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Abstract
In this article, using variational methods, we obtain that the existence of a nontrivial
solution for a fractional (p, q)-Kirchhoff type problem with a generalized Choquard
nonlinearity, a critical Hardy–Sobolev term and magnetic field.
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1 Introduction

In this paper, we consider the following fractional (p, q)-Kirchhoff type problem

{
M([u]pp,A)(−�)sp,Au + (−�)sq,Au = (Iμ ∗ F(|u|2)) f (|u|2)u + |u|p∗α−2u

|x |α + λk(x)|u|r−2u in �,

u = 0 in R
N \�,

(1.1)

where � is a bounded smooth domain of RN containing 0 with Lipschitz boundary,
1 < q < p, 0 ≤ α < ps < N with s ∈ (0, 1), A ∈ C(RN ,RN ) is a magnetic
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potential, M : R+
0 → R

+ is a Kirchhoff function, f is a continuous function, F(u) =∫ u
0 f (t)dt , here Iμ(x) = |x |−μ is the Riesz potential of order μ ∈ (0,min{N , 2ps}).
p∗
α = p(N−α)

N−ps is critical Sobolev–Hardy exponent, when α = 0, p∗ = pN
N−ps is

critical Sobolev exponent, 1 < r < p∗
α ≤ p∗, k(x) ∈ L

p∗
p∗−r (�,C) and the fractional

p-Laplacian magnetic operator (−�)sp,A is the differential of the convex functional

u �→ 1

p
[u]pp,A := 1

p

∫∫
R2N

|u(x) − ei(x−y)A(
x+y
p )u(y)|p

|x − y|N+ps
dx dy

defined on the Banach space (with respect to the norm [u]p,A defined above)

Ws,p
0,A(�,C) :=

{
u ∈ L p(RN ,C) u ≡ 0 a. e. in RN\� and [u]pp,A < +∞

}
.

Let us first mention some results for A = 0. If p = q = 2 in (1.1), the operator
(−�)sp,A becomes the fractional Laplacian operator (−�)s without magnetic, which
arises in the study of several physical phenomena like phase transitions, crystal dis-
locations, quasi-geostrophic flows, flame propagations and so on. It can be seen as
the infinitesimal generators of Lévy stable diffusion processes [4]. Recently, there are
many works dedicated to study Kirchhoff problem with singular and critical terms but
without a Hardy potential and a generalized Choquard term, namely with α = 0 and
μ = 0.

Xiang and Wang [19] considered the existence, multiplicity and asymptotic behav-
ior of nonnegative solutions for a fractional Schrödinger–Poisson–Kirchhoff type
system

{ (
a + b||u||2)[(−�)su + V (x)u] + φk(x)|u|p−2u = λh(x)|u|q−2u + |u|2∗

s−2u in R
3,

(−�)tφ = k(x)|u|p−2u in R
3.

When 2p ≤ q ≤ 2∗
s , 2

∗
s = 2N

N−2s and λ > 0 is large enough, existence of nonnegative
solutions is obtained by the mountain pass theorem. Then, via the Ekeland variational
principle, existence of nonnegative solutions is investigated when 1 < q < 2 and
λ > 0 is small enough.

If p = q 	= 2, Chen [6] established the existence of positive solutions by finding
the minimizer of the corresponding energy functional for the following problem

{
M([u]ps,p)(−�)spu = λ(Iμ ∗ F(u)) f (u) + |u|p∗α−2u

|x |α , u > 0 in �,

u = 0 in R
N\�,

where M : R+
0 → R

+ is a Kirchhoff function, f ∈ C1(R,R) fulfills the Ambrosetti-
Rabinowitz type condition, F(u) = ∫ u

0 f (t)dt and 0 ≤ α < ps < N with s ∈ (0, 1).
If p 	= q, we can see that, for the classical setting, problem (1.1) reduces to a

fractional (p, q)-Laplacian elliptic problem
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(−�)spu + (−�)squ = g(x, u) in �, u = 0 in R
N\�.

The above fractional (p, q)-Laplacian elliptic problem has been discussed widely in
recent years, see [2, 5] for more details. Particularly, using concentration-compactness
principle and the Kajikiya’s new version of symmetric mountain pass lemma, Ambro-
sio and Isernia [3] obtained the existence of infinitely many solutions to the fractional
(p, q)-Laplacian problem involving critical Sobolev–Hardy exponent. Moreover, Lin
and Zheng [14] considered the following fractional (p, q)-Kirchhoff type problem
involving critical Sobolev–Hardy exponent

{(
a + b[u](θ−1)p

s,p
)
(−�)spu + (−�)squ = |u|p∗α−2u

|x |α + λ f (x) |u|r−2u
|x |c in �,

u = 0 in R
N\�,

where a, b > 0, c < sr + N (1 − r
p ), θ ∈ (1, p∗

α

p ). The authors proved that there are
at least two nontrivial solutions for small λ > 0 by the mountain pass theorem and
Ekeland’s variational principle.

