (n)(0)

n!
n∑

k=0

SY (n, k)ex xk = ex
∞∑

n=0

f (n)(0)

n! BY
n (x). (3.4)

123



102 Page 12 of 23 R. Soni et al.

On rearrangement of terms in (3.4), we obtain a connection of the probabilistic Bell
polynomials with Poisson rv of the form

∞∑

i=0

E f (Si )P{Y (x) = i} =
∞∑

n=0

f (n)(0)

n! BY
n (x), (3.5)

where Y (x) follows Poisson distribution with parameter x .
Moreover, for f (x) = xn , (3.5) leads to the probabilistic Bell polynomials defined in
(1.13).

Corollary 3.1 If f (x) be the polynomial of degree n, then

∞∑

n=0

f (n)(0)

n! Bn(x) =
n∑

k=0

xk

k!
k∑

j=0

(−1) j
(
k

j

)
f (k − j),

where Bn(x) are the Bell polynomials.

Proof of the corollary can be executed by the idea of (3.5) and Theorem 9.2 of [34].

Example 3.2 For g(x) = 1
1−x with |x | < 1 and f (x) = xn , from (3.2) we get

∞∑

i=0

ESni x
i = 1

1 − x
WY

n

(
x

1 − x

)
=

∞∑

k=0

xk
n∧k∑

j=0

(
k

j

)
j !SY (n, j), (3.6)

where n∧k = min{n, k}. This is a probabilistic generalization of the following identity
studied in [8].

∞∑

i=0

inxi = 1

1 − x
Wn

(
x

1 − x

)
.

It may be observed that for x = 1
2 , (3.6) gives

WY
n (1) = 1

2

∞∑

i=0

ESni
2i

, (3.7)

which is a probabilistic extension of the Fubini numbers.
Also, when Y follows a standard exponential distribution, we have a new connection
between nth sum of rising factorial and the Lah numbers, which is given as

1

2

∞∑

i=0

〈i〉n
2i

=
n∑

k=0

L(n, k)k!,

where 〈i〉n = i(i + 1) · · · (i + n − 1) denotes the rising factorials.
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Example 3.3 For g(x) = 1
(1−x)r with Re(r) > 0 and |x | < 1, (3.2) yields

∞∑

i=0

(−1)i
(−r

i

)
E f (Si )x

i =
∞∑

n=0

f (n)(0)

n!
n∑

k=0

SY (n, k)(k + r − 1)!xk 1

(1 − x)k+r
.

(3.8)
Alternatively, (3.8) may be expressed as

∞∑

i=0

(−1)i
(−r

i

)
E f (Si )x

i = 1

(1 − x)r

∞∑

n=0

f (n)(0)

n! WY
n

(
x

1 − x
; r

)
, (3.9)

where WY
n

(
x

1−x ; r
)
are the r th order probabilistic Fubini polynomials coincide with

(2.10).

For a particular choice f (x) = xn , from (3.8), we have

∞∑

i=0

(−r

i

)
ESni x

i = 1

(1 − x)r
WY

n

(
− x

1 + x
; r

)
. (3.10)

This is a probabilistic extension of the formula (3.28) studied in [8].
Now, in the following propositions, we prove some interesting identities for the prob-
abilistic Fubini polynomials.

Proposition 3.1 For k ∈ N0, we have

1

1 − x

∞∑

m=k

(
m

k

)
um

m! v
m−kWY

m

(
x

1 − x

)
= uk

k! D
k
uv

(
1

1 − xEeuvY

)
, (3.11)

provided Dk
t

(
1

1 − xEetY

)
exists for Y ∈ G, where Dk

t is kth order differential

operator with respect to t .

Proof We start with left hand side of (3.11) and with the help of (3.6), we get

∞∑

m=k

(
m

k

)
um

m! v
m−kWY

m

(
x

1 − x

)
= (1 − x)

∞∑

m=k

(
m

k

)
um

m! v
m−k

∞∑

n=0

ESmn xn

= (1 − x)E

[ ∞∑

n=0

xn
∞∑

m=k

(
m

k

)
um

m! v
m−k Smn

]

= (1 − x)
uk

k! E
[ ∞∑

n=0

xnSkne
uvSn

]
.
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Using Dk
t Ee

t Sn = ESkne
t Sn , we get

1

1 − x

∞∑

m=k

(
m

k

)
um

m! v
m−kWY

m

(
x

1 − x

)
= uk

k!
∞∑

n=0

xnDk
uvEe

uvSn

= uk

k! D
k
uv

( ∞∑

n=0

xn
(
EeuvY

)n
)

= uk

k! D
k
uv

(
1

1 − xEeuvY

)
.

