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Abstract
This paper deals with the existence of traveling wave solutions for a nonlocal evolution
equation with delayed nonlocal response and sign-changing kernel. By constructing
a new pair of upper-lower solutions and applying Schauder’s fixed point theorem, we
first prove that there exists a number c# > 0 such that when c > c#, the nonlocal
evolution equation admits a semi-wave solution with wave speed c, which connects
the trivial equilibrium 0 at negative infinity. Then, we analyze the asymptotic behavior
of wave profile at positive infinity and obtain the existence of a traveling wave solution
with speed c and connecting the trivial equilibrium 0 and the positive equilibrium 1,
when the wave speed c is large.

Keywords Nonlocal evolution equations · Traveling wave solutions · Nonlocal
response · Sign-changing kernel

Mathematics Subject Classification 35K57 · 35C07 · 92D25

1 Introduction

Due to its important application in many subjects such as population biology, epidemi-
ology, phase transition, signal propagation in neural networks [1, 2, 10, 15, 20, 31,
32], over the past decades, there are many works devoted to the study of the following
nonlocal dispersal equation

ut (x, t) = D1u(x, t) + f (u(x, t)), (1.1)
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where (x, t) ∈ R × [0,+∞), and

D1u(x, t) :=
∫
R

J (x − y)u(y, t)dy − u(x, t)

models the nonlocal dispersal. The kernel function J is nonnegative, symmetric and
unit integral. In mathematical biology, nonlocal dispersalD1u(x, t) is usually used to
model the so-called long-distance effect, for example, the rapid spread of infectious
disease across countries by air-traffic and the spread of small living things such as
seeds, microbes or algae by wind or sea currents [1, 16, 17, 20, 21].

Notice that the drift of some individuals depends on their present positions from all
possible positions at previous time. The reaction term that involves a weighted spatial
averaging over the whole of the infinite domain is more realistic. Thus, the nonlocal
delayed response has been incorporated into nonlocal dispersal model (1.1), that is,

ut (x, t) = D1u(x, t) + f

(
u(x, t),

∫ +∞

−∞
h(x − y)u(y, t − τ)dy

)
. (1.2)

The nonlocal dispersal equations like (1.1) and (1.2) with symmetric and asymmetric
kernel functions J and h have been extensively studied.We refer readers to [4, 6, 7, 12,
17, 22–24, 26, 27, 30, 32] for the study of travelingwave solutions and entire solutions.
In particular, for the model (1.2), when J and h are both nonnegative symmetric kernel
functions, Yu and Yuan [29] investigated existence, asymptotic and uniqueness of
traveling wave solutions. Later on, Cheng and Yuan [5] studied the global stability of
traveling wave solutions by using the squeezing technique based on the comparison
principle aswell as super- and subsolutions.When J and h are nonnegative asymmetric
kernel functions, Zhang andLi [33] proved the existence of travelingwave solutions by
using super- and subsolutions, monotone iteration method and a limiting argument.
The asymptotic behavior of the traveling wave solution and its derivative at minus
infinity were also obtained in [33]. We refer readers to [13, 14, 19, 25, 28] for the
study of traveling waves to various nonlocal evolution equations.

It is pointed out in [3] that in general, J clearly can change sign. For example, J
can have a “mexican-hat” shape, where the kernel J is with negative parts [9, 10]. A
situation also arises in some biological systems, see [11]. Hence, it is meaningful to
study the nonlocal evolution equations with sign-changing kernels. In a recent paper
[8], Ei et al. studied the nonlocal scalar equation (1.1) with sign-changing kernel J ,
and proved the existence of traveling wave solutions. In the current paper, we study
the following nonlocal evolution equation with delayed nonlocal response and sing-
changing kernel

ut (x, t) = D2u(x, t) + f

(
u(x, t),

∫ +∞

−∞
h(x − y)u(y, t − τ)dy

)
, (1.3)

where (x, t) ∈ R × [0,+∞), τ ≥ 0, and

D2u(x, t) :=
∫
R

J (x − y)u(y, t)dy − αu(x, t)
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with α ≥ 0. The kernel functions J (·) and h(·) are continuous in R and satisfy

(H1) J (−x) = J (x), ∀x ∈ R,
∫
R
J (x)dx = α, J is sign-changing and has a compact

support.
(H2) h(−x) = h(x) ≥ 0, ∀x ∈ R,

∫
R
h(x)dx = 1, and for any λ > 0,∫

R
h(y)e−λydy < +∞.

The nonlinear function f (u, v) is a locally Lipschitz continuous function for (u, v) ∈
R
2 satisfying

(H3) f (0, 0) = f (1, 1) = 0, f (u, u) > 0 for u ∈ (0, 1).
(H4) f (u, v) ≤ ∂1 f (0, 0)u + ∂2 f (0, 0)v for (u, v) ∈ [0, u+]2 with some constant

u+ satisfying 1 < u+ < +∞, and ∂1 f (1, 1)+ ∂2 f (1, 1) < 0, where ∂1 and ∂2
denote the partial derivatives with respect to u and v, respectively.

