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Abstract
The problem of injective coloring in graphs can be revisited through two different
approaches: coloring the two-step graphs and vertex partitioning of graphs into open
packing sets, each of which is equivalent to the injective coloring problem itself.
Taking these facts into account, we observe that the injective coloring lies between
graph coloring and domination theory.Wemake use of these three points of view in this
paper so as to investigate the injective coloring of some well-known graph products.
We bound the injective chromatic number of direct and lexicographic product graphs
from below and above. In particular, we completely determine this parameter for the
direct product of two cycles. We also give a closed formula for the corona product of
two graphs.

Keywords Injective coloring · Open packing partitions · Two-step graphs · Vertex
coloring · Lexicographic product · Direct product · Strong product · Cartesian
product · Open packing · 2-Distance coloring

Mathematics Subject Classification 05C15 · 05C69 · 05C76

Communicated by Rosihan M. Ali.

B Babak Samadi
b.samadi@alzahra.ac.ir

Nasrin Soltankhah
soltan@alzahra.ac.ir

Ismael G. Yero
ismael.gonzalez@uca.es

1 Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran

2 Departamento de Matemáticas, Universidad de Cádiz, Algeciras Campus, Algeciras, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-024-01682-8&domain=pdf


86 Page 2 of 15 B. Samadi et al.

1 Introduction

Throughout this paper, we consider G as a finite simple graph with vertex set V (G)

and edge set E(G). The open neighborhood of a vertex v is denoted by NG(v), and its
closed neighborhood is NG [v] = NG(v) ∪ {v}. The minimum and maximum degrees
of G are denoted by δ(G) and �(G), respectively. Given the subsets A, B ⊆ V (G),
by [A, B], wemean the set of edges with one end point in A and the other in B. Finally,
for a given set S ⊆ V (G), by G[S] we represent the subgraph of G induced by S (that
is, the subgraph of G with vertex set S in which two vertices are adjacent if they are
adjacent in G). We use [30] as a reference for terminology and notation which are not
explicitly defined here.

1.1 Main Terminology

For all four standard products of graphs G and H (according to [10]), the vertex set
of the product is V (G) × V (H). Their edge sets are defined as follows.

• In the Cartesian product G�H , two vertices are adjacent if they are adjacent in
one coordinate and equal in the other.

• In the direct product G × H two vertices are adjacent if they are adjacent in both
coordinates.

• The edge set of the strong product G�H is the union of E(G�H) and E(G×H).
• Two vertices (g, h) and (g′, h′) are adjacent in the lexicographic product G ◦ H
if either gg′ ∈ E(G) or “g = g′ and hh′ ∈ E(H).”

Note that all these four products are associative, and only the first three ones are
commutative (see [10]).

Letting G and H be graphs and V (G) = {v1, . . . , vn}, the corona product G � H
of graphs G and H is obtained from the disjoint union of G and n disjoint copies of
H , say H1, . . . , Hn , such that the vertex vi ∈ V (G) is adjacent to every vertex of Hi

for all i ∈ {1, . . . , n}.
A function f : V (G) → {1, . . . , k} is an injective k-coloring function if no vertex

v is adjacent to two vertices u and w with f (u) = f (w). For such a function f , the
set of color classes

{{v ∈ V (G) | f (v) = i}}1≤i≤k is an injective k-coloring of G (or
simply an injective coloring if k is clear from the context). The minimum k for which
a graph G admits an injective k-coloring is the injective chromatic number χi (G) of
G. Injective colorings were introduced in [11], and further studied in [3, 17, 24, 27]
for just some examples.

Another approach to the injective coloring of graphs, which is indeed previous to
the idea of injective colorings, can be presented as follows. The two-step graphN (G)

of a graph G is the graph having the same vertex set as G with an edge joining two
vertices in N (G) if and only if they have a common neighbor in G. These graphs
were introduced in [1] and investigated later in [4, 8, 22]. Since a vertex subset S is
independent inN (G) if and only if every two vertices of S have no common neighbor
in G, we readily observe that

χi (G) = χ
(N (G)

)
, (1)
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in which χ is the well-known chromatic number. This exposition is centered into
giving some contributions to the injective coloring of graph products.

1.2 Related Concepts and Plan of the Article

This subsection is devoted to showing some strong relationships between the above-
mentioned concept and other ones related to domination theory. A subset S ⊆ V (G)

is a dominating set (resp. total dominating set) if each vertex in V (G)\S (resp. V (G))
has at least one neighbor in S. The domination number γ (G) (resp. total domination
number γt (G)) is the minimum cardinality among all dominating sets (resp. total
dominating sets) in G. For more information on domination theory, the reader can
consult [13, 14].

