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Abstract
We aim to establish refinements of the Jensen inequality for the classes of completely
convex and absolutely convex functions. In the first case the refinement is expressed
in terms of the alternating sum of Lidstone polynomials, while in the second case
we deal with the sum of the Lidstone polynomials. As an application, more accurate
power mean inequalities are derived. In particular, we obtain strengthened versions of
arithmetic–geometric mean inequality in a difference and a quotient form. Finally, we
also establish more accurate form of the Hölder inequality.

Keywords Jensen Inequality · Lidstone Polynomial · Green Function · Absolute
Convexity · Complete Convexity

Mathematics Subject Classification 26D15 · 26A51

1 Introduction

The Lidstone polynomials (see [11]) were introduced to provide an approximation
of a function in the neighborhood of two points instead of one point approximation
given by the Taylor expansion. From a practical point of view, the Lidstone polynomial
expansion turns to be very useful. Besides in approximation theory, such interpolation
is widely used in some boundary value problems appearing in engineering and other
areas of physical sciences.
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The Lidstone polynomial �n(t) is the unique polynomial of degree 2n + 1 defined
by the following boundary value problem:

�0(t) = t,

�
′′
n(t) = �n−1(t),

�n(0) = �n(1) = 0, n ≥ 1.

(1)

After the initial polynomial �0(t) = t , the next two polynomials are �1(t) = t3
6 − t

6

and�2(t) = t5
120− t3

36+ 7t
360 . Clearly, it follows from the above boundary value problem

that �n(t), n ≥ 1, contains only odd powers (see also [2]). It is well known from the
theory of differential equations that the Lidstone polynomials can be expressed in
integral form as

�n(t) =
∫ 1

0
Gn(t, s)sds, (2)

where

G1(t, s) =
{

(t − 1)s, s ≤ t,
(s − 1)t, t < s,

(3)

is the homogeneous Green function of the differential operator d2/ds2 on the unit
interval, and with the successive iterates

Gn(t, s) =
∫ 1

0
G1(t, u)Gn−1(u, s)du, n ≥ 2. (4)

The Lidstone polynomials can also be represented by Fourier series, and by Bernoulli
polynomials and numbers (for more details, see [2] and the references cited therein).

In the middle of the last century, Widder [14], established the following basic inter-
polation formula for 2n-times continuously differentiable function f ∈ C (2n)([0, 1]):

f (x) =
n−1∑
k=0

[
f (2k)(0)�k(1 − x) + f (2k)(1)�k(x)

]
+

∫ 1

0
Gn(x, s) f

(2n)(s)ds.

By a simple linear transform x �→ x̂ = x−a
b−a , the above representation can be extended

to hold for an arbitrary interval [a, b], that is, if f ∈ C (2n)([a, b]), then

f (x) =
n−1∑
k=0

(b − a)2k
[
f (2k)(a)�k

(
x̂∗) + f (2k)(b)�k

(
x̂
)]

+ (b − a)2n−1
∫ b

a
Gn

(
x̂, ŝ

)
f (2n)(s)ds,

(5)
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where x̂∗ = 1 − x̂ = b−x
b−a and ŝ = s−a

b−a . For a comprehensive review on Lidstone
interpolation including error representations and estimates, the reader is referred to
[2].

In this paper, we use polynomial expansion (5) in a slightly different context. More
precisely, this formula will be exploited in establishing refinements of the Jensen
inequality for certain classes of convex functions. Recall that the function f : I → R,
where I ⊂ R is an interval, is said to be convex if the relation f ((1 − t) x + t y) ≤
(1 − t) f (x)+ t f (y) holds for all x, y ∈ I and 0 ≤ t ≤ 1. The Jensen inequality can
be rewritten in a form of the corresponding functional, i.e.

Jm( f , x,p) =
m∑
i=1

pi f (xi ) − Pm f

(
1

Pm

m∑
i=1

pi xi

)
≥ 0, (6)

where f : I → R is a convex function, x = (x1, x2, . . . , xm) ⊂ Im and p =
(p1, p2, . . . , pm) ⊂ R

m+ is such that Pm = ∑m
i=1 pi > 0. Here, R+ stands for a set

of non-negative real numbers. This functional is monotonic, that is, Jm( f , x,p) ≥
Jm( f , x,q) ≥ 0, whenever p ≥ q, i.e. pi ≥ qi , i = 1, 2, . . . ,m (see [5] and [12,
p. 717]). Moreover, this monotonicity has been exploited in [10] to establish mutual
bounds for the Jensen functional expressed in terms of the associated non-weighted
functional, that is,

mpmaxIm( f , x) ≥ Jm( f , x,p) ≥ mpminIm( f , x), (7)

where pmin = min1≤i≤m pi , pmax = max1≤i≤m pi , and where Im( f , x) stands for
the corresponding non-weighted functional, i.e.

Im( f , x) =
∑m

i=1 f (xi )

m
− f

(∑m
i=1 xi
m

)
. (8)

The lower bound in (7) is the refinement, while the upper one represents the reverse
of the Jensen inequality. Based on (7), numerous inequalities such as inequalities of
Young and Hölder, means inequalities, etc. have been refined (for more details, see [9,
10] and the references cited therein). For a comprehensive overview of classical and
new results about the Jensen inequality, the reader is referred to monographs [8, 12,
13] and the references cited therein.

Themain task in this paper is to establish another type of lower bound for the Jensen
functional, regardless of weights. In other words, our intention is to derive a non-trivial
bound that is also valid for the non-weighted functional Im( f , x), since (7) is trivial in
that case. It turns out that the Lidstone interpolation is quite suitable for some classes
of convex function. In fact, this is not the first attempt to improve the Jensen inequality
in this way. For example, Aras-Gazić et. al. [3], derived the following identity, given
here in its simplest discrete form,

Jm( f , x, p) =
n−1∑
k=0

(b − a)2k f (2k)(a)

⎛
⎝ m∑
i=1

pi�k
(
x̂∗
i
) − Pm�k

(
x̂∗
Pm

)⎞
⎠
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+
n−1∑
k=0

(b − a)2k f (2k)(b)

⎛
⎝ m∑
i=1

pi�k
(
x̂i

) − Pm�k
(
x̂Pm

)
⎞
⎠

+(b − a)2n−1
∫ b

a

⎛
⎝ m∑
i=1

piGn
(
x̂i , ŝ

) − PmGn
(
x̂Pm , ŝ

)
⎞
⎠ f (2n)(s)ds,

(9)

where x̂i = xi−a
b−a , x̂

∗
i = 1 − x̂i , and x̂Pm = 1

Pm

∑m
i=1 pi x̂i , x̂

∗
Pm

= 1 − x̂Pm . This
identity was the basic step in deriving Jensen-type inequalities for the classes of 2n-
convex, completely convex and absolutely convex functions. The resulting inequalities
were established by imposing positivity of the Jensen functionals appearing on the
right-hand side of (9). However, no deeper analysis of the Lidstone polynomials and
the corresponding Green functions regarding convexity was done. We will show that
conditions of this type are redundant in the case of non-negative m-tuple p. However,
it will be necessary to rewrite (9) in a more suitable form.