Hence, the identity is proved. 	

Remark 3.2 The Proposition 3.1 may be viewed as a probabilistic extension to the
identity proved in [30].

Proposition 3.2 For k ∈ N, we have

1

1 − x

∞∑

m=1

ESkm
ym

m! W
Y
m

(
x

1 − x

)
=

∞∑

j=0

x j BY
k

(
yDy

) (
EeyY

) j
, (3.12)

provided Di
y

(
EeyY

) j
exists for Y ∈ G.

Proof Using (3.6), we get

1

1 − x

∞∑

m=1

ESkm
ym

m! W
Y
m

(
x

1 − x

)
=

∞∑

m=1

ESkm
ym

m!
∑

j=0

x j
ESmj

=
∞∑

j=0

x j
E

[ ∞∑

m=1

(
ESkm

) (yS j )
m

m!

]

=
∞∑

j=0

x j
E

[
eyS j BY

k (yS j )
]
, (using (1.13)),

=
∞∑

j=0

x j
k∑

i=0

SY (k, i)yi Di
y

(
EeyS j

)
.

With the help of (1.11), we get the proposition. 	


4 Probabilistic Fubini Polynomials and Some Probability
Distributions

For different choices of probability distribution of the rv Y , we obtain the different
representations of the probabilistic Fubini polynomials and the numbers. These repre-
sentations may be in terms of the Stirling numbers of the second kind, polylogarithm
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functions, and the Apostol-Euler polynomials. Some special choices of the rvs Y ∈ G,
we have the following examples.

Example 4.1 Let Y be a Poisson random variate with pmf and the mgf, P{Y = k} =
e−λ λk

k! , and E
(
etY

) = eλ(et−1), λ > 0, respectively.
Substituting the mgf into (2.3) and using (1.2), we obtain

∞∑

n=0

WY
n (x)

tn

n! = 1

1 − x
(
eλ(et−1) − 1

)

=
∞∑

i=0

λiWi (x)
(et − 1)i

i ! =
∞∑

n=0

(
n∑

i=0

λiWi (x)S(n, i)

)
tn

n! .

Finally, comparing the coefficients of powers of t , we get a convolution result of the
form

WY
n (x) =

n∑

i=0

λiWi (x)S(n, i).

Let Y1,Y2, . . . ,Yi be i.i.d. copies of Poisson rv with mean λ. Then, Si = Y1 + Y2 +
· · ·+Yi ∼ Poisson(iλ) for i = 1, 2, . . . . Using (1.3) and (3.6), we obtain a relationship
between the Bell polynomials and the probabilistic Fubini polynomials as

∞∑

i=0

Bn(iλ)xi = 1

1 − x
WY

n

(
x

1 − x

)
=

∞∑

k=0

xk
n∧k∑

j=0

(
k

j

)
j !SY (n, j).

Example 4.2 Let Y be a geometric rv different from Gp with the pmf

P{Y = k} = rsk−1, k = 1, 2, . . . ,

where s = 1 − r , 0 < r ≤ 1.
One can verify the following interconnection between the polylogarithms and the
geometric variate

Li−n(s) = s

r
EYn,

where Liz(y) = ∑∞
i=1

y j

i z with y, z ∈ C and |y| < 1.

We define the kth multinomial convolution of the polylogarithm function as

Li∗k−n(s) =
∑

n1+n2+···+nk=n

n!
n1!n2! · · · nk ! Li−n1(s)Li−n2(s) · · ·Li−nk (s), k ∈ N,

with Li∗00 (s) = 1.
Let 〈Yi 〉i≥0 be the sequence of independent copies of the geometric rv Y . Then, we
obtain

Li∗k−n(s) = sk

rk
ESnk , ∀ k ∈ N. (4.1)
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Theorem 4.1 Let Y be the geometric rv as considered in Example 4.2. Then

E

((r
s

)Gp−1
Li

∗(Gp−1)
−n (s)

)
= lim

m→∞

m∑

k=0

rk+1 Li∗k−n(s) = WY
n (x), (4.2)

where G p is geometric variate with parameter p = η(x) = 1/(1 + x) as defined in
(1.14).
Also, for p = (1 + x)/(1 + 2x), we have

lim
m→∞

m∑

k=0

(r
s

)k
Li∗k−n(s)x

k = (1 + x)WY
n (x), (4.3)

provided above limits exist.

