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Abstract
This paper deals with various cases of resonance, which is a fundamental concept of
science and engineering. Specifically, we study the connections between periodic and
unbounded solutions for several classes of equations and systems. In particular, we
extend the classical Massera’s theorem, dealing with periodic systems of the type

x ′ = A(t)x + f (t),

and clarify that this theoremdealswith a case of resonance. Thenwe provide instability
results for the corresponding semilinear systems, with the linear part at resonance.
We also use the solution curves developed previously by the author to establish the
instability results for pendulum-like equations, and for first-order periodic equations.
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1 Introduction

We consider equations and systems at resonance. A textbook example of resonance
involves an equation like

x ′′(t) + x(t) = sin t .

All solutions of the corresponding homogeneous equation are bounded, while the
periodic forcing term produces an unbounded response. A similar situation occurs for
(t > 0)
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x ′′(t) + x ′(t) = 1 + sin t .

This is also a case of resonance, for which we shall consider nonlinear perturbations,
involving pendulum-like equations, and study both periodic and unbounded solutions.
We shall also deal with the resonance for first order periodic equations and systems,
particularly in the context of Massera’s theorem.

Consider a system with an n × n p-periodic matrix A(t) and a p-periodic vector
f (t) ∈ Rn

x ′ = A(t)x + f (t), (1.1)

and the corresponding homogeneous system

x ′ = A(t)x . (1.2)

The famous theorem of J.L. Massera [14] says: if (1.1) has a bounded solution
(||x(t)|| ≤ c uniformly in t > 0), then it has a p-periodic solution. The original
statement of Massera’s theorem is very intriguing, but it appears to be not easy to
use. Indeed, if one manages to construct an explicit bounded solution of a periodic
system, chances are that solution is already periodic. We shall deal with the following
contraposition form of Massera’s theorem.

Theorem 1.1 (Massera [14]) If (1.1) has no periodic solution, then all of its solutions
are unbounded as t → ∞. Moreover, (1.2) has a p-periodic solution.

This form appears to be more natural. In particular, it becomes clear that Massera’s
theorem deals with a case of resonance, and that this classical theorem admits a natural
extension to a rather complete result, with detailed description of the dynamics of (1.1),
see Theorem 2.1.

When studying equations with periodic coefficients a natural first step is to investi-
gate the existence of periodic solutions. What could be the second step? Traditionally,
one studies the stability of periodic solutions, see e.g., B.P. Demidovič [7]. Motivated
by the second Massera’s theorem, see e.g., p. 203 in [8] (or R. Ortega [15] for a
detailed presentation), G. Seifert [16] and J.M. Alonso and R. Ortega [1] showed that
in case periodic solutions are absent, one can prove that all solutions are unbounded
for equations at or near resonance. We present similar instability results for semilinear
perturbations of linear systems:

x ′ + A(t)x + f (x) = g(t), (1.3)

in case the Landesman–Lazer type condition is violated (rather than the Lazer-Leach
condition used in [1, 16] and [6]). In the process we develop some results on periodic
solutions of (1.3).

For a class of pendulum-like equations of the type

x ′′(t) + λx ′(t) + g(x) = f (t),
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with periodic f (t), and for similar first order equations, we relied on a detailed descrip-
tion of the curves of periodic solutions developed in Korman [9, 10], to get conditions
that are both necessary and sufficient for the existence of periodic solutions at res-
onance. Again, we obtained instability results in case periodic solutions are absent.
We showed on an example how our results lead to an exhaustive description of the
dynamics, supporting our findings with rather non-standard numerical computations.

We summarize. There are a number of situations when conditions that are both
necessary and sufficient are available for the existence of periodic solutions. In case
such conditions are violated, we show that all solutions are unbounded, thus extending
the previous work of Seifert [16], Alonso and Ortega [1], and Boscaggin et al [3].
Classical Massera’s theorem was extended, placed in a broader context, and shown to
fit the same pattern.

2 An Extension of Massera’s Theorem

To motivate the discussion, we begin with a simple case of a single equation

x ′(t) + a(t)x(t) = f (t), (2.1)

with continuous p-periodic functions a(t) and f (t), so that a(t + p) = a(t) and
f (t + p) = f (t) for some p > 0, and all t . Write its general solution as

x(t) = 1

μ(t)
c + 1

μ(t)

∫ t

0
μ(s) f (s) ds, (2.2)

where μ(t) = e
∫ t
0 a(s) ds , and c is an arbitrary constant. This formula shows that the

dynamics is simple in case
∫ p
0 a(s) ds �= 0. Then there exists a unique p-periodic

solution that attracts all other solutions as t → ∞ if
∫ p
0 a(s) ds > 0, and as t → −∞,

in case
∫ p
0 a(s) ds < 0, see e.g., [8] for the details. More interesting is the case

∫ p

0
a(s) ds = 0, (2.3)

when the corresponding homogeneous equation

x ′ + a(t)x = 0

has p-periodic solutions x(t) = c
μ(t) , where μ(t) is p-periodic. There are two cases.

