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Abstract

In this manuscript, we study the parameter-dependent conformable Sturm—Liouville
problem (PDCSLP) in which its transmission conditions are arbitrary finite numbers
at an interior point in [0, 7r]. Also, we prove the uniqueness theorems for inverse sec-
ond order of conformable differential operators by applying three spectra with jumps
and eigen-parameter-dependent boundary conditions. To this end, we investigate the
PDCSLP in three intervals [0, ], [0, p], and [p, w] where p € (0, ) is an interior
point.

Keywords Conformable Sturm-Liouville problem - Internal discontinuities - Three
spectra - Parameter-dependent boundary conditions

Mathematics Subject Classification 34A55 - 34B24 - 26A33 - 47A10

1 Introduction

Sturm-Liouville problem is one of the most classical and important problems in mathe-
matics, physics and engineering. This problem arises in the modeling of many systems
in vibration theory, quantum mechanics, hydrodynamics, etc. [15, 36].

In 2014, Khalil et al. [18] defined a well-behaved conformable derivative called
conformable fractional derivative (CFD) that depends only on the basic limit definition
of the derivative. Unlike other definitions of fractional derivative such as Riemann—
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Liouville and Caputo, this definition enables us to prove many properties similar to
derivatives of integer order, for more information about the CFD, refer to [1, 4].
However, the CFD has its drawbacks. Its derivative has some disadvantages and some
unusual properties, e.g., the zeroth derivative of a function does not return the function.

Fractional Sturm-Liouville problems (FSLPs) have attracted much attention as an
important branch of fractional derivative research [19, 20, 28]. In our opinion, the most
important useful property of the conformable derivative is the possibility of defining
the inner product in the integral form. This capability makes the conformable Sturm—
Liouville problem (CSLP) and PDCSLP well investigated in different situations. In
[23], the authors investigated the existence of infinity of real eigenvalues of CSLP.
So that the eigenvalues of CSLP are simple and the corresponding eigenfunctions are
orthogonal.

The inverse three spectra problems to reconstruction of the potential function in
the SLP were firstly discussed in [14, 26, 27]; it was shown that if these spectra are
pairwise distinct, the potential function can be uniquely determined by applying the
three spectra to the problems defined in the three intervals [0, 1], [0, ], and [d, 1],
(d € (0, 1)). Also, in [14] the authors gave a violation example to demonstrate that the
pairwise disjoint conditions are necessary. Recently, in [6, 7, 9—13, 31], the authors
discussed the inverse three spectra problems in the several cases such as reconstruction
of the potential function with different boundary and transmissions conditions, with
one or some turning point, and some uniqueness results.

The main purpose of this manuscript is to study the PDCSLP with an arbitrary finite
number of transmission conditions at an interior point in [0, 7 ], which is considered to
formulated the inverse PDCSLP by using three spectra. One may consider the results
of this paper as an extension of [12—14, 26, 27, 31] to the PDCSLP. For some related
result in the inverse problems in SLP, FSLP, CSLP, PDSLP, we refer to [2, 3, 5, 8, 17,
24,25, 29, 30, 32-34, 37]

2 Asymptotic Forms of PDCSLP

In this section, before introducing the asymptotic forms of PDCSLP, we give several
important content of the CFD. In [18], Khalil and et al. defined the CFD as follows:

Definition 2.1 For the function / : [0, 00) — R, the CF derivative of order @ € (0, 1]
defined by:

hix 4+ ex'=%) — h(x)
8 9

Tah(x) = lim

for all x > 0, and

Tah(0) = lim Tyh(x).
x—

@ Springer



An Inverse Three Spectra Problem for Parameter-Dependent... Page3of17 25

If & is a differentiable function, then
Tyh(x) = x'" 7K (x).

If Tyh(xp) exists and finite, then the function 4 is «-differentiable at xg.

Definition 2.2 The CF integral of order « € (0, 1] for a function 4 : [0, 00) — R
defined by:

X X
J"‘h(x):/ h(t)dat:f “"hdr, x> 0.
0 0

However, the integral is the Riemann improper integral.

We use some important CFD for conformable Sturm—Liouville problems (CSLPs) in
[1, 18, 34].
Let us consider the following three PDCSLPs

Loy := —ToToy +qy = pny 2.1

with parameter-dependent boundary conditions

Bi(y) := u(Tyy(0) + h1y(0)) — h2 Ty y(0) — h3y(0) = 0, (2.2)
B2(y) := u(Tyy(m) + Hyy(m)) — HhyTyy(w) — H3y(m) =0, (2.3)

and the following jump conditions

Uc(y) == y(pr +0) = bry(pr —0) =0, k=1,2,...,.m—1 2.4
Vi) :i= Toy(pr +0) — ck Ty y(pr — 0) — diey(pr — 0) = 0,

1I:
by = -ToToy +q1y = pny 2.5
with the following conditions
Bi(y) =0, B3(y) :=Tuy(p) +k1y(p) =0, (2.6)
by the jump conditions

U(y) =0, Vik(y) =0, fork=1,2,...,p—1, 2.7
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and
L
by = =Ty Toy +q2y = 1y (2.3)

with Robin and parameter-dependent boundary conditions
B4(y) :=Tuy(p) + k2 y(p) =0, Ba(y) =0, (2.9)
by the following jump conditions
Ur(y) =0, Vi(y) =0, fork=p+1,2,....,m—1, (2.10)

where T, is the CFD of order 0 < o < 1, g(x) € Lé[O,n], q1 = qlo,p)> and
q2 = q|(p,n) are real valued functions, and «1, k2, hj, and H;, j = 1,2, 3 are real
numbers, satisfying

r = h3—h1h2 > (0 and ry = H1H2_H3 > 0.