However, a lot of attention has been focused on the study of problemswithmagnetic
field in the last decades; both for the pure mathematical research and applications, we
refer to [1, 8–10, 15, 17, 18, 20] and references therein. If A is a smooth function and
p = q = 2, there are many results on Kirchhoff type problems with magnetic field
and involving nonlinear convolution terms, such as Choquard equations. Ambrosio
[1] studied the existence and concentration of nontrivial solutions for a fractional
Choquard equation with f is continuous and subcritical growth. Xiang et al. [18]
obtained the existence andmultiplicity of solutions for the following critical fractional
Choquard-Kirchhoff type equation

M(‖u‖2s,A)[(−�)sAu + u] = λ

∫
RN

F(|u|2)
|x − y|α dy f (|u|2)u + |u|2∗

s−2u in R
N .

Fiscella and Pucci [11] proposed the nonlinear Schrödinger equations and related
systems with magnetic fields and Hardy–Sobolev critical exponents. Yang and An
[20] considered the existence of infinitely many solutions of a degenerate magnetic
fractional problem. By variational approach, Yang et al. [21] studied the existence of
the solutions for the following fractional Schrödinger-Kirchhoff equation involving
critical Sobolev–Hardy nonlinearities

M(‖u‖2s,A)[(−�)sAu + V (x)u] = |u|2∗
s (α)−2u

|x |α + λ f (x, |u|)u + g(x, |u|)u in R
N ,

where 2∗
s (α) = 2(N−α)

N−2s with α ∈ [0, 2 s) is the fractional Hardy–Sobolev critical
exponent. The main novelty is the presence of the magnetic field and critical term as
well as the possible degenerate nature of the Kirchhoff function M .

The fractional p-Kirchhoff type problems with magnetic fields have been studied
extensively. Liang and Zhang [12] obtained the existence of infinitely many solutions
for the p-fractional Kirchhoff equations with magnetic fields and critical nonlinearity
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by using the concentration-compactness principle and the Kajikiya’s new version
of the symmetric mountain pass lemma. By the variational methods, Song and Shi
[17] studied the existence and multiplicity solutions for the p-fractional Schrödinger–
Kirchhoff type equations with magnetic field and critical nonlinearity.

The aim of this work is to consider the existence of solutions for the fractional
(p, q)-Kirchhoff type problem with a generalized Choquard nonlinearity, a critical
Hardy–Sobolev term and magnetic field.

Now we give the following assumptions on the Kirchhoff function M :
(M1) M : R+

0 → R
+ is a continuous function, and there exists m0 > 0 such that

inf t≥0 M(t) = m0.
(M2) There exists θ ∈ [1, N−α

N−ps ) such that M(t)t ≤ θM (t), ∀t ≥ 0, where

M (t) = ∫ t
0 M(τ )dτ .

A typical example is M(t) = m0 + btθ−1, where b ≥ 0, t ≥ 0.
Moreover, we assume that f ∈ C1(R+,R), which satisfies
(F1) lim

t→0

| f (t)|
t
p−2
2

= 0,

(F2) lim
t→∞

| f (t)|
t
h−2
2

= 0 for some (2N−μ)p
2N < h <

(2N−μ)p
2(N−ps) ,

(F3) there exists κ ∈ (pθ, r) such that for all t > 0, 0 < κF(t) ≤ 4 f (t)t, where
F(t) = ∫ t

0 f (r)dr .
Furthermore, we assume that

(K1) k(x) ∈ L
p∗

p∗−r (�,C) with 1 < r < p∗ and there are two positive constants
ω1 and ω2 such that 0 < ω1 ≤ k(x) ≤ ω2 < +∞, for all x ∈ �.

The main result can be stated as follows:

Theorem 1.1 Assume that 1 < q < p, 0 ≤ α < ps < N, 0 < μ < min{N , 2ps},
(M1)−(M2), (K1) with pθ < r < p∗

α and (F1) − (F3) hold. Then, there exists a
constant λ∗ > 0 such that problem (1.1) has a nontrivial solution u for all λ > λ∗.

The main feature and difficulty is the presence of (p, q)-Laplacian magnetic oper-
ator and Kirchhoff function M . The appearance of the magnetic field brings extra
difficulties to the problem. Second, It is difficult to get the Palais–Smale [(PS) for
short] condition due to critical Sobolev–Hardy nonlinearity. For this purpose, we use
a p-fractional version of concentration-compactness principle with magnetic field to
show that the energy functional satisfies local (PS)c condition for c less than some
critical level when the parameter λ is large enough.

This paper is organized as follows: In Sect. 2, we give some preliminaries. The
proof of Theorem 1.1 will be given in Sect. 3.

2 Preliminaries

In this section, we briefly recall the relevant definitions and notations. The fractional
Sobolev space Ws,p

0,A(�,C) is defined by

Ws,p
0,A(�,C) :=

{
u ∈ L p(RN ,C) u ≡ 0 a. e. in RN\� and [u]pp,A < +∞

}
,
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where [u]p,A denotes the magnetic Gagliardo semi-norm defined by

[u]p,A =
⎛
⎝∫ ∫

R2N

|u(x) − ei(x−y)A(
x+y
p )u(y)|p

|x − y|N+ps
dxdy

⎞
⎠

1
p

.

