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Abstract
Let n ∈ N andHn be the Heisenberg group of dimension 2n + 1. Let � be a bounded
open subset of Hn and p ∈ (1, Q), where Q is the homogeneous dimension of Hn .
Within an appropriate framework, we prove an interior pointwise gradient estimate
for a weak solution to the problem

{
− divH(A(x,Xu)) = g − divH f in �,

u = 0 on ∂�,

where X represents the horizontal gradient on the Heisenberg group.
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1 Introduction

This paper concerns a regularity estimate for an elliptic equation in the setting of
Heisenberg group. While much is known for the regularity theory in the Euclidean
spaces, its Heisenberg counterpart is less developed. Recently, there is a drastic move-
ment toward the latter. Namely, we refer the readers to [5, 8–10, 14, 15, 17] and the
references therein. Here, we wish to add a result in this direction to the existing lit-
erature. The result is in the spirit of the Euclidean pointwise estimates in [2–4, 11].
Also see [1, 6, 7, 12–14] and the references therein for more new trends in elliptic
equations and systems.

Before delivering the main content, we quickly review the Heisenberg group. Let
n ∈ N andHn be the Heisenberg group of dimension 2n+ 1. That is,Hn is a two-step
nilpotent Lie group with underlying manifold C

n × R. The group operation is given
by

(z, t) · (w, s) := (
z + w, t + s + 2 Im〈z, w〉)

for all (z, t), (w, s) ∈ H
n , where z = (z1, . . . , zn), w = (w1, . . . , wn) and

〈z, w〉 :=
n∑
j=1

z j w j .

For each u = (z, t) ∈ H
n , the inverse element is

u−1 = (−z,−t)

and the identity is 0 = (0, 0).
By writing

(z, t) = (x1 + iy1, . . . , xn + iyn, t) for each (z, t) ∈ H
n,

the corresponding Lie algebra of the left-invariant vector fields on H
n is spanned by

X j := ∂

∂x j
+ 2y j

∂

∂t
, Xn+ j := ∂

∂ y j
− 2x j

∂

∂t
and T := ∂

∂t
,

where j ∈ {1, . . . , n}.
All non-trivial commutation relations are given by

[X j ,Y j ] = −4T , j ∈ {1, . . . , n}

with [·, ·] being the usual Lie bracket.
The horizontal gradient X is defined by

X := (X1, . . . , X2n).
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Let � ⊂ H
n . We obtain the horizontal Sobolev spaces HW 1,p(�) and HW 1,p

0 (�)

by replacing the usual gradient ∇ with X in the definitions of W 1,p and W 1,p
0 spaces.

The horizontal divergence operator is then given by

divH f := X · f for each f ∈ W 1,p(�;R2n).

For each a > 0 and (z, t) ∈ H
n , a dilation on H

n is defined by

δa(z, t) := (az, a2t),

which is also an automorphism of Hn .
The homogeneous norm of u = (z, t) ∈ H

n is given by

|u| = (|z|4 + t2)1/4.

With this in mind,

|u−1| = |u| and |δa(u)| = a |u|,

where a > 0. The homogeneous norm enjoys the triangle inequality and hence gives
rise to a left-invariant distance

d(u, v) = |u−1 · v|

for each u, v ∈ H
n . Then, we may define the open ball with center u ∈ H

n and radius
r ∈ (0,∞) by

Br (u) := {v ∈ H
n : d(u, v) < r}.

Both left and right Haar measures onHn coincide with the Lebesgue measure dz dt
on C

n × R. We denote the Lebesgue measure of a measurable set E ⊂ H
n by |E |.

Then,

|Br (u)| = r Q |B1(0)| (1)

for all u ∈ H
n and r ∈ (0,∞), where

Q := 2n + 2

is called the homogeneous dimension of Hn . Moreover,

|B1(0)| = 2πn+ 1
2 �( n2 )

(n + 1) �(n) �( n+1
2 )

and �(·) is the usual Gamma function.
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In the sequel, we write

λ Br (u) := Bλr (u).

Then, it follows from (1) that

|λ Br (u)| = λQ |Br (u)|.