If
∫ p
0 μ(s) f (s) ds = 0 then clearly all solutions of (2.1) are p-periodic. In case∫ p

0 μ(s) f (s) ds �= 0, all solutions are unbounded as t → ±∞ (just consider x(mp)
with m → ±∞, and observe that x(mp) − x(0) = m

∫ p
0 μ(s) f (s) ds, by the peri-

odicity of μ(t) and f (t)). So that the condition (2.3) presents a full fledged case of
resonance, even though the Eq. (2.1) is of first order.
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We consider now a p-periodic system

x ′ = A(t)x + f (t), (2.4)

and the corresponding homogeneous system

x ′ = A(t)x . (2.5)

We assume that the n × n matrix A(t) and the vector f (t) ∈ Rn have continuous
entries, and A(t + p) = A(t), f (t + p) = f (t) for some p > 0 and all t . If X(t)
is the fundamental solution matrix of (2.5), then the solution of (2.5) satisfying the
initial condition x(0) = x0 is

x(t) = X(t)x0.

For the non-homogeneous system (2.4), the solution satisfying the initial condition
x(0) = x0, and denoted by x(t, x0), is given by

x(t) = X(t)x0 + X(t)
∫ t

0
X−1(s) f (s) ds. (2.6)

The homogeneous system (2.5) has a p-periodic solution, with x(p) = x(0), provided
that the n × n system of linear equations

(I − X(p)) x0 = 0 (2.7)

has a non-trivial solution x0. Define the vector

b = X(p)
∫ p

0
X−1(s) f (s) ds. (2.8)

The non-homogeneous system (2.4) has a p-periodic solution, with x(p) = x(0),
provided that the system

(I − X(p)) x0 = b (2.9)

has a solution x0. If (2.4) has no p-periodic solutions, then the system (2.9) has no
solution, so that the matrix I − X(p) is singular. Then (2.7) has non-trivial solutions,
and (2.5) has a p-periodic solution. This justifies the extra claim ofMassera’s Theorem
1.1.

In the theorem below we shall assume that the homogeneous system (2.5) has a
p-periodic solution. Then the matrix X(p) has an eigenvalue 1, and the spectral radius
of X(p) is ≥ 1 (recall that the spectral radius ρ(X(p)) = max |λi |, maximum taken
over all eigenvalues of X(p)).
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Theorem 2.1 Assume that the homogeneous system (2.5) has a p-periodic solution
(so that the matrix I − X(p) is singular). Let the vector b be defined by (2.8).
Case 1. b does not belong to the range of I − X(p). Then all solutions of (2.4) are
unbounded as t → ∞. (The classical Massera’s Theorem 1.1.)
Case 2. b belongs to the range of I − X(p). Then (2.4) has infinitely many p-periodic
solutions. Further sub-cases are as follows.
(i) If moreover ρ(X(p)) > 1, then (2.4) has also unbounded solutions.
(ii) Assume that ρ(X(p)) = 1, and λ = 1 is the only eigenvalue of X(p) on the unit
circle |λ| = 1, and it has as many linearly independent eigenvectors as its multiplicity
(i.e., the the Jordan block corresponding to λ = 1 is diagonal). Then every solution
of (2.4) approaches (orbitally) one of its p-periodic solutions, as t → ∞.
(iii) Suppose that ρ(X(p)) = 1, and there are other eigenvalues of X(p) on the unit
circle |λ| = 1, in addition to λ = 1. Assume that all eigenvalues of X(p) on the unit
circle |λ| = 1 have diagonal Jordan blocks. Then all solutions of (2.4) are bounded,
as t → ∞.

Proof Let x(t) be any solution of (2.4), represented by (2.6). We shall consider the
iterates x(mp), where m is a positive integer. With b as defined by (2.8)

x(p) = X(p)x0 + b.

By periodicity, x(t + p) is also a solution of (2.4), which is equal to x(p) at t = 0.
Using (2.6) again

x(t + p) = X(t)x(p) + X(t)
∫ t

0
X−1(s) f (s) ds.

Then

x(2p) = X(p)x(p) + b = X(p) (X(p)x0 + b) + b = X2(p)x0 + X(p)b + b.

By induction, for any integer m > 0,

x(mp) = Xm(p)x0 +
m−1∑
k=0

Xk(p)b. (2.10)

Case 1. Assume that b does not belong to the range of I − X(p). Then the linear
system (2.9) has no solutions. Since det (I − X(p))T = det (I − X(p)) = 0, it
follows that the system

(I − X(p))T v = 0 (2.11)

has non-trivial solutions, and we claim that it is possible to find a non-trivial solution
v0 of (2.11) for which the scalar product with b satisfies

(b, v0) �= 0. (2.12)
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Indeed, assuming otherwise, b would be orthogonal to the null-space of (I − X(p))T ,
and then the linear system (2.9) would be solvable by the Fredholm alternative, a
contradiction. From (2.11), v0 = X(p)T v0, then X(p)T v0 = X2(p)T v0, which gives
v0 = X2(p)T v0, and inductively we get

v0 = Xk(p)T v0, for all positive integers k. (2.13)