According to [8], for p > 1, Ws,p
0,A(�,C) is a separable reflexive Banach space

with the norm ‖ · ‖ = [·]p,A and the completion with respect to the norm ‖ · ‖ = [·]p,A
of C∞

c (�,C). The topological dual of Ws,p
0,A(�,C) will be denoted by W−s,p′

0,A (�,C)

with the corresponding duality pairing 〈·, ·〉 : W−s,p′
0,A (�,C) × Ws,p

0,A(�,C) → R.

Due to reflexivity, the weak and weak ∗ convergence in W−s,p′
0,A (�,C) coincides.

For 1 < q < p, let us setW = Ws,p
0,A(�,C)∩Ws,q

0,A(�,C) endowed with the norm

[u]W := [u]p,A + [u]q,A. Moreover, setW ′ = W−s,p′
0,A (�,C) ∩ W−s,q ′

0,A (�,C).

According to the diamagnetic inequality ||u(x)|−|u(y)|| ≤ |u(x)−ei(x−y)A(
x+y
p )u

(y)|, for a.e.x, y ∈ R
N , in [9], we have the following inequality.

Lemma 2.1 For every u ∈ Ws,p
0,A(�,C), we get |u| ∈ Ws,p

0 (�). More precisely,

[|u|]s ≤ [u]p,A, where [|u|]s =
(∫ ∫

R2N
|u(x)−u(y)|p
|x−y|N+ps dxdy

) 1
p
.

Lemma 2.2 Assume that 0 ≤ α ≤ ps < N. Then, there exists a positive constant C
such that

( ∫
RN

|u|p∗
α

|x |α dx
) 1

p∗α ≤ C[u]p,A for every u ∈ Ws,p
0,A(�,C).

Proof Combining the results of Lemma 2.1 and [7, Lemma 2.1], we can get the result.
��

In particular, Ws,p
0,A(�,C) embeds continuously into Lh(�, dx/|x |α) for all α ∈

[0, ps] and h ∈ [1, p∗
α]. Moreover, if h ∈ [1, p∗

α), the embedding is compact. Thanks
to the previous lemma, we can define for any α ∈ [0, ps] the positive numbers, when
α = 0, Sα becomes the best Sobolev constant S.

Sα = inf

⎧⎨
⎩

∫ ∫
R2N

|u(x) − ei(x−y)A(
x+y
p )u(y)|p

|x − y|N+ps
dxdy : u ∈ Ws,p

0,A(�,C) with
∫

�

|u|p∗
α

|x |α dx = 1

⎫⎬
⎭ .

Next, we recall the following Hardy–Littlewood–Sobolev inequality.

Lemma 2.3 [13] Assume that 1 < ν, t < ∞, 0 < μ < N and 1
ν

+ 1
t + μ

N = 2. Then,
there exists C(N , μ, ν, t) > 0 such that∫∫

R2N

|g(x)||b(y)|
|x − y|μ dx dy ≤ C(N , μ, ν, t)‖g‖ν‖b‖t

for all g ∈ Lν(RN ,C) and b ∈ Lt (RN ,C).
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In particular, F(t) = |t |h for some h > 0, by the Hardy–Littlewood–Sobolev inequal-
ity, the integral

∫∫
R2N

F
(|u(x)|2) F (|u(y)|2)

|x − y|μ dx dy

is well defined if F(|u|2) ∈ Lt (RN ) for some t > 1 satisfying 2
t + μ

N = 2, that is,
t = 2N

2N−μ
. Hence, thanks to the fact that the fractional Sobolev embedding theorem,

if u ∈ Ws,p
0,A(�,C), we must require that th ∈ [p, p∗

α]. Thus, for the subcritical case,
we must assume

p̃μ,s := (2N − μ)p

2N
< h <

(2N − μ)p

2(N − ps)
:= p∗

μ,s .

Hence, p̃μ,s is said to be the lower critical exponent and p∗
μ,s is called the upper

critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality.
The energy functional Jλ formally associated with problem (1.1) is

Jλ(u) = �(u) − (u) − Hα(u) − λK (u),

with

�(u) = 1

p
M ([u]pp,A) + 1

q
[u]qq,A, (u) = 1

4

∫
�

∫
�

F(|u(x)|2)F(|u(y)|2)
|x − y|μ dx dy,

Hα(u) = 1

p∗
α

∫
�

|u|p∗
α

|x |α dx, K (u) = 1

r

∫
�

k(x)|u|rdx .

Let �e and the bar denote the real part of a complex number and the complex
conjugation, respectively. We have the following results.

Lemma 2.4 [6, Lemma 2.3] Let (M1) hold. Then, � is of class C1 and

〈�′(u), ϕ〉 = M([u]pp,A)�e
∫∫

R2N

1

|x − y|N+ps
|u(x) − ei(x−y)A(

x+y
p )u(y)|p−2

×
(
u(x) − ei(x−y)A(

x+y
p )u(y)

) (
ϕ(x) − ei(x−y)A(

x+y
p )

ϕ(y)
)
dxdy

+ �e
∫∫

R2N

1

|x − y|N+qs
|u(x) − ei(x−y)A(

x+y
q )u(y)|q−2

×
(
u(x) − ei(x−y)A(

x+y
q )u(y)

) (
ϕ(x) − ei(x−y)A(

x+y
q )

ϕ(y)
)
dxdy,

for all u, ϕ ∈ W . Moreover, � is weakly lower semi-continuous in W .
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Lemma 2.5 [7, Lemma 2.3] Let 0 ≤ α ≤ ps < N. Then, Hα is of class C1 with

〈H ′
α(u), ϕ〉 = �e

∫
�

|u|p∗
α−2uϕ

|x |α dx for every u, ϕ ∈ Ws,p
0,A(�,C).