The study of distance coloring of graphs was initiated by Kramer and Kramer [20,
21] in 1969. A 2-distance coloring (or, 2DC for short) of a graph G is a mapping of
V (G) to a set of colors (nonnegative integers) by which any two vertices at distance at
most two receive different colors. The minimum number of colors k for which there
is a 2DC of G is called the 2-distance chromatic number χ2(G) of G.

By a χi (G)-coloring and a χ2(G)-coloring, we mean an injective coloring and a
2DC of G of cardinality χi (G) and χ2(G), respectively.

On the other hand, problems regarding vertex partitioning are classical in graph
theory. In fact, there are many different ways for such partitioning into sets satisfying
a specific property. For instance, when dealing with “domination” (resp. “total dom-
ination”), the problem of finding the maximum cardinality of a vertex partition of a
graphG into dominating sets (resp. total dominating sets) has beenwidely investigated
in the literature. The study of the associated parameter, called domatic number d(G)

(resp. total domatic number dt (G)), was first carried out in [7] (resp. [6]), see also the
books [12, 13]. Also, a topic connected to domination is that one of packings. Based
on such close relationships, one would find interesting to consider graph partitioning
problems regarding packing sets. In this concern, a subset B ⊆ V (G) is called a pack-
ing (or a packing set) in G if for each distinct vertices u, v ∈ B, NG[u] ∩ NG [v] = ∅
(equivalently, B is a packing in G if |NG [v] ∩ B| ≤ 1 for all v ∈ B). The packing
number ρ(G) is the maximum cardinality among all packing sets in G. In connection
with this, a vertex partition P = {P1, . . . , P|P|} of a graph G is called a packing parti-
tion if Pi is a packing in G for each 1 ≤ i ≤ |P|. The packing partition number p(G)

is the minimum cardinality among all such partitions of G.
In contrast with the construction ofN (G) for a graph G, the closed neighborhood

graphNc(G) of a graph G has vertex set V (G), and two distinct vertices u and v are
adjacent inNc(G) if and only if NG [u] ∩ NG [v] �= ∅ (see [2]). With this in mind, we
observe that a 2DC of a graph G is the same as a coloring of its closed neighborhood
graph. It is also easily seen that Nc(G) is isomorphic to the square G2 of G. We, in
addition, note that the 2DC problem is equivalent to the problem of vertex partitioning
of a graph into packings. Therefore, we altogether observe that

χ2(G) = χ(G2) = χ
(Nc(G)

) = p(G). (2)
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A natural situation, concerning domination and packings, comes across while con-
sidering the study of related parameters in which open neighborhoods are used, instead
of closed neighborhoods. Indeed, a subset B ⊆ V (G) is said to be an open packing (or
an open packing set) in G if for any distinct vertices u, v ∈ B, NG(u) ∩ NG(v) = ∅.
The open packing number, denoted by ρo(G), is the maximum cardinality among all
open packing sets in G (see [15]).

Motivated by the existence of packing partitions and open packing sets, we might
say that a vertex partitionP = {P1, . . . , P|P|} of a graphG is an open packing partition
(OPP for short) if Pi is an open packing in G for each 1 ≤ i ≤ |P|. The open packing
partition number po(G) is theminimumcardinality among allOPPs ofG. In this paper,
we investigate this kind of vertex partitioning of graphs. However, it turns out that such
partitions can be considered from other approaches since we readily observe that for
any k-injective coloring function f , the partition

{{v ∈ V (G) | f (v) = i}}1≤i≤k
forms an OPP ofG and vice versa. This fact, together with (1) and the idea of two-step
graphs, leads to

χi (G) = χ
(N (G)

) = po(G), (3)

which is an open analog of (2). This establishes another relationship between graph
coloring and domination theory. In connection with this, we next give some contribu-
tions to the injective chromatic number (or OPP number) of graphs (or equivalently,
to the chromatic number of two-step graphs) with emphasis on graph products. In this
sense, from now on, we indistinctively use the three terminologies in concordance
with the best use in each situation.

This paper is organized as follows.We consider the direct, lexicographic and corona
products in order to study χi (G ∗ H) in general case, in which ∗ ∈ {×, ◦,�} (here �
represents the corona product, which is not exactly a standard product as defined in
[10], but it can be taken more as a graph operation). Sharp lower and upper bounds are
exhibited on the injective chromatic number when dealing with the direct and lexico-
graphic product graphs. In the case of corona product graphs, we give a closed formula
for this parameter and prove that it assumes all values given in the formula. In partic-
ular, a counterexample to a formula given in [9] concerning the 2-distance chromatic
number of lexicographic product graphs is presented. Moreover, when dealing with
the direct product graphs, we completely determine the injective chromatic number
of direct product of two cycles by using the new tools given in this paper and some
classical results in the literature.