Then by (2.10)

(x(mp), v0) = (
Xm(p)x0, v0

) +
m−1∑
k=0

(Xk(p)b, v0)

= (x0, X
m(p)T v0) +

m−1∑
k=0

(b, Xk(p)T v0) = (x0, v0) + m(b, v0) → ∞,

as m → ∞, in view of (2.12).
Case 2. Assume now that b belongs to the range of I − X(p). Then the linear

system (2.9) has a solution denoted by x̄0, and x(t, x̄0) is a p-periodic solution of
(2.4). Adding to it non-trivial solutions of the corresponding homogeneous system
(2.5) produces infinitely many p-periodic solutions of (2.4).

Turning to the sub-cases, from (2.9)

x̄0 = X(p)x̄0 + b. (2.14)

Then

x̄0 = X(p) (X(p)x̄0 + b) + b = X2(p)x̄0 + X(p)b + b.

Continuing to use the latest expression for x̄0 in (2.14), obtain inductively

x̄0 = Xm(p)x̄0 +
m−1∑
k=0

Xk(p)b,

so that
∑m−1

k=0 Xk(p)b = x̄0 − Xm(p)x̄0. Using this in (2.10), obtain

x(mp) = x̄0 + Xm(p) (x0 − x̄0) . (2.15)

In case ρ(X(p)) > 1 (the sub-case (i)), we can choose a vector x0 to make x(mp)
unbounded, producing an unbounded solution of (2.4) (choose x0 − x̄0 to be an
eigenvector of X(p) corresponding to an eigenvalue λ, with |λ| > 1).

In the sub-case (ii), assume for simplicity that X(p) has a complete set of eigenvec-
tors z1, z2, . . . , zk, . . . , zn , with z1, z2, . . . , zk corresponding to the eigenvalue λ = 1
ofmultiplicity k < n, and the other eigenvectors corresponding to the eigenvalues with
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|λ| < 1. Decomposing x0 − x̄0 = ∑n
i=1 ci zi , obtain (since |λ| < 1 for all eigenvalues

other than λ = 1)

Xm(p) (x0 − x̄0) →
k∑

i=1

ci zi ≡ y,

where y is an eigenvector of X(p) corresponding to the eigenvalue λ = 1. It follows
by (2.15) that for any x0, x(mp, x0) → x̄0+ y, and x(t, x̄0+ y) is one of the p-periodic
solutions of (2.4). By continuous dependence on initial conditions, x(t, x0) stays close
to the orbit of x(t, x̄0 + y) over the interval t ∈ (mp, (m + 1)p). Taking m large, one
sees that x(t, x0) gets arbitrarily close to the p-periodic solution x(t, x̄0 + y), for t
large. For the general case, one uses the Jordan normal form of X(p), replacing the
eigenvectors corresponding to |λ| < 1 with the generalized eigenvectors.

In the sub-case (iii), similar arguments show that the sequence {x(mp)} is bounded
for any solution x(t) of (2.4). We claim that then x(t) is bounded. Indeed, solutions
of (2.4) can have only a limited change over one period, by continuity, so that an
unbounded solution cannot have the sequence {x(mp)} bounded. 
�

The assumption of Theorem2.1 that the homogeneous system (2.5) has a p-periodic
solution can be seen as a case of resonance. The complementary case when (2.5) does
not have a p-periodic solution is easy. Then the matrix I − X(p) is non-singular, and
hence the non-homogeneous system (2.4) has a unique p-periodic solution for any
f (t). The difference of any two solutions of (2.5) satisfies (2.4), and therefore this
p-periodic solution is stable if ρ (X(p)) < 1, and unstable if ρ (X(p)) > 1.

3 Instability for a Class of First Order Equations

We now consider nonlinear perturbations of first order equations

x ′ + a(t)x + g(x) = f (t), (3.1)

with g(x) ∈ C1(R), and a(t), f (t) ∈ C(R), satisfying a(t+ p) = a(t) and f (t+ p) =
f (t) for all t , and some p > 0. We assume that

∫ p

0
a(t) dt = 0, (3.2)

so that the linear part of this equation is at resonance. Again, we denote μ(t) =
e
∫ t
0 a(s) ds , which by (3.2) is a p-periodic function. The nonlinear term g(x) is assumed

to satisfy a condition of E.M. Landesman and A.C. Lazer [12]: the limits g(∞) and
g(−∞) exist and

g(−∞) < g(x) < g(∞), for all x ∈ (−∞,∞). (3.3)
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Theorem 3.1 Assume that (3.2) and (3.3) hold. The equation (3.1) has a p-periodic
solution if and only if f (t) satisfies

g(−∞)

∫ p

0
μ(t) dt <

∫ p

0
μ(t) f (t) dt < g(∞)

∫ p

0
μ(t) dt . (3.4)

If in addition to (3.2), (3.3) and (3.4)

g′(x) > 0, for all x ∈ R, (3.5)

then the equation (3.1) has a unique p-periodic solution that attracts all other solutions
as t → ∞.

