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Abstract
This study aims to investigate the morphism and stability of a family of new transcen-
dental functions, namely H functions, which have been proven a suitable vehicle for
expressing the exact solutions of drug concentration over time of a one-compartment
pharmacokinetic (PK) model with sigmoidal Hill elimination. Restricting in the real
values of Hill coefficients α for the H functions, the real branches of the H functions
are identified and their stabilities are analyzed. The number, shape, monotonicity, and
concavity of all real branches are determined, as well as the stability of each branch
when α is changed. The results show that the principal real branch H0(s) is the unique
stable branch for α ∈ R, while other real branches can only exist for α ∈ Q and clas-
sified therein. A numerical experiment is conducted between the proposed H function
and other commonly used solvers, including differential equation solvers (ode45),
and the results indicate that the former is more reliable and has an acceptable level of
induced error.

Keywords Transcendent H function · Real branches · Stability · Pharmacokinetic
model · Hill coefficient

Mathematics Subject Classification 92C45 · 65H99 · 34A25

Communicated by Rosihan M. Ali.

B Jun Li
jun.li.2@umontreal.ca

Xiaotian Wu
xtwu@shmtu.edu.cn

1 School of Science, Shanghai Maritime University, Shanghai 201306, China

2 Faculté de pharmacie, Université de Montréal, Montréal, Québec H3C 3J7, Canada

3 Centre de recherches mathématiques, Université de Montréal, Montréal, Québec H3C 3J7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-023-01630-y&domain=pdf


41 Page 2 of 21 X. Wu et al.

1 Introduction

In life science research, it is recognized that the current linear kinetic modeling
paradigm of substance transport has to be shifted to more sophisticate but complete
mathematical approaches to accurately capture the newly discovered nonlinear reality.
For instance, research on new drug kinetics often involves specific binding interactions
between ligands/substrates and proteins/enzymes, stimulated by various biological
activities, such as immune response, gene expression, macromolecular assembly, and
metabolism regulation [1, 2]. The binding is normally performed in two ways: non-
cooperative or cooperative. In noncooperative binding, initial binding does not affect
subsequent bindings, and binding velocity usually follows Michaelis–Menten kinet-
ics. In cooperative binding, initial binding of ligands/substrates significantly affects
subsequent bindings. Conformational change of protein induced by the binding of one
ligand/substrate molecular gives rise to the apparent change in affinity of the vacant
sites to ligands/substrates. Cooperativity can also be positive or negative, determined
by the change in binding affinity of ligands/substrates to proteins/enzymes. Coop-
erativity is positive if initial binding increases the binding affinity of subsequent
ligands/substrates to proteins/enzymes and negative if initial binding decreases the
binding affinity. Generally, the velocity of cooperativity is fitted by the Hill equation
[3–5], namely,

VmaxCα(t)

K α
D + Cα(t)

, (1.1)

where C(t) is the concentration of ligands/substrates at time t , Vmax is the maximum
velocity of cooperative binding, KD is the concentration at which the velocity reaches
half of Vmax, and α is the Hill coefficient. Additionally, positive or negative coop-
erativity is suggested by α > 1 or α < 1, respectively. As an effective modeling
approach, Hill kinetics have been widely used in pharmacology to represent nonlinear
and saturating drug elimination or drug effects induced by drug concentration [6, 7].

Because of the aforementioned widely use of Hill elimination kinetics in pharma-
cokinetic modeling, one-compartment pharmacokinetic model with a single sigmoidal
elimination pathway has been proposed in many studies [8, 9]. Thus, the change of
drug molecular concentration follows the differential equation:

dC(t)

dt
= − VmaxCα(t)

K α
D + Cα(t)

. (1.2)

Analytical solutions of C(t) are required in pharmacology for many reasons, particu-
larly for different drug administration routes as discussed in [10]. Specialists in clinical
pharmacology appeal to the mathematical community to work on such drug models as
they are important for drug development [11, 12]. Unlike linear drug models, where
analytical solutions of C(t) using common algebraic functions are available, the solu-
tion C(t) of model (1.2) is difficult due to the presence of nonlinearity. Therefore, we
have recourse to transcendent functions to represent the exact analytical solutions of
drug concentration over time for such nonlinear pharmacokinetic models.
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The use of transcendent functions to solve pharmacokinetic models is not uncom-
mon. The Lambert W function is a typical example, which is defined as an implicit
solution of W (s) satisfying

W (s)eW (s) = s, s ∈ R. (1.3)

This function is known for having two real branches: a principal W0(s) defined in the
interval s ∈ [−e−1,∞) and the other W−1(s) defined in the interval s ∈ [−e−1, 0)
[13]. These two real branches are used for expressing the analytic solutions ofC(t) for
one-compartment pharmacokinetic model with Michaelis–Menten elimination alone
for the case of intravenous bolus or constant infusion administrations [14]. In 2015,
Wu and coauthors studied the analytical solution of C(t) for a one-compartment
pharmacokinetic model with simultaneous first-order and Michaelis–Menten elim-
ination in the case of intravenous bolus administration. In that paper, they proposed a
transcendent X function satisfying

(X(s))p (X(s) + 1)q = s, for all s ∈ R (1.4)

to provide the analytical solution of drug concentration over time [10], where both p
and q are positive parameters. The morphism classification of real branches for the
newly developed X function has been investigated at the scope of real numbers [15].