Next we formulate our problem precisely. Let n ∈ N and � be a bounded open
subset of Hn . Let p ∈ (1, Q). Consider

{
− divH(A(x,Xu)) = g − divH f in �,

u = 0 on ∂�,
(2)

where

g ∈ L
p

p−1 (�,R) and f ∈ L
p

p−1 (�,R2n). (3)

We assume that

A : Hn × R
2n → R

2n is a Caratheodory function (4)

This means that A(x, z) is measurable in x for every z and is continuous in z for a.e.
x . Moreover, A(x, z) is differentiable in z 	= 0 for a.e. x . The following structural
conditions are also imposed on A:

|A(x, z)| ≤ � |z|p−1 and |D2A(x, z)| ≤ � |z|p−2, (5)

〈D2A(x, z) η, η〉 ≥ �−1 |z|p−2 |η|2, (6)

D2A(x, z) is symmetric and

|D2A(x, z) − D2A(x, η)| ≤
{

� |z|p−2 |η|p−2 (|z|2 + |η|2)(2−p−α)/2 |z − η|α if p < 2,
� (|z|2 + |η|2)(p−2−α)/2 |z − η|α if p ≥ 2

for some α ∈ (0, |2 − p|) if p 	= 2 and α ∈ (0, 1] if p = 2, (7)

|A(x, z) − A(x0, z)| ≤ � ω(|x − x0|) |z|p−1 (8)

for some constant� ≥ 1 as well as for all x, x0 ∈ H
n and (z, η) ∈ R

2n×R
2n\{(0, 0)},

where D2A(x, z) denotes the Jacobian matrix ofAwith respect to the second variable
z ∈ R

2n\{0}. In (8), the function ω : [0,∞) −→ [0, 1] is required to be non-
decreasing and satisfies

lim
r↓0 ω(r) = ω(0) = 0

together with Dini’s condition

W0 :=
ˆ 1

0
ω(r)τ0

dr

r
< ∞ (9)
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with τ0 := 2
p ∧ 1.

Note that (2) encapsulates well the p-Laplace equation with mixed data

−p u := −divH(|Xu|p−2Xu) = g − divH f in �.

Our aim here is to derive an interior pointwise estimate for the gradient of a weak
solution to (2). To state our main result, we first need some definitions.

Definition 1.1 A function u ∈ HW 1,p
0 (�) is a weak solution to (2) if

ˆ
�

A(x,Xu) · Xϕ dx =
ˆ

�

f · Xϕ dx +
ˆ

�

g ϕ dx

for all ϕ ∈ HW 1,p
0 (�).

In what follows, for each measurable function h : � −→ R denote

(h)B = −
ˆ
B
h(x) dx = 1

|B|
ˆ
B
h(x) dx,

where B ⊂ � is a ball. The oscillation of h on a set A ⊂ � is defined by

osc
A

h := sup
x,y∈A

(
h(x) − h(y)

) = sup
x∈A

h(x) − inf
x∈A

h(x).

Also set

FR
q ( f , g)(x) :=

ˆ R

0

⎡
⎣

(
−
ˆ
Bρ(x0)

| f − ( f )Bρ(x0)|q
′
dx

) 1
q

+ρ
1

q−1

(
−
ˆ
Bρ(x0)

|g| Qq
Qq−Q+q dx

) Qq−Q+q
(Qq−Q)q

⎤
⎦ dρ

ρ

for each q ∈ (1, n) and R > 0, where q ′ is the conjugate index of q.
Our main result is as follows.

Theorem 1.2 Let n ∈ N and � be a bounded open subset of Hn. Let p ∈ (1, Q).
Assume (3), (4), (5), (6), (7) and (8). Suppose that u ∈ C1(�) is a weak solution to
(2). Then, there exists a constant C = C(n, p,�,W0) > 0 such that

|Xu(x)| ≤ C

[
FR
p ( f , g)(x) +

(
−
ˆ
BR(x)

|Xu(y)|p dy
) 1

p
]

for all ball BR(x) ⊂ �.

A technical remark is worth mentioning.
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Remark 1.3 Working with Heisenberg group has its own intrinsic difficulties. See
Lemma 3.1 below. Therein the appearance of the term Mr is new, which does not
happen in the Euclidean setting. This results in weaker estimates compared to the
correspondingEuclidean versions. The phenomenonwas also observed in [10, Remark
3.1].

Despite all these, we still manage to achieve the pointwise estimate by carefully
handling the new term Mr .

The procedure for proving Theorem 1.2 involves the construction of certain com-
parison estimates in Sect. 2, an iteration argument in Sect. 3. With these in place, we
prove Theorem 1.2 in Sect. 4.

Throughout assumptions. In the whole paper, let n ∈ N and � be a bounded
open subset of Hn . Let p ∈ (1, Q). We always assume the set of conditions (3), (4),
(5), (6), (7) and (8). If further assumptions are required, they will be explicitly stated
in the corresponding statements.