Proof On multiplying with pqk both sides of (4.1) and using (1.14), we get

rk

sk
Li∗k−n(s)pq

k = ESnk pq
k, ∀k ∈ N,

lim
m→∞

m∑

k=0

rk

sk
Li∗k−n(s)pq

k = lim
m→∞

m∑

k=0

ESnk pq
k, (4.4)

where q = 1 − η(x). For p = η(x), the right hand side quantity of (4.4) converges
to the nth order moment of geometric rv provided the limit exists. Hence, using (2.2),
we get the desired result. The result (4.3) is the consequence of identity (3.6) with the
help of (4.2). 	


In the following example, we derive a relationship between probabilistic Fubini poly-
nomials and the generalized Apostol-Euler polynomials in the framework of the
Bernoulli rv.

Example 4.3 Let Y be a Bernoulli rv with E(etY ) − 1 = p(et − 1), 0 < p ≤ 1 (see
[24]). Clearly, from (2.3), we get

WY
n (x) = Wn(px).

Ding and Yang [11] recently employed the generating function method to obtain
numerous symmetric identities involving theApostol-Euler polynomials. He [15] used
suitable summation transform techniques to further examine several summation for-
mulae of products linked with Apostol-Euler polynomials. Recently, Luo [29] and
Kim et al. [17] mentioned the generalized Apostol-Euler polynomials of real order
and integer order, respectively and provided related convolution results. Adell and
Lekuona [4] examined several applications of the generalized Apostol-Euler polyno-
mials to the results related to Appell polynomials. The Apostol-Euler polynomials
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En(c; x) are defined by the exponential generating function of the form (for more
details see [4], [15], [17], and [32])

ext

1 + c(et − 1)
=

∞∑

n=0

En(c; x) t
n

n! , (4.5)

where t ∈ R and c ∈ C.

Consider (4.5) and with the help of (2.3), we get

∞∑

n=0

En(−cp; x) t
n

n! =
( ∞∑

k=0

WY
k (c)

tk

k!

)( ∞∑

i=0

xi
t i

i !

)
=

∞∑

n=0

(
n∑

k=0

(
n

k

)
WY

k (c)xn−k

)
tn

n! .

We establish an interconnection between the Apostol-Euler polynomials and the prob-
abilistic Fubini polynomials by comparing the coefficients of t . It is given by

En(−cp; x) =
n∑

k=0

(
n

k

)
WY

k (c)xn−k . (4.6)

Remark 4.1 For x = 0, (4.6) gives

En(−cp) = WY
n (c),

where En(·) are the Apostol-Euler numbers.

For any α ∈ R, we have established an interconnection between higher order prob-
abilistic Fubini polynomials and the generalized Apostol-Euler polynomials of the
following form

En(α,−cp; x) =
n∑

k=0

(
n

k

)
WY

k (c;α)xn−k,

where En(α,−cp; x) are the generalized Apostol-Euler polynomials defined via the
exponential generating function as (see [4])

etx

(1 + c (et − 1))α
=

∞∑

n=0

En(α, c; x) t
n

n! .

5 Probabilistic Fubini Numbers and Its Determinant Expressions

Recently, the determinant expressions of several polynomials and numbers are
obtained in the literature. Komatsu [27] and Glaisher [12] studied the determinant
expressions for the Cauchy polynomials, Bernoulli numbers and the Euler numbers.
The following theorem provides a determinant expression for a sequence of the real
numbers.
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Theorem 5.1 (Komatsu [26]) Let 〈 f (n)〉n∈N be a sequence with f (0) = 1 and let
w(k) be an arbitrary function independent of n. Then

f (n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w(1) 1 0 0 · · · 0

w(2) w(1) 1 0 · · · 0

w(3) w(2) w(1) 1 · · · 0

...
...

...
...

. . .
...

w(n − 1) w(n − 2) w(n − 3) w(n − 4) · · · 1

w(n) w(n − 1) w(n − 2) w(n − 3) · · · w(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if and only if

f (n) =
n∑

k=1

(−1)k−1w(k) f (n − k) with n ≥ 1. (5.1)

Also, function w(k) is expressed as

w(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (1) 1 0 0 · · · 0

f (2) f (1) 1 0 · · · 0

f (3) f (2) f (1) 1 · · · 0

...
...

...
...

. . .
...

f (k − 1) f (k − 2) f (k − 3) f (k − 4) · · · 1

f (k) f (k − 1) f (k − 2) f (k − 3) · · · f (1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.2)

The following lemma (see [26, 27, 31]) will be used to obtain the explicit expression
for sequence of the probabilistic Fubini numbers.