In a recent study, we have investigated the pharmacokinetic Model (1.2) under
single/multiple intravenous bolus administrations [16], where a new transcendent
function, the H function, was proposed to express the model solution C(t). Given
s ∈ R, H(s) is a multi-valued inverse solution of the following equation

1

1 − α
H1−α(s) + H(s) = s, (1.5)

where α �= 1 is the aforementioned Hill coefficient. The importance of the transcen-
dent H function that we developed is evidenced by its application in studying several
key pharmacokinetic parameters such as half-life, clearance, and drug exposure. This
has enabled the delineation of the impact of nonlinear Hill elimination on drug dis-
position and the derivation of new quantitative estimates for real drugs [16]. These
facts manifest the importance of the transcendent H function that we developed. How-
ever, the mathematical properties of this H function are marginal and deserve further
exploration.

The objective of this study is to investigate the morphism of real branches of
the transcendent H function, including their number, branch point, monotonicity,
and convexity, and compare them to the real branches of the Lambert W function.
This comparison will demonstrate how the Hill coefficient α can lead to complex
branches. Since the Hill coefficient α describes the cooperativity of macromolecules
and enzyme/protein/receptor binding interaction, its valuemay undergo small changes
at every data-fitting process. Hence, we will investigate how slight variations in α

affect the stability of the real branches. This will provide a rationale for utilizing the
H function for nonlinear pharmacokinetic models.
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The paper is organized as follows: In Sect. 2, we introduce the definition of the
transcendental H function and use it to derive the analytical solution C(t) of a one-
compartment pharmacokineticmodelwith a single sigmoidalHill elimination pathway
under a single intravenous bolus dose administration. We also provide the relationship
between the H and Lambert W functions. In Sect. 3, we present the morphism and
stability of the real branches of the H function. In Sect. 4, we compare a set of
numerical experiments of the aforementioned pharmacokinetic model using both the
direct differential method as implemented in the ode45 solver in Matlab and our
proposed algebraic H function. Finally, a brief discussion and conclusion concludes
the article in Sect. 5.

2 Transcendent H Function in Pharmacokinetic Modeling

2.1 Introduction of H Function

One-compartment model of Michaelis–Menten elimination is very common in phar-
macokinetic practice. If we assume a single intravenous bolus dose administration, it
can be mathematically described as

⎧
⎨

⎩

dC(t)

dt
= − VmaxC(t)

Km + C(t)
, t > t0,

C(t+0 ) = D/Vd � C0

(2.1)

where C(t) represents the drug concentration at time t ; Vmax is the maximum rate of
the Michaelis–Menten elimination process in the unit of concentration/time; Km is a
constant in the unit of drug concentration, and the drug concentration at Km means
the elimination rate will be a half of Vmax. Moreover, D is the dose at the initial time
t0, and Vd is the volume of distribution. Thus, we define C0 the drug concentration
immediately after the administration. It has to be reminded that all model parameters
are positive to be pharmacologically meaningful.

For Model (2.1), we can integrate both sides of the differential equation from t0 to
t and further rearrange it into the following algebraic equation

ln

(
C(t)

Km

)

+ C(t)

Km
= ln

C0

Km
+ C0

Km
− Vmax

Km
(t − t0). (2.2)

After using variable substitution x = C(t)/Km and taking exponentiation, Eq. (2.2)
becomes

x exp(x) = C0

Km
exp

(
C0 − Vmax(t − t0)

Km

)

. (2.3)

Since the left term of Eq. (2.3) is the primitive of the Lambert W function, whereas
its right term is independent with respect to x , the solution C(t) of Model (2.1) can
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be analytically expressed as

C(t) = Km × W0

(
C0

Km
exp

(
C0 − Vmax(t − t0)

Km

))

, t ≥ t0. (2.4)

Here, W0 is the principal real branch of the Lambert W function.
Let us consider themore general one compartmentmodel of Hill elimination, which

can be described for the case of intravenous bolus administration as
⎧
⎨

⎩

dC(t)

dt
= − VmaxCα(t)

K α
D + Cα(t)

, t > t0,

C(t+0 ) = D/Vd � C0,

(2.5)

with α the so-called Hill coefficient that usually represents the cooperative capacity
between drug molecules and proteins/enzymes/receptors. Moreover, we set α �= 1
to distinguish the Hill elimination from the Michaelis–Menten elimination. However,
other parameters are kept the same meanings as those in Model (2.1).

By integrating, in Model (2.5), both sides of the differential equation from t0 to t ,
we can obtain the following algebraic equation:

1

1 − α

(
C(t)

KD

)1−α

+ C(t)

KD
= 1

1 − α

(
C0

KD

)1−α

+ C0

KD
− Vmax

KD
(t − t0). (2.6)

With the same variable substitution x = C(t)/KD as that used for Model (2.1), we
have

1

1 − α
x1−α + x = 1

1 − α

(
C0

KD

)1−α

+ C0 − Vmax(t − t0)

KD
. (2.7)

The right side of Eq. (2.7) is independent with respect to x . So, by introducing a
transcendent H function as shown in Eq. (1.5), Model (2.5) has an analytical solution
as

C(t) = KD × H0

(
1

1 − α

(
C0

KD

)1−α

+ C0

KD
− Vmax

KD
(t − t0)

)

, t ≥ t0. (2.8)

Here, H0 is the principal real branch of the H function that we will characterize later.

Remark 2.1 Wechoose the simplestway todefine theH functiondirectly fromEq. (2.7)
instead of using its exponential version as that used for the Lambert W function.