If the conditions (3.2) and (3.3) hold, but (3.4) fails, then all of the solutions of (3.1)
are unbounded as t → ∞, and as t → −∞.

Proof Let x(t) be a p-periodic solution of (3.1). Multiply (3.1) by the p-periodic
μ(t) > 0, then integrate over (0, p). Integrate by parts, using that μ′ = μa(t) and
μ(0) = μ(p) = 1, to obtain

∫ p

0
g(x)μ(t) dt =

∫ p

0
f (t)μ(t) dt . (3.6)

It follows that (3.4) holds, in view of (3.3).
Conversely, assume that (3.4) holds. The existence of p-periodic solution of (3.1)

will follow by a simple fixed point argument. Indeed, write solutions of (3.1) as

x(t) = 1

μ(t)
x(0) + 1

μ(t)

[∫ t

0
μ(s) f (s) ds −

∫ t

0
g(x(s))μ(s) ds

]
.

Observe that a(t) is bounded from above and from below by continuity, and the same
is true for μ(t) by periodicity. Hence if A > 0 is large, then x(t, A) is large for
all t ∈ (0, p). Then g(x(t)) is close to g(∞), and the term in the square bracket is
negative, and hence x(p, A) < A. Similarly, x(p,−A) > −A, for A > 0 large. It
follows that the continuous Poincaré map x0 → x(p, x0) takes the interval (−A, A)

into itself. There exists a fixed point, leading to a p-periodic solution.
Assume now that the condition (3.4) fails. Assume for definiteness that

∫ p

0
μ(t) f (t) dt ≥ g(∞)

∫ p

0
μ(t) dt, (3.7)

and the case when
∫ p
0 μ(t) f (t) dt ≤ g(−∞)

∫ p
0 μ(t) dt is similar. Let x(t) be any

solution of (3.1). Multiply (3.1) by the p-periodicμ(t) > 0, then integrate over (0, p).
Since x(t) is no longer assumed to be periodic, integration by parts produces two extra
terms. Similarly to (3.6) obtain
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x(p) − x(0) = ∫ p
0 f (t)μ(t) dt − ∫ p

0 g(x(t))μ(t) dt (3.8)

>
∫ p
0 f (t)μ(t) dt − g(∞)

∫ p
0 μ(t) dt ≡ α ≥ 0.

Assume first that α > 0, i.e., the inequality in (3.7) is strict. Then

x(p) − x(0) > α > 0.

Apply a similar argument on [p, 2p], and use the periodicity of μ(t) and f (t) to get

x(2p) − x(p) > α > 0.

so that x(2p) − x(0) > 2α. Then x(mp) − x(0) > mα for any integer m > 0, and
hence x(t) is unbounded. In case α = 0, we have x(p) − x(0) > 0 from (3.8), so that
the Poincaré map x(0) → x(p, x(0)) satisfies x(p, x(0)) > x(0) for all x(0) ∈ R.
The increasing sequence {x(mp)} has to go to infinity, since otherwise it would have
to converge to a limit, which is a fixed point of the Poincaré map. But fixed points are
not possible for a map that takes any number into a larger one.

Assume finally that (3.2), (3.3), (3.4) and (3.5) hold. By above, there is a p-periodic
solution of (3.1), call it y(t). Let x(t) be any other solution of (3.1), and set z(t) =
x(t) − y(t). By the mean value theorem z(t) satisfies a linear equation

z′ + b(t)z = 0,

with p-periodic b(t) = a(t) + ∫ 1
0 g′ (sx(t) + (1 − s)y(t)) ds > a(t), so that∫ p

0 b(s) ds > 0. It follows that z(t) → 0, as t → ∞. In particular, this implies
that the periodic solution y(t) is unique, and it attracts all other solutions as t → ∞.


�
The argument we gave above for the case α = 0 could be replaced by using the

following result of Alonso and Ortega [1] (the Corollary 2.3 in [1]).

Proposition 3.1 ([1]) Consider a difference equation on a finite dimensional Banach
space X:

ξn+1 = F (ξn) , n ≥ 0,

where F : X → X is a continuous operator. If there exists a continuous functional V
satisfying

V (F(ξ)) > V (ξ), ∀ξ ∈ X ,

then limn→∞ ||ξn|| = ∞.

Example Consider an equation with the linear part at resonance

x ′(t) + sin t x(t) + 2

π
tan−1 x(t) = ν + sin t, (3.9)

123



107 Page 10 of 18 P. Korman

Fig. 1 The curve of 2π periodic solutions of (3.9), with their averages ξ drawn versus ν, the average of the
forcing term

where ν is a parameter.Here p = 2π , a(t) = sin t , f (t) = ν+sin t , g(x) = 2
π
tan−1 x ,

so that g(−∞) = −1 and g(∞) = 1, with g′(x) > 0. Calculate μ(t) = e1−cos t ,∫ 2π
0 μ(t) f (t) dt = ν

∫ 2π
0 μ(t) dt . The condition (3.4) becomes

−1 < ν < 1.