We end this section by a remark. Let u ∈ V (G) be a vertex of maximum degree and
letB = {B1, . . . , Bχi (G)} be a χi (G)-coloring. Because Bj is an open packing inG for

each 1 ≤ j ≤ �(G),u has atmost one neighbor in Bj andhence
∑χi (G)

j=1 |N (u)∩Bj | ≤
χi (G). So,

χi (G) ≥ �(G). (4)

This simple but important inequality will turn out to be useful in some places in this
paper.
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2 Direct Product Graphs

2.1 General Case

We here bound the injective chromatic number of direct product graphs from above
and below. To this end, given two graphs G and H defined on the same vertex set, by
G � H , we mean the graph with vertex set V (G � H) = V (G) = V (H) and edge
set E(G � H) = E(G) ∪ E(H). We assume that IG and IH are the sets of isolated
vertices of G and H , respectively. Let G− and H− be the graphs obtained from G and
H by removing all isolated vertices from G and H , respectively. Moreover, by G+ H
we represent the disjoint union of two graphs G and H .

We proceed with the following lemma which will have important roles throughout
this section.

Lemma 1 Let G and H be any graphs. Then,

N (G × H) ∼= (N (G−) � N (H−)
)− + Kp,

in which p is the cardinality of

IN (G×H) = {(g, h) ∈ V (G) × V (H) |
for each (g′, h′) ∈ V (G) × V (H), NG(g) ∩ NG(g′) = ∅ or NH (h) ∩ NH (h′) = ∅}.

Proof It is readily observed that

{(g, h) ∈ V (G) × V (H) |
for each (g′, h′) ∈ V (G) × V (H), NG(g) ∩ NG(g′) = ∅ or NH (h) ∩ NH (h′) = ∅}

is the set of isolated vertices of N (G × H). We next recall that

N (G−) � N (H−) = (N (G−) × N (H−)
) � (N (G−)�N (H−)

)
.

Let (g, h)(g′, h′) be an edge in N (G × H)−. By symmetry, we may assume that
h �= h′. Therefore, there exists a vertex (g′′, h′′) adjacent to both (g, h) and (g′, h′)
in G × H . This means that g′′g, g′′g′ ∈ E(G) and h′′h, h′′h′ ∈ E(H). In particular,
we have g, g′, g′′ and h, h′, h′′ are vertices of G− and H−, respectively. Therefore,
both NG−(g) ∩ NG−(g′) and NH−(h) ∩ NH−(h′) are nonempty. We now have “gg′ ∈
E

(N (G−)
)
and hh′ ∈ E

(N (H−)
)
” if g �= g′, and “g = g′ and hh′ ∈ E

(N (H−)
)
”

otherwise. Consequently, (g, h)(g′, h′) ∈ E
(N (G−) × N (H−)

)
if g �= g′, and

(g, h)(g′, h′) ∈ E
(N (G−)�N (H−)

)
otherwise. Thus, (g, h)(g′, h′) is an edge of

N (G−)�N (H−). More precisely, (g, h)(g′, h′) is an edge of
(N (G−)�N (H−)

)−.
Conversely, let (g, h)(g′, h′) be an edge in

(N (G−) �N (H−)
)−. Without loss of

generality, we may assume that h �= h′. It is easily checked that the converse of the
above implications hold. So, (g, h)(g′, h′) is an edge ofN (G× H)−. In fact, we have
proved that E

(N (G×H)−
) = E

((N (G−)�N (H−)
)−)

. Now, the identity mapping
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(g, h) → (g, h) serves as an isomorphism between N (G × H)− and
(N (G−) �

N (H−)
)−.

On the other hand, it is clear that N (G × H) ∼= N (G × H)− + Kp in which p is
the cardinality of

IN (G×H) = {(g, h) | for each (g′, h′), NG(g) ∩ NG(g′) = ∅ or NH (h) ∩ NH (h′) = ∅}.

In fact, we have proved that

N (G × H) ∼= (N (G−) � N (H−)
)− + Kp,

as desired. ��
If {G1, . . . ,Gr } and {H1, . . . , Hs} are the sets of components of G and H , respec-

tively, then it is clear that χi (G × H) = ∑
i, j χi (Gi × Hj ). So, we may assume that

both G and H are connected. Moreover, G × H will be an empty graph if either G or
H is isomorphic to K1. Therefore, it only suffices to assume that |V (G)|, |V (H)| ≥ 2.

Theorem 1 Let G and H be connected graphs of orders at least two.
(i) If one of the factors is isomorphic to K2, then χi (G × H) = max{χi (G), χi (H)}.
(i i) If �(G),�(H) ≥ 2, then

max{χi (G) + �(H), χi (H) + �(G)} ≤ χi (G × H) ≤ χi (G)χi (H).

These bounds are sharp.

Proof By using (3) and Lemma 1, we get

χi (G × H) = χ
(N (G × H)

) = χ
((N (G−) � N (H−)

)− + Kp

)

= χ
(N (G−) � N (H−)

)
.