Remark 2.2 α is positive in the pharmacokinetic Model (2.5); however, it can be
mathematically any non-unity real number in the definition of H function.

2.2 Relationship Between LambertW and H Functions

If α = 1, Model (2.5) turns out to be Model (2.1), from which the transcendent
Lambert W function can be deduced for expressing the analytical solution. Therefore,
it is worth clarifying the relationship between H and Lambert W functions.
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Now, we consider Model (2.5) where α �= 1, we can rewrite Eq. (2.6) as

1

1 − α

((C(t)

KD

)1−α−
( C0

KD

)1−α
)

= C0

KD
− C(t)

KD
− Vmax

KD
(t − t0). (2.9)

Taking Taylor series expansion around α = 1, we have

⎧
⎪⎨

⎪⎩

(C(t)

KD

)1−α = 1 + ln
(C(t)

KD

)
(1 − α) + o(1 − α),

( C0

KD

)1−α = 1 + ln
( C0

KD

)
(1 − α) + o(1 − α).

Thus,

lim
α→1

1

1 − α

((C(t)

KD

)1−α−
( C0

KD

)1−α
)

= ln
C(t)

KD
− ln

C0

KD
.

Finally, this yields

ln
C(t)

KD
− ln

C0

KD
= C0

KD
− C(t)

KD
− Vmax

KD
(t − t0), (2.10)

which is exactly Eq. (2.2) if Km = KD . If we raise natural exponential on both sides
of Eq. (2.10) and rearrange the equation, we will have

C(t)

KD
exp

C(t)

KD
= C0

KD
exp (

C0

KD
− Vmax

KD
(t − t0)). (2.11)

If we check Eq.(1.3) that defines Lambert W function, we have

C(t) = KD × W0

(
C0

KD
exp (

C0 − Vmax (t − t0)

KD
)

)

, t ≥ t0. (2.12)

This is the solution of pharmacokineticModel (2.1) ofMichaelis–Menten elimination,
which can thus be approximated by the solution of pharmacokinetic model (2.5) of
Hill elimination by letting α → 1. Denoting CH (t) for the former and CM (t) for the
latter, it means

lim
α→1

CH (t) = CM (t).

The relationship between H0 and W0 functions can be summarized in the following
theorem.

Theorem 2.1 Denote u = C0

KD
exp

(
C0 − Vmax(t − t0)

KD

)

, the principal real branches

of Lambert W function is the limit of the principal real branches of H function as
α → 1, i.e.,

lim
α→1

H0

(
1

1 − α

(
C0

KD

)1−α

+ ln

(
uKD

C0

))

= W0(u). (2.13)
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Fig. 1 The concentration-time courses (CM (t) and CH (t)) of Model (2.1) and Model (2.5). α : 0.2, 0.6,
1.0, 3.2, 7.2. D = 4mg, Vmax = 1mg/L , KD = 0.8mg/L , Vd = 1 L

Several concentration-time courses of Model (2.1) and Model (2.5) are simulated
and displayed in Fig. 1, which clearly shows that the curves of CH (t) approximate to
that of CM (t) when α tends to unity.

3 Real Branches of H(s): Morphism and Stability

Lambert W function is known for the two distinct real branches with particular math-
ematical properties and scientific applications. Since H function can be considered
as a generalized form of Lambert W function, it is worthwhile to investigate its real
branches and make their classifications.

For this purpose, we separate α into two scenarios: α > 1 and α < 1.
Since α acts as a power in the definition of H function, it is reasonable to first

discuss α ∈ Q. After that, we may use the denseness of Q in R to generate the result
for α ∈ R\Q.

3.1 Real Branches of H(s) for˛ ∈ Q

For α ∈ Q, we write α = p/q for α > 0 or α = −p/q for α < 0, where p, q ∈ Z
+

are mutually prime. Further, we will take into account three possible sets or cases
based on even-odd properties of a pair (p, q), i.e., (o, o), (o, e) and (e, o), where “e"
or “o" represents the class of even or odd numbers, respectively.

According to the inverse function theorem, the real branches of H(s) can be identi-
fied by its primitive function. For this, we define the corresponding primitive function
f : R → R as

f (x) = 1

1 − α
x1−α + x, α �= 1. (3.1)

We can observe that f (0) = 0 for α < 1, which means H(s) passes through (0, 0);
however, f is not well defined at x = 0 for α > 1, and lim

x→0− f (x) = +∞ and
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lim
x→0+ f (x) = −∞. Also, we note that, for a positive real number a, there are two real

n-th roots ±a
1
n if n is even; and there is only one positive real n-th root a

1
n if n is odd.

Thus, f ′(x) = 1
xα + 1 = 0 leads to a stationary point as

x = −1, if (p, q) ∈ (o, o) or x− = 1, if (p, q) ∈ (o, e). (3.2)

It conversely suggests a critical point as

(s∗, H∗) =
(

α

1 − α
,−1

)

if (p, q) ∈ (o, o) or (s−, H−)

=
(

− α

1 − α
, 1

)

, if (p, q) ∈ (o, e) (3.3)

for determining themorphism of real branches of H(s). The notations with superscript
"-" are related to the above mentioned negative root.