Moreover, the operator H ′
α : Ws,p

0,A(�,C) → W−s,p′
0,A (�,C) is sequentially weak-to-

weak continuous.

Lemma 2.6 [6, Lemma 2.5] Assume (F1) and (F2) hold, we have

∣∣∣∣
∫

�

∫
�

F(|u(y)|2)
|x − y|μ f (|u(x)|2)|u(x)|2 dx dy

∣∣∣∣ ≤ C([u]2pp,A + [u]2hp,A)

and

∣∣∣∣
∫

�

∫
�

F(|u(x)|2)F(|u(y)|2)
|x − y|μ dx dy

∣∣∣∣ ≤ C([u]2pp,A + [u]2hp,A).

Lemma 2.7 [6, Lemma 2.6] Let (F1) − (F2) hold and 0 < μ < min{N , 2ps}. Then,
 and  ′ are weakly strongly continuous on Ws,p

0,A(�,C).

From Lemmas 2.4–2.7, and conditions (F1)–(F3), we have that Jλ(u) is of class
C1. We say that u ∈ W is a weak solution of problem (1.1), if

M([u]pp,A)〈u, ϕ〉p,A + 〈u, ϕ〉q,A = �e
∫

�

∫
�

F(|u(y)|2)
|x − y|μ f (|u(x)|2)u(x)ϕ(x) dx dy

+ �e
∫

�

|u|p∗
α−2uϕ(x)

|x |α dx

+ λ�e
∫

�

k(x)|u|r−2uϕ(x)dx,

where 〈u, ϕ〉t,A with t ∈ {p, q} is defined by

〈u, ϕ〉t,A = �e
∫∫

R2N

1

|x − y|N+ts
|u(x)

− ei(x−y)A(
x+y
t )u(y)|t−2

(
u(x) − ei(x−y)A(

x+y
t )u(y)

)
×

(
ϕ(x) − ei(x−y)A(

x+y
t )ϕ(y)

)
dxdy,

for all ϕ ∈ W . Clearly, the critical points of Jλ(u) are exactly the weak solutions of
problem (1.1).
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3 Proof of Theorem 1.1

We start by showing that functional Jλ has the geometric structure of the mountain
pass theorem.

Lemma 3.1 Assume that (M1) − (M2) and (F1) − (F3) hold. Then,
(i) there exist ϑ, ρ > 0 such that Jλ(u) ≥ ϑ for all u ∈ W with [u]W = ρ.
(ii) There exist e ∈ W and ρ > 0 such that [e]W > ρ and Jλ(e) < 0.

Proof (i) From Lemma 2.6, (M1)− (M2), and by Hölder inequality and the fractional
Hardy–Sobolev embedding, we get

Jλ(u) = 1

p
M ([u]pp,A) + 1

q
[u]qq,A

− 1

4

∫
�

∫
�

F(|u(x)|2)F(|u(y)|2)
|x − y|μ dx dy

− 1

p∗
α

∫
�

|u|p∗
α

|x |α dx − λ

r

∫
�

k(x)|u|rdx

≥ 1

pθ
M([u]pp,A)[u]pp,A − C([u]2pp,A

+ [u]2hp,A) − C[u]p∗
α

p,A − C ||k(x)|| p∗
p∗−r

[u]rp,A
≥ m0

pθ
[u]pp,A − C([u]2pp,A + [u]2hp,A)

− C[u]p∗
α

p,A − C ||k(x)|| p∗
p∗−r

[u]rp,A.

Since (2N−μ)p
2N < h <

(2N−μ)p
2(N−ps) and pθ < r < p∗

α , we have p < 2h, p < r and
p < p∗

α , and then the claim follows if we choose ρ small enough.
(ii) Assume u0 ∈ W , (M2) and (F3) implies that

Jλ(tu0) ≤ 1

p
M ([tu0]pp,A) + 1

q
[tu0]qq,A

− 1

4

∫
�

∫
�

F(|tu0(x)|2)F(|tu0(y)|2)
|x − y|μ dx dy

− t p
∗
α

p∗
α

∫
�

|u0|p∗
α

|x |α dx

≤ 1

p
M (1)t pθ [u0]pθp,A + 1

q
tq [u0]qq,A

− t p
∗
α

p∗
α

∫
�

|u0|p∗
α

|x |α dx → −∞, as t → +∞,

since q < p < θ p < p∗
α . Thus, there exist e ∈ W and ρ > 0 such that [e]W > ρ and

Jλ(e) < 0. ��
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Lemma 3.2 If conditions (M1) − (M2) and (F1) − (F3) hold. Let {un} be a (PS)cλ

sequence of functional Jλ with cλ <
(

1
pθ − 1

p∗
α

)
(m0Sα)

p∗α
p∗α−p . Then exists a subse-

quence of {un} strongly converges inW .

