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Abstract
An interval in which a given graph has no eigenvalues is called a gap interval. We
show that for any real number R greater than 1

2 (−1+√
2), there exist infinitely many

threshold graphs with gap interval (0, R). We provide a new recurrence relation for
computing the characteristic polynomial of the threshold graphs and based on it, we
conclude that the sequence of the least positive (resp. largest negative) eigenvalues
of a certain sequence of threshold graphs is convergent. In some particular cases, we
compute the limit points.

Keywords Threshold graphs · Eigenvalue gap · Tridiagonal matrices

Mathematics Subject Classification 05C50 · 15A18

1 Introduction

LetG = (V (G), E(G)) be a simple graph (without loops or multiple edges), V (G) =
{v1, v2, . . . , vn}, A(G) its (0, 1)-adjacencymatrixwithai j = 1 ifvi andv j are adjacent
and 0 otherwise. Since A(G) is symmetric, its eigenvalues are real and they can be
indexed in a non-increasing order as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). We write σ(G)

to denote the spectrum of G, i.e. the multiset of eigenvalues of G.
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Fig. 1 A sketch of a threshold
graphNSG(t1, . . . , th; s1, . . . , sh)

Threshold graphs are {2K2, P4,C4}-free graphs. In the spectral graph theory, they
feature as connected graphs with largest eigenvalue with respect to adjacency and
signless Laplacian spectrum within the connected graphs of fixed order and size. They
are also known as nested split graphs (in [21, 22]). Recently, spectral properties of
threshold graphs with respect to adjacency, signless Laplacian and distance spectrum
were studied in [2, 4, 8, 10]. Numerous applications of threshold graphs, ranging from
computer science to psychology can be found in [20]. In addition, threshold graphs are
related to a very important combinatorial object: Ferrers diagram, since their non-zero
Laplacian eigenvalues are equal to the number of boxes in each column of the Ferrers
diagram corresponding to the sequence of vertex degrees (see [3]).

The structure of a threshold graph is illustrated in Fig. 1. The set of vertices consists
of two subsets, U and V , with vertices in U forming an independent set and vertices
in V forming a clique. In addition, both U and V are partitioned into h subsets,
say U = ⋃h

i=1Ui and V = ⋃h
i=1 Vi . The cross edges are added according to the

following rule: all vertices in Uk , 1 ≤ k ≤ h are adjacent to all vertices in
⋃h

i=k Vi .
They are uniquely determined by the parameters, ti , si , 1 ≤ i ≤ h, where |Ui | = ti
and |Vi | = si . The respective graph is denoted by NSG(t1, . . . , th; s1, . . . , sh).

The problem of finding graphs with large gap sets has recently attracted a great deal
of attention. Kollár and Sarnak [18] studied gaps in the spectra of large finite cubic
graphs. This topic was afterwards investigated in [1], where the large gap sets in the
spectra of cubic and quartic graphs with the minimum spectral gap were identified
for two infinite families of these types of graphs. (The spectral gap is the difference
λ1(G) − λ2(G).) Also the applications of large graphs with gaps in their spectra
come from different areas. In combinatorics and engineering “cubic expanders” are
defined by gaps [15]. In [17] on microwave coplanar waveguide resonators gap at the
bottom −3 is of the interest. In chemistry, for the case of closed shells, the stability
properties of carbon fullerene molecules are closely related to gap at 0 [12]. Our goal
is to determine what gaps can be achieved by threshold graphs and to identify the
corresponding graphs. In other words, we pursue this problem to the class of threshold
graphs.
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We show that for any positive real number R > 1
2 (−1 + √