3.1.1 ˛ > 1

In this case, we have p > q and

f ′(x) = 1

(x p)
1
q

+ 1, f ′′(x) = −p/q
(
x p+q

) 1
q

. (3.4)

(i) (p, q) ∈ (o, o). In this case, p + q is even and q is odd. From Eq. (3.4),
x = 0 and x = −1 are critical for the morphism of f (x). We have f ′(x) > 0 for
x ∈ (−∞,−1) ∪ (0,∞) and f ′(x) < 0 for x ∈ (−1, 0), whereas f ′′(x) < 0 for
all x ∈ R \ {0}. Furthermore, the asymptotic properties lim

x→±∞ f (x) = ±∞ and

lim
x→0± f (x) = −∞ can be verified.

Consequently, we have three situations. For x ∈ (−∞,−1), f (x) is strictly increas-
ing from −∞ to α

1−α
= H∗ and concave down; for x ∈ (−1, 0), f (x) is strictly

decreasing from H∗ to−∞ and concave down; for x ∈ (0,∞), f (x) is strictly increas-
ing from−∞ to+∞ and concave down. Thus, it implies that, corresponding to a same
value f (x), there exist three real values of x . Accordingly, by the inverse function the-
orem and convexity of the inverse function [17], there exist three real branches of H(s)
in the real domain of s. Namely, H0(s) � H(s) ∈ (0,∞) for s ∈ (−∞,+∞), which
is strictly increasing and concave up; H−1(s) � H(s) ∈ (H∗, 0) for s ∈ (−∞, s∗),
which is strictly decreasing and concave down; H−2(s) � H(s) ∈ (−∞, H∗) for
s ∈ (−∞, s∗), which is strictly decreasing and concave up. Following the naming
convention as the Lambert W function, we call H0(s) the principal real branch of the
H function for its positiveness for s ∈ (−∞,+∞). Without confusion, this rule will
be applied in the current article.

(ii) (p, q) ∈ (o, e). In this case, f (x) is well defined only for x > 0. Since a
positive number could take two real q-th roots, one positive and one negative, we
have: (a) if the positive root is considered, f ′(x) > 0 and f ′′(x) < 0 for all x > 0,
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and lim
x→+∞ f (x) = +∞ and lim

x→0+ f (x) = −∞. By the inverse function theorem and

convexity of the inverse function [17], there is a principal real branch H0(s) ∈ (0,∞)

for s ∈ R, which is strictly increasing and concave up; (b) if the negative root is taken,
f ′(x) < 0 for x ∈ (0, 1), f ′(x) > 0 for x ∈ (1,+∞) and f ′(1) = 0, whereas
f ′′(x) > 0 for x > 0. Moreover, lim

x→0+ f (x) = lim
x→+∞ f (x) = +∞. So, there are

two possible real branches of H function, among which a decreasing and concave up
H−

−1(s) ∈ (0, H−) is defined for s ∈ (s−,∞), and an increasing and concave down
H−

−2(s) ∈ (H−,+∞) is defined for s ∈ (s−,+∞). It has to be reminded that the
subscript ‘−’ is related to the negative root and (s−, H−) is given in Eq. (3.3).

(iii) (p, q) ∈ (e, o). In this case, f (x) is well defined for x ∈ R\{0}. It is easy to
check that f ′(x) > 0 for x ∈ R\{0}, and f ′′(x) > 0 for x < 0 while f ′′(x) < 0 for
x > 0. Moreover, lim

x→+∞ f (x) = lim
x→0− f (x) = +∞, lim

x→−∞ f (x) = lim
x→0+ f (x) =

−∞. So, f (x) is monotonically increasing and upward concave for x < 0, while
monotonically increasing but concave down for x > 0. Therefore, there are two real
branches: an increasing and concave up H0(s) ∈ (0,∞) for s ∈ R and an increasing
and concave down H−1(s) ∈ (−∞, 0) for s ∈ R.

The results are summarized in the following theorem.

Theorem 3.1 If α > 1, there are three classes of real branches of H(s) deduced
from Eq. (1.5). Specifically, a principal real branch H0(s) > 0 always exists and is
well defined for s ∈ R, which is concave up and monotonically increasing w.r.t. s.
Moreover,

– If (p, q) ∈ (o, o), there are two additional real branches H−1(s) ∈ (H∗, 0) and
H−2(s) ∈ (−∞, H∗), which are well defined for s ∈ (−∞, s∗) and joined at
(s∗, H∗);

– if (p, q) ∈ (o, e), there are two additional real branches H−
−1(s) ∈ (0, H−) and

H−
−2(s) ∈ (H−,+∞). which are well defined for s ∈ (s−,+∞) and joined at

(s−, H−);
– If (p, q) ∈ (e, o), there exists an additional real branch H−1(s) < 0 defined for
s ∈ (−∞,+∞).

In Fig. 2, we provide several numerical examples that illustrate the morphism of
real branches in the H function for α > 1. Specifically, when (p, q) ∈ (e, o), H0(s)
is symmetric to H−1(s) about the origin.

3.1.2 0 < ˛ < 1

In this case, f (0) = 0 and H(s) passes through (0, 0). As the discussion of classifi-
cation is similar to that we performed for the case of α > 1, we summarize the result
in the following theorem and provide the detailed proof as supplemental material.