Proof Since Jλ(un) → cλ and J ′
λ(un) → 0 in W ′, by (M1), (M2) and (F3), then

there exists C > 0 such that

C + o(1)[u]p,A ≥ Jλ(un) − 1

κ
〈J ′

λ(un), un〉

= 1

p
M ([un]pp,A) + 1

q
[un]qq,A − 1

κ
M([un]pp,A)[un]pp,A

− 1

κ
[un]qq,A + λ

(
1

κ
− 1

r

)∫
�

k(x)|un|rdx

+
∫

�

(
Iμ ∗ F(|un|2)

)(
1

κ
f (|un|2)|un|2 − 1

4
F(|un|2)

)
dx

+
(
1

κ
− 1

p∗
α

)∫
�

|un|p∗
α

|x |α dx

≥
(

1

pθ
− 1

κ

)
M([un]pp,A)[un]pp,A

≥
(

1

pθ
− 1

κ

)
m0[un]pp,A.

This implies that {un} is bounded in W with κ > pθ > q. By the concentration-
compactness principle [8], there exist u ∈ W , two Borel regular measures μ and ν, at
most countable set {x j }J ⊆ �, and non-negative numbers {μ j } j∈J , {ν j } j∈J ⊂ [0,∞)

such that, up to subsequence, un⇀u inW , un → u a. e. in � and

un → u in Lr (�, dx/|x |α) for p ≤ r < p∗
α, 0 ≤ α < ps, (3.1)

as n → ∞. Moreover

μn⇀
∗μ,

|un |p∗α
|x |α ⇀∗ν,

μ = ∫
RN

|u(x)−e
i(x−y)A(

x+y
p )

u(y)|p
|x−y|N+ps dy + ∑

j∈J μ jδx j + μ̃, μ j := μ({x j }),

ν = |u|p∗
α

|x |α +
∑
j∈J

ν jδx j , ν j := ν({x j }), (3.2)

μ j ≥ Sαν

p
p∗α
j .

Fix i0 ∈ J , we are ready to prove that either vi0 = 0 or

vi0 ≥ (m0Sα)
p∗α

p∗α−p . (3.3)
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In fact, let ϕε ∈ C∞
0 (B2ε(xi0)) satisfy 0 ≤ ϕε ≤ 1, ϕε |Bε (xi0 ) = 1 and ||�ϕε ||∞ ≤ C

ε
.

Clearly {ϕεun} is bounded inW and 〈J ′
λ(un), ϕεun〉 → 0 as n → ∞. Thus

M([un]pp,A)〈un, ϕεun〉p,A + 〈un, ϕεun〉q,A

= �e
∫

�

∫
�

F(|un(y)|2)
|x − y|μ f (|un(x)|2)un(x)ϕε(x)un(x) dx dy

+ �e
∫

�

|un(x)|p∗
α−2

|x |α un(x)ϕε(x)un(x) dx

+ λ�e
∫

�

k(x)|un(x)|r−2un(x)ϕε(x)un(x)dx . (3.4)

On the one hand, 〈un, ϕεun〉t,A with t ∈ {p, q} is defined by

〈un, ϕεun〉t,A
= �e

∫∫
R2N

1

|x − y|N+ts
|un(x) − ei(x−y)A(

x+y
t )un(y)|t−2

(
un(x) − ei(x−y)A(

x+y
t )un(y)

)

×
(
ϕε(x)un(x) − ei(x−y)A(

x+y
t )ϕε(y)un(y)

)
dxdy

=
∫∫

R2N

|un(x) − ei(x−y)A(
x+y
t )un(y)|tϕε(x)

|x − y|N+ts
dxdy

+ �e
∫∫

R2N

|un(x) − ei(x−y)A(
x+y
t )un(y)|t−2

(
un(x) − ei(x−y)A(

x+y
t )un(y)

)
|x − y|N+ts

× ei(x−y)A(
x+y
t )un(y) (ϕε(x) − ϕε(y)) dxdy. (3.5)

First,

∫∫
R2N

|un(x) − ei(x−y)A(
x+y
p )un(y)|p−2

(
un(x) − ei(x−y)A(

x+y
p )un(y)

)2
ϕε(x)

|x − y|N+ps
dxdy

→
∫
RN

ϕε(x) dμ,

as n → ∞. Taking ε → 0, we obtain at once that

lim
ε→0

lim
n→∞

∫∫
R2N

|un(x) − ei(x−y)A(
x+y
p )un(y)|p−2

(
un(x) − ei(x−y)A(

x+y
p )un(y)

)2
ϕε(x)

|x − y|N+ps
dxdy

= μi0 . (3.6)

From [16, Lemma 2.6], we have

lim
ε→0

lim sup
n→∞

∫
RN

∫
RN

|ϕε(x) − ϕε(y)|p
|x − y|N+ps

|un(x)|pdxdy = 0.
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Then, using the Hölder inequality, we get

∣∣∣ ∫∫
R2N

|un(x) − ei(x−y)A(
x+y
p )un(y)|p−2

(
un(x) − ei(x−y)A(

x+y
p )un(y)

)
|x − y|N+ps

× ei(x−y)A(
x+y
p )un(y) (ϕε(x) − ϕε(y)) dxdy

∣∣∣
≤ [un]p−1

p,A

(∫
RN

∫
RN

|ϕε(x) − ϕε(y)|p
|x − y|N+ps

|un(y)|pdxdy
) 1

p → 0, (3.7)

as n → ∞ and ε → 0. For the second term on the left-hand side of (3.4), similarly,
we obtain

lim
ε→0

lim
n→∞ 〈un, ϕεun〉q,A → μi0 .