Thus, we deduce that χi (G × H) ≤ χ
(N (G−)

)
χ

(N (H−)
) = χi (G−)χi (H−) =

χi (G)χi (H) since the chromatic number of the strong product of two graphs is always
at most the product of chromatic numbers of the factors (see [19]). A trivial example
that shows the tightness of this upper bound is the direct product graph Kr × Kt for
r , t ≥ 3.

On the other hand, χi (G × H) = χ
(N (G−) � N (H−)

) ≥ max{χ(N (G−)
)
, χ(N (H−)

)} = max{χi (G−), χi (H−)} = max{χi (G), χi (H)}.
If G ∼= K2, then N (G) is an empty graph and χi (G) = 1. Thus,

χi (G × H) = max{χi (G), χi (H)} = χi (G)χi (H) = χi (H).

Now, let�(G),�(H) ≥ 2. Then,G has�(G) vertices having a common neighbor.
Thus, ω

(N (G)
) ≥ �(G), in which ω denotes the clique number. This leads to

χ
(N (G−) � N (H−)

) ≥ χ
(
K�(G) � N (H−)

) ≥ �(G) + χ
(N (H−)

)
.
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The second inequality follows from [16] (see also [19]). Consequently, by (3) and
Lemma 1, we deduce that χi (G× H) ≥ χi (H)+�(G). Analogously, we get χi (G×
H) ≥ χi (G) + �(H), and therefore χi (G × H) ≥ max{χi (G) + �(H), χi (H) +
�(G)}.

To see the sharpness of the bound, we consider the direct product C2r+1 × C2t+1
with r , t ≥ 2. From [19], it is known that χ(C2r+1 � C2t+1) = 5. Thus, we have
χi (C2r+1 × C2t+1) = χ

(N (C2r+1 × C2t+1)
) = χ

(N (C2r+1) � N (C2t+1)
) =

χ(C2r+1 � C2t+1) = 5 = max{χi (C2r+1), χi (C2t+1)} + 2, where the third equality
comes from the fact that the two-step graph of an odd cycle is isomorphic to itself. ��

2.2 Direct Product of Two Cycles

The 2-distance chromatic number of the Cartesian product of two cycles (namely the
torus graphs) has been widely investigated in several papers (for example, see [5, 25,
26]). In 2015, Chegini et al. [5] proved thatχ2(Cm�Cn) ≤ 6 for all integersm, n ≥ 10.
Also, the injective chromatic number of torus graphs has recently been studied in [31].

Regarding the direct product of two cycles, Kim et al. [18] proved the following
result.

Theorem 2 The following statements hold.
(i) If m ≥ 40 and n ≥ 48 are even, then

χ2(Cm × Cn) =
{
5 if m, n ≡ 0(mod 5),
6 otherwise.

(i i) If m ≥ 40 is even and n ≥ 25 is odd, then

χ2(Cm × Cn) =
{
5 if m, n ≡ 0(mod 5),
6 otherwise.

(i i i) If m ≥ 45 and n ≥ 53 are odd, then

χ2(Cm × Cn) =
{
5 if m, n ≡ 0(mod 5),
6 otherwise.

In concordance with this, we see that the exact values of the 2-distance chromatic
number of Cm × Cn is not yet known for a large number of values of m, n ≥ 3. In
contrast with this, in our investigation, we make a related and complete study of the
injective chromatic number of these graphs.

Regarding injective coloring, the isomorphism

N (G × H) ∼= (N (G−) � N (H−)
)− + Kp,

with p = |IN (G×H)| (given in Lemma 1), provides us with a useful tool so as to obtain
the exact values of χi (Cm × Cn) for all possible values of m and n. Along with the
above isomorphism, we shall need the following result due to Vesztergombi [29] in
1979 (see also [19]).
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Lemma 2 ([19, 29]) For any s, t ≥ 2, χ(C2s+1 � C2t+1) = 5.

We are now in a position to present the main result of this section. Note that, in the
following theorem, χi (Cm × Cn) for the other possible values for m and n which are
not appeared here can be determined by taking into account the trivial isomorphism
Cm × Cn ∼= Cn × Cm for all m, n ≥ 3.

Theorem 3 For any integers m, n ≥ 3,

χi (Cm × Cn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if m, n ≡ 0(mod 4),
5 if “m �= 6 is even and n ≥ 5 is odd ′′ or “ both m, n ≥ 5 are odd ′′

or “(m, n) = (4s + 2, 4t + 2) with s, t ≥ 2′′
or “(m, n) = (4, 4t + 2) with t ≥ 2′′,

6 if m = 4s for s ≥ 1 and n ∈ {3, 6},
7 if m ∈ {3, 6} and n ∈ {2t + 1, 4t + 2} with t ≥ 3,
8 if m ∈ {3, 6} and n = 5,
9 if m ∈ {3, 6} and n = 3.