2), there exist
infinitely many connected graphs with the gap interval that is of the length at
least R. This result can be considered as a contribution to the theory of graph
limit points due to Hoffman [14] who investigated the density of graphs’ eigen-
values on the real line. In particular, we show that the sequence of the least
positive eigenvalues (resp. largest negative eigenvalues different from −1) of the
sequence of threshold graphs of the form Gh = NSG(t1, . . . , th; s1, . . . , sh) con-
verges. Here, Gh+1 is obtained from Gh by adding th+1, (resp. sh+1) vertices in
Uh+1, (resp. Vh+1). We characterize the limit points for the threshold graphs of the
form

NSG(t1, . . . , tk−1, tk, . . . , tk︸ ︷︷ ︸
h

; s1, . . . , sk−1, sk, . . . , sk︸ ︷︷ ︸
h

),

where the number of cells h tends to ∞. We show that the corresponding limit
point is the least positive (resp. largest negative �= −1) solution of certain equa-
tion. Our results confirm those of [13] where it was shown that 1

2 (−1 − √
2)

and 1
2 (−1 + √

2) are the limit points of the least positive (resp. largest negative)
eigenvalue of the sequence of antiregular graphs NSG(1, . . . , 1

︸ ︷︷ ︸
h

; 1, . . . , 1
︸ ︷︷ ︸

h

), when

h → ∞.
Recently in [5] an algorithm for constructing I -free threshold graphs, i.e. the thresh-

old graphs without any eigenvalues in a given interval I was presented. The content
of this paper can be considered as an alternative approach towards the same prob-
lem.

The structure of the paper is as follows. Preliminary results are reported in
Sect. 2. Results on eigenvalue gaps of threshold graphs, both positive and negative,
are the content of Sect. 3. Sequences of threshold graphs, corresponding sequences
of least positive (resp. largest negative) eigenvalues along with their properties
are subject of Sect. 4. A conclusion and possible extensions are presented in final
Sect. 5.

2 Preliminaries

An explicit formula for calculating the characteristic polynomial of a threshold graph
G = NSG(t1, . . . , th; s1, . . . , sh) was obtained in [10, 19]. It reads the following.

Lemma 2.1 ( [10]) Let G = NSG(t1, . . . , th; s1, . . . , sh) and let φ(x;G) be its char-
acteristic polynomial. Then,

φ(x;G) = x
∑h

i=1 ti−h(x + 1)
∑h

i=1 si−h det Nh
G(x),
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where

Nh
G(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x + t1 x + 1
x s1 x

x + 1 t2 x + 1

. . .
. . .

. . .

x + 1 th x + 1
x sh

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2h

The eigenvalues of G different from 0 and −1 (except the case when t1 = 1) are
the eigenvalues of the corresponding divisor matrix

Dh(G) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1 s2 · · · sh
s2 · · · sh

. . .
...

sh
t1 s1 − 1 s2 · · · sh
t1 t2 s1 s2 − 1 · · · sh
...

. . .
...

...
. . .

...

t1 t2 · · · th s1 s2 · · · sh − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2h

,

due to the equitable partition D(G) : U1 ∪ · · · ∪ Uh ∪ V1 ∪ · · · ∪ Vh . If t1 = 1, then
−1 is a simple eigenvalue of Dh(G). The characteristic polynomial of Dh(G) up to
the sign is equal to det Nh

G(x).
For a threshold graph G = NSG(t1, . . . , th; s1, . . . , sh) the following gap interval

was identified in [10].

Theorem 2.2 ([10]) LetG = NSG(t1, . . . , th; s1, . . . , sh),
Nh = 1

cos2( π
2 h+1 )

min
2≤i≤2 h−1

aiai+1

and c1 = s1
4 cos2( π

2 h+1 )
, where (a1, a2, . . . , a2 h−1, a2 h) = (t1, s1, . . . , th, sh). Then,

• if t1 = 1, then G does not have any eigenvalue in

(
1

2

(
−1 − √

1 + Nh

)
,min

{
1

2
(−1 + √

1 + Nh), c1

})

except possibly −1 and 0.
• otherwise, G does not have any eigenvalue in (lh, rh), where

lh = max

{
1

2

(
−1 − √

1 + Nh

)
,
1

2

(
−1 + c1 −

√
(−1 + c1)2 + 4c1t1

)}
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and

rh = min

{
1

2
(−1 + √

1 + Nh),
1

2

(
−1 + c1 +

√
(−1 + c1)2 + 4c1t1

)}

,

except possibly − 1 and 0.