(H5) ∂2 f (u, v) ≥ 0 for (u, v) ∈ [0, u+]2.
Remark 1.1 i) (H1) shows that the kernel J has both positive and negative values. If

J is nonnegative and α = 1, then (1.3) reduces to (1.2).
ii) (H3) implies that the homogeneous system of (1.3) admits two equilibria 0 and 1.
iii) (H3) together with (H4) implies that ∂1 f (0, 0) + ∂2 f (0, 0) ≥ 2 f ( 12 ,

1
2 ) > 0, and

hence, 0 is unstable and 1 is stable.

A traveling wave solution (for short, traveling wave) of (1.3) is a pair (ψ, c), where
ψ is a real-valued function onR and c is a constant, such that u(x, t) := ψ(x+ct) is a
solution of (1.3).ψ and c are called the wave profile and the wave speed, respectively.
Let ξ := x + ct . Then, the wave profile ψ(ξ) satisfies the equation

cψ ′(ξ) = D2ψ(ξ) + f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)
, (1.4)

where D2ψ(ξ) = ∫
R
J (y)ψ(ξ − y)dy − αψ(ξ) and the prime denotes the derivative

with respect to ξ . We want to find solutions of (1.4) with the following asymptotic
boundary conditions

lim
ξ→−∞ ψ(ξ) = 0 and lim

ξ→+∞ ψ(ξ) = 1.

If the wave profile ψ only satisfies limξ→−∞ ψ(ξ) = 0 and lim infξ→+∞ ψ(ξ) > 0,
then we call ψ(·) a semi-wave solution.

Our aim of this paper is to establish the existence of monostable traveling wave
solutions of (1.3). Since the kernel function J has both positive and negative values,
the equation (1.3) does not possess the comparison principle. Hence, the monotone
iteration method used in [33] and the theory of monotone semiflow [12] cannot be
applied. In this paper, we shall apply the upper and lower solutions and Schauder’s
fixed point theorem to derive the existence of monostable traveling wave solutions
ψ(x + ct), see, e.g., [8, 18, 22]. For such solutions, a continuum of wave speeds
is expected. We should point out that the wave profile ψ obtained may take both
positive and negative values in general. From the biological point of view, we are
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more interested in the traveling wave solutions in a nonnegative situation. Thus, a
more stringent condition (see (H6) in Sect. 2) is added to exclude this sign-changing
nature of wave profile. Comparingwith [29, 33], there are two notable differences. The
first one is the definition and construction of upper and lower solutions. The second
one is the establishment of asymptotic behavior of ψ at positive infinity.

The rest of the paper is organized as follows. In Sect. 2, we give some preliminaries
and state the main result. In Sect. 3, we first establish a general result on the existence
of traveling wave solutions, then construct a pair of upper and lower solutions to obtain
the existence of traveling wave solutions of (1.3), and finally, investigate the behavior
of the traveling wave solutions at positive infinity.

2 Preliminaries andMain Results

We set J+(x) := max{J (x), 0} and J−(x) := max{−J (x), 0}. It is easy to see that
J (x) = J+(x) − J−(x). By (H1) and (H2), the functions

R±(λ) :=
∫
R

J±(x)e−λxdx and S(λ) :=
∫ +∞

−∞
h(x)e−λxdx

are well defined for all λ ∈ [0,∞). For λ > 0 and c ∈ R, we define

K(c, λ) := K̃(λ) − cλ and N (c, λ) := Ñ (λ) − cλ,

where

K̃(λ) := R+(λ) − R−(λ) − α + ∂1 f (0, 0) + ∂2 f (0, 0)e
−cτλS(λ),

Ñ (λ) := R+(λ) + R−(λ) − α + ∂1 f (0, 0) + ∂2 f (0, 0)e
−cτλS(λ).

It is easily seen that K(c, λ) < N (c, λ) for all λ ∈ (0,+∞) and c ∈ R. We define

c∗ := inf
λ∈(0,λ̂)

K̃(λ)

λ
and c� := inf

λ∈(0,+∞)

Ñ (λ)

λ
,

where λ̂ is defined to be the first positive zero of K̃(λ), if it exists; otherwise, we set
λ̂ := +∞. Note that K̃(0) = ∂1 f (0, 0) + ∂2 f (0, 0) > 0. Then by the continuity of
K̃(λ), we have K̃(λ) > 0 for λ > 0 small. Thus, c∗ is well defined and c∗ ≥ 0. By
computation, we see that Ñ (0) > ∂1 f (0, 0) + ∂2 f (0, 0) > 0 and ∂2

∂λ2
Ñ (λ) > 0 for

λ ≥ 0. Hence, c� is well defined and c� > 0. It is obvious that c∗ < c#. Furthermore,
we have the following lemma.

Lemma 2.1 The following assertions hold.