2 Comparison Estimates

In this section, we construct two comparison estimates that serve to prove Theorem
1.2. The second one in Lemma 2.4 is new as it adapts our general setting proposed in
this paper.

For later use, we draw some nice consequences from the aforementioned structural
conditions. The first inequality in (5) and the Caratheodory property together yield

A(x, 0) = 0 for a.e. x ∈ H
n .

Meanwhile (6) implies the strict monotonicity condition

〈A(x, z) − A(x, η), z − η〉 ≥ C(n, p,�)�(z, η) (10)

for all (z, η) ∈ R
2n × R

2n \ {(0, 0)} and for a.e. x ∈ H
n , where � : R2n × R

2n → R

is defined by

�(z, η) :=
{(|z|2 + |η|2) p−2

2 |z − η|2 if p ≤ 2,
|z − η|p if p > 2

due to [16, Lemma 1].
Let u ∈ HW 1,p

0 (�) be a weak solution to (2). Suppose B2r (x0) � �. Hereafter we
write

Bρ := Bρ(x0)

for each ρ > 0. Letw ∈ u+HW 1,p
0 (B2r ) be the unique weak solution to the problem{− divH (A(x,Xw)) = 0 in B2r ,

w = u on ∂B2r
(11)
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and let v ∈ w + HW 1,p
0 (Br ) be the unique solution of

{− divH (A(x0,Xv)) = 0 in Br ,
v = w on ∂Br .

(12)

Recall the following uniform estimate from [10, (2.12)].

Lemma 2.1 There exists a constant C = C(n, p,�) > 0 such that

‖Xv‖L∞(Bδr ) ≤ C (1 − δ)−
Q
t

(
−
ˆ
Br

|Xv|t dx
)1/t

for all 1 < t < ∞, r > 0 and 0 < δ < 1.

As a direct consequence of Lemma 2.1, we obtain the following useful estimate.

Corollary 2.2 There exists a constant C = C(n, p,�) > 0 such that

−
ˆ
Bρ

|Xu|t dx ≤ C −
ˆ
Br

|Xu|t dx

for all 1 < t < ∞ and 0 < ρ ≤ r
2 .

The first comparison estimate relates v to w.

Lemma 2.3 There exists a constant C = C(n, p,�) > 0 such that

−
ˆ
Br

|Xv − Xw|p dx ≤ Cω(r)τ0 p −
ˆ
Br

|Xw|p dx .

Proof Using v − w as a test function in (12), we obtain

ˆ
Br

A(x0,Xv) · X(v − w) dx = 0 (13)

or equivalently

ˆ
Br

A(x0,Xv) · Xv dx =
ˆ
Br

A(x0,Xv) · Xw dx .

Then, (10), (5) and Holder’s inequality together imply

ˆ
Br

|Xv|p dx ≤ C(n, p,�)

ˆ
Br

|Xw|p dx . (14)

Next we use v −w as a test function in (11) and then combine with (13) to see that

ˆ
Br

A(x,Xw) · X(v − w) dx =
ˆ
Br

A(x0,Xv) · X(v − w) dx
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or equivalently

ˆ
Br

(
A(x,Xw) − A(x0,Xw)

) · X(v − w) dx

=
ˆ
Br

(
A(x0,Xv) − A(x0,Xw)

) · X(v − w) dx .

Now we apply (10) and (8) to derive

�(Xv,Xw) ≤ C(n, p,�)

ˆ
Br

(
A(x0,Xv) − A(x0,Xw)

) · X(v − w) dx

= C(n, p,�)

ˆ
Br

(
A(x,Xw) − A(x0,Xw)

) · X(v − w) dx

≤ C(n, p,�)ω(r)
ˆ
Br

|Xw|p−1 |Xv − Xw| dx

≤ C(n, p,�)ω(r)
ˆ
Br

(|Xv|2 + |Xw|2) p−2
2 |Xw| |Xv − Xw| dx

≤ C(n, p,�)ω(r)2
ˆ
Br

(|Xv|2 + |Xw|2) p−2
2 |Xw|2 dx

+ 1

2

ˆ
Br

(|Xv|2 + |Xw|2) p−2
2 |Xv − Xw|2 dx .

Consequently,

−
ˆ
Br

|Xv − Xw|p dx ≤ �(Xv,Xw) ≤ C(n, p,�)ω(r)τ0 p
ˆ
Br

|Xw|p dx

due (14) and the fact that 0 ≤ ω ≤ 1. ��
The second comparison estimate is between w and u.