As a consequence it has been proved that no threshold graph has eigenvalues in

(−1−√
2

2 , −1+√
2

2 ). We point out that a similar problem in the context of signed graphs
was considered in [9].

3 Gap Intervals in Threshold Graphs

In this section, we show that there exist infinitely many threshold graphs with
prescribed gap interval of the form (0, R) or (L, 1

2 (−1 − √
2)). For the positive

eigenvalue-free intervals, we first provide a refinement of the results of Theorem
2.2.

Theorem 3.1 Let G = NSG(t1, . . . , th; s1, . . . , sh) and let

Nh = 1

cos2
(

π
2h+1

) min
1≤i≤2h−1

aiai+1,

where (a1, a2, . . . , a2 h−1, a2 h) = (t1, s1, . . . , th, sh). Then, G does not have any
eigenvalue in (0, 1

2 (−1 + √
1 + Nh)).

Proof We first observe that det Nh
G(x) equals to

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t1 x + 1
x s1 x
x + 1 t2 x + 1

. . .
. . .

. . .

x + 1 th x + 1
x sh

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2h

+ x det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1 x
x + 1 t2 x + 1

. . .
. . .

. . .

x + 1 th x + 1
x sh

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2h−1

.

By [7, Proposition 2.2], the previous two matrices are positive definite if x(x +
1) <

Nh
4 . If we assume that x > 0, then det Nh

G(x) > 0 provided that x <
1
2

(−1 + √
1 + Nh

)
. This completes the proof. 	


Based on Theorem 3.1, we can construct a threshold graph with an arbitrary large
positive gap interval.

Theorem 3.2 Let R > 1
2 (−1 + √

2) be a positive real number and

Mh =
⌈
4R(R + 1) cos2

( π

2h + 1

)⌉
.
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Then, a threshold graphNSG(t1, . . . , th; s1, . . . , sh) has gap interval (0, R), provided
that t1s1, ti si , ti si−1 ≥ Mh, for any 2 ≤ i ≤ h.

Proof LetG = NSG(t1, . . . , th; s1, . . . , sh). Then, following the notation of Theorem
2.2, G has gap interval (0, R) provided that

R <
1

2
(−1 + √

1 + Nh)

holds, i.e.

4R(R + 1) < Nh .

The previous inequality is equivalent to

min
2≤i≤h

{t1s1, ti si , ti si−1} > 4 cos2
( π

2h + 1

)
R(R + 1).

	


Corollary 3.3 Let R > 1
2 (−1 + √

2) be a real number, a1 = t1 positive integer and

ai ≥
⌈4R(R + 1) cos2( π

2h+1 )

ai−1

⌉
, for 2 ≤ i ≤ 2h.

Then, a threshold graph NSG(a1, . . . , a2 h−1; a2, . . . , a2 h) has gap interval (0, R).

The choice of a2h in the above corollary is constrained by the condition a2h−1a2h >

4R(R+1) cos2( π
2h+1 ), which guarantees infinitely many possibilities. This fact yields

our main result.

Theorem 3.4 For any real number R > 1
2 (−1 + √

2), there exist infinitely many
threshold graphs with gap interval (0, R).

Taking into account that cos2( π
2h+1 ) is increasing function in h that approaches to

1 as h tends to infinity, the following corollary easily follows.

Corollary 3.5 Let R > 1
2 (−1 + √

2), a1 = t1 positive integer and

s1 =
⌈4R(R + 1)

t1

⌉
.