Let us first recall the definitions of the functions mentioned above. It is well known
that an n-convex function is defined via the n-th order divided difference (see, e.g.
[2, 13]), but since we deal with differentiable functions, we will use the simplest
characterization which asserts that if the n-th order derivative f (n) exists on the given
interval, then the function f is n-convex if and only if f (n) ≥ 0 on that interval.
Conversely, f is n-concave if and only if f (n) ≤ 0. Recall that if n = 2, then the
n-convexity reduces to the usual convexity. Further, the function f : [a, b] → R

is completely convex if it has derivatives of all orders and if (−1)k f (2k)(x) ≥ 0,
x ∈ [a, b], for every non-negative integer k. In particular, f (x) = sin x is completely
convex on the interval [0, π ], while g(x) = cos x is completely convex on [−π

2 , π
2 ].

Finally, the function f : [a, b] → R is absolutely convex if it has derivatives of all
orders and if f (2k)(x) ≥ 0, x ∈ [a, b], for every non-negative integer k. Clearly,
h(x) = exp x is absolutely convex on any interval.

We aim here to establish non-negative lower bounds for functional (6) expressed in
terms of the sum and alternating sum of the Lidstone polynomials. This can be done
for some classes of convex functions. The outline of the paper is as follows: after this
Introduction, in Sect. 2 we discuss some known properties of the Lidstone polynomials
and the corresponding Green functions regarding their convexity on a unit interval.We
also introduce Euler polynomials that are closely connected to the Lidstone polynomi-
als. Moreover, we discuss conditions under which the sum and alternating sum of the
Lidstone polynomials are convex. Section3 is devoted to our main results. The first
result corresponds to a convex function f whose opposite function − f is completely
convex. In this case the Jensen functional can be easily bounded by the functionals
that correspond to alternating sum of the Lidstone and Euler polynomials. The case
of an absolutely convex function is much more complicated. Hence, it is necessary
to impose some additional conditions to obtain refinement of the Jensen inequality
expressed in terms of the sum of the Lidstone and Euler polynomials. Roughly speak-
ing, the corresponding refinement can be established on a small enough interval. As
an application, in Sect. 4, we derive more accurate power mean inequalities. In par-
ticular, we obtain strengthened versions of arithmetic–geometric mean inequality in a
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difference and a quotient form. Finally, in Sect. 5 we establish an improvement of the
Hölder inequality based on the method developed in this paper.

To keep our discussion as concise as possible, we introduce the following notation
that will be valid throughout the paper. As above, x̂ stands for the linear transform
x �→ x−a

b−a , i.e. x̂ = x−a
b−a . In addition, x̂∗ = 1 − x̂ = b−x

b−a . The same holds for a real
m-tuple x = (x1, x2, . . . , xm), i.e. x̂ = (x̂1, x̂2, . . . , x̂m) and x̂∗ = 1−x̂ = (1− x̂1, 1−
x̂2, . . . , 1 − x̂m). Furthermore, if xPm = 1

Pm

∑m
i=1 pi xi , then x̂Pm = 1

Pm

∑m
i=1 pi x̂i

and x̂∗
Pm

= 1 − x̂Pm .

2 Preliminaries on the Lidstone Polynomials

At this point, we recall some basic properties of the Lidstone polynomials. These
polynomials do not change sign on the unit interval. Moreover, their signs alternate,
i.e. �2k(t) ≥ 0, �2k+1(t) ≤ 0, for t ∈ [0, 1]. This conclusion is easily drawn from
(2), (3) and (4), since the initial Green function G1 is obviously negative on the unit
square. In addition, taking into account boundary value problem (1) that defines the
Lidstone polynomials, one concludes that the signs of their second derivatives also
alternate on the unit interval. This means that the Lidstone polynomials alternate with
respect to convexity. A similar conclusion can be drawn for the sequence of Green
functions Gn . For the readers’s convenience, these properties are clearly stated in the
following proposition, for more details the reader is referred to [2].

Proposition 1 (see [2]) Let n and m be non-negative integers. Then the following
properties hold:

(i) (−1)n�n(t) ≥ 0, t ∈ [0, 1],
(ii) (−1)n+1�n(t) is convex on interval [0, 1],
(iii) (−1)nGn(t, s) ≥ 0, t, s ∈ [0, 1], n ≥ 1,

(iv) ∂2mGn(t,s)
∂t2m

= Gn−m(t, s), t, s ∈ [0, 1], n − m ≥ 1,

in particular, ∂2Gn(t,s)
∂t2

= Gn−1(t, s),

(v) (−1)n+1Gn(t, s) is convex on [0, 1], for every fixed value s ∈ [0, 1].
The Lidstone polynomials are closely connected to another class of special poly-

nomials. The Euler polynomial En(t) of degree n may be defined by means of the
generating function such that

2etx

ex + 1
=

∞∑
n=0

En(t)x
n .

The first few Euler polynomials are E0(t) = 1, E1(t) = t − 1
2 , E2(t) = 1

2 t
2 − 1

2 t ,
E3(t) = 1

6 t
3− 1

4 t
2+ 1

24 , etc. These polynomials have numerous interesting properties
(see, e.g. [1, 2, 6]), of course, we are interested in connection with the Lidstone
polynomials. It is well known (see, e.g. [2]) that the Euler polynomial of an even order
can be expressed in the following way:
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E2n(t) = �n(t) + �n(1 − t). (10)

It is clear from (10) that the sign of E2n(t) coincides with the sign of polynomial
�n(t) on the unit interval, i.e. (−1)n E2n(t) ≥ 0, 0 ≤ t ≤ 1. Furthermore, in terms
of convexity, the Euler polynomial of even order behaves exactly the same as the
corresponding Lidstone polynomial, that is, polynomial (−1)n+1E2n(t) is convex on
the unit interval.