Theorem 3.1 leads to the following conclusion: If ν ∈ (−1, 1) the equation (3.9) has a
unique 2π -periodic solution that attracts all of its other solutions as t → ∞. If ν ≥ 1
or ν ≤ −1, then all solutions of (3.9) are unbounded, both as t → ∞ and as t → −∞.

It turns out that 2π -periodic solutions of (3.9) tend to infinity as ν → ±1, see the
Fig. 1. In that figure ξ is the average of 2π -periodic solutions x(t), so that x(t) =
ξ + X(t), with

∫ 2π
0 X(t) dt = 0 (see the Theorem 5.3 below.) We used a modification

of the Mathematica program presented and explained in [11].
We thus obtained an exhaustive description of the dynamics of (3.9), easily

confirmed by numerical experiments.

Remark Suppose that the condition (3.4) holds, but (3.5) does not. Then the equation
(3.1) has a p-periodic solution, but the asymptotic behavior of other solutions is an
open problem.

4 Unbounded Solutions for a Class of Systems

We recall some basic results on linear periodic systems. Consider the adjoint system
for the homogeneous p-periodic system (2.5)

z′ = −AT (t)z, (4.1)
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where AT denotes the transpose. The following two lemmas canbe found inDemidovič
[7]. We include slightly simpler proofs for completeness.

Lemma 4.1 If the system (2.5) has a non-trivial p-periodic solution, then so does (4.1).

Proof Let X(t) be again the fundamental solution matrix of (2.5). We are given that
X(p) has an eigenvalue λ = 1. Recall that

X ′ = A(t)X . (4.2)

Let Z(t) be the fundamental solution matrix of (4.1), so that

Z ′ = −AT (t)Z . (4.3)

We claim that Z = Y−1(t), where Y (t) = XT (t), i.e., Z = (
XT

)−1
. Indeed, using

that Z ′ = −Y−1Y ′Y−1 (differentiate YY−1 = I , or see e.g., p. 5 in R. Bellman [2]),
in order to justify that Z satisfies (4.3) the following equivalent statements must hold:

−Y−1Y ′Y−1 = −AT Y−1,

−Y−1Y ′ = −AT ,

Y ′ = Y AT ,(
XT

)′ = XT AT ,

X ′ = AX ,

which is (4.2), proving the claim. The eigenvalues of Y (p) are the same as those of
X(p), so that one of them is λ = 1. The eigenvalues of Z(p) are the reciprocals of
those of Y (p), so that one of them is λ = 1, and the system (4.1) has a p-periodic
solution. 
�
Lemma 4.2 Assume that the homogeneous system (2.5) has a p-periodic solution.
Then the non-homogeneous system (2.4) has a p-periodic solution if and only if the
integral of scalar product

∫ p

0
f (t) · z(t) dt = 0, (4.4)

for every p-periodic solution z(t) of (4.1).

Proof Let x(t) and z(t) be p-periodic solutions of (2.4) and (4.1) respectively. To
prove the necessity part, multiply the equation i of (2.4) by zi , the equation i of (4.1)
by xi , add the equations, and sum in i (or just take the scalar product of (2.4) and
(4.1)). Then integrate, and use the periodicity of solutions to obtain:

∫ p

0
f (t) · z(t) dt =

∫ p

0

[
Ax · z − x · AT z

]
dt = 0.
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Turning to the sufficiency part, any p-periodic solution of (4.1) can be written as
z(t) = Z(t)z0, where z0 satisfies

[I − Z(p)] z0 =
[
I −

(
XT

)−1
(p)

]
z0 = 0,

which can be written as

zT0 X(p) = zT0 , (4.5)

or as
(
I − XT (p)

)
z0 = 0. (4.6)

We are given that (4.4) holds, which can be written as

0 =
∫ p

0
(Z(t)z0)

T f (t) dt = zT0

∫ p

0
X−1(t) f (t) dt . (4.7)

Since the system (2.5) has a p-periodic solution, both (2.7) and (4.6) have non-trivial
solutions. In order for (2.4) to have a p-periodic solution, the system of equations (2.9)
has to be solvable, which requires that the vector b defined in (2.8) must be orthogonal
to any solution z0 of (4.6). Using (4.5) and (4.7), obtain

b · z0 = zT0 b = zT0 X(p)
∫ p

0
X−1(t) f (t) dt = zT0

∫ p

0
X−1(t) f (t) dt = 0.

completing the proof. 
�
We wish to extend the Theorem 3.1 to systems. This can be done in a number

of ways. For example, a recent paper of A. Boscaggin et al [3] considered coupled
harmonic oscillators, each one at resonance. They show that solutions are unbounded
if a condition of A.C. Lazer and D.E. Leach [13] type is violated. We shall obtain
a straightforward extension of the Theorem 3.1 (which used a condition of E.M.
Landesman and A.C. Lazer [12]) provided that the adjoint system (4.1) has a positive
p-periodic solution, and give a condition for that to happen.