Then, a threshold graphG = NSG(t1, . . . , t1︸ ︷︷ ︸
h

; s1, . . . , s1︸ ︷︷ ︸
h

)has no eigenvalues in (0, R),

for any h ≥ 1.
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Example 3.1 Let R = 4.8, h = 4. Then,

M4 =
⌈
4 · 4.8 · 5.8 cos2(π

9
)
⌉

= 99.

The threshold graph G = NSG(99, 99, 99, 99; 1, 1, 1, 1) has no eigenvalues in
(0, 4.8) (λ4(G)=4.824).Also the thresholdgraphG ′ =NSG(11, 11, 11, 11; 9, 9, 9, 9)
satisfies the same property (λ4(G) = 4.85426). We stress out that the con-
dition of Theorem 3.2 is not necessary. For example, the threshold G ′′ =
NSG(8, 11, 11, 11; 9, 9, 9, 9) has no eigenvalue in (0, 4.83611), even though
min2≤i≤4{t1s1, ti si , ti si−1} = 72 < 99.

Remark 3.1 By the interlacing theorem (see [11, p.17]), if t ′h < th , then

λh(NSG(t1, . . . , t
′
h; s1, . . . , sh)) ≤ λh(NSG(t1, . . . , th; s1, . . . , sh)).

Note that by [2], both graphs have exactly h positive eigenvalues, i.e. λh denotes
the least positive eigenvalue in both graphs. This property can help in adjusting gap
intervals. For example, λ4(NSG(99, 99, 99, 95; 1, 1, 1, 1)) = 4.80237.

In the sequel, we focus on negative gap intervals.

Theorem 3.6 Let L < 1
2 (−1− √

2) be a real number, a1 = t1 a positive integer, and

ai ≥
⌈4L(L + 1) cos2

(
π

2h+1

)

ai−1

⌉
, for 2 ≤ i ≤ 2h.

Then, a threshold graph NSG(a1, . . . , a2 h−1; a2, . . . , a2 h) has gap interval

(L, 1
2 (−1 − √

2)), provided that a2 ≥ � 4L(L+1) cos2
(

π
2h+1

)

L+t1
 for t1 �= 1.

Proof We follow the notation and results of Theorem 2.2.
Let t1 = 1. Then, if L > 1

2 (−1 − √
1 + Nh), i.e. if

min
2≤i≤2h−1

{aiai+1} > 4L(L + 1) cos2
( π

2h + 1

)
,

then a threshold graph NSG(a1, . . . , a2h−1; a2, . . . , a2h) has no eigenvalues in
(L, 1

2 (−1 − √
2)).

Similarly, if t1 > 1, then L > 1
2 (−1+c1−√

(−1 + c1)2 + 4c1t1), i.e. L(L+1) <

c1(L + t1) gives that a2 = s1 ≥ � 4L(L+1) cos2
(

π
2h+1

)

L+t1
, provided that L + t1 > 0.

Together with L > 1
2 (−1 − √

1 + Nh), we obtain

ai ≥
⌈4L(L + 1) cos2

(
π

2h+1

)

ai−1

⌉
, for 3 ≤ i ≤ 2h.
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Remark 3.2 One of the requirements in the previous proof, due to non-negativity of
L(L + 1), is L + t1 > 0, which implies that L > −t1.

Example 3.2 Let L = −4.8 and h = 4. Then, �4 L(L + 1) cos2(π
9 ) = 65 and the

threshold graph NSG(65, 65, 65, 65; 1, 1, 1, 1) has the largest negative eigenvalue
different from −1 approximately equal to −4.80968.

4 Sequences of Threshold Graphs

In this section, we consider the sequence of threshold graphs (Gh)h∈N, where Gh =
NSG(t1, . . . , th; s1, . . . , sh) and Gh+1 = NSG(t1, . . . , th, th+1; s1, . . . , sh, sh+1).
This sequence can be seen as a growing sequence, in the sense that Gh is an induced
subgraph of Gh+1. We denote by τ(G) the smallest positive eigenvalue of G and by
θ(G) the largest negative eigenvalue different from −1. We first deduce the following
lemma.