Proof We distinguish three cases depending on the parity of m and n by taking into
account the fact that both direct and strong products are commutative.
Case 1. Both m and n are odd. Let m = 2s + 1 and n = 2t + 1 for some s, t ≥ 1. It
can be easily observed that if G is a cycle of order n ≥ 3, thenN (G) is also a cycle of
order n when n is odd. Suppose first that s, t ≥ 2. We then deduce from (1), Lemmas
1 and 2 that

χi (C2s+1 × C2t+1) = χ(C2s+1 � C2t+1) = 5.

We now assume by symmetry that one of the factors, say C2s+1, is of order three.
From [19], we know that χ(Km �C2n+1) = 2m + �m/n� for m ≥ 1 and n ≥ 2. This
shows that χi (C3 × C5) = 8 and that χi (C3 × C2t+1) = 7 for t ≥ 3. On the other
hand, it is readily seen that χi (C3 × C3) = 9.
Case 2. Suppose that m is even and n = 2t + 1 for some t ≥ 1. Suppose first that
m = 4k + 2 for some k ≥ 1. Notice that if G is a cycle of order p, then N (G) is the
disjoint union of two cycles of order p/2 when p ≥ 6 is even, and it is K2 + K2 if
p = 4. With this in mind, we conclude that

χi (Cm × C2t+1) = χ
(
(C2k+1 + C2k+1) � C2t+1

) = χ(C2k+1 � C2t+1).

Therefore, χi (C4k+2 × C2t+1) = 5 for all k, t ≥ 2 (by using Lemma 2). So, we
need to discuss the cases when k = 1 and when t = 1 separately. In particular,
we have χi (C6 × C5) = 8 and χi (C6 × C2t+1) = 7 for t ≥ 3. Moreover, it is
easy to see that χi (C6 × C3) = χ(C3 � C3) = 9. Also, the possible values for
χi (C4k+2 × C3) = χ(C2k+1 � C3) has just been discussed.

We now assume that m = 4k for an integer k ≥ 1. In what follows, we take
advantage of the following useful claim.
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Fig. 1 An optimal 6-coloring of
C3 � C2k for each k ≥ 2

Fig. 2 An optimal 5-coloring of
C2k � C2t+1 for all integers
k, t ≥ 2

Claim 1. Let k ≥ 2 be an integer. For any odd integer n ≥ 3,

χ(C2k � Cn) =
{
5 if n ≥ 5,
6 if n = 3.

Proof of Claim 1. We observe that ω(C3 � C2k) = 6, in which ω denotes the
clique number. Therefore, the pattern given in Fig. 1 represents an optimal 6-coloring
of C3 � C2k ∼= C2k � C3 for each k ≥ 2 (note that by an optimal k-coloring of a
graph G we mean a proper coloring of G with k = χ(G) colors). So, from now on,
we assume that n ≥ 5 (odd).

It is shown in [28] that α(C2i � C2 j+1) = i j , for all positive integers i ≥ 2 and j ,
in which α stands for the independence number. Therefore,

χ(C2k � C2t+1) ≥ �(2k)(2t + 1)/kt� = 5. (5)

On the other hand, the pattern in Fig. 2 gives us a 5-coloring of C2k �C2t+1 for all
integers k, t ≥ 2. This fact together with the inequality (5) leads to χ(C2k �Cn) = 5
for each k ≥ 2 and odd integer n ≥ 5. (�)

We now infer from Claim 1 that χi (C4k ×Cn) = χ(C2k �Cn) = 5 for each k ≥ 2
and odd integer n ≥ 5, and that χi (C4k × C3) = 6 for each k ≥ 2. Furthermore,
in the case when k = 1, we have χi (C4 × C2t+1) = χ(K2 � C2t+1). Therefore,
χi (C4 × C2t+1) = 5 for t ≥ 2. Moreover, it is easy to see that χi (C4 × C3) =
χ(K2 � C3) = 6.
Case 3. Both m and n are even. If m = 4s + 2 and n = 4t + 2 for some s, t ≥ 1,
then χi (C4 s+2 ×C4t+2) = χ(C2 s+1 �C2t+1). Therefore, χi (C4 s+2 ×C4t+2) = 5 if
s, t ≥ 2 aswe discussed inCase 1. On the other hand, for the remaining possible values
of s and t , it suffices to consider the case when s = 1. In such a situation, we have
χi (C6×C4t+2) = χ(C3�C2t+1). Hence, χi (C6×C4t+2) = 7 for t ≥ 3. Moreover, it
is easy to see thatχi (C6×C6) = χ(C3�C3) = 9 andχi (C6×C10) = χ(C3�C5) = 8.