Lemma 2.4 There exists a constant C = C(n, p,�) > 0 such that

−
ˆ
B2r

|Xu − Xw|pdx

≤ C

⎡
⎣ inf
m∈Rn

−
ˆ
B2r

| f − m|p′
dx + r p

′
(

−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦

+ C

[
inf

m∈Rn

(
−
ˆ
B2r

| f − m|p′
dx

)p−1

+r p
(

−
ˆ
B2r

|g| np
Qp−Q+p dx

) Qp−Q+p
Q

⎤
⎦(

−
ˆ
B2r

|Xu|pdx
)2−p

123



Interior Pointwise Gradient Estimates… Page 9 of 22 22

for p ∈ (1, 2) and

−
ˆ
B2r

|Xu − Xw|pdx ≤ C

[
inf

m∈Rn
−
ˆ
B2r

| f − m|p′
dx

+r p
′
(

−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦

for p ∈ [2, Q).

Proof Let m ∈ R
n . Then,

ˆ
B2r

[
A(x,Xu) − A(x,Xw)

] · Xϕ dx =
ˆ
B2r

( f − m) · Xϕ dx +
ˆ
Rn

g ϕ dx

(15)

for all ϕ ∈ HW 1,p
0 (B2r ). Choosing ϕ = u − w as a test function in (15) gives

ˆ
B2r

[
A(x,Xu) − A(x,Xw)

] · X(u − w)dx =
ˆ
B2r

( f − m) · X(u − w)dx

+
ˆ
Rn

g (u − w) dx .

Using (10) and Holder’s inequality, this leads to

−
ˆ
B2r

�(Xw,Xu) dx ≤ C(n, p, �)

(
−
ˆ
B2r

| f − m|p′
dx

)1/p′ (
−
ˆ
B2r

|Xu − Xw|pdx
) 1

p

+ C(n, p, �)

(
−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

(
−
ˆ
B2r

|u − w| Qp
Q−p dx

) Q−p
Qp

.

Next we apply Sobolev’s inequality (cf. [17, Theorem 2.1]) to obtain

(
−
ˆ
B2r

|u − w| Qp
Q−p dx

) Q−p
Qp ≤ C(n, p) r

(
−
ˆ
B2r

|Xu − Xw|pdx
)1/p

.
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Consequently,

−
ˆ
B2r

�(Xw,Xu) dx ≤ C(n, p,�)

[(
−
ˆ
B2r

| f − m|p′
dx

)1/p′

+r

(
−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦

×
(

−
ˆ
B2r

|Xu − Xw|pdx
) 1

p

.

(16)

Now we consider two cases.
Case 1: Suppose p ∈ (1, 2). Then rewrite

|Xu − Xw|p = (|Xu| + |Xw|) p(p−2)
2 |Xu − Xw|p (|Xu| + |Xw|) p(2−p)

2

≤ (|Xu| + |Xw|) p(p−2)
2 |Xu − Xw|p (|Xu| + |Xu − Xw|) p(2−p)

2

≤ (|Xu| + |Xw|) p(p−2)
2 |Xu − Xw|p|Xu| p(2−p)

2

+ (|Xu| + |Xw|) p(p−2)
2 |Xu − Xw|p (|Xu − Xw|) p(2−p)

2 .

(17)

Using Young’s inequality in the form

ab
2−p
2 ≤ pε

p−2
p a

2
p

2
+ (2 − p)εb

2

with an appropriate ε > 0, we arrive at

|Xu − Xw|p ≤ (|Xu| + |Xw|) p(p−2)
2 |Xu − Xw|p|Xu| p(2−p)

2

+ C(p) (|Xw| + |Xu|)p−2|X(u − w)|2 + 1

2
|Xu − Xw|p,

whence it follows from (17) that

|Xu − Xw|p ≤ C(p) (|Xw| + |Xu|)p−2|X(u − w)|2

+ C(p) (|Xu| + |Xw|) p(p−2)
2 |Xu − Xw|p|Xu| p(2−p)

2 .

By integrating both sides of the above estimate on B2r and the applyHolder’s inequality
with exponents 2

p and 2
2−p > 1, we obtain

123



Interior Pointwise Gradient Estimates… Page 11 of 22 22

−
ˆ
B2r

|X(u − w)|pdx ≤ C(p) −
ˆ
B2r

(|Xw| + |Xu|)p−2|X(u − w)|2dx

+ C(p)

(
−
ˆ
B2r

(|Xw| + |Xu|)p−2|X(u − w)|2dx
) p

2

×
(

−
ˆ
B2r

|Xu|pdx
) 2−p

2

.