We consider bounded nonlinear perturbations of linear systems

x ′ + A(t)x + f (x) = g(t). (4.8)

(Thenotation is slightly changed compared toSection3.)Here ann×nmatrix A(t), and
g(t) ∈ Rn have continuous p-periodic entries, the unknown vector x = x(t) ∈ Rn ,

f (x) =
⎡
⎢⎣

f1(x)
...

fn(x)

⎤
⎥⎦
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is a continuous vector function. We assume that the linear part is at resonance, so that
both

x ′ + A(t)x = 0, (4.9)

and

z′ − AT (t)z = 0 (4.10)

have non-trivial p-periodic solutions, and moreover that z(t) > 0 componentwise
(zi (t) > 0 for all i). The components of the vector f (x) are assumed to satisfy

αi < fi (x) < βi , for all x ∈ Rn, and all i, (4.11)

with 2n given constants αi , βi .

Theorem 4.1 Assume that the adjoint system (4.10) has a positive p-periodic solution
z(t), and (4.11) holds. Then the system (4.8) may have a p-periodic solution only if

n∑
i=1

αi

∫ p

0
zi (t) dt <

∫ p

0
g(t) · z(t) dt <

n∑
i=1

βi

∫ p

0
zi (t) dt . (4.12)

In case this condition fails, then all solutions of (4.8) are unbounded as t → ±∞.

Proof If x(t) is a p-periodic solution of (4.8), then f (x(t)) is a p-periodic function.
Applying Lemma 4.2 obtain

∫ p

0
f (x(t)) · z(t) dt =

∫ p

0
g(t) · z(t) dt,

from which (4.12) follows, since z(t) > 0.
Assume now that the condition (4.12) fails. Suppose for definiteness that

n∑
i=1

αi

∫ p

0
zi (t) dt ≥

∫ p

0
g(t) · z(t) dt .

Multiply the equation i in (4.8) by zi (t), integrate over (0, p) then add up in i .
Integrating by parts, and using p-periodicity of z(t) and (4.11), obtain

n∑
i=1

zi (0) [xi (p) − xi (0)] =
∫ p

0
g(t) · z(t) dt −

∫ p

0
f (x) · z(t) dt

<

∫ p

0
g(t) · z(t) dt −

n∑
i=1

αi

∫ p

0
zi (t) dt ≤ 0.
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So that

−
n∑

i=1

zi (0)xi (p) > −
n∑

i=1

zi (0)xi (0).

(In effect, we took the scalar product of (4.8) with z, and integrated.)We now apply the
Proposition 3.1, with X = Rn , the Poincaré map F : x(0) → x(p), and the functional
V (x(t)) = −∑n

i=1 zi (0)xi (t) to conclude the unboundness of the sequence {x(mp)}.

�

Remark We do not know if the conditions (4.11) and (4.12) are sufficient for the
existence of p-periodic solutions of (4.8). As mentioned in A. Boscaggin et al [3], few
existence results are known for semilinear periodic systems.

To give a condition for (4.10) to have a positive p-periodic solution we need the
following lemma.

Lemma 4.3 Assume that B(t) is a continuous n × n matrix with positive off diagonal
entries for all t > 0, and ei ∈ Rn has the entry i equal to one, and the other entries
are zero. Then solution of

y′ = B(t)y, y(0) = ei (4.13)

satisfies y(t) > 0 for all t > 0, and all i = 1, 2, . . . , n.

Proof We can find a constant matrix B0 with positive off diagonal entries, such that
B(t) > B0 for small t . It is well known that solutions of

x ′ = B0x, x(0) = ei

are positive for all t > 0, see e.g., p. 176 in R. Bellman [2]. Since y(t) > x(t)
componentwise, it follows that y(t) > 0 for small t . At the first t0 where yk(t0) = 0
for some k, there is a contradiction in the k-th equation of (4.13) at t = t0, since
y′
k(t0) > 0 from (4.13). Hence, y(t) > 0 for all t > 0. 
�
Proposition 4.1 Assume that off diagonal entries of a p-periodic matrix A(t) are
positive, and the spectral radius ρ(Z(p)) = 1. Then (4.10) has a positive p-periodic
solution.

Proof By Lemma 4.3 the fundamental matrix Z(p) of (4.10) has positive entries.
By the Perron-Frobenius theorem the largest in absolute value eigenvalue of Z(p) is
positive, and since ρ(Z(p)) = 1, it is λ = 1, and the corresponding eigenvector ξ is
also positive. Then Z(t)ξ gives positive p-periodic solution of (4.10). 
�

For the 2 × 2 case we give conditions that appear easier to check.