Ifm = 4 s andn = 4t+2 for some s, t ≥ 1, thenχi (C4s×C4t+2) = χ(C2s�C2t+1)

for s ≥ 2 and t ≥ 1. In such a situation, Claim 1 implies that χi (C4 s × C6) = 6 for
s ≥ 2, and χi (C4s × C4t+2) = 5 for s, t ≥ 2. We also have χi (C4 × C6) = 6 and
χi (C4 × C4t+2) = χ(K2 � C2t+1) = 5 for t ≥ 2.
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Fig. 3 An optimal 4-coloring of
C2s � C2t for each s, t ≥ 1.
Here, we let C2 = K2 for the
sake of convenience

Finally, letm = 4 s and n = 4t for some s, t ≥ 1. It is clear that the (2s×2t)-pattern
depicted in Fig. 3 gives us a 4-coloring ofC2s �C2t for each s, t ≥ 1. We here assume
C2 = K2 for the sake of convenience. On the other hand, we get χi (C4 s × C4t ) =
χ(C2 s � C2t ) = 4 since ω(C2s � C2t ) = 4. This completes the proof. ��

3 Lexicographic and Corona Product Graphs

Our first aim in this section is to give sharp lower and upper bounds on χi (G ◦ H).
We also prove that χ2 and χi are the same in the case of lexicographic product graphs
when both G and H have no isolated vertices.

Theorem 4 Let G be a connected graph of order at least two and let H be any graph
with iH isolated vertices. Then,

χi (G ◦ H) ≤ χ2(G)|V (H)| − iH
(
χ2(G) − χi (G)

)
.

Moreover, if H has no isolated vertices, then

χi (G ◦ H) = χ2(G ◦ H) ≥ (�(G) + 1)|V (H)|.

Proof Let A = {A1, . . . , Aχi (G)} and B = {B1, . . . , Bχ2(G)} be a χi (G)-coloring and
a χ2(G)-coloring, respectively. Also, let IH be the set of isolated vertices of H . We
set

P = {Ai × {h} | 1 ≤ i ≤ χi (G), h ∈ IH } ∪ {Bi × {h} | 1 ≤ i ≤ χ2(G), h ∈ V (H) \ IH }.

Clearly, P is a vertex partition of G ◦ H .
Suppose that there exists a vertex (g, h′) adjacent to two distinct vertices

(g′, h), (g′′, h) ∈ Ai × {h}, for some 1 ≤ i ≤ χi (G) and h ∈ IH . Note first that
g cannot simultaneously be adjacent to both g′ and g′′, due to the fact that Ai is an
open packing in G. So, it must happen, without loss of generality, that g = g′′. How-
ever, this means that hh′ is an edge of H , which is a contradiction to the fact that h is
an isolated vertex of H . Therefore, Ai × {h} is an open packing in G ◦ H .

If (g, h′) is adjacent to two distinct vertices (g′, h), (g′′, h) ∈ Bi × {h} for some
1 ≤ i ≤ χ2(G) and h ∈ V (H)\IH , then g′, g′′ ∈ NG [g] ∩ Bi . This is a contradiction
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since any two vertices of Bi are at distance larger than two in G. This shows that
Bi × {h} is a open packing in G ◦ H . So, we have concluded that P is an injective
coloring of G ◦ H . Therefore,

χi (G ◦ H) ≤ |P| = χi (G)iH + χ2(G)
(|V (H)| − iH

)

= χ2(G)|V (H)| − iH
(
χ2(G) − χi (G)

)
. (6)

The bound is sharp for a large number of infinite families of graphs. For instance,
consider the lexicographic product graph F = Pr ◦ (Ps + Pt ) with r ≥ 3, s ≥ 2 and
t ≥ 1. Let V (Pr ) = {u1, . . . , ur }, V (Ps) = {v1, . . . , vs} and V (Pt ) = {w1, . . . , wt }.
Set F ′ = F[{u1, u2, u3}×

(
V (Ps)∪V (Pt )

)]. Let f ′ : V (F ′) → {1, 2, . . . , χi (F ′)} be
any χi (F ′)-coloring. Note that in the subgraph of F ′ induced by {u1, u2, u3}×V (Ps),
each edge lies on a triangle. Therefore, no two vertices of this induced subgraph
receive the same color by f ′. This shows that f ′ assigns 3s colors to the vertices of
{u1, u2, u3} × V (Ps). On the other hand, because (u2, v1) is adjacent to all vertices
in {u1, u3} × (

V (Ps) ∪ V (Pt )
)
, it follows that every vertex in this set receives a

unique color by f ′. In fact, we observe that f ′ assigns 2t colors to the vertices in
Q = {u1, u3} × V (Pt ) and that f ′({u1, u2, u3} × V (Ps)

) ∩ f ′(Q) = ∅. The above
discussion shows that

χi (F) ≥ χi (F ′) = | f ′({u1, u2, u3} × V (Ps)
)| + ∑t

i=1 | f ′({u1, u2, u3} × {wi })|
≥ 3s + 2t
= χ2(Pr )|V (Ps + Pt )| − iPs+Pt

(χ2(Pr ) − χi (Pr )).