Theorem 3.2 If 0 < α < 1, there are three classes of real branches of H(s) deduced
from Eq. (1.5). Specifically, a principal real branch H0(s) ≥ 0, which is concave up
and monotonically increasing w.r.t. s, always exists and is well defined for s ≥ 0.
Moreover,
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Fig. 2 The real branches of H(s, α) for α > 1. a (p, q) = (9, 7) ∈ (o, o); b (p, q) = (9, 6) ∈ (o, e); c
(p, q) = (8, 7) ∈ (e, o)

– If (p, q) ∈ (o, o), there are two additional real branches H−1(s) ∈ (H∗, 0) and
H−2(s) ∈ (−∞, H∗), with the former well defined for s ∈ [0, s∗] and the latter for
s ∈ (−∞, s∗]. H0, H−1 and H−2 are successively joined at (0, 0) and (s∗, H∗);

– If (p, q) ∈ (o, e), there are two additional real branches H−
−1(s) ∈ (0, H−)

and H−
−2(s) ∈ (H−,+∞), with the former well defined for s ∈ [s−, 0] and the

latter for s ∈ [s−,+∞). H0, H
−
−1 and H−

−2 are successively joined at (0, 0) and
(s−, H−);

– If (p, q) ∈ (e, o), there is a well-defined negative real branch H−1(s) < 0 for
s < 0, which is smoothly linked, at (0, 0), with the principal real branch H0(s)
situated in the first quadrant. If combined together, these two branches can be
considered as one single real branch.

In Fig. 3, we provide several numerical examples that illustrate the morphism of
real branches in the H function for 0 < α < 1. Furthermore, when (p, q) ∈ (e, o),
the entire real branch is symmetric about the origin.

3.1.3 ˛ < 0

In this case, f ′(x) > 0 and f ′′(x) > 0 for x > 0. The principal real branch H0(s)
exists in the first quadrant, which is increasing, concave down and starts from (0, 0).
We summarize the details in the following theoremand use several numerical examples
to illustrate the morphism of real branches of H function in Fig. 4.

Theorem 3.3 If α < 0, there are three classes of real branches of H(s) deduced from
Eq. (1.5). Specifically, a principal real branch H0(s) ≥ 0 always exists in the first
quadrant, which is well defined for s ≥ 0, concave down andmonotonically increasing
w.r.t. s. Moreover,

– if (p, q) ∈ (o, o), H0(s) can be smoothly extended to (H∗,+∞) for s ∈ (s∗,+∞)

and joined at (s∗, H∗) by another real branch H−1(s) ∈ (−∞, H∗) that is well
defined for s ∈ (s∗,+∞);
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Fig. 3 The real branches of H(s) for 0 < α < 1. a (p, q) = (5, 7) ∈ (o, o); b (p, q) = (1, 2) ∈ (o, e); c
(p, q) = (2, 3) ∈ (e, o)

Fig. 4 The real branches of H(s, α) for α < 0. a (p, q) = (3, 5) ∈ (o, o); b (p, q) = (1, 2) ∈ (o, e); c
(p, q) = (2, 3) ∈ (e, o)

– if (p, q) ∈ (o, e), there are two additional real branches H−
−1(s) ∈ (0, H−) and

H−
−2(s) ∈ (H−,+∞). The former well defined for s ∈ [0, s−] and the latter for

s ∈ (−∞, s−]. Moreover, H0, H
−
−1 and H−

−2 are successively joined at (0, 0) and
(s−, H−);

– if (p, q) ∈ (e, o), there is a well-defined negative real branch H−1(s) < 0 for
s < 0, which is smoothly linked, at (0, 0), with the principal real branch H0(s)
situated in the first quadrant. If combined together, these two branches can be
considered as one single real branch.

Furthermore, if (p, q) ∈ (e, o), the entire real branch of H is symmetric about the
origin.
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Before delving into the morphism of H(s) for α ∈ R\Q, we must first examine
the stability of H(s) with respect to α. For this purpose, we use H0(s, α) instead of
H0(s) in the next subsection.

3.2 Stability and Several Properties of the Principal Real Branch H0(s,˛)with
Respect to˛ ∈ R

Considering practical applications, the true value of α is typically obtained through
approximations or applied using rational numbers. Therefore, it is important to inves-
tigate how the small change of α value used in the algebraic equation could impact
on the solution of H function, which we refer to as the stability of real branches of H
function. We begin by examining the morphism stability of the principal real branch
H0(s, α) with respect to α ∈ R.

In the previous section, we established that the principal real branch is well defined
for s ∈ R if α > 1, and for s ∈ R

+ if α < 1, when α is rational. Our investigation in
this section will focus on s belonging to these domains, denoted below as D.

Theorem 3.4 Consider the principal real branch H0(s, α) for α �= 1, H0(s, α) is
stable for s ∈ D. That is to say, given α0 �= 1, we have

lim
α→α0

H0(s, α) = H0(s, α0)

for any s ∈ D.

Proof We have proved that, given s ∈ D, H0 is well defined for α ∈ Q in Sect. 3.1.
Hence, given s ∈ D, to prove the continuity of H0 w.r.t. α, either α ∈ Q or α ∈ R\Q,
we need to prove that, for any sequence {αk}∞k=1 satisfying lim

k→∞ αk = α, H0(s, αk)

is a Cauchy sequence such that lim
αk→α

H0(s, αk) = H0(s, α) if α ∈ Q, or we define

H0(s, α) = lim
αk→α

H0(s, αk) if α ∈ R\Q.