(i) When c > c∗, the equation K(c, λ) = 0 admits the smallest positive root λ1 :=
λ1(c) ∈ (0, λ̂) such that

K(c, λ1) = 0, K(c, λ) > 0, ∀λ ∈ [0, λ1). (2.1)
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(ii) When c > c#, the equation N (c, λ) = 0 has two positive roots λ2 := λ2(c) and
λ3 := λ3(c) with λ2 < λ3 such that

N (c, λ) < 0, ∀λ ∈ (λ2, λ3); N (c, λ) > 0, ∀λ ∈ [0, λ2) ∪ (λ3,+∞). (2.2)

Remark 2.2 It can be seen that λ2 > λ1. In fact, by contradiction, we assume that
λ2 ≤ λ1. Then by (2.1) and (2.2), we have

N (c, λ2) = 0 ≤ K(c, λ2),

which contradicts to K(c, λ) < N (c, λ) for all λ ∈ (0,+∞).

In order to obtain the existence of traveling wave solutions of (1.3), we need the
following additional technical assumption.

(H6) f satisfies ∂1 f (0, 0) > α, and there is a small constant σ ∈ (0, 1) such that

f (u, v) = ∂1 f (0, 0)u + ∂2 f (0, 0)v for (u, v) ∈ [0, σ ]2. (2.3)

Moreover, there exists a constant δ ∈ (0,∞) such that

f (1 + δ, 1 + δ) < 0, 1 + δ ≤ u+, (2.4)

and J− satisfies

∫
R

J−(x)dx ≤ min

{− f (1 + δ, 1 + δ)

1 + δ
,
(∂1 f (0, 0) − α)σ

1 + δ

}
. (2.5)

Define

χi :=
∫
R

|xi J (x)|dx, i = 0, 1, 2.

Since J has a compact support, χi is well defined. Now, we are ready to give our main
result.

Theorem 2.3 Assume that (H1)-(H6) hold. Then, the following assertions hold.

(i) If c > c#, then (1.4) has a positive bounded solution ψ such that ψ(−∞) = 0,
and

lim
ξ→−∞ ψ(ξ)e−λ1ξ = 1 and lim

ξ→−∞ ψ ′(ξ)e−λ1ξ = λ1, (2.6)

where λ1 is defined by (2.1).
(ii) Assume further that f ∈ C1(R×R). If c > max{c#, (χ0χ2)

1
2 }, then (1.4) admits a

positive bounded solution ψ such that ψ(−∞) = 0 and ψ(+∞) = 1. Moreover,
(2.6) also holds.
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Remark 2.4 i) When the kernel J is nonnegative, whether it is symmetric or
asymmetric, the traveling wave solutions of (1.3) are monotone, see [29, 33].
Unfortunately, when the kernel J is sign-changing, the monotonicity of traveling
wave solution ψ cannot be obtained. The traveling wave solutions of (1.3) may
be monotone or non-monotone. We conjecture that the monotone traveling wave
solutions exist under some additional assumptions on the nonlinearity.

ii) By Theorem 2.3, we just know the existence of travelingwave solutions with speed
c > c#. Whether the traveling wave solutions exist for some speed c between c∗
and c# is unknown. In other words, we are unable to determine the minimal wave
speed, if it exists. We leave this problem for further study.

3 Existence of TravelingWave Solutions

In this section, we are devoted to proving the existence of traveling wave solutions to
(1.3), i.e., solutions of (1.4).

3.1 A General Result

In this subsection, we present a general existence result for solutions of (1.4). Define
the integral operator G : C(R,R) → C(R,R) by

G[ψ](ξ) := 1

c

∫ ξ

−∞
e− β

c (ξ−y)H(ψ)(y)dy,

where β > α is some large constant, and

H(ψ)(ξ) = (J ∗ ψ)(ξ) + (β − α)ψ(ξ) + f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)
,

where (J ∗ ψ)(ξ) = ∫
R
J (y)ψ(ξ − y)dy. It is easy to see that G is well defined, and

a fixed point ψ of G is a solution of (1.4).
Let κ := max(u,v)∈[0,u+]2 |∂1 f (u, v)|. Since ∂2 f (u, v) ≥ 0 for (u, v) ∈ [0, u+]2,

the function f satisfies the following quasimonotone condition.

Lemma 3.1 Assume that (H5) holds. Then, there is a positive constant β > κ +α such
that

f

(
ψ1(ξ),

∫ +∞

−∞
h(y)ψ1(ξ − y − cτ)dy

)

− f

(
ψ2(ξ),

∫ +∞

−∞
h(y)ψ2(ξ − y − cτ)dy

)

+ (β − α)(ψ1(ξ) − ψ2(ξ)) ≥ 0,

where ψ1, ψ2 ∈ C(R,R) with 0 ≤ ψ2(ξ) < ψ1(ξ) ≤ u+ for all ξ ∈ R.
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The inequality in the above lemma can be easily proved by the mean value theorem.
Thus, we omit the details here, see also [29, Lemma 2.1].

The existence of the fixed point will be proved by Schauder’s fixed point theorem
together with upper and lower solutions. We first introduce the concept of upper and
lower solutions of (1.4).