By the continuity of M(t) and (3.5)–(3.7), we have

lim
ε→0

lim
n→∞

[
M([un]pp,A)〈un, ϕεun〉p,A + 〈un, ϕεun〉q,A

]
≥ M(d p)μi0 , (3.8)

where d = limn→∞[un]p,A. On the other hand,

lim
n→∞

∫
�

∫
�

F(|un(y)|2)
|x − y|μ f (|un(x)|2)un(x)ϕε(x)un(x) dx dy

=
∫

�

∫
�

F(|u(y)|2)
|x − y|μ f (|u(x)|2)|u(x)|2ϕε(x) dx dy

and

lim
ε→0

∫
�

∫
�

F(|u(y)|2)
|x − y|μ f (|u(x)|2)|u(x)|2ϕε(x) dx dy = 0.

Then, we have shown that

lim
ε→0

lim
n→∞

∫
�

∫
�

F(|un(y)|2)
|x − y|μ f (|un(x)|2)un(x)ϕε(x)un(x) dx dy = 0. (3.9)

Meanwhile,

lim
ε→0

lim
n→∞

∫
�

k(x)|un(x)|r−2un(x)ϕε(x)un(x)dx = 0. (3.10)

Furthermore, turning to (3.2), we deduce that

lim
ε→0

lim
n→∞

∫
�

|un(x)|p∗
α−2

|x |α un(x)ϕε(x)un(x) dx = lim
ε→0

∫
�

ϕε dν = νi0 . (3.11)
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Therefore, taking the limit for n → ∞ and ε → 0 in (3.4), from (3.8) to (3.11), one
has M(d p)μi0 ≤ νi0 . This together with (M1) implies that

m0μi0 ≤ M(d p)μi0 ≤ νi0 .

It follows from μ j ≥ Sαν

p
p∗α
j for all j ∈ � that

vi0 ≤ Sα
− p∗α

p

(
νi0

m0

) p∗α
p

. (3.12)

Hence νi0 = 0 or vi0 ≥ (m0Sα)
p∗α

p∗α−p .
Next, we conclude that (3.3) can not occur; hence, ν j = 0 for all j ∈ �.
By contradiction, we assume that there exists i0 ∈ � such that (3.3) holds. By

Jλ(un) → cλ and J ′
λ(un) → 0 inW ′, we have

cλ = lim
n→∞

(
Jλ(un) − 1

pθ
〈J ′

λ(un), un〉
)

. (3.13)

From (M2) and (F3), one has

Jλ(un) − 1

pθ
〈J ′

λ(un), un〉

≥ 1

p
M ([un]pp,A) − 1

pθ
M([un]pp,A)[un]pp,A

+
∫

�

(
Iμ ∗ F(|un|2)

)(
1

pθ
f (|un|2)|un|2 − 1

4
F(|un|2)

)
dx

+
(

1

pθ
− 1

p∗
α

)∫
�

|un|p∗
α

|x |α dx + λ

(
1

pθ
− 1

r

)∫
�

k(x)|un|rdx

≥
(

1

pθ
− 1

p∗
α

)∫
�

|un|p∗
α

|x |α dx

≥
(

1

pθ
− 1

p∗
α

)∫
�

|un|p∗
α

|x |α ϕε(x) dx, (3.14)

since θ ≥ 1, pθ < p∗
α , and 0 ≤ ϕε ≤ 1, where ϕε is defined as above. From (3.2),

(3.13) and (3.14), we find

cλ = lim
n→∞Jλ(un) = lim

n→∞

(
Jλ(un) − 1

pθ
〈J ′

λ(un), un〉
)

≥
(

1

pθ
− 1

p∗
α

)∫
�

ϕε(x) dν.
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Letting ε → 0 and using (3.3), it holds that

cλ ≥
(

1

pθ
− 1

p∗
α

)
νi0 ≥

(
1

pθ
− 1

p∗
α

)
(m0Sα)

p∗α
p∗α−p ,

which contradicts the assumption. Hence ν j ≡ 0 for all j ∈ � and then

|un|p∗
α

|x |α → |u|p∗
α

|x |α , as n → ∞. (3.15)

Finally, we show that un → u strongly in W . In fact, for simplicity, let ϕ ∈ W be
fixed and Bt

ϕ be the linear functional on Ws,t
0,A(�,C) defined by

Bt
ϕ(v)

= �e
∫∫

R2N

|ϕ(x) − ei(x−y)A(
x+y
t )ϕ(y)|t−2

(
ϕ(x) − ei(x−y)A(

x+y
t )ϕ(y)

) (
v(x) − ei(x−y)A(

x+y
t )v(y)

)
|x − y|N+ts

dx dy,

for all v ∈ W .
By the Hölder inequality, we have

∣∣B p
ϕ (v)

∣∣ ≤ [ϕ]p−1
p,A [v]p,A, for all v ∈ W . Hence,

(3.1) gives that

lim
n→∞

(
M([un]pp,A) − M([u]pp,A)

)
B p
u (un − u) = 0, (3.16)

since
{
M([un]pp,A) − M([u]pp,A)

}
n
is bounded in R.