Lemma 5.1 Let A be a square matrix of order (k + 1) defined by

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

f (1) 1 · · · 0
...

...
. . .

...

f (k) f (k − 1) · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Also, inverse of A is given by

A−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

w(1) 1 · · · 0
...

...
. . .

...

w(k) w(k − 1) · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using Trudi’s formula (see [26, 31]), the combinatorial expression of sequence f (n)

is obtained. It has the following combinatorial form

f (n) =
∑

l1+2l2+···+nln=n

(
l1 + · · · + ln
l1, . . . , ln

)
(−1)n−l1−···−lnw(1)l1w(2)l2 · · · w(n)ln ,

where
(l1+···+ln
l1,...,ln

)
are multinomial coefficients and li ’s stand for the numbers of blocks

with i elements while partitioning a set with n elements.

In the next result, we obtain a determinant expression to the probabilistic Fubini
numbers andpresent a combinatorial sum formula for the probabilistic Fubini numbers.

Theorem 5.2 For n ≥ 1, we have

WY
n = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

EY
1! 1 0 0 · · · 0

−EY 2

2!
EY
1! 1 0 · · · 0

EY 3

3! −EY 2

2!
EY
1! 1 · · · 0

...
...

...
...

. . .
...

(−1)n−2 EYn−1

(n−1)! (−1)n−3 EYn−2

(n−2)! (−1)n−4 EYn−3

(n−3)! (−1)n−5 EYn−4

(n−4)! · · · 1

(−1)n−1 EYn

n! (−1)n−2 EYn−1

(n−1)! (−1)n−3 EYn−2

(n−2)! (−1)n−4 EYn−3

(n−3)! · · · EY
1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.3)
Moreover, it has a explicit combinatorial expression of the form

WY
n = n!

∑

l1+2l2+···+nln=n

(
l1 + · · · + ln
l1, . . . , ln

) (
EY

1!
)l1 (

EY 2

2!
)l2

· · ·
(
EYn

n!
)ln

. (5.4)
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Proof Simplifying the recurrence relation obtained in Proposition 2.3 for x = 1, we
get

WY
n

n! =
n∑

k=1

EY k

k!
WY

n−k

(n − k)! . (5.5)

Observe that (5.5) has a similar expression as (5.1) with

f (n) = WY
n

n! and w(k) = (−1)k−1EY
k

k! . (5.6)

Using Theorem 5.1, the required determinant expression (5.3) can be obtained.
From (5.6), we also have

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
EY
1! 1 0 0 · · · 0

−EY 2

2!
EY
1! 1 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

w(n − 1) w(n − 2) w(n − 3) w(n − 4) · · · 0

w(n) w(n − 1) w(n − 2) w(n − 3) · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
WY

1
1! 1 0 0 · · · 0
WY

2
2!

WY
1
1! 1 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

WY
n−1

(n−1)!
WY

n−2
(n−2)!

WY
n−3

(n−3)!
WY

n−4
(n−4)! · · · 0

WY
n
n!

WY
n−1

(n−1)!
WY

n−2
(n−2)!

WY
n−3

(n−3)! · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, using Lemma 5.1 and the Trudi’s formula (see [26, 31]), we get the required
combinatorial interpretation of the probabilistic Fubini numbers. 	

For degenerate rv Y at 1, we get the combinatorial interpretation of the Fubini numbers
as (see [26])

Wn = n!
∑

l1+2l2+···+nln=n

(
l1 + · · · + ln
l1, . . . , ln

) (
1

1!
)l1 (

1

2!
)l2

· · ·
(
1

n!
)ln

.

Example 5.1 Suppose Y follows standard exponential distribution. Then, using (5.3)
and (5.6), we get

123



A Probabilistic Extension... Page 21 of 23 102

(−1)n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

WY
1
1! 1 0 0 · · · 0

WY
2
2!

WY
1
1! 1 0 · · · 0

WY
3
3!

WY
2
2!

WY
1
1! 1 · · · 0

...
...

...
...

. . .
...

WY
n−1

(n−1)!
WY

n−2
(n−2)!

WY
n−3

(n−3)!
WY

n−4
(n−4)! · · · 1

WY
n
n!

WY
n−1

(n−1)!
WY

n−2
(n−2)!

WY
n−3

(n−3)! · · · WY
1
1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Also, from (5.4), we have weighted sum of multinomial coefficients as

WY
n = n!

∑

l1+2l2+···+nln=n

(
l1 + · · · + ln
l1, . . . , ln

)
.
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