Definition 3.2 A pair of continuous functions {ψ̄, ψ} are called upper and lower solu-
tions of (1.4) if

cψ̄ ′(ξ) ≥ (J+ ∗ ψ̄)(ξ) − (J− ∗ ψ)(ξ) − αψ̄(ξ)

+ f

(
ψ̄(ξ),

∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy

)
, (3.1)

cψ ′(ξ) ≤ (J+ ∗ ψ)(ξ) − (J− ∗ ψ̄)(ξ) − αψ(ξ)

+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)
, (3.2)

for ξ ∈ R \ T with some finite set T ⊂ R.

Now, we are in position to state the general existence result of solutions of (1.4)
based on a pair of upper and lower solutions.

Proposition 3.3 Assume that (1.4) has a pair of upper and lower solutions {ψ̄, ψ}
with range in [0, u+] such that ψ ≤ ψ̄ in R. Then for each c > 0, (1.4) admits a

solution ψ satisfying ψ(ξ) ≤ ψ(ξ) ≤ ψ̄(ξ) for any ξ ∈ R.

Proof For any μ ∈ (0, β
c ), define

Bμ(R) = {ψ ∈ C(R,R) | ‖ψ‖μ < ∞}, ‖ψ‖μ := sup
ξ∈R

|ψ(ξ)|e−μ|ξ |.

Then, (Bμ(R), ‖ · ‖μ) is a Banach space. Let � := {ψ ∈ C(R,R) | ψ(ξ) ≤ ψ(ξ) ≤
ψ̄(ξ),∀ξ ∈ R}. It is easy to see that � is a nonempty convex bounded closed set with
respect to the weighted norm ‖ · ‖μ. We claim that (i) G(�) ⊂ �; (ii) G : � → � is
completely continuous with respect to the weighted norm ‖ψ‖μ. Then, the proposition
can be proved by Schauder’s fixed point theorem.

We only prove the claim (i). The claim (ii) can be proved by a similar argument as
that in [29, Lemma 2.4], we omit the details here. For any given ψ ∈ �, by the fact
that J (x) = J+(x) − J−(x) and Lemma 3.1, we obtain

G[ψ](ξ) = 1

c

∫ ξ

−∞
e− β

c (ξ−y) [
(J+ ∗ ψ)(y) − (J− ∗ ψ)(y) + (β − α)ψ(y)

]
dy

+ 1

c

∫ ξ

−∞
e− β

c (ξ−y) f

(
ψ(y),

∫ +∞

−∞
h(s)ψ(y − s − cτ)ds

)
dy

≤ 1

c

∫ ξ

−∞
e− β

c (ξ−y)
[
(J+ ∗ ψ̄)(y) − (J− ∗ ψ)(y) + (β − α)ψ̄(y)

]
dy
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+ 1

c

∫ ξ

−∞
e− β

c (ξ−y) f

(
ψ̄(y),

∫ +∞

−∞
h(s)ψ̄(y − s − cτ)ds

)
dy.

Furthermore, by (3.2), we have

G[ψ](ξ) ≤ 1

c

∫ ξ

−∞
e− β

c (ξ−y)[cψ̄ ′(y) + βψ̄(y)]dy = ψ̄(ξ)

for all ξ ∈ R. Similarly, we can get that G[ψ](ξ) ≥ ψ(ξ) for all ξ ∈ R. Hence, the
claim (i) holds. The proof is complete. �

By Proposition 3.3, we see that in order to prove the existence of solutions of (1.4),
it suffices to construct a pair of suitable upper and lower solutions.

3.2 Proof of Theorem 2.3

It follows from Remark 2.2 that λ1 < λ2. We choose η > 1 such that ηλ1 ∈ (λ2, λ3).
For a given constant q > 1, we define a continuous function

ϕ(ξ) := eλ1ξ − qeηλ1ξ .

It is easy to verify that ϕ(ξ) has a unique zero point ξ0 := − ln q
(η−1)λ1

, i.e., ϕ(ξ0) = 0,
such that ϕ(ξ) > 0 for ξ < ξ0 and ϕ(ξ) < 0 for ξ ∈ (ξ0,∞). Moreover, ϕ(ξ) has
a maximum point ξM := − ln ηq

(η−1)λ1
, i.e., ϕ(ξM ) = maxξ∈R ϕ(ξ). In what follows, we

choose q large enough such that ϕ(ξM ) = σ , where σ is defined in (2.3).
Based on the above numbers λ1, η, q, δ and σ , we define two continuous functions

ψ̄(ξ) =
{
eλ1ξ + qeηλ1ξ , ξ ≤ ξ1,

1 + δ, ξ ≥ ξ1,
ψ(ξ) =

{
eλ1ξ − qeηλ1ξ , ξ ≤ ξM ,

σ, ξ ≥ ξM ,
(3.3)

where the constant ξ1 is chosen so that eλ1ξ + qeηλ1ξ = 1 + δ.
We are going to prove that the functions ψ̄ and ψ are upper and lower solutions of

(1.4), respectively. In order to simplify notations, we define

L1(ξ) = − cψ̄ ′(ξ) + (J+ ∗ ψ̄)(ξ) − (J− ∗ ψ)(ξ) − αψ̄(ξ)

+ f

(
ψ̄(ξ),

∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy

)
,

L2(ξ) = − cψ ′(ξ) + (J+ ∗ ψ)(ξ) − (J− ∗ ψ̄)(ξ) − αψ(ξ)

+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)
.