(18)

Combining (16) with (18) yields

−
ˆ
B2r

|X(u − w)|pdx ≤ C(n, p,�)

[(
−
ˆ
B2r

| f − m|p′
dx

)1/p′

+r

(
−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦

×
(

−
ˆ
B2r

|Xu − Xw|pdx
) 1

p

+ C(n, p,�)

[(
−
ˆ
B2r

| f − m|p′
dx

)1/p′

+r

(
−
ˆ
B2r

|g| np
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦

p/2

×
(

−
ˆ
B2r

|Xu − Xw|pdx
) 1

2
(

−
ˆ
B2r

|Xu|pdx
) 2−p

2

.

Another application of Young’s inequality yields

−
ˆ
B2r

|X(u − w)|pdx

≤ C(n, p,�)

⎡
⎣ −
ˆ
B2r

| f − m|p′
dx + r p

′
(

−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦

+ C(n, p,�)

[(
−
ˆ
B2r

| f − m|p′
dx

)p−1

+r p
(

−
ˆ
B2r

|g| np
Qp−Q+p dx

) Qp−Q+p
Q

⎤
⎦ (

−
ˆ
B2r

|Xu|pdx
)2−p

as required.
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Case 2: Suppose p ∈ [2, Q). Starting from (16), we have

−
ˆ
B2r

|X(u − w)|pdx ≤ C(n, p,�)

[(
−
ˆ
B2r

| f − m|p′
dx

)1/p′

+r

(
−
ˆ
B2r

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦

×
(

−
ˆ
B2r

|Xu − Xw|pdx
) 1

p

.

≤ 1

2
−
ˆ
B2r

|Xu − Xw|pdx

+ C(n, p,�)

[
−
ˆ
B2r

| f − m|p′
dx

+r p
′
(

−
ˆ
B2r

|g| np
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦

as required, where we used Young’s inequality in the second step.
This completes the proof. ��

3 Iteration Argument

Besides the comparison estimates, the proof of Theorem 1.2 requires an iteration
argument given by Proposition 3.2 below. Proposition 3.2 in turn requires an auxiliary
result stated in Lemma 3.1.

In what follows, let u ∈ HW 1,p
0 (�) be a weak solution of (2). Also w and v are

given by (11) and (12), respectively, with B2r (x0) � �.

Lemma 3.1 There exist constants C ≥ 1, κ ∈ (0, 1) and σ0 ∈ (0, 1/2], all of which
depend on n, p and � only, such that

(
−
ˆ
Bρ(x0)

|Xv − (Xv)Bρ(x0)|q dx
)1/q

≤ C

(
ρ

σ0r

)κ
[

−
ˆ
Bσ0r

|Xv − (Xv)Bσ0r (x0)
| dx + Mr σκ

0

]

for all q ∈ [1,∞) and 0 < ρ < σ0r , where

Mr = max
1≤i≤2n

sup
Br (x0)

|Xiv|. (19)
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Proof Let q ∈ [1,∞). In view of [10, (3.5) and (3.6)], there exist constants C ≥ 1,
κ ∈ (0, 1) and σ0 ∈ (0, 1/2], all of which depend on n, p and � only, such that

osc
Bρ(x0)

Xv ≤ C

(
ρ

σ0r

)κ
[

−
ˆ
Bσ0r

|Xv − (Xv)Bσ0r (x0)
| dx + Mr σκ

0

]
(20)

for all 0 < ρ < σ0r . Also observe that

(
−
ˆ
Bρ(x0)

|Xv − (Xv)Bρ(x0)|q dx
)1/q

≤ osc
Bρ(x0)

Xv

for all ρ > 0.
The claim is now justified by combining the above estimates together. ��
Next define

I(ρ) = I(x0, ρ) :=
(

−
ˆ
Bρ

|Xu − (Xu)Bρ
|pdx

)1/p

for a ball Bρ = Bρ(x0) ⊂ �.