This can be seen by the definition of H in Eq. (1.5), i.e., for a given s ∈ D, we have

1

1 − αm
H1−αm
0 (s, αm) + H0(s, αm) = 1

1 − αn
H1−αn
0 (s, αn) + H0(s, αn) (3.5)

for any m, n ∈ N.
In fact, Eq. (3.5) can be arranged as

1

1 − αm
(H1−αm

0 (s, αm) − H1−αn
0 (s, αn)) + (

1

1 − αm
− 1

1 − αn
)H1−αn

0 (s, αn)

+ (H0(s, αm) − H0(s, αn)) = 0 (3.6)

Based on the above equation, we conclude that {H0(s, αk)} is a Cauchy sequence.
Otherwise, ∃ε > 0, for any N > 0, ∃m, n > N , such that H0(s, αm)−H0(s, αn) > ε.
However, this also induces that, no matter α < 1 or α > 1, the first term in the sum
on the left side of Eq. (3.6) is always positive. As the second term in the sum tends to
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zero when m, n → ∞ since lim
k→∞ αk = α. Then, we have the strict positivity of the

left side of Eq. (3.6), which clearly contradicts the equality of Eq. (3.6).
In conclusion, ∀ε > 0, ∃N > 0, we have |H0(s, αm) − H0(s, αn)| < ε for m, n >

N , i.e., {H0(s, αk)} is aCauchy sequence for anyαk → α. Therefore,wehaveTheorem
3.4. �


Moreover, we can summarize the derivative and stationary points of H0(s, α) with
respect to α in the following theorem.

Theorem 3.5 (i) The principal real branch H0(s, α) is continuous and differentiable
w.r.t. α �= 1 for s ∈ D with the derivative

d

dα
H0(s, α) = H0(s, α)

1 + Hα
0 (s, α)

1

1 − α

(
ln H0(s, α) − 1

1 − α

)
. (3.7)

(ii) There is a critical curve formed by the stationary points of H0(s, α) w.r.t. α for
s ∈ D. And these points, denoted as (αS, H0S), are unique for each s and can be
obtained by

e

1 − αS
+ e

1
1−αS = s and H0S = e

1
1−αS . (3.8)

(iii) Both αS and H0 S are increasing functions w.r.t. s. Moreover, (αS, H0 S) ∈
(−∞, 1) × (1,+∞) for α < 1, and (αS, H0S) ∈ (1,+∞) × (0, 1) for α > 1.

To facilitate the proof of Theorem 3.5, we need the following lemma.

Lemma 3.1 The function g(x) = ex + ex is strictly increasing w.r.t. x ∈ R. While
g(0) = 1, we have g(x) < 1 for x < 0 and g(x) > 1 for x > 0.

Proof Since g′(x) = e + ex > 0, the claims is evident. �

Proof of Theorem 3.5 (i) By the definition of H from Eq.(1.5), H0(s, α) satisfies

1

1 − α
H1−α
0 (s, α) + H0(s, α) = s. (3.9)

Taking derivatives w.r.t α of both sides of Eq. (3.9) leads to

1

(1 − α)2
H1−α
0 (s, α) + 1

1 − α
H1−α
0 (s, α)

[
− ln H0(s, α) + (1 − α)

H0(s, α)

d

dα
H0(s, α)

]

+ d

dα
H0(s, α) = 0, (3.10)

which yields

d

dα
H0(s, α) = H0(s, α)

1 + Hα
0 (s, α)

1

1 − α

[
ln H0(s, α) − 1

1 − α

]
(3.11)
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Fig. 5 The critical curves of the principle real branch H0: a αS vs. s; b H0S vs. αS

(ii) Let us have d
dα

H0(s, α) = 0 and consider Eq. (3.9), a stationary point αS can
be obtained by solving the following equation

e

1 − α
+ e

1
1−α = s (3.12)

while
H0S � H0(s, αS) = e

1
1−αS . (3.13)

�

(iii) From Lemma 3.1, there is a unique solution αS such that Eq. (3.12) holds, and

we have αS > 1 for each s < 1 or αS < 1 for each s > 1. That is, there are two
families of stationary points αS , αS > 1 and αS < 1, which represent the case of
α > 1 and α < 1, respectively. Moreover, from Eq. (3.12), we have

dα

ds
= (1 − α)2

e + e
1

1−α

> 0,

which implies that αS are increasing functions w.r.t. s for both cases of s < 1 and
s > 1. The increasing property of H0S w.r.t. αS is obvious.

To provide a clear idea, we present the relationship between s, αS and H0 S in Fig. 5.
In Fig. 5a, we can see that αS monotonically increases with respect to s for both cases
of α > 1 and α < 1, with the former being concave down and the latter concave up.
In Fig. 5b, the properties of the critical curves (αS, H0S) can be equally visualized.

The following theorem claims how the principal real branch H0(s, α) changes with
the Hill coefficient α.

Theorem 3.6 For the principal real branch H0(s, α) defined in Eq. (1.5), we have the
following scenarios:
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(1) If α > 1, then

(i) for s ≥ 1, H0 decreases w.r.t. α;
(ii) for s < 1, H0 decreases first w.r.t. α if α < αS till H0S at αS, then increases

w.r.t. α if α > αS;

(2) If α < 1, then

(i) for 0 < s ≤ 1, H0 decreases w.r.t. α;
(ii) for s > 1, H0 increases first w.r.t. α if α < αS till H0S at αS, then decreases

w.r.t. α if α > αS.

Proof (1)Given α > 1, H0 is an increasing functionw.r.t. s ∈ R as proved in Theorem
3.1.