Lemma 3.4 Assume that (H1)-(H6) hold. If c > c#, then the functions ψ̄ andψ defined
by (3.3) are upper and lower solutions of (1.4), respectively.
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Proof We first show that L1(ξ) ≤ 0 for all ξ ∈ R \ {ξ1}. When ξ < ξ1, we have
ψ̄(ξ) = eλ1ξ + qeηλ1ξ . Since 0 ≤ ψ̄(ξ) ≤ 1 + δ ≤ u+ for all ξ ∈ R, by (H4), we
have

f

(
ψ̄(ξ),

∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy

)

≤ ∂1 f (0, 0)ψ̄(ξ) + ∂2 f (0, 0)
∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy.

Note that ψ̄(ξ) ≤ eλ1ξ + qeηλ1ξ and ψ(ξ) ≥ eλ1ξ − qeηλ1ξ for all ξ ∈ R. Thus, for
ξ < ξ1, we obtain

L1(ξ) ≤ −c[λ1eλ1ξ + ηλ1qe
ηλ1ξ ] +

∫
R

J+(y)[eλ1(ξ−y) + qeηλ1(ξ−y)]dy

−
∫
R

J−(y)[eλ1(ξ−y) − qeηλ1(ξ−y)]dy − α[eλ1ξ + qeηλ1ξ ]

+ f

(
ψ̄(ξ),

∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy

)

≤ eλ1ξ [−cλ1 + R+(λ1) − R−(λ1) − α]
+ qeηλ1ξ [−cηλ1 + R+(ηλ1) + R−(ηλ1) − α]
+ ∂1 f (0, 0)ψ̄(ξ) + ∂2 f (0, 0)

∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy

= eλ1ξ [K(c, λ1) − ∂1 f (0, 0) − ∂2 f (0, 0)e
−cτλ1 S(λ1)]

+ qeηλ1ξ [N (c, ηλ1) − ∂1 f (0, 0) − ∂2 f (0, 0)e
−cτηλ1 S(ηλ1)]

+ ∂1 f (0, 0)ψ̄(ξ) + ∂2 f (0, 0)
∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy. (3.4)

It can be seen from (2.1) and (2.2) thatK(c, λ1) = 0 andN (c, ηλ1) < 0. Hence, (3.4)
becomes

L1(ξ) < − ∂1 f (0, 0)(e
λ1ξ + qeηλ1ξ ) − ∂2 f (0, 0)∫ +∞

−∞
h(y)(eλ1(ξ−y−cτ) + qeηλ1(ξ−y−cτ))dy

+ ∂1 f (0, 0)ψ̄(ξ) + ∂2 f (0, 0)
∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy ≤ 0.

When ξ > ξ1, we have ψ̄(ξ) = 1 + δ. Since ψ̄(ξ) ≤ 1 + δ for all ξ ∈ R, by (H5),
we have

f

(
ψ̄(ξ),

∫ +∞

−∞
h(y)ψ̄(ξ − y − cτ)dy

)
≤ f (1 + δ, 1 + δ), ∀ξ > ξ1.
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Furthermore, by considering that fact that J (x) = J+(x) − J−(x) for all x ∈ R and∫
R
J (x)dx = α, and ψ(ξ) ≥ 0 for all ξ ∈ R, one has, for ξ > ξ1,

L1(ξ) ≤ (1 + δ)

∫
R

J+(y)dy − α(1 + δ) + f (1 + δ, 1 + δ)

= (1 + δ)

∫
R

J−(y)dy + f (1 + δ, 1 + δ) ≤ 0.

The last inequality holds due to (2.5). Therefore, we obtain L1(ξ) ≤ 0 for all ξ ∈
R\{ξ1}.

Next, we prove that L2(ξ) ≥ 0 for all ξ ∈ R \ {ξM }. When ξ < ξM , we have
ψ(ξ) = eλ1ξ − qeηλ1ξ . Note that ψ(ξ) ∈ (0, σ ] for all ξ ∈ R. Then by (2.3), we have

f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)

= ∂1 f (0, 0)ψ(ξ) + ∂2 f (0, 0)
∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy.

In view of ψ̄(ξ) ≤ eλ1ξ + qeηλ1ξ for all ξ ∈ R, and by (2.1) and (2.2), we derive, for
ξ < ξM ,

L2(ξ) ≥ − c[λ1eλ1ξ − ηλ1qe
ηλ1ξ ] +

∫
R

J+(y)[eλ1(ξ−y) − qeηλ1(ξ−y)]dy

−
∫
R

J−(y)[eλ1(ξ−y) + qeηλ1(ξ−y)]dy − α[eλ1ξ − qeηλ1ξ ]

+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)

= eλ1ξ [−cλ1 + R+(λ1) − R−(λ1) − α]
− qeηλ1ξ [−cηλ1 + R+(ηλ1) + R−(ηλ1) − α]
+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)