Roughly speaking, in this paper we establish lower bounds for the Jensen func-
tional expressed in terms of the sum and alternating sum of the Lidstone and Euler
polynomials. More precisely, we consider the sum and alternating sum of polynomials
of the form (b − a)2k�k(t) and (b − a)2k E2k(t), that is, we define polynomials

αn(t) =
n∑

k=0

(b − a)2k(−1)k+1�k(t),

α̃n(t) =
n∑

k=0

(b − a)2k(−1)k+1E2k(t),

ωn(t) =
n∑

k=0

(b − a)2k�k(t),

ω̃n(t) =
n∑

k=0

(b − a)2k E2k(t),

where n is a non-negative integer and a, b ∈ R. We want to answer the question when
these polynomials are convex. Of course, thematter is extremely simple for alternating
sums.

Proposition 2 Let n be a non-negative integer and let a, b ∈ R. Then, polynomials
αn(t) and α̃n(t) are convex on interval [0, 1].
Proof Due to Proposition 1 and (10), both polynomials (b − a)2k(−1)k+1�k(t) and
(b − a)2k(−1)k+1E2k(t) are convex for every non-negative integer k. Consequently,
the corresponding sums αn(t) and α̃n(t) are also convex, which completes the proof.

��
Things get much more complicated if we consider the sum of polynomials (b −

a)2k�k(t) or (b − a)2k E2k(t). In fact, we will see that increasing the value |b − a|
ruins the convexity on the unit interval. Fortunately, we are able to establish convexity
for smaller values of |b − a|.
Proposition 3 Let n be a positive integer and let |b − a| ≤ √

6. Then, polynomials
ωn(t) and ω̃n(t) are convex on interval [0, 1].
Proof We claim that all coefficients of polynomial ωn(t) are non-negative. This will
lead to convexity ofωn(t) on the unit interval.We prove our assertion bymathematical
induction. Clearly, ω0(t) = �0(t) = t . Moreover,
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ω1(t) = �0(t) + (b − a)2�1(t) = (b − a)2

6
t3 + 6 − (b − a)2

6
t

has non-negative coefficients provided that |b − a| ≤ √
6. Now, suppose that

ωn−1(t) = ∑n−1
k=0 α2k+1t2k+1, where α2k+1 ≥ 0, k = 0, 1, 2, . . . , n − 1. Note also

that
∑n−1

k=0 α2k+1 = 1, since ωn−1(1) = 1. Now, we have that

ω′′
n(t) =

n∑
k=0

(b − a)2k�′′
k (t) = (b − a)2

n∑
k=1

(b − a)2(k−1)�k−1(t)

= (b − a)2
n−1∑
k=0

(b − a)2k�k(t) = (b − a)2ωn−1(t)

= (b − a)2
n−1∑
k=0

α2k+1t
2k+1.

Moreover, since ωn(0) = 0, by integrating, it follows that

ωn(t) = (b − a)2
n−1∑
k=0

α2k+1

(2k + 2)(2k + 3)
t2k+3 + αt, (11)

where α is a real constant. It remains to prove that α ≥ 0. Namely, since (b − a)2 ≤
(2k + 2)(2k + 3), for any non-negative integer k, it follows that

(b − a)2
n−1∑
k=0

α2k+1

(2k + 2)(2k + 3)
≤

n−1∑
k=0

α2k+1 = 1. (12)

On the other hand, since ωn(1) = 1, taking into account (11) and (12), we have that

α = 1 − (b − a)2
n−1∑
k=0

α2k+1

(2k + 2)(2k + 3)
≥ 0.

Consequently, ωn(t) is convex on [0, 1]. Finally, the polynomial ωn(1 − t) is also
convex on the unit interval which yields convexity of ω̃n(t). ��

Remark 1 Note that polynomial ω1(t) is convex on the unit interval regardless of
parameters a and b. On the other hand, since ω′′

2(t) = (b − a)2ω1(t), as soon as

|b − a| >
√
6, polynomial ω2(t) has inflection point at t0 =

√
(b−a)2−6
|b−a| ∈ (0, 1), so

it is neither convex nor concave on the unit interval.

123



71 Page 8 of 20 M. Krnić

3 Main Results

In this section we establish more accurate Jensen-type inequalities for the classes of
completely convex and absolutely convex functions. To keep our discussion more
concise, we will rewrite identity (9) in a more suitable form. Namely, the right-hand
side of (9) consists of three Jensen functionals

Jm(�k, x̂∗,p) =
m∑
i=1

pi�k(x̂
∗
i ) − Pm�k

(
x̂∗
Pm

)
,

Jm(�k, x̂,p) =
m∑
i=1

pi�k
(
x̂i

) − Pm�k
(
x̂Pm

)
,

Jm(Gn, x̂,p) =
m∑
i=1

piGn
(
x̂i , ŝ

) − PmGn
(
x̂Pm , ŝ

)
,

so, it can be represented as

Jm( f , x,p)

=
n−1∑
k=0

(b − a)2k f (2k)(a)Jm(�k, x̂∗,p) +
n−1∑
k=0

(b − a)2k f (2k)(b)Jm(�k, x̂,p)

+ (b − a)2n−1
∫ b

a
Jm(Gn, x̂,p) f (2n)(s)ds.

(13)

Taking into account properties (ii) and (v) from Proposition 1, we see that successive
Jensen functionals for �k and Gk alternate in sign, i.e. (−1)k+1Jm(�k, x̂∗,p) ≥ 0,
(−1)k+1Jm(�k, x̂,p) ≥ 0, (−1)k+1Jm(Gk, x̂,p) ≥ 0, for any non-negative integer
k. Therefore, it is natural to consider the Jensen functional for completely convex
functions since their even derivatives alternate in sign on the corresponding interval.
To be as precise as possible, we need a notion of 2n-complete convexity. We say
that the function f ∈ C (2n)([a, b]) is 2n-completely convex if (−1)k f (2k)(x) ≥ 0,
x ∈ [a, b], for k = 0, 1, 2 . . . , n. In fact, the improvement of the Jensen inequality will
be established for the function f whose opposite function − f is completely convex,
i.e. (−1)k+1 f (2k)(x) ≥ 0, x ∈ [a, b], for k = 0, 1, 2 . . . , n. It should be noticed here
that − f is convex on [a, b]. Now, we are ready to state and prove our first result.