Consider x = 1
1−α

in Lemma 3.1, we have

1

1 − α

(
e

1
1−α

)1−α + e
1

1−α = 1

1 − α
e + e

1
1−α < e0 = 1,

which conversely implies that, for all s ≥ 1, H0(s, α) > e
1

1−α . This inequality is
equivalent to ln H0(s, α) > 1

1−α
that we can affirm dH0

dα
(s, α) < 0 by Eq. (3.7), which

leads to (1)(i).
For each s < 1, by Lemma 3.1 and the definition of H , there is a unique αS and

many α such that

1

1 − αS
e + e

1
1−αS = s = 1

1 − α
H1−α
0 + (H1−α

0 )
1

1−α . (3.14)

If α > αS > 1, which is equivalent to 0 > 1
1−α

> 1
1−αS

, we have H1−α
0 > e. This can

be seen as if we assume H1−α
0 < e, then, 1

1−α
H1−α
0 > 1

1−αS
e and H0 > e

1
1−α > e

1
1−αS

which implies
1

1 − α
H1−α
0 + (H1−α

0 )
1

1−α >
1

1 − αS
e + e

1
1−αS .

Thus, Eq. (3.14) implies that

H1−α
0 > e ⇔ ln H1−α

0 > 1 ⇔ dH0

dα
(s, α) > 0.

If 1 < α < αS , then, 1
1−α

< 1
1−αS

< 0. Using the same reasoning as above, we have

H1−α
0 < e, which gives ln H1−α

0 < 1. This implies dH0
dα

(s, α) < 0. Thus, we have
(1)(ii).

(2) Given α < 1, similarly, we can see H0 is well defined and increasing w.r.t.
s > 0. Moreover, we have

1

1 − α

(
e

1
1−α

)1−α + e
1

1−α = 1

1 − α
e + e

1
1−α > e0 = 1.
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Fig. 6 Monotonicity of the principal real branch H0 vs. α at particular values of s. a α > 1; b α < 1

Then, for 0 < s ≤ 1, there is no solution αS of stationary point. This implies

H0(s, α) < e
1

1−α or ln H0(s, α) < 1
1−α

, which directly gives dH0
dα

(s, α) < 0 leading
to (2)(i).

For s > 1, we can apply the same reasoning as used above based on Eq. (3.14).
If 1 > α > αS , we have 1

1−α
> 1

1−αS
> 0, which leads to H1−α

0 < e or

ln H1−α
0 < 1 directly resulting dH0

dα
(s, α) < 0.

If α < αS < 1, we have 0 < 1
1−α

< 1
1−αS

, which leads to H1−α
0 > e or

ln H1−α
0 > 1 directly resulting dH0

dα
(s, α) > 0. Then, we have (2)(ii). �


Figure 6 shows the numerical relationship between H0 and α at several s values.
In the case of α > 1 displayed in Fig. 6a, H0 decreases with α at s = 1.1, but it is
always greater than one. For s < 1, there is a critical curve where H0S is less than one.
As shown by the examples of s = −2,−1, 0, H0 decreases for α < αS and increases
for α > αS . Similarly, in the case of α < 1 shown in Fig. 6b, H0 decreases with α at
s = 0.8, and it is always less than one. However, for s > 1, there is a critical curve
where H0S is greater than one. As illustrated by the examples of s = 2, 3, 4, H0 first
increases for α < αS to its maximum value H0S at αS , and then decreases for α > αS .

In Figs. 7, 8 and 9, we present several numerical simulations to demonstrate the
stability of the principal real branch H0 with respect to α for α > 1, 0 < α < 1, and
α < 0, respectively. As shown in the figures, the three types of principal real branch
H0(s) are stable in their corresponding cases. This indicates that even if the numerical
approximations to α vary between (o, o), (e, o), and (o, e), the domain, range, and
morphism of the approximate principal real branches H0 remain stable with respect
to H0(s, α).

However, shifting the type (p, q) among (o, o), (e, o), and (o, e) when approxi-
mating a true α can lead to different domains, ranges, and morphisms for other real
branches Hj (s) and H−

j (s) ( j = −1,−2). This results in instability in their applica-
tions. When considering any α ∈ R\Q, it is known that α is the limit of a sequence
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Fig. 7 Stability and instability of the real branches of H(s) for α > 1

Fig. 8 Stability and instability of the real branches of H(s) for 0 < α < 1

αk ∈ Q, k = 1, 2, 3, . . .. By shifting elements in the sequence alternatively among
(o, o), (e, o), and (o, e), we will see the corresponding morphisms shift among other
real branches Hj (s) and H−

j (s) ( j = −1,−2), etc. Theoretically, this instability
denies the existence of other real branches for α ∈ R\Q.

Therefore, we also have

Theorem 3.7 For any α ∈ R\Q, there exists a unique principal real branch H0(s) ∈
(0,+∞) satisfying Eq.(1.5), which is defined for s ∈ (−∞,+∞) if α > 1, or for
s ∈ (0,+∞) if α < 1. Moreover, H0(s) is strictly increasing and concave downwithin
its domain of definition.
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Fig. 9 Stability and instability of the real branches of H(s) for α < 0

4 Numerical Computation of H0(s,˛)

Although we have obtained a closed-form algebraic expression for the principal real
branch H0 to represent the exact solution of the pharmacokineticmodel with sigmoidal
Hill elimination [16], it is worth comparing the accuracy of different algorithms in
solving Model (2.5) using either the closed-form of H0 or other standard numerical
techniques such as the ode45 solver for ODEs.