Proposition 3.2 There exist constants κ = κ(n, p,�) ∈ (0, 1) and σ0 =
σ0(n, p,�) ∈ (0, 1/2] such that

I(δr)

≤ C0

(
δ

σ0

)κ

I(σ0r) + C0 δκ Mr

+ C0 δ−Q/p

[
inf

m∈Rn

(
−
ˆ
Br

| f − m|p′
dx

)1/p

+r1/(p−1)
(

−
ˆ
Br

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦

+ C ′ δ−Q/p

⎡
⎣ inf
m∈Rn

(
−
ˆ
Br

| f − m|p′
dx

)1/p′

+ r

(
−
ˆ
Br

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦

(
−
ˆ
Br

|Xu|pdx
)(2−p)/p

+ C0 δ−Q/p ω(r)τ0
(

−
ˆ
Br

|Xu|pdx
)1/p

for all δ ∈ (0, σ0] and Br (x0) � �, where C0 = C0(n, p,�), C ′ = C ′(n, p,�) and
Mr is given by (19).
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Remark 3.3 We may choose C ′ = 0 in Proposition 3.2 if p ∈ [2, Q).

Proof By virtue of Lemma 3.1, there exist constants C ≥ 1, κ ∈ (0, 1) and σ0 ∈
(0, 1/2], all of which depend on n, p and � only, such that

−
ˆ
Bδr

|Xu − (Xu)Bδr
|pdx

≤ C −
ˆ
Bδr

|Xv − (Xv)Bδr
|pdx + C −

ˆ
Bδr

|Xu − Xv|pdx

≤ C

(
δ

σ0

)pκ
[

−
ˆ
Bσ0r

|Xv − (Xv)Bσ0r
|pdx + Mp

r σ
pκ
0

]
+ Cδ−Q −

ˆ
Br

|Xu − Xv|pdx

≤ C

(
δ

σ0

)pκ
[

−
ˆ
Bσ0r

|Xu − (Xu)Bσ0r
|pdx + Mp

r σ
pκ
0

]
+ Cδ−Q −

ˆ
Br

|Xu − Xv|pdx

for all δ ∈ (0, σ0].
Next we aim to bound the second term on the right-hand side of the above estimate.

Observe that

−
ˆ
Br

|Xu − Xv|pdx ≤ C −
ˆ
Br

|Xu − Xw|p dx + C −
ˆ
Br

|Xw − Xv|p dx

≤ C −
ˆ
Br

|Xu − Xw|p dx + Cω(r)τ0 p −
ˆ
Br

|Xw|p dx

≤ C −
ˆ
Br

|Xu − Xw|p dx + Cω(r)τ0 p −
ˆ
Br

|Xu|p dx,

where we used Lemma 2.3 in the second step and the fact that 0 ≤ ω ≤ 1 in the third
step. Here C = C(n, p,�).

It remains to bound the term

−
ˆ
Br

|Xu − Xw|p dx,

which can be done using Lemma 2.4.
This completes our proof. ��

4 Interior Pointwise Gradient Estimates

Now we have enough preparation to prove Theorem 1.2.

Proof of Theorem 1.2 Let BR(x0) ⊂ �. For short, we will write Bρ = Bρ(x0) for
each ρ > 0 in the sequel. Set ε ∈ (0, σ0/2) ⊂ (0, 1/4) be sufficiently small so that
C0ε

κ ≤ 1
4 , where C0, κ and σ0 are the constants given by Proposition 3.2.
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Let w and v be given by (11) and (12), respectively, with r = R
4 . Recall from

Lemma 2.1 that

‖Xv‖L∞(Br/2) ≤ C(n, p,�)

(
−
ˆ
Br

|Xv|pdx
)1/p

.

Also recall from (14) that

ˆ
Br

|Xv|p dx ≤ C(n, p,�)

ˆ
Br

|Xw|p dx .

Likewise,

ˆ
B2r

|Xw|p dx ≤ C(n, p,�)

ˆ
B2r

|Xu|p dx .

These three estimates together yield that there exists a constantC1 = C1(n, p,�) > 0
satisfying

‖Xv‖L∞(Br/2) ≤ C1

(
−
ˆ
B2r

|Xu|pdx
)1/p

. (21)

For all j ∈ N set

r j = ε j r , Bj = B2r j (x0), I j = I(r j ) and Tj :=
(

−
ˆ
Bj

|Xu|pdx
)1/p

.