Theorem 1 Let n be positive integer, let f ∈ C (2n)([a, b]), and let x ∈ [a, b]m,
p ∈ R

m+. If − f is 2n-completely convex function, then

Jm( f , x,p) ≥ aminJm(αn−1, x̂∗,p) + bminJm(αn−1, x̂,p)

≥ min{amin, bmin}Jm (̃αn−1, x̂,p) ≥ 0,
(14)
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where amin = min0≤k≤n−1 | f (2k)(a)| and bmin = min0≤k≤n−1 | f (2k)(b)|. Otherwise,
if f is 2n-completely convex function, then holds the inequality

Jm( f , x,p) ≤ − aminJm(αn−1, x̂∗,p) − bminJm(αn−1, x̂,p)

≤ − min{amin, bmin}Jm (̃αn−1, x̂,p) ≤ 0.
(15)

Proof Let − f be 2n-completely convex function. Then,

Jm(Gn, x̂,p) f (2n)(s) = (−1)n+1Jm(Gn, x̂,p)(−1)n+1 f (2n)(s) ≥ 0,

which provides positivity of the integral on the right-hand side of (13). Consequently,
we have that

Jm( f , x,p)

≥
n−1∑
k=0

(b − a)2k f (2k)(a)Jm(�k, x̂∗,p) +
n−1∑
k=0

(b − a)2k f (2k)(b)Jm(�k, x̂,p).
(16)

Now, our aim is to estimate both sums on the right-hand side of the previous inequality.
Since | f (2k)(a)| = (−1)k+1 f (2k)(a) ≥ amin, for every k = 0, 1, 2, . . . , n − 1, it
follows that

n−1∑
k=0

(b − a)2k f (2k)(a)Jm(�k , x̂∗,p)

=
n−1∑
k=0

(−1)k+1 f (2k)(a)(b − a)2k(−1)k+1Jm(�k , x̂∗,p)

≥ amin

n−1∑
k=0

(b − a)2k(−1)k+1

(
m∑
i=1

pi�k(x̂
∗
i ) − Pm�k

(
x̂∗
Pm

))

= amin

(
m∑
i=1

pi

(
n−1∑
k=0

(b − a)2k(−1)k+1�k(x̂
∗
i )

)
− Pm

(
n−1∑
k=0

(b − a)2k(−1)k+1�k
(
x̂∗
Pm

)))

= amin

(
m∑
i=1

piαn−1(x̂
∗
i ) − Pmαn−1

(
x̂∗
Pm

)) = aminJm(αn−1, x̂∗,p),

and similarly,

n−1∑
k=0

(b − a)2k f (2k)(b)Jm(�k, x̂,p) ≥ bminJm(αn−1, x̂,p),

which yields the first inequality sign in (14). Further, the second inequality sign in
(14) holds due to an obvious relation

Jm(αn−1, x̂∗,p) + Jm(αn−1, x̂,p) = Jm (̃αn−1, x̂,p),
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and finally, the last one is a consequence of convexity of polynomial α̃n−1 on the unit
interval. This proves (14). On the other hand, if f is 2n-completely convex, then by
putting − f in (14), we obtain (15), as claimed. ��
Remark 2 Relations (14) and (15) are homogeneous with respect to m-tuple p. More-
over, since Jm( f , x, 1) = mIm( f , x), where 1 = (1, 1, . . . , 1), relation (14) implies

Im( f , x) ≥ aminIm(αn−1, x̂∗) + bminIm(αn−1, x̂)

≥ min{amin, bmin}Im (̃αn−1, x̂) ≥ 0.
(17)

Clearly, the situation is similar with inequality (15). It is important to note that inequal-
ities in (17) provide non-trivial lower bounds for the non-weighted functional (via the
Lidstone polynomials), which was not the case in [10].

Remark 3 Consider the cosine function restricted on the interval [ 2π3 , 5π
4 ]. Since

cos(2k) x = (−1)k cos x , it follows that − cos x is completely convex on that inter-

val. In addition, we have that cos(2k) 2π
3 = (−1)k+1

2 and cos(2k) 5π
4 = (−1)k+1√

2
, so that

amin = 1
2 and bmin = 1√

2
. In particular, if m = 2, then (17) yields

cos x1 + cos x2
2

− cos

(
x1 + x2

2

)
≥ 1

2
I2(αn−1, x̂∗) + 1√

2
I2(αn−1, x̂)

≥ 1

2
I2(̃αn−1, x̂) ≥ 0,

where x̂ =
(
12x1−8π

7π , 12x2−8π
7π

)
, x1, x2 ∈ [ 2π3 , 5π

4 ]. Clearly, this inequality provides

an explicit refinement of the non-weighted Jensen inequality.

Remark 4 Theorem 1 refers to functions whose even derivatives alternate in sign on
interval [a, b]. If we take a look at its proof, we see that it is sufficient to assume that the
2n-th order derivative of function f does not change the sign on [a, b] and that lower
derivatives of even order alternate at the endpoints of the interval. More precisely,
it suffices to assume that (−1)n f (2n)(x) ≥ 0, x ∈ [a, b], and (−1)k f (2k)(a) ≥ 0,
(−1)k f (2k)(b) ≥ 0 for k = 0, 1, 2, . . . , n − 1. It is easy to see that these conditions
imply complete 2n-convexity. Namely, without loss of generality, we can suppose that
n is even, i.e. f (2n)(x) ≥ 0 on [a, b], which means that f (2n−2) is convex on [a, b].
Now, let x ∈ [a, b]. Then, x = (1 − t)a + tb, for some t ∈ (0, 1). Therefore, since
f (2n−2)(a) ≤ 0 and f (2n−2)(b) ≤ 0, we have that f (2n−2)(x) = f (2n−2)((1 − t)a +
tb) ≤ (1 − t) f (2n−2)(a) + t f (2n−2)(a) ≤ 0. This means that f (2n−4) is concave
on [a, b] and, by the same argumentation, it follows that f (2n−4)(x) ≥ 0 on [a, b].
Clearly, this procedure provides complete 2n-convexity.