To compare the accuracy of different algorithms, we calculated and compared drug
concentrations over time using Model (2.5). Specifically, CH (t) is the concentration
directly calculated from the H0 functionwe programmed inMatlab using the definition
in Eq. (1.5). CIm(t) is the concentration obtained from Eq.(2.6) using an implicit
solver of algebraic equations in Matlab. CRK (t) is the concentration calculated from
ordinary differential equation in Model (2.5) using the ode45 solver in Matlab. The
tolerance error was fixed at ε = 10−3 for all three algorithms. For the algorithm
of the H0 function, we used the information from the definitions and real branches
characterized in Theorems 3.1-3.2-3.3. Then, we used the idea of dichotomy (i.e.,
binary search algorithm) to generate a self-programmed code.

As shown in Fig. 10, we observe that for both α > 1 and α < 1, CH (t) almost
coincides withCIm(t), whereasCRK (t) is significantly different fromCIm(t). Specif-
ically, a large portion of CRK (t) is below CIm(t) for α < 1, while it is above CIm(t)
for α > 1. These results indicate a distortion of CRK (t).

To quantify the distortion, we computed the absolute relative error between the
results obtained using ode45 and our direct method of H0 function (which gives the
same results as implicit):

Error(t) =
∣
∣
∣
CRK (t) − CH (t)

CH (t)

∣
∣
∣.
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Fig. 10 Numerical estimation of drug concentrations over time ofModel (2.5) and the absolute relative error
of ode45 compared to the direct method based on H0 function. From left to right: α = 0.2, 1.5, 2. Upper
panels: drug concentrations calculated using different algorithms; lower panels: the absolute relative error.
CRK (t): red dot lines; CH (t): blue solid lines; CIm (t): green solid lines. D = 4mg, Vmax = 1mg/h/L ,
KD = 0.15mM , Vd = 1 L , and the tolerance level is set to ε = 10−3

As shown in Fig. (10)e and f, the relative error can reach 300–800% for α > 1. This
phenomenon is still observed evenwhen a higher tolerance of ε = 10−7 is used (results
not shown).

5 Conclusion and Discussion

The main objective of this paper is to investigate the morphism and stability of the real
branches of a newly discovered transcendent H function. This function arises from
one-compartmental pharmacokineticmodelswith sigmoidalHill elimination [16]. The
idea for this investigation comes from the morphism of the well-known Lambert W
function and our recent work on the X function, a generalized version of the Lambert
W function that we discovered in the pharmacokinetic model of simultaneous linear
and Michaelis–Menten elimination pathways [15]. The Lambert W function has two
real branches, the principal branch W0(s) defined for s ∈ [−1,+∞) and the other
branch W−1(s) defined for s ∈ [−1, 0), while the X function has a more complicated
morphism of real branches [13, 15]. Additionally, there are a variety of applications
that involve these real branches of the LambertW function in real-world problems such
as physics, physiology, epidemiology, pharmacokinetics, etc. [13, 14, 19, 20]. These
applications highlight the potential and significance of such transcendent functions
in solving nonlinear problems. We have proven that the transcendent H function
is a natural extension of the Lambert W function. Furthermore, sigmoidal saturated
Hill kinetics have wide recognition in biochemistry and pharmacology due to diverse
biochemical activities [18]. Therefore, it is important to explore the mathematical
properties of the H function and analyze its real branches, which will help us further
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our understanding of similar mathematical models, such as pharmacokinetic models
with sigmoidal Hill elimination and first-order absorption.

Another concern of ours is the numerical stability of the H function. Unlike the
Lambert W function, the morphism of the H function has multiple real branches,
which are highly sensitive to the Hill coefficient α. In simulations and investigations
in real-world science, only rational numbers can be used in numerical computations.
Therefore, if α is not a rational number, can its rational approximations provide a close
approximation of the truth? This problem lies at the intersection of pure and applied
mathematics.

To outline the morphism of the H function, we first considered α as a rational
number. The algebraic advantage of expressing α ∈ Q as a fraction with co-prime
numerator p and denominator q shortens the process of determining the real branches
and their mathematical properties. For all thesemorphisms, a common characteristic is
the presence of the positive principal real branch H0(s, α), while they greatly differ in
other real branches. Ifα is an irrational number, this situation causes instability on other
real branches, which continuously shift among three morphisms as α is approached
numerically by its rational approximates. Finally, the only stable real branch is proved
to be the principal real branch H0(s, α), which is what we encounter in practical
situations. For instance, as the Hill coefficient α is a highly sensitive parameter for
certain drugs’ pharmacology, its value is usually established through data fitting using
approximations with several decimal digits, which raises concerns about the stability
of these principal real branches H0(s, α). Our results have provided a positive answer!

We get also intrigued by the uncertainty associated with different numerical model
solvers, particularly their robustness in terms of accuracy. Most models are described
using differential equations, making ODE solvers straightforward to use and manip-
ulate, but the conditions for their use are often challenging to analyze without expert
knowledge. As pharmacokinetic models become increasingly complex, the choice of
solvers becomes subjective. Our simulations confirm this. In fact, solvers based on the
algebraic form, such as the implicit function solver, are themost robust. In our case, we
have developed an algorithm to calculate the H function [16], which has been shown to
be as efficient as the former. Furthermore, representing the model solution using the H
function can provide a better understanding of the underlying mechanism. All of these
highlight the progress made in closed-form solutions and their benefits for non-expert
users. It is therefore an important consideration for mathematical developers.
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