Proposition 4.2 Assume that A(t) is a p-periodic 2 × 2 matrix with a12(t) > 0 and
a21(t) > 0 for all t , and

∫ p
0 [a11(t) + a22(t)] dt ≤ 0. Finally, assume that Z(p) has

an eigenvalue λ = 1. Then (4.10) has a positive p-periodic solution.
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Proof By Lemma 4.3 the fundamental matrix Z(p) of (4.10) has positive entries. If
λ1 and λ2 are the eigenvalues of Z(p), then λ1 = 1, and by Liouville’s formula, see
e.g., p. 212 in [8],

0 < Det X(p) = λ1λ2 = e
∫ p
0 [a11(t)+a22(t)] dt ≤ 1,

so that 0 ≤ λ2 ≤ 1. By the Perron-Frobenius theorem 0 ≤ λ2 < 1, and the eigenvector
ξ corresponding to λ1 = 1 is positive. Then Z(t)ξ gives a positive p-periodic solution
of (4.10). 
�

5 Solution Curves and Unboundness of Solutions

We now consider nonlinear perturbations of a second order periodic problem at
resonance

x ′′(t) + λx ′(t) + g(x) = f (t), (5.1)

with g(x) ∈ C1(R), and a(t), f (t) ∈ C(R), satisfying a(t+ p) = a(t) and f (t+ p) =
f (t) for all t and some p > 0, and a constant λ > 0. This pendulum-like equation
was studied previously in a number of papers, including J. Čepička et al [5], G.
Tarantello [17], A. Castro [4]. As mentioned above, the linear part of this equation
(when g(x) ≡ 0) is at resonance. Decompose f (t) = μ + e(t), with μ ∈ R and∫ p
0 e(t) dt = 0. Similarly, decompose the solution x(t) = ξ + X(t), with ξ ∈ R and∫ p
0 X(t) dt = 0. In view of the above decomposition, we may write (5.1) as

x ′′ + λx ′ + g(x) = μ + e(t). (5.2)

The following result we proved in [9].

Theorem 5.1 Assume that g(x) ∈ C1(R) is a bounded function (|g(x)| ≤ M for all
x ∈ R and some M > 0), and

|g′(x)| <
λ2

4
+ ω2, for all x ∈ R, whereω = 2π

p
. (5.3)

Then for any ξ ∈ R one can find a unique μ ∈ R for which the problem (5.2) has a
unique p-periodic solution. Moreover, all p-periodic solutions of (5.2) lie on a unique
continuous solution curve (μ, x(t))(ξ).

We now give an instability result based on the Landesman–Lazer [12] condition.

Theorem 5.2 In addition to the conditions of the Theorem 5.1 assume that the limits
at infinity g(±∞) exist, and

g(−∞) < g(x) < g(∞), for all x ∈ R. (5.4)
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Then the equation (5.2) has a p-periodic solution if and only if

g(−∞) < μ < g(∞). (5.5)

If the condition (5.5) fails, then all of the solutions of (5.2) are unbounded as t → ∞,
and as t → −∞.

Proof Let x(t) be a p-periodic solution of (5.4). Integrate the equation (5.2) over
(0, p):

μp =
∫ p

0
g(x(t)) dt . (5.6)

Then the necessity of the condition (5.5) follows by (5.4).
By the Theorem 5.1 there is a continuous solution curve (μ, x(t))(ξ) for ξ ∈ R.

Moreover, we showed in [9] that with x(t) = ξ + X(t), there is a uniform in ξ and
t bound on |X(t)|. It follows from (5.6) that μ → g(∞) (μ → g(−∞)) as ξ → ∞
(ξ → −∞). By the continuity of the solution curve, it follows that the condition (5.5)
is sufficient for the existence of p-periodic solution.

If the condition (5.5) fails, assume for definiteness that

μ ≥ g(∞). (5.7)

If x(t) is any solution of (5.2), integration of this equation gives

x ′(p) − x ′(0) + λ (x(p) − x(0)) = μp − ∫ p
0 g(x(t)) dt

> μp − g(∞)p ≥ 0,

so that x ′(p) + λx(p) > x ′(0) + λx(0). We now apply the Proposition 3.1, with
X = R2, the Poincaré map F : (

x(0), x ′(0)
) → (

x(p), x ′(p)
)
, and the func-

tional V
(
x(t), x ′(t)

) = x ′(t) + λx(t) to conclude the unboundness of the sequence
{x(mp), x ′(mp)}, proving the unboundness of solutions of (5.2). 
�

Similar results hold for first order periodic equations of the type

x ′(t) + g(x) = μ + e(t), (5.8)

with μ ∈ R, e(t) ∈ C(R), satisfying e(t + p) = e(t) for all t and some p > 0,
and

∫ p
0 e(t) dt = 0. As above, decompose the p-periodic solutions of (5.8) as x(t) =

ξ + X(t), with ξ ∈ R and
∫ p
0 X(t) dt = 0. The following lemma allows us to sharpen

Theorem 6.1 in [9], and the improved version is used in the proof of Theorem 5.3
below.

Lemma 5.1 Consider a linear periodic problem in the class of functions of zero
average

w′(t) + h(t)w(t) = μ, w(t + p) = w(t),
∫ p

0
w(t) dt = 0, (5.9)
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where h(t) ∈ C(R) is a given function of period p, and μ is a parameter. The only
solution of (5.9) is μ = 0 and w(t) ≡ 0.