Theorem 1 yields the lower bound for the Jensen functional expressed in terms of
alternating sum of the Lidstone polynomials. It is much more complicated to establish
the lower bound expressed in terms of the usual sum of the Lidstone polynomials. Our
next goal is to establish a result that corresponds to functions with non-negative even
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derivatives. In fact, we will derive a more general result that also covers the case of
completely convex functions. Bearing in mind Remark 4, we deal now with functions
whose derivatives of order 4l + 2 are non-negative at the endpoints of interval [a, b].
However, to establish a more accurate Jensen inequality, some additional conditions
for derivatives of order 4l need to be imposed. Proposition 3 will certainly play an
important role in obtaining the refinement of the Jensen inequality.

Theorem 2 Let n be a positive integer and 0 < b − a ≤ √
6. Let f ∈ C (2n)([a, b]),

and let x ∈ [a, b]m, p ∈ R
m+. Further, suppose that there exist a, b ≥ 0 such that

max
1≤l≤�n−1

2 �
f (4l)(a) ≤ a ≤ min

0≤l≤�n−2
2 �

f (4l+2)(a) (18)

and

max
1≤l≤�n−1

2 �
f (4l)(b) ≤ b ≤ min

0≤l≤�n−2
2 �

f (4l+2)(b). (19)

If n is odd and f is 2n-convex, or n is even and f is 2n-concave, then holds the
inequality

Jm( f , x,p) ≥ aJm(ωn−1, x̂∗,p) + bJm(ωn−1, x̂,p)

≥ min{a, b}Jm(ω̃n−1, x̂,p) ≥ 0.
(20)

Proof First, let n be odd and let f be 2n-convex. Then Jm(Gn, x̂,p) ≥ 0 and
f (2n)(s) ≥ 0, s ∈ [a, b], so the integral on the right-hand side of (13) is non-negative,
which means that (16) holds in this case. Similarly, the case of an even n and 2n-
concave function f also yields (16).

Now, we aim to establish the suitable lower bounds for both terms on the right-hand
side of (16). If k is odd, i.e. k = 2l + 1, then Jm(�k, x̂∗,p) ≥ 0, by Proposition 1,
and f (2k)(a) = f (4l+2)(a) ≥ a by (18), so we have that f (2k)(a)Jm(�k, x̂∗,p) ≥
aJm(�k, x̂∗,p). If k ≥ 2 is even, i.e. k = 2l, then Jm(�k, x̂∗,p) ≤ 0, by Proposi-
tion 1, and f (2k)(a) = f (4l)(a) ≤ a, so we again obtain f (2k)(a)Jm(�k, x̂∗,p) ≥
aJm(�k, x̂∗,p). Consequently, since Jm(�0, x̂∗,p) = 0, we have that

n−1∑
k=0

(b − a)2k f (2k)(a)Jm(�k, x̂∗,p)

≥ a
n−1∑
k=0

(b − a)2k

(
m∑
i=1

pi�k(x̂
∗
i ) − Pm�k

(
x̂∗
Pm

))

= a

(
m∑
i=1

pi

(
n−1∑
k=0

(b − a)2k�k(x̂
∗
i )

)
− Pm

(
n−1∑
k=0

(b − a)2k�k
(
x̂∗
Pm

)))

= a

(
m∑
i=1

piωn−1(x̂
∗
i ) − Pmωn−1

(
x̂∗
Pm

)) = aJm(ωn−1, x̂∗,p),
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and similarly,

n−1∑
k=0

(b − a)2k f (2k)(b)Jm(�k, x̂,p) ≥ bJm(ωn−1, x̂,p),

which yields the first inequality sign in (20). Clearly, the second inequality sign in
(20) holds due to identity

Jm(ωn−1, x̂∗,p) + Jm(ωn−1, x̂,p) = Jm(ω̃n−1, x̂,p),

while the last sign holds due to Proposition 3. The proof is now completed. ��
Remark 5 It should be noticed here that if n = 1, both Theorems 1 and 2 reduce to
the classical Jensen inequality.

Remark 6 Similarly to Remark 2, the non-weighted form of relation (20) reads

Im( f , x) ≥ aIm(ωn−1, x̂∗) + bIm(ωn−1, x̂) ≥ min{a, b}Im(ω̃n−1, x̂) ≥ 0,

which represents a non-trivial lower bound for the non-weighted Jensen functional.

Remark 7 The function f fulfilling conditions of Theorem 2 is convex since it satisfies
(20). The same conclusion can be drawn from identity (5). Namely, by taking a second
derivative, we have that

f ′′(x) =
n−1∑
k=1

(b − a)2k−2
[
f (2k)(a)�k−1

(
x̂∗) + f (2k)(b)�k−1

(
x̂
)]

+ (b − a)2n−3
∫ b

a
Gn−1

(
x̂, ŝ

)
f (2n)(s)ds

≥
n−2∑
k=0

(b − a)2k
[
f (2k+2)(a)�k

(
x̂∗) + f (2k+2)(b)�k

(
x̂
)]

,

since the above integral is non-negative. In addition, taking into account (18) and (19),
we have that

f ′′(x) ≥ aωn−2
(
x̂∗) + bωn−2

(
x̂
) ≥ 0, x ∈ [a, b],

since the coefficients of polynomialωn−2 are non-negative, as proved in Proposition 3.
Moreover, by repeating this procedure, we conclude that f (4l+2)(x) ≥ 0, x ∈ [a, b],
0 ≤ l ≤ �n−1

2 �.
Remark 8 It is not hard to find examples of functions satisfying (18) and (19). Namely,
Theorem 2 covers the case of a convex function whose opposite function is completely
convex. Such function has non-negative derivatives of order 4l + 2, and negative
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derivatives of order 4l, so conditions (18) and (19) are always fulfilled. In particular,
cosine function from Remark 3 satisfies these conditions. On the other hand, functions
exp x , exp(−x), cosh x have equal even derivatives that are always non-negative. In
particular, if f (x) = exp x , thenwe can take a = exp a and b = exp b. These functions
will be of crucial in establishing refinements of some power mean inequalities.