Lemma 4.1 Let G = NSG(t1, . . . , th; s1, . . . , sh) and G ′ = NSG(t1, . . . , th, th+1;
s1, . . . , sh, sh+1). Then, τ(G ′) ≤ τ(G) and θ(G) ≤ θ(G ′).

Proof By [19] any eigenvalue of G (resp. G ′) different from 0,−1 is an eigenvalue of
the divisor matrix Dh(G) (resp. Dh+1(G ′)) as well. Therefore, τ(G) is an eigenvalue
of Dh(G), while τ(G ′) is eigenvalue of Dh+1(G ′). In addition Dh(G) and Dh+1(G ′)
are symmetrizable. For

Ph(G) = diag
(√

t1, . . . ,
√
th,

√
s1, . . . ,

√
sh

)

we obtain Ds
h(G) = Ph(G)Dh(G)(Ph(G))−1 with

Ds
h(G) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
t1s1

√
t1s2 · · · √

t1sh√
t2s2 · · · √

t2sh
. . .

...√
thsh√

t1s1 s1 − 1
√
s1s2 · · · √

s1sh√
t1s2

√
t2s2

√
s1s2 s2 − 1 · · · √

s2sh
...

. . .
...

...
. . .

...√
t1sh

√
t2sh · · · √

thsh
√
s1sh

√
s2sh · · · sh − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and similarly for Ds
h+1(G

′) = Ph+1(G ′)Dh+1(G ′)(Ph+1(G ′))−1. By deleting the last
row and the last column in Ds

h+1(G
′), we obtain the matrix Cs

h(G
′) with zero (h+ 1)-

th row and column, while the remaining submatrix is equal to Ds
h(G). Its spectrum

is comprised from 0 and simple eigenvalues of Ds
h(G). The statement of the lemma

follows by the interlacing theorem ( [11]), taking into account that, if t1 �= 1 in both
graphs remaining eigenvalues, other from those of Ds

h(G), Ds
h+1(G

′) are only 0 and
−1 with certain multiplicities. Case t1 = 1 is treated in a similar fashion.

Therefore, τ(G ′) ≤ τ(G) and θ(G) ≤ θ(G ′). 	
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By the previous lemma, we easily deduce the monotonicity of (τ (Gh))h∈N and
(θ(Gh))h∈N for threshold graphs built on same initial cells.

Theorem 4.2 Let {th}h∈N, {sh}h∈N be sequences of positive integers and Gh =
NSG(t1, . . . , th; s1, . . . , sh). Then, the sequences (τ (Gh))h∈N and (θ(Gh))h∈N are
convergent.

Proof By Lemma 4.1, the sequence (τ (Gh))h∈N is non-increasing, and by [10, Corol-
lary 5.5], it is bounded below by 1

2 (−1+√
2). Therefore, it is convergent. On the other

hand (θ(Gh))h∈N is non-decreasing and bounded above by 1
2 (−1 − √

2). 	

A natural question that arises in this context is about possible limit points. We

show that they can be determined in some particular cases. For this purpose, we first
provide a recurrence relation to compute the characteristic polynomial of threshold
graphs. We point out that several approaches for the computation of the characteristic
polynomial of a threshold graph have been already published (see for example [6, 10,
19]). However, the one presented in the sequel is an original contribution.