= eλ1ξ [K(c, λ1) − ∂1 f (0, 0) − ∂2 f (0, 0)e
−cτλ1 S(λ1)]

− qeηλ1ξ [N (c, ηλ1) − ∂1 f (0, 0) − ∂2 f (0, 0)e
−ηcτλ1 S(ηλ1)]

+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)

≥ −∂1 f (0, 0)(e
λ1ξ − qeηλ1ξ )

− ∂2 f (0, 0)
∫ +∞

−∞
h(y)(eλ1(ξ−y−cτ) − qeηλ1(ξ−y−cτ))dy

+ ∂1 f (0, 0)ψ(ξ) + ∂2 f (0, 0)
∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy ≥ 0.
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When ξ > ξM , we haveψ(ξ) = σ . Note that 0 <
∫ +∞
−∞ h(y)ψ(ξ − y−cτ)dy ≤ σ ,

ψ(ξ) > 0 and ψ̄(ξ) ≤ 1 + δ for all ξ ∈ R. Then for ξ > ξM , we have

L2(ξ) ≥ −(1 + δ)

∫
R

J−(y)dy − ασ + f

(
σ,

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)

= −(1 + δ)

∫
R

J−(y)dy − ασ + ∂1 f (0, 0)σ

+ ∂2 f (0, 0)
∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

≥ −(1 + δ)

∫
R

J−(y)dy − ασ + ∂1 f (0, 0)σ ≥ 0.

The last inequality holds due to (2.5). Hence, we obtain that L2(ξ) ≥ 0 for all ξ ∈
R\ {ξM }. Therefore, ψ̄ andψ are upper and lower solutions to (1.4), respectively. The
proof is complete. �
Proof of Theorem 2.3 (i) By Proposition 3.3 and Lemma 3.4, we obtain that there exists
a solution ψ of (1.4). By the definition of ψ̄ and ψ in (3.3), we see that ψ̄(−∞) =
ψ(−∞) = 0. In viewofψ(ξ) ≤ ψ(ξ) ≤ ψ̄(ξ) for ξ ∈ R, we obtain thatψ(−∞) = 0,
and lim infξ→+∞ ψ(ξ) > 0. In addition, notice that

eλ1ξ − qeηλ1ξ ≤ ψ(ξ) ≤ eλ1ξ + qeηλ1ξ , ∀ξ ∈ R,

where λ1 > 0 and η > 1. Then, we derive

lim
ξ→−∞ ψ(ξ)e−λ1ξ = 1. (3.5)

In view of (H6) and (3.5), and by Lebesgue’s dominated convergence theorem, we see

lim
ξ→−∞ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)
e−λ1ξ

= lim
ξ→−∞

(
∂1 f (0, 0)ψ(ξ) + ∂2 f (0, 0)

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)
e−λ1ξ

= ∂1 f (0, 0) + ∂2 f (0, 0)e
−λ1cτ

∫ +∞

−∞
h(y)e−λ1ydy.

Hence,

lim
ξ→−∞ ψ ′(ξ)e−λ1ξ

= 1

c
lim

ξ→−∞

{∫
R

J (y)ψ(ξ − y)dy − αψ(ξ)

+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)}
e−λ1ξ
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= 1

c

{∫ +∞

−∞
J (y)e−λ1 ydy − α + ∂1 f (0, 0) + ∂2 f (0, 0)e

−λ1cτ
∫ +∞

−∞
h(y)e−λ1 ydy

}

= 1

c
(K(c, λ1) + cλ1)

= λ1,

since K(c, λ1) = 0. Thus, the assertion of Theorem 2.3 (i) is true. The proof is
complete. �

Next, we shall study the behavior of the solution to (1.4) at ξ = +∞.

Proposition 3.5 Let ψ be a solution to (1.4) obtained in Theorem 2.3 (i). If the limit
ρ := limξ→+∞ ψ(ξ) exists, then f (ρ, ρ) = 0.

Proof Since ρ := limξ→+∞ ψ(ξ) exists, there exists a sequence {ξn} with {ξn} →
+∞ such that ψ(ξn) → ρ and ψ ′(ξn) → 0 as n → ∞. Taking ξn into (1.4) yields

cψ ′(ξn) = (J ∗ ψ)(ξn) − αψ(ξn) + f

(
ψ(ξn),

∫ +∞

−∞
h(y)ψ(ξn − y − cτ)dy

)
.

In order to prove that f (ρ, ρ) = 0, we just need to show that

lim
n→∞(J ∗ ψ)(ξn) = αρ and lim

n→∞

∫ +∞

−∞
h(y)ψ(ξn − y − cτ)dy = ρ. (3.6)

For any ε > 0 sufficiently small, since limξ→+∞ ψ(ξ) = ρ,
∫
R
J (x)dx = α and∫

R
h(x)dx = 1, there exists a constant M � 1 such that

|ψ(ξ) − ρ| < min

{
ε

4(R+(0) + R−(0))
,
ε

4

}
for ξ ≥ M, (3.7)

∫
|y|≥M

J±(y)dy <
ε

4‖ψ‖∞
, (3.8)