SinceJ ′
λ(un) → 0 inW ′ and un⇀u inW , we have 〈J ′

λ(un)−J ′
λ(u), un−u〉 → 0,

as n → ∞.

o(1) = 〈J ′
λ(un) − J ′

λ(u), un − u〉
= M([un]pp,A)B p

un (un − u) − M([u]pp,A)B p
u (un − u) + Bq

un (un − u) − Bq
u (un − u)

− �e
∫

�

[
(Iμ ∗ F(|un |2)) f (|un |2)un − (Iμ ∗ F(|u|2)) f (|u|2)u

]
(un − u)dx

− �e
∫

�

[
|un |p∗

α−2un
|x |α − |u|p∗

α−2u

|x |α
]

(un − u) dx

− λ�e
∫

�

[
k(x)|un |r−2un − k(x)|u|r−2u

]
(un − u)dx

= M([un]pp,A)
[
B p
un (un − u) − B p

u (un − u)
]

+
(
M([un]pp,A) − M([u]pp,A)

)
B p
u (un − u) + Bq

un (un − u) − Bq
u (un − u)

− �e
∫

�

[
(Iμ ∗ F(|un |2) f (|un |2)un − (Iμ ∗ F(|u|2)) f (|u|2)u

]
(un − u)dx

− �e
∫

�

[
|un |p∗

α−2un
|x |α − |u|p∗

α−2u

|x |α
]

(un − u) dx

− λ�e
∫

�

[
k(x)|un |r−2un − k(x)|u|r−2u

]
(un − u)dx . (3.17)
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From Lemma 2.7, we have

∫
�

[
(Iμ ∗ F(|un|2)) f (|un|2)un − (Iμ ∗ F(|u|2)) f (|u|2)u

]
(un − u)dx → 0,

as n → ∞. (3.18)

Moreover, from (3.15) and the Brezis–Lieb Lemma, we have

∫
�

|un − u|p∗
α

|x |α dx =
∫

�

|un|p∗
α

|x |α dx −
∫

�

|u|p∗
α

|x |α dx + o(1) → 0, as n → ∞.

This together with the Hölder inequality implies

∫
�

[
|un|p∗

α−2un
|x |α − |u|p∗

α−2u

|x |α
]

(un − u) dx → 0, as n → ∞. (3.19)

Since k ∈ L
p∗

p∗−r (�,C), by the Vitali convergence theorem one can deduce that

lim
n→∞

∫
�

k(x)|un|rdx =
∫

�

k(x)|u|rdx . (3.20)

This together with the Brezis–Lieb Lemma yields that

∫
�

[
k(x)|un|r−2un − k(x)|u|r−2u

]
(un − u)dx → 0, as n → ∞. (3.21)

Let us now recall the well-known Simon inequalities. There exist positive numbers cp
and Cp, depending only on p, such that

|ξ − η|p ≤
{
cp(|ξ |p−2ξ − |η|p−2η)(ξ − η) for p ≥ 2,

[3pt]Cp
[
(|ξ |p−2ξ − |η|p−2η)(ξ − η)

] p
2 (|ξ |p + |η|p) 2−p

2 for 1 < p < 2,

(3.22)

for all ξ, η ∈ R
N . Therefore, to the third term on the right hand side of (3.17), we

obtain

Bq
un (un − u) − Bq

u (un − u) ≥ 0. (3.23)

From (3.16) to (3.23) and (M1), we obtain

lim
n→∞ M([un]pp,A)[B p

un (un − u) − B p
u (un − u)] ≤ 0.
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Since M([un]pp,A)[B p
un (un − u) − B p

u (un − u)] ≤ 0 for all n by convexity and (M1),
we have

lim
n→∞

[
B p
un (un − u) − B p

u (un − u)
]

≤ 0. (3.24)

According to the Simon inequality, we divide the discussion into two cases.
Case I p ≥ 2, from (3.22) and (3.24), we have

0 ≤ [un − u]pp,A

=
∫∫

R2N

|un(x) − u(x) − ei(x−y)A(
x+y
p )un(y) + ei(x−y)A(

x+y
p )u(y)|p

|x − y|N+ps
dxdy

≤ cp

∫∫
R2N

[ |un(x) − ei(x−y)A(
x+y
p )un(y)|p−2

(
un(x) − ei(x−y)A(

x+y
p )un(y)

)
|x − y|N+ps

−
|u(x) − ei(x−y)A(

x+y
p )u(y)|p−2

(
u(x) − ei(x−y)A(

x+y
p )u(y)

)
|x − y|N+ps

]
×

(
un(x) − u(x) − ei(x−y)A(

x+y
p )un(y) + ei(x−y)A(

x+y
p )u(y)

)
dxdy

= cp
[
B p
un (un − u) − B p

u (un − u)
]

≤ 0, as n → ∞.