Theorem 4.3 Let Gh = NSG(t1, . . . , th; s1, . . . , sh). Then, its characteristic polyno-
mial φ(x,Gh) is equal to

φ(x,Gh) = x
∑h

i=1 ti−h(x + 1)
∑h

i=1 si−h�h(x),

where �h(x) = det(Dh(Gh) − x I2h) satisfies the recurrence relation

�h(x) =
( sh−1 + sh

sh−1
x(x + 1) − thsh

)
�h−1 − sh

sh−1
x2(1 + x)2�h−2(x) (4.1)

with the initial conditions

�0(x) = 1, (4.2)

�1(x) = det

(−x s1
t1 s1 − 1 − x

)

= x2 − (s1 − 1)x − t1s1. (4.3)

Proof By expanding the determinant of

Dh(G) − x I2h =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh
−x s2 · · · sh

. . .
. . .

...

−x sh
t1 s1 − 1 − x s2 · · · sh
t1 t2 s1 s2 − 1 − x · · · sh
...

. . .
...

...
. . .

...

t1 t2 · · · th s1 s2 · · · sh − 1 − x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2h

123
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along the h-th row, we obtain

�h(x) = (−x) det Th(x) + (−1)3hsh det Sh(x),

where

Th(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh−1 sh
−x s2 · · · sh−1 sh

. . .
. . .

.

.

.
.
.
.

−x sh−1 sh
t1 s1 − 1 − x s2 · · · sh−1 sh
t1 t2 s1 s2 − 1 − x · · · sh−1 sh
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

t1 t2 · · · th−1 s1 s2 · · · sh−1 − 1 − x sh
t1 t2 · · · th−1 s1 s2 · · · sh−1 sh − 1 − x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2h−1)

while

Sh(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh−1
−x s2 · · · sh−1

. . .
. . .

...

−x 0 sh−1

t1 s1 − 1 − x s2 · · · sh−1
t1 t2 s1 s2 − 1 − x · · · sh−1
...

. . .
...

...
. . .

...

t1 t2 · · · th−1 s1 s2 · · · sh−1 − x
t1 t2 · · · th−1 th s1 s2 · · · sh−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2h−1)

.

Next in Th(x), we perform the following operations:

• C2h−1 ← C2h−1 + C2h−2 and we obtain

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh−1 sh−1 + sh
−x s2 · · · sh−1 sh−1 + sh

. . .
. . .

.

.

.
.
.
.

−x sh−1 sh−1 + sh
t1 s1 − 1 − x s2 · · · sh−1 sh−1 + sh
t1 t2 s1 s2 − 1 − x · · · sh−1 sh−1 + sh
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

t1 t2 · · · th−1 s1 s2 · · · sh−1 − 1 − x sh−1 + sh − 1 − x
t1 t2 · · · th−1 s1 s2 · · · sh−1 sh−1 + sh − 1 − x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2h−1)

.
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• R2h−1 ← R2h−1 − R2h−2
This leads to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh−1 sh−1 + sh
−x s2 · · · sh−1 sh−1 + sh

. . .
. . .

.

.

.
.
.
.

−x sh−1 sh−1 + sh
t1 s1 − 1 − x s2 · · · sh−1 sh−1 + sh
t1 t2 s1 s2 − 1 − x · · · sh−1 sh−1 + sh
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

t1 t2 · · · th−1 s1 s2 · · · sh−1 − 1 − x sh−1 + sh − 1 − x
0 0 · · · 0 0 0 · · · 1 + x 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2h−1)

.

• C2h−1 ← C2h−1 − sh−1+sh
sh−1

C2h−2

The resulting matrix is:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh−1 0
−x s2 · · · sh−1 0

. . .
. . .

.

.

.
.
.
.

−x sh−1 0
t1 s1 − 1 − x s2 · · · sh−1 0
t1 t2 s1 s2 − 1 − x · · · sh−1 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

t1 t2 · · · th−1 s1 s2 · · · sh−1 − 1 − x sh
sh−1

(x + 1)

0 0 · · · 0 0 0 · · · x + 1 − sh−1+sh
sh−1

(x + 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2h−1)

.

• C2h−2 ← C2h−2 + sh−1
sh−1+sh

C2h−1

Finally, we obtain

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−x s1 s2 · · · sh−1 0
−x s2 · · · sh−1 0

. . .
. . .