4 A Strengthened Power Mean Inequalities in Terms of the Lidstone
Polynomials

We aim now to derivemore accurate power mean inequalities based on our Theorem 2.
Recall that a power mean is defined by

Mr (x,p) =
⎧⎨
⎩

(
1
Pm

∑m
i=1 pi xi

r
) 1

r
, r �= 0,(∏m

i=1 xi
pi

) 1
Pm , r = 0,

while the case of p1 = p2 = · · · = pm yields the corresponding non-weighted mean

mr (x) =
{( 1

m

∑m
i=1 xi

r
) 1
r , r �= 0,(∏m

i=1 xi
) 1
m , r = 0.

Here, and throughout this section, x = (x1, x2, . . . , xm) stands for a positive n-tuple,
i.e. xi > 0, i = 1, 2, . . . ,m. In particular, for r = −1, 0, 1, we obtain the har-
monic, geometric and arithmetic mean, respectively. The basic powermean inequality,
describing monotonic behavior of means, asserts that if r < s, then

Mr (x,p) ≤ Ms (x,p) . (21)

This inequality is still of interest to numerous mathematicians. For a comprehensive
study of power means including refinements and generalizations, the reader is referred
to monographs [12, 13], as well as to papers [7, 9, 10] and the references cited therein.
In particular, the mentioned paper [10] provides mutual bounds for the differences of
means in terms of the corresponding non-weighted means.

According to Sect. 3, we establish here a different kind of lower bounds for the dif-
ference Ms (x,p)−Mr (x,p). To apply Theorem 2, we have to choose the appropriate
functions in the Jensen functional.Wefirst consider the caseswhen one of parameters r
and s in (21) is equal to zero. The first case we deal with is the function f (t) = 1

r log t ,

where r �= 0. Since f (2n)(t) = − (2n−1)!
r t2n

, it follows that f is 2n-convex for r < 0.
Therefore, in this setting, Theorem 2 cannot be applied for even n. We have already
commented that the case of n = 1 is trivial, so the first non-trivial case appears for
n = 3. Of course, conditions (18) and (19) also need to be satisfied. This case is carried
out in the sequel.
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We also use here the transformation

x = (x1, x2, . . . , xm) → xr = (xr1, x
r
2, . . . , x

r
m), r �= 0.

It should be noticed here that if xi ∈ [a, b], then xri ∈ [min{ar , br },max{ar , br }], so in
order to apply Theorem 2, we deal with transformation xri �→ xri −min{ar ,br }

|br−ar | . Clearly, if

r > 0, then
xri −min{ar ,br }

|br−ar | = xri −ar

br−ar , while
xri −min{ar ,br }

|br−ar | = br−xri
br−ar , for r < 0. However,

due to the symmetry, we can define x̂ri = xri −ar

br−ar ,
ˆxr∗i = br−xri

br−ar , i = 1, 2, . . . ,m, and

so x̂r =
(
x̂r1, x̂

r
2, . . . ,

ˆxrm
)
and x̂r∗ =

( ˆxr∗1 , ˆxr∗2 , . . . , ˆxr∗m
)
.

Considering the above discussion, we give the first application of Theorem 2
that provides more accurate estimate between means M0 (x,p) and Mr (x,p) in the
so-called quotient form. As in the previous section, these estimates depend on the
corresponding interval.

Corollary 1 Let r �= 0 and let p ∈ R
m+, x ∈ [a, b]m, where |br − ar | ≤ √

6 and
min{ar , br } ≥ √

6. Then hold the inequalities

∣∣∣∣log M0 (x,p)

Mr (x,p)

∣∣∣∣ ≥ 1

|r |Pm
[
a−2rJm(�2, x̂r∗,p) + b−2rJm(�2, x̂r ,p)

]

≥ min{a−2r , b−2r }
|r |Pm Jm(�2, x̂r ,p) ≥ 0,

(22)

where �n(t) = ∑n
k=0(b

r − ar )2k�k(t) and �n(t) = ∑n
k=0(b

r − ar )2k E2k(t).

Proof We consider two cases depending on whether r < 0 or r > 0. First, let r < 0.
If f (t) = 1

r log t and xr = (xr1, x
r
2, . . . , x

r
m), the left-hand side of (20) becomes

Jm( f , xr ,p) =
m∑
i=1

pi log xi − Pm log

(
1

Pm

m∑
i=1

pi x
r
i

) 1
r

= Pm log
M0 (x,p)

Mr (x,p)
.

Moreover, since f (2n)(t) = − (2n−1)!
r t2n

, f is 2n-convex for r > 0, so we can choose
n = 3, due to Theorem 2. However, it is necessary to fulfill conditions (18) and (19).
It is easy to see that f (2)(t) ≥ f (4)(t) for t ≥ √

6, so these conditions hold for
a = f (2)(ar ) = −a−2r/r and b = f (2)(br ) = −b−2r/r , since min{ar , br } ≥ √

6.
Consequently, (20) reduces to

log
M0 (x,p)

Mr (x,p)
≥ − 1

r Pm

[
a−2rJm(�2, x̂r∗,p) + b−2rJm(�2, x̂r ,p)

]

≥ −a−2r

r Pm
Jm(�2, x̂r ,p) ≥ 0.

(23)

It remains to consider the case when r > 0. Then, by putting f (t) = − 1
r log t ,

xr = (xr1, x
r
2, . . . , x

r
m), n = 3, in (20), and following the lines as in the above case,
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we arrive at the relation

log
Mr (x,p)

M0 (x,p)
≥ 1

r Pm

[
a−2rJm(�2, x̂r∗,p) + b−2rJm�2, x̂r ,p)

]

≥ b−2r

r Pm
Jm(�2, x̂r ,p) ≥ 0.

(24)

Clearly, inequalities (23) and (24) yield (22), which completes the proof. ��
Remark 9 By putting r = −1 in (22), we obtain the refinement of the geometric-
harmonic mean inequality in a quotient form. More precisely, we have that

log
M0 (x,p)

M−1 (x,p)
≥ 1

Pm

[
a2Jm(�2, x̂−1∗,p) + b2Jm(�2, x̂−1,p)

]

≥ a2

Pm
Jm(�2, x̂−1,p) ≥ 0,

provided that [a, b] ⊆ (0, 1√
6
] and |b−1−a−1| ≤ √

6. Similarly, the case of r = 1 rep-
resents a strengthened version of the arithmetic–geometric mean inequality. Namely,
if [a, b] ⊆ [√6,∞) and |b − a| ≤ √

6, then

log
M1 (x,p)

M0 (x,p)
≥ 1

Pm

[
a−2Jm(�2, x̂∗,p) + b−2Jm(�2, x̂,p)

]

≥ 1

b2Pm
Jm(�2, x̂,p) ≥ 0.