∣∣∣∣
∫

|y|≥M
J (y)dy

∣∣∣∣ <
ε

4(|ρ| + 1)
and

∣∣∣∣
∫

|y|≥M
h(y)dy

∣∣∣∣ < min

{
ε

2‖ψ‖∞
,

ε

4(|ρ| + 1)

}
, (3.9)

where ‖ · ‖∞ mean the supremum norm. We choose N � 1 such that ξn − cτ ≥ 2M
for all n > N . Then, by (3.7), for any n > N and y ∈ [−M, M], one has

|ψ(ξn − y − scτ) − ρ| < min

{
ε

4(R+(0) + R−(0))
,
ε

4

}
, (3.10)

where s ∈ {0, 1}.
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It is easy to see that

∣∣∣∣
∫
R

J (y)ψ(ξn − y)dy − αρ

∣∣∣∣
≤

∣∣∣∣
∫

|y|≥M
J (y)ψ(ξn − y)dy

∣∣∣∣ +
∣∣∣∣
∫ M

−M
J (y)[ψ(ξn − y) − ρ]dy

∣∣∣∣
+

∣∣∣∣
∫ M

−M
J (y)dy − α

∣∣∣∣ · |ρ|

and
∣∣∣∣
∫
R

h(y)ψ(ξn − y − cτ)dy − ρ

∣∣∣∣
≤

∣∣∣∣
∫

|y|≥M
h(y)ψ(ξn − y − cτ)dy

∣∣∣∣ +
∣∣∣∣
∫ M

−M
h(y)[ψ(ξn − y − cτ) − ρ]dy

∣∣∣∣
+

∣∣∣∣
∫ M

−M
h(y)dy − 1

∣∣∣∣ · |ρ|.

For any n ≥ N , by (3.8), (3.9) and (3.10), one has

∣∣∣∣
∫

|y|≥M
J (y)ψ(ξn − y)dy

∣∣∣∣ ≤
(∫

|y|≥M
J+(y)dy +

∫
|y|≥M

J−(y)dy

)
‖ψ‖∞ <

ε

2
,

∣∣∣∣
∫ M

−M
J (y)[ψ(ξn − y) − ρ]dy

∣∣∣∣ ≤
∫ M

−M
|J (y)|dy · ε

4[R+(0) + R−(0)] ≤ ε

4
,

∣∣∣∣
∫

|y|≥M
h(y)ψ(ξn − y − cτ)dy

∣∣∣∣ ≤
∣∣∣∣
∫

|y|≥M
h(y)dy

∣∣∣∣ ‖ψ‖∞ <
ε

2
,

and

∣∣∣∣
∫ M

−M
h(y)[ψ(ξn − y − cτ) − ρ]dy

∣∣∣∣ ≤
∣∣∣∣
∫ M

−M
h(y)dy

∣∣∣∣ · ε

4
≤ ε

4
.

Since
∫
R
J (x)dx = α and

∫
R
h(x)dx = 1, by (3.9), we have

∣∣∣∣
∫ M

−M
J (y)dy − α

∣∣∣∣ · |ρ| =
∣∣∣∣
∫

|y|≥M
J (y)dy

∣∣∣∣ · |ρ| <
ε

4

and

∣∣∣∣
∫ M

−M
h(y)dy − 1

∣∣∣∣ · |ρ| =
∣∣∣∣
∫

|y|≥M
h(y)dy

∣∣∣∣ · |ρ| <
ε

4
.

Hence, (3.6) holds. The proof is complete. �
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Define the set

Ck
b (R) := {ϕ ∈ Ck(R) | ‖ϕ( j)‖∞ < ∞, j = 0, 1, . . . , k}.

Lemma 3.6 Let ψ ∈ C2
b (R) be a solution to (1.4). If c > (χ0χ2)

1
2 , then ψ ′ ∈ L2(R)

and limξ→+∞ ψ ′(ξ) = 0.

Proof Since ψ ∈ C2
b (R), we denote C0 := ‖ψ‖∞ and C1 = ‖ψ ′‖∞. Moreover, we

define

f̃ (u) :=
∫ u

0
f (s, g(s))ds and C2 := max

u∈[−C0,C0]
| f̃ (u)|,

where g(s) is continuous function in R. It is easy to see that f̃ ′(u) = f (u, g(u)) and
[ f̃ (u(ξ))]′ = f (u(ξ), g(u(ξ)))u′(ξ). Let A, B > 0. Multiplying (1.4) by ψ ′ and then
integrating from −A to B, and applying the Cauchy–Schwarz inequality, we derive

c
∫ B

−A
(ψ ′)2(ξ)dξ

=
∫ B

−A
ψ ′(ξ) [(J ∗ ψ)(ξ) − αψ(ξ)