.

.

.
.
.
.

−x sh−1 0
t1 s1 − 1 − x s2 · · · sh−1 0
t1 t2 s1 s2 − 1 − x · · · sh−1 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

t1 t2 · · · th−1 s1 s2 · · · sh−1 − 1 − x + sh
sh−1+sh

(x + 1) sh
sh−1

(x + 1)

0 0 · · · 0 0 0 · · · 0 − sh−1+sh
sh−1

(x + 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By expanding the determinant of the last matrix along the last row and then by
presenting the last column in the obtained submatrix as a sum of two, we get

det Th(x) = − sh−1 + sh
sh−1

(x + 1)�h−1 + sh
sh−1

x(1 + x)2�h−2.
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This leads to

�h(x) =
( sh−1 + sh

sh−1
x(x + 1) − thsh

)
�h−1 − sh

sh−1
x2(1 + x)2�h−2(x),

taking into account that det Sh(x) = (−1)3h−1th�h−1, by expansion along the h-th
column. 	

Remark 4.1 The initial conditions (4.2) and (4.3) correspond to the characteristic poly-
nomials of the divisor matrices of the empty and the complete split graphs (with
parameters t1, s1), respectively.

In case that the sequences (sh)h∈N and (th)h∈N are convergent, i.e. sh = s, for
h ≥ N1 and th = t , for h ≥ N2, we are able to compute the limit points of the
sequences (τ (Gh))h∈N, and (θ(Gh))h∈N.

Theorem 4.4 Let {th}h∈N, {sh}h∈N be the sequences of positive integers, such that th =
t and sh = s, for h ≥ h0. If Gh = NSG(t1, . . . , th; s1, . . . , sh), then limh→∞ τ(Gh) =
τ and limh→∞ θ(Gh) = θ exist.

• If the equation

�0(x)
(
2x(x + 1) − ts +

√
t2s2 − 4tsx(x + 1)

)
− 2�1(x) = 0, (4.4)

has a positive solution (resp. a negative solution less than −1), then τ (resp. θ ) is
the largest positive (resp. the least negative less than −1) solution of the equation
(4.4), where �0(x) and �1(x) are the characteristic polynomials of Dh0(Gh0)

and Dh0+1(Gh0+1), respectively.

• Otherwise, τ = −1+√
1+ts

2 and θ = −1−√
1+ts

2 .

Proof By (4.1), the sequence �h(x) = det(Dh+h0(Gh+h0) − x I ) satisfies

�h(x) =
(
2x(x + 1) − ts

)
�h−1 − x2(1 + x)2�h−2(x),

for h > 1, with the initial conditions

�0(x) = det(Dh0(Gh0) − x I ) and �1(x) = det(Dh0+1(Gh0+1) − x I ).

By solving this recurrence relation, we obtain that

�h(x) = c1(x)α(x)h + c2(x)β(x)h, (4.5)

where

α(x) = 1

2

(
2x(x + 1) − ts −

√
(
2x(x + 1) − ts

)2 − 4x2(1 + x)2
)
,
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β(x) = 1

2

(
2x(x + 1) − ts +

√
(
2x(x + 1) − ts

)2 − 4x2(1 + x)2
)
,

i.e. they are the solutions of the equation

T 2 −
(
2x(x + 1) − ts

)
T + x2(1 + x)2 = 0.

The initial conditions for (4.5) are

c1(x) + c2(x) = �0(x),

c1(x)α(x) + c2(x)β(x) = �1(x).

We plug τ(Gh) in (4.5), and afterwards, we divide by
(
β(τ(Gh))

)h . This leads to:

0 = c1(τ (Gh))
(α(τ(Gh))

β(τ(Gh))

)h + c2(τ (Gh)).

We let h tend to ∞.