This results in the equality in the upper bound.
Suppose now that H has no isolated vertices. Let (g, h)(g′, h′) ∈ E(G ◦ H). If

g = g′, then (g′′, h) is adjacent to both (g, h) and (g′, h′) in which g′′ is any vertex
of G adjacent to g. Suppose that gg′ ∈ E(G). There exists h′′ ∈ V (H) adjacent to
h because H does not have isolated vertices. So, (g, h′′) is adjacent to both (g, h)

and (g′, h′) by the adjacency rule of the lexicographic product graphs. In fact, every
edge of G ◦ H lies on a triangle. This shows that every open packing in G ◦ H is an
independent set. In particular, a subset of V (G ◦ H) is a packing if and only if it is an
open packing. Therefore, χi (G ◦ H) = χ2(G ◦ H).

Let g be a vertex of G of maximum degree. It happens that diam
(
(G ◦H)[NG[g]×

V (H)]) ≤ 2. This in particular implies that any 2-distance coloring of G ◦ H assigns
at least |NG [g] × V (H)| = (�(G) + 1)|V (H)| colors to the vertices of G ◦ H .
Consequently, χi (G ◦ H) = χ2(G ◦ H) ≥ (�(G) + 1)|V (H)|.

That the lower bound is sharp, may be seen as follows. It is known that χ2(T ) =
�(T )+1 for any tree T (see Theorem 2.4 in [23] for k = 2). Let T be a nontrivial tree
and let H be any graph with no isolated vertices. Then, χi (T ◦ H) = χ2(T ◦ H) =
(�(T ) + 1)|V (H)| by considering both lower and upper bounds. This completes the
proof. ��

Ghazi et al. [9] exhibited the exact formula χ2(G ◦ H) = χ2(G)|V (H)| for all
connected graphs G and H . In what follows, we show that this equality is not true as
it stands. In Fig. 4, we consider the graph C7 ◦ C5 without drawing the edges (for the
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Fig. 4 A counterexample to the
formula
χ2(G ◦ H) = χ2(G)|V (H)| for
all connected graphs G and H

sake of convenience). Note that the assigned numbers to the vertices represent a 2DC
of C7 ◦ C5 with 18 colors. So, χ2(C7 ◦ C5) ≤ 18 < 20 = χ2(C7)|V (C5)|.

We next present a closed formula for χi (G � H).

Theorem 5 For any graphs G and H with no isolated vertices,

χi (G � H) ∈ {
χi (G), |V (H)| + �(G), |V (H)| + �(G) + 1

}
.

Proof Clearly, any χi (G � H)-coloring assigns at least χi (G) colors to the vertices
of G since G is a subgraph of G � H . So, χi (G � H) ≥ χi (G).

For each 1 ≤ i ≤ |V (G)|, assume that V (Hi ) = {ui1, . . . , ui |V (H)|}. Let A =
{A1, . . . , Aχi (G)} be a χi (G)-coloring. In what follows, we construct a mapping f
on V (G � H) that assigns the colors 1, . . . , χi (G) to the vertices in A1, . . . , Aχi (G),
respectively. In particular, f turns out to be a χi (G)-coloring. We consider two cases
depending on χi (G).
Case 1. |V (H)| ≤ χi (G)−�(G)−1. We choose an arbitrary vertex vi and let it be in
Ak . We now extend f by assigning |V (H)| colors r1, . . . , r|V (H)| ∈ {1, . . . , χi (G)} to
the vertices ui1, . . . , ui |V (H)| such that NG [vi ] ∩ Ar j = ∅ for every 1 ≤ j ≤ |V (H)|
(there do exist such colors since |V (H)| ≤ χi (G) − degG(vi ) − 1). By iterating this
process for all vertices in V (G), we note that f is an injective coloring of G � H
assigning χi (G) colors to the vertices of G� H . Therefore, χi (G� H) ≤ χi (G), and
hence χi (G � H) = χi (G).
Case 2. |V (H)| ≥ χi (G) − �(G). We need to distinguish two more possibilities
depending also on the behavior of vertices of maximum degree in G.
Subcase 2.1. Suppose that we have “|V (H)| = χi (G) − �(G)” and the property
that “every vertex v j of maximum degree in G has a (unique) neighbor in the open
packing (color class) from A containing v j .” In such a situation, similarly to the
argument given in Case 1, G � H can be injectively colored with χi (G) colors. Thus,
χi (G � H) = χi (G).
Subcase 2.2.Suppose that “|V (H)| > χi (G)−�(G)” orwe have “|V (H)| = χi (G)−
�(G) with the property that there exists a vertex v j of maximum degree in G having
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no neighbor in the open packing (color class) from A containing v j .” Moreover, we
consider the following facts:
• no vertex of Hj receives the color f (v j ), otherwise there would be a vertex of Hj