+ f

(
ψ(ξ),

∫ +∞

−∞
h(y)ψ(ξ − y − cτ)dy

)]
dξ

=
∫ B

−A
ψ ′(ξ)[(J ∗ ψ)(ξ) − αψ(ξ)]dξ +

∫ B

−A
[ f̃ (ψ(ξ))]′dξ

≤
(∫ B

−A
(ψ ′)2(ξ)dξ

) 1
2
(∫ B

−A
[(J ∗ ψ)(ξ) − αψ(ξ)]2dξ

) 1
2

+ 2C2, (3.11)

where we used g(ψ(ξ)) = ∫
R
h(y)ψ(ξ − y − cτ)dy. By a similar argument as that

in [8, Lemma 4.2], we obtain

∫ B

−A
[(J ∗ ψ)(ξ) − αψ(ξ)]2dξ ≤ χ2

{
χ0

∫ B

−A
(ψ ′)2(ξ)dξ + C2

1χ1

}
. (3.12)

Taking (3.12) into (3.11) yields

c
∫ B

−A
(ψ ′)2(ξ)dξ ≤ (χ2)

1
2

{
χ0

(∫ B

−A
(ψ ′)2(ξ)dξ

)2

+ C2
1χ1

∫ B

−A
(ψ ′)2(ξ)dξ

} 1
2

+ 2C2,

which implies that if c > (χ0χ2)
1
2 , then

{ ∫ B
−A(ψ ′)2|A > 0, B > 0

}
is uniformly

bounded, and hence, we obtain that ψ ′ ∈ L2(R). Since ψ ∈ C2
b (R), it is clear that
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ψ ′ is uniformly continuous on R. Thus, we have limξ→+∞ ψ ′(ξ) = 0. The proof is
complete. �
Lemma 3.7 Let ψ ∈ C2

b (R) be a solution to (1.4), and assume further that f ∈
C1(R × R). If c > (χ0χ2)

1
2 and

{u ∈ [−‖ψ‖∞, ‖ψ‖∞]| f (u, u) = 0} = {0, 1},

then ψ(+∞) exists and belongs to {0, 1}.
Proof Let S be the set of accumulation points of ψ at +∞. Note that ψ ∈ C2

b (R).
Thus, S is not empty. Let ρ ∈ S. Then, there exists a sequence ξn → +∞ such that
ψ(ξn) → ρ as n → +∞. Let ϕn(ξ) := ψ(ξ + ξn). Then by (1.4), ϕn(ξ) solves

cϕ′
n(ξ) = (J ∗ ϕn)(ξ) − αϕn(ξ) + f

(
ϕn(ξ),

∫ +∞

−∞
h(y)ϕn(ξ − y − cτ)dy

)
,

∀ξ ∈ R.

For all L > 0 and all 1 < p < ∞, the sequence {ϕn} is bounded in W 2,p([−L, L]).
Then by the Sobolev embedding theorem, there exists a subsequence {ϕnk } of {ϕn}
such that {ϕnk } → ϕ as k → ∞ strongly in C1

loc(R) and weakly in W 1,p
loc (R). Thus, ϕ

satisfies

cϕ′(ξ) = (J ∗ ϕ)(ξ) − αϕ(ξ) + f

(
ϕ(ξ),

∫ +∞

−∞
h(y)ϕ(ξ − y − cτ)dy

)
, ∀ξ ∈ R.

In addition, by Lemma 3.6, we obtain

ϕ′(ξ) = lim
k→∞ ψ ′(ξ + ξnk ) = 0, ∀ξ ∈ R,

which implies that ϕ(ξ) is a constant function of ξ ∈ R. Hence, we derive

ϕ(ξ) ∈ {u ∈ [−‖ψ‖∞, ‖ψ‖∞]| f (u, u) = 0}, ∀ξ ∈ R.

In particular,

ρ = lim
k→∞ ψ(ξnk ) = ϕ(0) ∈ {u ∈ [−‖ψ‖∞, ‖ψ‖∞]| f (u, u) = 0}.

By the assumption of the lemma, we obtain that ρ ∈ {0, 1}. Since ψ is a continuous
function, S is connected. Therefore, ψ(+∞) exists and belongs to {0, 1}. The proof
is complete. �
Proof of Theorem 2.3 (ii) In order to apply Lemma 3.7, we need to show that the trav-
eling wave solution ψ obtained in Theorem 2.3 (i) satisfies ψ ∈ C2

b (R). Since
ψ(ξ) ≤ ψ(ξ) ≤ ψ̄(ξ) for all ξ ∈ R, and ψ satisfies (1.4), we obtain that ψ is
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continuous and bounded. It then follows from (1.4) and (H4) that ψ ′ is also continu-
ous and bounded for any fixed c. In view of f ∈ C1(R×R), we can see that the right
side of (1.4) is differentiable. Then, we have

cψ ′′(ξ) = D2ψ
′(ξ) + ∂1 f · ψ ′(ξ) + ∂2 f ·

∫ +∞

−∞
h(y)ψ ′(ξ − y − cτ)dy,

which implies that ψ ′′ is continuous and bounded in R. Therefore, ψ ∈ C2
b (R). Note

from (3.3) that when ξ ≥ ξM , ψ(ξ) ≥ σ > 0. It then follows from Lemma 3.7 that
when c > max{c#, (χ0χ2)

1
2 }, ψ(+∞) = 1. Thus, the assertion (ii) of Theorem 2.3 is

true. The proof is complete. �
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