Case II 1 < p < 2, taking ξ = un(x) − ei(x−y)A(
x+y
p )un(y) and η = u(x) −

ei(x−y)A(
x+y
p )u(y) in (3.22), as n → ∞, we have

0 ≤ [un − u]pp,A ≤ Cp
[
B p
un (un − u) − B p

u (un − u)
] p
2 ([un]pp,A + [u]pp,A)

2−p
2

≤ Cp
[
B p
un (un − u) − B p

u (un − u)
] p
2 ([un]p(2−p)/2

p,A + [u]
p(2−p)

2
p,A )

≤ C
[
B p
un (un − u) − B p

u (un − u)
] p
2 ≤ 0.

Here, we use the fact that [un]p,A and [u]p,A are bounded, and the elementary inequal-
ity

(a + b)
2−p
2 ≤ a

2−p
2 + b

2−p
2 for all a, b ≥ 0 and 1 < p < 2.

In conclusion, un → u strongly inW , the proof is complete. ��
Lemma 3.3 If conditions (M1)–(M2) and (F1)–(F3) hold, then there exists λ∗ > 0
such that

cλ = inf
γ∈�

max
0≤t≤1

Jλ(γ (t)) <

(
1

pθ
− 1

p∗
α

)
(m0Sα)

p∗α
p∗α−p , (3.25)

for all λ ≥ λ∗, where � = {γ ∈ C([0, 1],W) : γ (0) = 0, γ (1) = e}.
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Proof We choose v0 ∈ W with [v0]p,A = 1. Then, limt→0 Jλ(tv0) = 0 and
limt→∞ Jλ(tv0) = −∞, and then, there exists tλ > 0 such that supt≥0 Jλ(tv0) =
J (tλv0). Hence, tλ satisfies

M([tλv0]pp,A)[tλv0]pp,A + [tλv0]qq,A =
∫

�

∫
�

F(|tλv0|2)
|x − y|μ f (|tλv0|2)|tλv0|2 dx dy

+
∫

�

|tλv0|p∗
α

|x |α dx

+ λ

∫
�

k(x)|tλv0|rdx . (3.26)

By (M2) and (F3), we have

θM ([tλv0]pp,A) + [tλv0]qq,A ≥ M([tλv0]pp,A)[tλv0]pp,A + [tλv0]qq,A

=
∫

�

∫
�

F(|tλv0|2)
|x − y|μ f (|tλv0|2)|tλv0|2 dx dy

+
∫

�

|tλv0|p∗
α

|x |α dx + λ

∫
�

k(x)|tλv0|rdx

≥ κ

4

∫
�

∫
�

F(|tλv0(x)|2)F(|tλv0(y)|2)
|x − y|μ dx dy

+ t
p∗
α

λ

∫
�

|v0|p∗
α

|x |α dx + λ

∫
�

k(x)|tλv0|rdx

≥ t
p∗
α

λ

∫
�

|v0|p∗
α

|x |α dx . (3.27)

Without loss of generality, we assume that tλ ≥ 1 for all λ > 0. Using (M2) again,
(3.27) gives that

t
p∗
α

λ

∫
�

|v0|p∗
α

|x |α dx ≤ θM (1)t pθλ + tqλ [v0]qq,A,

with q < θ p < p∗
α , thus {tλ} is bounded. Thus, there exists t0 > 0 and a sequence

λn → ∞ as n → ∞ such that

tλn → t0 as n → ∞.

By Lemma 2.6 and the Lebesgue dominated convergence theorem, we get

∫
�

∫
�

F(|tλnv0(y)|2)
|x − y|μ f (|tλnv0(x)|2)|tλnv0(x)|2 dx dy

→
∫

�

∫
�

F(|t0v0(y)|2)
|x − y|μ f (|t0v0(x)|2)|t0v0(x)|2 dx dy,
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as n → ∞. Thus

λn

∫
�

k(x)|tλnv0(x)|rdx → ∞, as n → ∞.

Hence, (3.26) implies thatM([t0v0]pp,A)[t0v0]pp,A+[t0v0]qq,A = ∞.This is impossible.
Thus, tλ → 0 as λ → ∞. From (3.26) again, we have

lim
λ→∞ λ

∫
�

k(x)|tλv0(x)|rdx = 0.

This together with (F3) implies that

lim
λ→∞

∫
�

∫
�

F
(|tλv0(x)|2) F (|tλv0(y)|2)

|x − y|μ dx dy = 0.

Therefore,

lim
λ→∞ sup

t≥0
Jλ(tv0) = lim

λ→∞Jλ(tλv0) = 0.

Then, there exists λ∗ > 0 such that for any λ ≥ λ∗,

sup
t≥0

Jλ(tv0) ≤
(

1

pθ
− 1

p∗
α

)
(m0Sα)

p∗α
p∗α−p .

Taking e = T v0 with T large enough to verify Jλ(e) < 0, we obtain cλ ≤
maxt∈[0,1] Jλ(γ (t)), with γ (t) = tT v0. Therefore

cλ ≤ max
t∈[0,1]Jλ(γ (t)) ≤

(
1

pθ
− 1

p∗
α

)
(m0Sα)

p∗α
p∗α−p ,

for λ large enough. Thus (3.25) holds. ��

Proof of Theorem 1.1 Lemmas 3.1–3.3 and the mountain pass theorem guarantee that
there exists λ∗ > 0 such that functional Jλ has a critical point for all λ ≥ λ∗, so u is
a solution of (1.1) with Jλ(u) > 0. ��
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