It suffices to show that

|Xu(x0)|

≤ C

(
−
ˆ
B2r

|Xu|pdx
)1/p

+ C
ˆ 2r1

0

⎡
⎣ −
ˆ
Bρ(x0)

| f − β|p′
dx + ρ p′

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦ dρ

ρ
,

(22)

where C = C(n, p,�,W0).
Let β ∈ R

n . Then,

I j+1 ≤ 1

4
I j + 1

4
εκ j Mr/2

+ C2

⎡
⎣

(
−
ˆ
Bj

| f − β|p′
dx

)1/p

+ r1/(p−1)
j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦
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+ C3

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p′

+ r j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ T 2−p

j

+ C2 ω(r j )
τ0 Tj

≤ 1

4
I j + C1

4
εκ j

(
−
ˆ
B2r

|Xu|pdx
)1/p

+ C2

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p

+ r1/(p−1)
j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦

+ C3

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p′

+ r j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ T 2−p

j

+ C2 ω(r j )
τ0 Tj ,

where we applied Proposition 3.2 with C j = C j (n, p,�, ε) for j ∈ {2, 3} in the first
step and (21) in the second step. Moreover, we may choose C3 = 0 if p ∈ [2, Q).

Let j0,m ∈ N be such that j0 ≥ 2 and m ≥ j0 + 1, whose appropriate values will
be chosen later. Summing the above estimate up over j ∈ { j0, j0 + 1, . . . ,m − 1}, we
obtain

m∑
j= j0

I j ≤ 4

3
I j0 + C1

3

⎛
⎝m−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+4

3
C2

m−1∑
j= j0

⎡
⎣

(
−
ˆ
Bj

| f − β|p′
dx

)1/p

+r1/(p−1)
j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦

+4

3
C3

m−1∑
j= j0

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p′

+r j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ T 2−p

j

+4

3
C2

m−1∑
j= j0

ω(r j )
τ0 Tj . (23)
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Observe that

m∑
j= j0

I j ≥ εQ
m∑

j= j0

| (Xu)Bj+1
− (Xu)Bj

| ≥ εQ | (Xu)Bm+1
− (Xu)Bj0

|.

Therefore, (23) implies

| (Xu)Bm+1
|

≤ 4

3
ε−Q I j0 + ε−Q C1

3

⎛
⎝m−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+ | (Xu)Bj0
|

+ 4

3
C2 ε−Q

m−1∑
j= j0

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p

+r1/(p−1)
j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦

+ 4

3
C3 ε−Q

m−1∑
j= j0

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p′

+r j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ T 2−p

j

+ 4

3
C2 ε−Q

m−1∑
j= j0

ω(r j )
τ0 Tj .

(24)

Estimating between an integral and its partial sum reveals that

m−1∑
j= j0

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p

+ r1/(p−1)
j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦

≤ ε−1
ˆ 2R1

0

⎡
⎣

(
−
ˆ
Bρ(x0)

| f − β|p′
dx

)1/p

+ρ1/(p−1)

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦ dρ

ρ
, (25)
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and

m−1∑
j= j0

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p′

+ r j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦

≤ ε−1
ˆ 2R1

0

⎡
⎣(

−
ˆ
Bρ (x0)

| f − β|p′
dx

)1/p′

+ ρ

(
−
ˆ
Bρ (x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ dρ

ρ
.

(26)

In what follows, choose a j0 = j0(ε,C2,W0,�) such that

8

3
C2 ε−2Q

∞∑
j= j0

ω(r j )
τ0 <

1

10
, (27)

where C2 is given in (23) and (24). Note that this choice is possible due to (9).
Now we consider three cases.
Case 1: Suppose |Xu(x0)| ≤ Tj0 . Then, (22) trivially follows.
Case 2: Suppose there exists a j1 ∈ N such that j1 ≥ j0 and

Tj ≤ |Xu(x0)| and |Xu(x0)| < Tj1+1 (28)

for all j ∈ { j0, j0 + 1, . . . , j1}.
Then,

|Xu(x0)| <

(
−
ˆ
Bj1+1

|Xu|pdx
)1/p

≤ I j1+1 + | (Xu)Bj1+1
|

≤ ε−Q
(
I j1 + | (Xu)Bj1+1

|
)

.