• If limh→∞ α(τh) < limh→∞ β(τh), i.e. if α(τ) < β(τ), then 0 = c2(τ ), since
limh→∞

(
α(τ(Gh))
β(τ(Gh))

)h = 0. Taking into account that

c2(x) = �1(x) − �0(x)α(x)

β(x) − α(x)
,

it easily follows that τ is the least positive solution of the equation

�1(x) − �0(x)α(x) = 0.

Similarly, θ is the largest negative solution less than −1 of (4.4).
• If the previous equation has no positive solution or the only negative solution is−1,

then α(τ) = β(τ). This implies that t2s2 − 4tsτ(τ + 1) = 0, i.e. τ = −1+√
1+ts

2 .

Similarly, θ = −1−√
1+ts

2 .

	

Example 4.1 Set Gh = NSG(t, . . . , t

︸ ︷︷ ︸
h

; s, . . . , s
︸ ︷︷ ︸

h

). Then, �0(x) = 1, �1(x) = x2 −

(s − 1)x − ts, and (4.4) becomes:

(
2x(x + 1) − ts +

√
t2s2 − 4tsx(x + 1)

)
− 2(x2 − (s − 1)x − ts) = 0.

Since the unique negative solution is x = − t(s+1)
t+s , if t = 1, then τ, θ = −1±√

1+ts
2 ,

because for t = 1, − t(s+1)
t+s = −1. Otherwise, τ = −1+√

1+ts
2 and θ = − t(s+1)

t+s .
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Example 4.2 Set Gh = NSG(12, 12, . . . , 12
︸ ︷︷ ︸

h

; 3, 8, . . . , 8
︸ ︷︷ ︸

h

). Then, the limit points are

the largest positive solution/negative solution of the equation

(x2 − 2x − 36)
(
2x(x + 1) − 96 +

√
962 − 4 · 96x(x + 1)

)

−2(x4 − 9x3 − 238x2 + 60x + 3456) = 0,

since �0(x) = x2 − 2x − 36, while �1(x) = x4 − 9x3 − 238x2 + 60x + 3456, i.e.
limh→∞ τ(Gh) = 3.6953 and limh→∞ θ(Gh) = −4.16646.

Example 4.3 Numerical examples show that for

Gh = NSG(1, 2, . . . , h; 1, 2, . . . , h),

limh→∞ τ(Gh) = 0.507. Since the corresponding recurrence relation is not linear, we
cannot apply the standard procedure for solving difference equations with constant
coefficients.

5 Conclusion

We showed that for any positive real number R there exist infinitely many connected
graphs whose eigenvalue gap is at least R. All of our examples of threshold graphs
and all intervals are either contained in (−∞, 1

2 (−1− √
2)) or in ( 12 (−1+ √

2),∞).
These constraints can be overcome by considering some graph operations on threshold
graphs, such as corona, joins, and different types of NEPSes.

“Does any real number in the above mentioned intervals can be a limit point of
certain sequence of eigenvalues of growing sequence of threshold graphs?” remains
as an open problem for future considerations.

Acknowledgements The authors acknowledge anonymous reviewers for their careful reading and com-
ments that had led to current, improved version of the manuscript. The research of the second author
is partially supported by the Science Fund of the Republic of Serbia; grant number 7749676: Spectrally
Constrained Signed Graphs with Applications in Coding Theory and Control Theory – SCSG-ctct.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

References

1. Abdi, M., Ghorbani, E.: Gap sets for the spectra of regular graphs with minimum spectral gap. Discrete
Math. 346, 113136 (2022)
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7. An -delić, M., da Fonseca, C.M.: Sufficient conditions for positive definiteness of tridiagonal matrices
revisited. Positivity 15, 155–159 (2011)

8. An -delić, M., da Fonseca, C.M., Simić, S.K., Tošić, D.V.: Connected graphs of fixed order and size
with maximal Q-index: some spectral bounds. Discrete Appl. Math. 160, 448–459 (2012)
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