Of course, the obtained relations also describe refinements of the corresponding non-
weighted versions of inequalities. In particular, the latter relation reads

log
m1 (x)
m0 (x)

≥ a−2Im(�2, x̂∗) + b−2Im(�2, x̂) ≥ b−2Im(�2, x̂) ≥ 0.

The next case we deal with refers to exponential function f (t) = est . Since
f (2n)(t) = s2nest , it follows that f is 2n-convex for each n ∈ N. Hence, exactly
as in the previous case, we consider Theorem 2 for n = 3. In addition, the associated
coordinate transformation is

x = (x1, x2, . . . , xm) → log x = (log x1, log x2, . . . , log xm).

Now, with l̂og x = (l̂og x1, l̂og x2, . . . , l̂og xm) and l̂og x∗ = (l̂og x1∗, l̂og x2∗, . . . ,
l̂og xm∗), where l̂og xi = log xi−log a

log b−log a and l̂og xi ∗ = log b−log xi
log b−log a , we obtain more pre-

cise estimate between means M0 (x,p) and Ms (x,p), s ∈ [−1, 1], in the so-called
difference form.
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Corollary 2 Let s ∈ [−1, 1] and let p ∈ R
m+, x ∈ [a, b]m, where b ≤ e

√
6a. Then hold

the inequalities

Ms
s (x,p) − Ms

0 (x,p) ≥ s2

Pm

[
asJm(L2, l̂og x∗,p) + bsJm(L2, l̂og x,p)

]

≥ s2 min{as, bs}
Pm

Jm(L2, l̂og x,p) ≥ 0,

(25)

where Ln(t) = ∑n
k=0 log

2k b
a�k(t) and Ln(t) = ∑n

k=0 log
2k b

a E2k(t).

Proof Again, the starting point is relation (20) for n = 3. Then, by putting f (t) = est

and log x = (log x1, log x2, . . . , log xm), it follows that

Jm( f , log x,p) = Pm
[
Ms

s (x,p) − Ms
0 (x,p)

]
.

Moreover, since f (2n)(t) = s2nest , we have that f (2)(t) ≥ f (4)(t) for s ∈ [−1, 1].
Finally, conditions (18) and (19) are satisfied with a = f (2)(log a) = s2as and
b = f (2)(log b) = s2bs , which provides (25), as claimed. ��
Remark 10 If s = 1, then (25) yields the improved arithmetic–geometric inequality
in a difference form, while the case of s = −1 provides the corresponding geometric-
harmonic inequality in a difference form. Let’s keep a little more attention on these
two particular cases. Namely, if s = 1, then f (t) = et , i.e. f (2n)(t) = et , whichmeans
that in this case Theorem 2 can be applied for an arbitrary odd n, since conditions (18)
and (19) are trivially fulfilled for a = a and b = b. Consequently, we have that

M1 (x,p) − M0 (x,p) ≥ 1

Pm

[
aJm(Ln−1, l̂og x∗,p) + bJm(Ln−1, l̂og x,p)

]

≥ a

Pm
Jm(Ln−1, l̂og x,p) ≥ 0,

(26)

where n is a non-negative odd integer. The similar conclusion can be drawn for the
case of s = −1, i.e. relation

M−1
−1 (x,p) − M−1

0 (x,p) ≥ 1

Pm

[
a−1Jm(Ln−1, l̂og x∗,p) + b−1Jm(Ln−1, l̂og x,p)

]

≥ 1

bPm
Jm(Ln−1, l̂og x,p) ≥ 0

holds for an arbitrary non-negative odd integer n.

Remark 11 Contrary to Remark 10, if |s| < 1, then the sequence f (2n)(t) = s2nest is
decreasing. This means that conditions (18) and (19) cannot be fulfilled for f (t) = est

when n ≥ 5. This means that the case of n = 3 is the best we can get in Corollary 2.
The similar conclusion can be drawn for Corollary 1, since the sequence f (2n)(t) =
− (2n−1)!

r t2n
(i.e. when f (t) = 1

r log t) is decreasing or increasing, depending on whether
r > 0 or r < 0.
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Finally, it remains to consider the case when both parameters r and s in (21) are not
equal to zero. Then, the corresponding power mean inequalities will be established via
the power function f (t) = t

s
r . Clearly, f (2n)(t) = ∏2n

k=1

( s
r − k + 1

)
t
s
r −2n, and so,

f (2n)(t) ≥ 0 if s
r ∈ Sn , while f (2n)(t) < 0 if s

r ∈ Sn , where Sn = ⋃n−1
k=0(2k, 2k + 1),

(for more details, see [4]). In this setting, Theorem 2 can be applied both for n = 2
and n = 3. We start with the case n = 3 since it is closely related to Corollaries 1
and 2.

Corollary 3 Let s
r ∈ (−∞, 0] ∪ [1, 2] ∪ [3, 4] ∪ [5,∞) and let p ∈ R

m+, x ∈ [a, b]m,
where |br − ar | ≤ √

6 and min{ar , br } ≥
√

(s−2r)(s−3r)
|r | . Then hold the inequalities

Ms
s (x,p) − Ms

r (x,p) ≥ s(s − r)

r2Pm

[
as−2rJm(�2, x̂r∗,p)+bs−2rJm(�2, x̂r ,p)

]

≥ s(s − r)min{as−2r , bs−2r }
r2Pm

Jm(�2, x̂r ,p) ≥ 0, (27)

where �2 and �2 are defined in Corollary 1.

Proof We utilize Theorem 2with f (t) = t
s
r , xr = (xr1, x

r
2, . . . , x

r
m), and n = 3. Then,

the left-hand side of (20) reduces to

Jm( f , xr ,p) =
m∑
i=1

pi x
s
i − Pm

(
1

Pm

m∑
i=1

pi x
r
i

) s
r

= Pm
[
Ms

s (x,p) − Ms
r (x,p)

]
.