adjacent to at least two vertices with the same color f (v j ) since H has no isolated
vertices; and
• none of the colors, assigned to the vertices of those open packing sets (color classes)
from A containing the neighbors of v j , can be assigned to the vertices of Hj .
The above argument shows that G � H cannot be injectively colored with χi (G)

colors. Hence, χi (G � H) > χi (G).
Obviously, f assigns at most �(G) + 1 colors to the vertices in NG[vi ] for each

1 ≤ i ≤ n. We now choose a vertex vi ∈ Ak . If |V (H)| ≤ χi (G) − degG(vi ) −
1, then we assign |V (H)| colors r1, . . . , r|V (H)| ∈ {1, . . . , χi (G)} to the vertices
ui1, . . . , ui |V (H)| such that NG [vi ] ∩ Ar j = ∅, with 1 ≤ j ≤ |V (H)|, similarly to
Case 1 (indeed, f assigns at most χi (G) colors among {1, · · · , χi (G)} to the vertices
in V (Hi ) ∪ V (G)). Otherwise, we deal with the following two possibilities.
Subcase 2.2.1. χi (G) ∈ {degG(vi ), degG(vi ) + 1}. In such a situation, we assign
|V (H)| new colors 1′, · · · , |V (H)|′ to the vertices ui1, . . . , ui |V (H)|, respectively. In
fact, f has used |V (H)| + �(G) or |V (H)| + �(G) + 1 colors in order to injectively
color the vertices in V (Hi ) ∪ V (G).
Subcase 2.2.2. χi (G) > degG(vi ) + 1. We then assign k(i) = χi (G) − degG(vi ) − 1
colors r1, . . . , rk(i) ∈ {1, . . . , χi (G)} to the vertices ui1, . . . , uik(i) such that NG [vi ]∩
Ar j = ∅ with 1 ≤ j ≤ k(i), and t(i) = |V (H)| − k(i) new colors 1′, · · · , t(i)′ to the
vertices ui(k(i)+1), . . . , ui |V (H)|, respectively.

Iterating this process for all vertices vi with χi (G) > degG(vi ) + 1, we observe
that f assigns at most

χi (G) + max
i

{t(i)} = χi (G) + |V (H)| − χi (G) + �(G) + 1 = |V (H)| + �(G) + 1

colors in order to injectively color the vertices in V (Hi ) ∪ V (G).
Notice that the extensionof f given inSubcases 2.2.1 and2.2.2 results in an injective

coloring of G� H . From this fact, we deduce that χi (G� H) ≤ |V (H)|+�(G)+1.
On the other hand, χi (G � H) ≥ �(G � H) = |V (H)| + �(G) by the inequality
(4). Therefore, χi (G � H) equals either |V (H)| + �(G) or |V (H)| + �(G) + 1.

Altogether, the arguments above show that χi (G � H) ∈ {
χi (G), |V (H)| +

�(G), |V (H)| + �(G) + 1
}
. ��

We conclude this section with remarking that χi (G � H) assumes all three values
given inTheorem5depending on our choices forG and H . To see this, letG = Kr�Ks

for two integers r , s ≥ 3. It is clear that any injective coloring f of G � K2 assigns rs
colors, say 1, 2, . . . , rs, to the vertices in V (G). Moreover, by assigning two colors
from {1, 2, . . . , rs} \ { f (u) | u ∈ NG[v]} to the vertices in NG�K2 [v]\NG[v] for
each v ∈ V (G), we get an injective coloring of G � K2 with rs colors. Therefore,
χi (G � K2) = rs = χi (G).

Brešar et al. [3] showed that χi (T ) = �(T ) for any tree T on at least two vertices.
With this in mind, taking H to be any graph with no isolated vertices, we observe
that T � H satisfies the assumption given in Subcase 2.2 in the proof of Theorem 5.
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Hence, χi (T � H) ∈ {|V (H)| + �(T ), |V (H)| + �(T ) + 1}. On the other hand, any
injective coloring of T with �(T ) colors can be extended to an injective coloring of
T � H with |V (H)| + �(T ) colors by assigning |V (H)| new colors to the vertices
of H1, . . . , H|V (T )|. This leads to χi (T � H) = |V (H)| + �(T ).

Finally, we observe that for any graph H with no isolated vertices, χi (Kn � H) =
n + |V (H)| = |V (H)| + �(Kn) + 1 for n ≥ 3.
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