Proof We claim that w(t) is of one sign. If μ = 0 this follows by the explicit solution.
If, say,μ > 0 andw(t) is a sign changing solution, then by the periodicity ofw(t) one
can find a point t0 such that w(t0) = 0 and w′(t0) ≤ 0, which contradicts the equation
(5.9). Since w(t) is of one sign and of zero average, w(t) ≡ 0, and then μ = 0 from
the equation (5.9). 
�
Theorem 5.3 Assume that g(x) ∈ C1(R), e(t) ∈ C(R) is p-periodic of zero average.
Then for any ξ ∈ R one can find a unique μ ∈ R for which the problem (5.8) has a
unique p-periodic solution. Moreover, all p-periodic solutions of (5.8) lie on a unique
continuous solution curve (μ, x(t))(ξ).

Proof Local properties of the solution curve, and the fact that ξ is a global parameter,
were proved in [9]. We show next that μ and x(t) are bounded, when ξ belongs to a
bounded set, so that the solution curve can be continued globally, for −∞ < ξ < ∞.
With x(t) = ξ + X(t), obtain

X ′(t) + g(ξ + X(t)) = μ + e(t), X(t + p) = X(t),
∫ p

0
X(t) dt = 0.

(5.10)

Multiply the equation in (5.10) by X ′ and integrate over (0, p). By periodicity of X(t)

∫ p

0
X ′2(t) dt =

∫ p

0
X ′(t)e(t) dt,

which gives a bound on
∫ p
0 X ′2(t) dt . (If G(u) denotes an antiderivative of g(u), then∫ p

0 g(ξ +X(t))X ′ dt = G(ξ +X(t))|p0 = 0.) ByWirtinger’s inequality obtain a bound
on

∫ p
0 X2(t) dt . With X(t) bounded in H1 norm, conclude a uniform bound on X(t),

and hence on x(t), by Sobolev embedding. From (5.8)

μ2 ≤ c0
(
X ′2(t) + g2(x(t)) + e2(t)

)
,

with some c0 > 0. Integrating over (0, p), obtain a bound on μ. 
�
For the equation (3.9), considered above, we computed the μ = μ(ξ) section of

the solution curve described in Theorem 5.3, and then plotted the inverse function
ξ = ξ(μ) to produce the Fig. 1. Theorem 5.3 can also be used to provide an alternative
proof of Theorem 3.1 (with extra information on the solution curve), similarly to
Theorem 5.2.

Based on Theorem 5.3 we have the following instability result. Its proof is omitted,
since it is similar to that of Theorem 5.2.

Theorem 5.4 In addition to the conditions of the Theorem 5.3 assume that the limits
at infinity g(±∞) exist, and the condition (5.4) holds. Then the equation (5.2) has a
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p-periodic solution if and only if the condition (5.5) holds. If the condition (5.5) fails,
then all of the solutions of (5.8) are unbounded as t → ∞.
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7. Demidovič, B.P.: Lectures on the Mathematical Theory of Stability. Izdat. Nauka, Moscow (1967).
((in Russian))

8. Korman, P.: Lectures on differential equations. AMS/MAA Textbooks 54, MAA Press, Providence,
RI, 2019

9. Korman, P.: A global solution curve for a class of periodic problems, including the pendulum equation.
Z. Angew. Math. Phys. ZAMP 58(5), 749–766 (2007)

10. Korman, P.: Global solution curves in harmonic parameters, and multiplicity of solutions. J. Differ.
Eq. 296, 186–212 (2021)

11. Korman, P., Schmidt, D.S.: Calculating global solution curves for boundary value problems,
Wolfram Notebook Archive, online: notebookarchive.org/calculating-global-solution-curves-for-
boundary-value-problems–2022-08-eb98nqk/

12. Landesman, E.M., Lazer, A.C.: Nonlinear perturbations of linear elliptic boundary value problems at
resonance. J. Math. Mech. 19, 609–623 (1970)

13. Lazer, A.C., Leach, D.E.: Bounded perturbations of forced harmonic oscillators at resonance. Ann.
Mat. Pura Appl. 82(4), 49–68 (1969)

14. Massera, J.L.: The existence of periodic solutions of systems of differential equations. Duke Math. J.
17, 457–475 (1950)

15. Ortega, R.: Periodic Differential Equations in the Plane. A topological perspective. De Gruyter Series
in Nonlinear Analysis and Applications, 29. De Gruyter, Berlin, 2019

16. Seifert, G.: Resonance in undamped second-order nonlinear equations with periodic forcing. Quart.
Appl. Math. 48(3), 527–530 (1990)

17. Tarantello, G.: On the number of solutions of the forced pendulum equations. J. Differ. Eq. 80, 79–93
(1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Periodic and Unbounded Solutions of Periodic Systems
	Abstract
	1 Introduction
	2 An Extension of Massera's Theorem
	3 Instability for a Class of First Order Equations
	4 Unbounded Solutions for a Class of Systems
	5 Solution Curves and Unboundness of Solutions
	References