Moreover, since n = 3, it follows that even derivatives f (2), f (4) and f (6) are non-
negative on [a, b], provided that s

r ∈ (−∞, 0] ∪ [1, 2] ∪ [3, 4] ∪ [5,∞). Moreover,

since f (2)(t) ≥ f (4)(t), t > 0, if and only if t ≥
√

(s−2r)(s−3r)
|r | , conditions (18) and

(19) are satisfied for a = f (2)(ar ) = s(s−r)as−2r

r2
and b = f (2)(br ) = s(s−r)bs−2r

r2
, so

we arrive at (27). ��
In order to finish our previous discussion,we also consider Theorem2 for f (t) = t

s
r

and n = 2. It turns out that the conditions under which the corresponding inequality
holds can be significantly weakened. More precisely, the following result includes
polynomials �1(t) = �0(t) + (br − ar )2�1(t) and �1(t) = 1 + (br − ar )2E2(t),
that are convex regardless of parameters a, b, and r (see also Remark 1).

Corollary 4 Let s
r ∈ [2, 3] and let p ∈ R

m+, x ∈ [a, b]m. Then hold the inequalities

Ms
s (x,p) − Ms

r (x,p) ≥ s(s − r)

r2Pm

[
as−2rJm(�1, x̂r∗,p)+bs−2rJm(�1, x̂r ,p)

]

≥ s(s − r)min{as−2r , bs−2r }
r2Pm

Jm(�1, x̂r ,p) ≥ 0. (28)

Proof It follows by putting n = 2 in (20) and by noting that f (t) = t
s
r is simultane-

ously convex and 4-concave if and only if s
r ∈ [2, 3]. ��

123



71 Page 18 of 20 M. Krnić

5 Application to the Hölder Inequality

We conclude this paper with a simple application of the arithmetic–geometric mean
inequality (26) to the Hölder inequality. Let (�,�,μ) be σ -finite measure space
and let

∑m
i=1

1
qi

= 1, qi > 1. If fi ∈ Lqi (�), i = 1, 2, . . . ,m, are non-negative
measurable functions, then holds the inequality

∫
�

m∏
i=1

fi (x)dμ(x) ≤
m∏
i=1

‖ fi‖qi . (29)

One way of proving the Hölder inequality is an application of the arithmetic-
geometric mean inequality (for more details, see [12, 13]). Therefore, the strengthened
arithmetic–geometric mean inequality (26) can be exploited in improving the Hölder
inequality (29). However, it will be necessary to impose some extra conditions on
non-negative measurable functions fi ∈ Lqi (�), i = 1, 2, . . . ,m, since the Lidstone
interpolation refers to interval [a, b]. Now, with the abbreviation

fq0 (x) =
(

f q11 (x)

‖ f1‖q1q1
,
f q22 (x)

‖ f2‖q2q2
, . . . ,

f qmm (x)

‖ fm‖qmqm

)
,

and accordingly,

̂log fq0 (x) = 1

log b
a

(
log

f q11 (x)

a‖ f1‖q1q1
, log

f q22 (x)

a‖ f2‖q2q2
, . . . , log

f qmm (x)

a‖ fm‖qmqm

)

and ̂log fq0 (x)∗ = 1 − ̂log fq0 (x), we arrive at the following refinement of the Hölder
inequality.

Theorem 3 Let (�,�,μ) be σ -finite measure space and let
∑m

i=1
1
qi

= 1, qi > 1,
i = 1, 2, . . . ,m.Further, suppose that fi ∈ Lqi (�), i = 1, 2, . . . ,m,are non-negative
measurable functions such that

a
1
qi ‖ fi‖qi ≤ fi (x) ≤ b

1
qi ‖ fi‖qi , x ∈ �, i = 1, 2, . . . ,m, (30)

where 0 < a < b ≤ e
√
6a. Then the inequalities

m∏
i=1

‖ fi‖qi −
∫

�

m∏
i=1

fi (x)dμ(x)

≥
m∏
i=1

‖ fi‖qi
[
a

∫
�

Jm(Ln−1,
̂log fq0 (x)∗,q−1)dμ(x)

+b
∫

�

Jm(Ln−1,
̂log fq0 (x),q−1)dμ(x)

]
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≥ a
m∏
i=1

‖ fi‖qi
∫

�

Jm(Ln−1,
̂log fq0 (x),q−1)dμ(x) ≥ 0, (31)

where the polynomials Ln and Ln are defined in Corollary 2, hold for any non-negative
odd integer n.

Proof The Young form of relation (26) reads

m∑
i=1

xi
qi

−
m∏
i=1

x
1
qi
i ≥ aJm(Ln−1, l̂og x∗,q−1) + bJm(Ln−1, l̂og x,q−1)

≥ aJm(Ln−1, l̂og x,q−1) ≥ 0,

where qi = Pm
pi
, q−1 = ( 1

q1
, 1
q2

, . . . , 1
qm

)
and

∑m
i=1

1
qi

= 1. Now, by putting

f qii (x)/‖ fi‖qiqi , x ∈ �, instead of xi , i = 1, 2, . . . ,m, in the above inequality, which
is meaningful due to conditions in (30), we arrive at the inequalities

m∑
i=1

f qii (x)

qi‖ fi‖qiqi
−

m∏
i=1

fi (x)

‖ fi‖qi
≥ aJm(Ln−1,

̂log fq0 (x)∗,q−1) + bJm(Ln−1,
̂log fq0 (x),q−1)

≥ aJm(Ln−1,
̂log fq0 (x),q−1) ≥ 0.

In addition, integrating the last set of inequalities over �, with respect to measure μ,
we have that

m∑
i=1

1

qi
−

∫
�

∏m
i=1 fi (x)dμ(x)∏m
i=1 ‖ fi‖qi

≥ a
∫

�

Jm(Ln−1,
̂log fq0 (x)∗,q−1)dμ(x) + b

∫
�

Jm(Ln−1,
̂log fq0 (x),q−1)dμ(x)

≥ a
∫

�

Jm(Ln−1,
̂log fq0 (x),q−1)dμ(x) ≥ 0,

which yields (31), due to
∑m

i=1
1
qi

= 1. ��
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