Now applying (23) and (24) with m = j1, we derive

|Xu(x0)|

≤ 8

3
ε−2Q I j0 + ε−2Q 2C1

3

⎛
⎝ j1−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+ ε−Q | (Xu)Bj0
|

+ 8

3
C2 ε−2Q

j1−1∑
j= j0

⎡
⎣(

−
ˆ
Bj

| f − β|p′
dx

)1/p

+r1/(p−1)
j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦

+ 8

3
C3 ε−2Q

j1−1∑
j= j0

⎡
⎣

(
−
ˆ
Bj

| f − β|p′
dx

)1/p′
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+r j

(
−
ˆ
Bj

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ T 2−p

j

+ 8

3
C2 ε−2Q

j1−1∑
j= j0

ω(r j )
τ0 Tj

≤ 8

3
ε−2Q I j0 + ε−2Q 2C1

3

⎛
⎝ j1−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+ ε−2Q | (Xu)Bj0
|

+ 8

3
C2 ε−2Q−1

ˆ 2R1

0

⎡
⎣(

−
ˆ
Bρ(x0)

| f − β|p′
dx

)1/p

+ρ1/(p−1)

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦ dρ

ρ

+ 8

3
C3 ε−2Q−1 |Xu(x0)|2−p

ˆ 2R1

0

⎡
⎣

(
−
ˆ
Bρ(x0)

| f − β|p′
dx

)1/p′

+ρ

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp

⎤
⎦ dρ

ρ

+ |Xu(x0)|
10

,

where we used the fact that 0 < ε < 1 in the first step as well as (25), (26), (27) and
(28) to estimate the last three terms in the second step.

It remains to estimate the fifth term on the right-hand side of the above inequality.
Since C3 = 0 when p ∈ [2, n), we need only focus on p ∈ (1, 2). In this case, it
follows from Young’s inequality that

|Xu(x0)| ≤ 8

3
ε−2Q I j0 + ε−2Q 2C1

3⎛
⎝ j1−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+ ε−2Q | (Xu)Bj0
| + 1

5
|Xu(x0)|

+ C(n, p,�, ε)

ˆ 2R1

0

⎡
⎣

(
−
ˆ
Bρ(x0)

| f − β|p′
dx

)1/p

+ρ1/(p−1)

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
(Qp−Q)p

⎤
⎦ dρ

ρ
.
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Either way we always have

|Xu(x0)| ≤ 40ε−2Q Tj0 + ε−2Q 10C1

3

⎛
⎝ j1−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+ C(n, p,�, ε)

ˆ 2R1

0

[
−
ˆ
Bρ(x0)

| f − β|p′
dx

+ρ p′
(

−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦ dρ

ρ

≤ C(n, p,�, ε)

(
−
ˆ
B2r

|Xu|pdx
)1/p

+ C(n, p,�, ε)

ˆ 2R1

0

[
−
ˆ
Bρ(x0)

| f − β|p′
dx

+ρ p′
(

−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦ dρ

ρ
,

where we used Corollary 2.2 in the second step. This is (22) as desired.
Case 3: Suppose Tj ≤ |Xu(x0)| for all j ∈ {2, 3, 4, . . .}. Then, we deduce from

(24), (25) and (26) that

| (Xu)Bk+1
|

≤ 4

3
ε−Q I j0 + ε−Q C1

3

⎛
⎝ k−1∑

j= j0

εκ j

⎞
⎠ (

−
ˆ
B2r

|Xu|pdx
)1/p

+ | (Xu)Bj0
|

+ 4

3
C1 ε−Q

ˆ 2R1

0

[
−
ˆ
Bρ(x0)

| f − β|p′
dx

+ρ p′
(

−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦ dρ

ρ

+ 4

3
C2 ε−Q |Xu(x0)|2−p

ˆ 2R1

0

⎡
⎣

(
−
ˆ
Bρ(x0)

| f − β|p′
dx

)p−1

+ρ p

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Q

⎤
⎦ dρ

ρ

+ |Xu(x0)|
10
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for all k ∈ { j0, j0 + 1, j0 + 2, . . .}.
Simplifying the above estimate further and then letting k −→ ∞, we arrive at

|Xu(x0)|

≤ C(n, p,�, ε)

(
−
ˆ
B2r

|Xu|pdx
)1/p

+ 4

3
C2 ε−Q

ˆ 2R1

0

[
−
ˆ
Bρ(x0)

| f − β|p′
dx

+ρ p′
(

−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Qp−Q

⎤
⎦ dρ

ρ

+ 4

3
C3 ε−Q |Xu(x0)|2−p

ˆ 2R1

0

⎡
⎣

(
−
ˆ
Bρ(x0)

| f − β|p′
dx

)p−1

+ρ p

(
−
ˆ
Bρ(x0)

|g| Qp
Qp−Q+p dx

) Qp−Q+p
Q

⎤
⎦ dρ

ρ
.

Now (22) follows after an application of Young’s inequality as we did in the last part
of Case 2.

Thus, the proof is complete. ��
Acknowledgements This research is funded by University of Economics Ho Chi Minh City, Vietnam.
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