Also, the numbers by, ¢k, di, and pg, withk = 1,2,...,m — 1, (m > 2) are real.
The parameter u is the spectral parameter. In this note, we suppose that cxby > 0,
pp=0<pr<pr<--<pm1 <pm=mn,and p =psforl <s <m—1.As
well as, we use the notations Lo = L(q(x); hj; Hj; pr), L1 = L(q1(x); hj; k15 pr),
and Ly = L(q2(x); k2; Hj; py) for the problems (2.1)—(2.10).

Using the jump conditions (2.4) in the transmission point p = ps, (1 <s <m — 1),
we must have d; = 0 and

Ky = Z—S;q, for k1 € (0, 00). 2.11)
S

Define the weighted inner products as follows:

(F,G)y / Fguwodax + 0O pigry w0 oo
ri r
fx) g(x)
F=| fi |.G=1| & |- (2.12)
f2 )

(F1,G1)H / fgwidgx + (O)fl g, Fi= (f(x)) .G, = (g(x)> ’

S g1
and
(P2 Gare = [ rgundon + 20 s, = (f ng>> Ga e <g<x>>
2 &2
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where

1, 0<x<p1,

1
brer’ P1 <X < p2,

wo(x) =

1

R S <
brci—bu—_ien—i® Pm—-1 <X =T

Also, w1 = wolpo, p), and w2 = wol(p,»]. We note that Hg := L(zx((O, 7); wo) ® C?

and H; = Li((O, m); w;) ® C (i = 1,2), are Hilbert spaces with norms || F |, =

(F. F)y?, (i=0,1,2).

Next we introduce

Ri(f):=Tuf(0) +hif(0), R(f):=hTuf(0)+h3f(0),
(2.13)
Ro(f) :=Tof(m) + Hi f (), Ry(f):=HTof () + H3f ().
In these spaces, we have the following operators

Ai Hi—>H; i=0,1,2

with domains

f(x) m—1 2
_ _ [ Tuf € AC(US™" (pi, prs1)). €of € Ly(0, )
dm“”‘k’(g) Ur(f) = V() =0, fi = Ri(f), fo=Ra(f) [

N fu>.ﬁnfeAqUBWm4mnyeweLﬁam}
m““”{ﬂ‘<ﬂ) Ui(f) = Vi(f) =0, fi = Ri(f) ’

and

dom (A) = {F2 = (f(x)> foTaf € AC(UM" (pi, prs1)), £of € Li(p, ) }

f2 Uc(f) =Vi(f) =0, fo=Ra(f)
by
Lf fx)
AoF = Ri(f) with F = | Ri(f) | € dom (Aop) . (2.14)
Ry (f) Ry(f)
and

ot S QA CY) 3 (i =
A,F_<R;(f)> w1thF,_<Ri(f)>edom(A,) (i=12).
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By construction, the eigenvalue problems Ag and A;,

y(x)
AogY =Y, Y := | Ri(y) | €dom(Ayp),
Ra(y)
Y — Y, (Y™ .
AY; = uY;, Y, = <Ri(y)> € dom (4;),

are equivalent to the problems (2.1)—(2.4) for the operator L, and (2.5)—(2.7) or (2.8)—
(2.10) for L;, (i =1, 2), respectively.

Considering the linear differential equations, we obtain the modified fractional
Wronskian as follows

Wo (0, 9) = wo(x)(0(x) Tu? (x) — To0(x)P (x))

We get that this function is constant on x € [0, p1)U (Uq”_2 (Pks Pk+1 )) U (pm-1, 7]
for two solutions €06 = ud and £or = pd satisfying the discontinuous conditions
(2.4).

Lemma 2.3 For0 < a < 1, the operators A;, i =0, 1,2, are symmetric.

Proof We prove this lemma for i = 0. After using «-integration by parts twice, it
follows immediately and by direct calculation by (2.12)—(2.14):

(A0F. G) = Wa(f. 8)| ,—p = Wa(/8)] o +(F. A0G).

So, from Egs. (2.2)—(2.4) we have:
Wa(f’ g)|x:7‘[ - W‘x(f’ §)|x=0 =0.

Then Ay is symmetric operator on Lg((O, 7); wo) @ C2. Similarly, the operators A
and A, are also symmetric. O

By applying Lemma 2.3, the eigenvalues of the problems A; and hence of L; are simple
and real. Since problem (2.1) with initial conditions g(v+0) = gpand g’(v£0) = g;
(with v € (0, ))) is a Cauchy problem, then it has a unique solution.

Remark 2.4 We will denote the restriction of any function g with g € dom (4;), by gk,
1 < k < m, to the subinterval (px—1, px). Also, we will set gx(px—1) = g(pr—1 +0)
and g (pr) = g(prx — 0).

Remark 2.5 Without losing of generality of the problem (2.1)—(2.10), by [33, Lemma
2.3], we can take bicp = 1, fork =1,2,..., m.

Suppose u(x, 1) and v(x, u) are solutions of (2.1) with the jump conditions (2.4) and
the following conditions, respectively

u(0, w) = p —ha, Tou(0, n) = h3 — phy,

and
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v(m, u) = Hy — p, Tuv(mw, p) = wHy — Hs.

The functions u(x, u), Teu(x, 1), v(x, u), and T,v(x, w) for any fixed x € [0, ] are
entire functions with respect to u of order % [35]. The asymptotic form of solutions
and characteristic function A(u) are discussed as follows:

Theorem 2.6 Let n = 0% and ¢ := o + it. The solutions u(x, ) and Tyu(x, i) for
PDCSLP (2.1)—(2.4) as || — 00, have the following asymptotic forms:

QZ[COS( )]+O<Qexp(%x“)), 0<x<pi,

02 [ay cos (2x%) +aj cos (2(x* —=2pD)) ]+ O (Qexp<|f‘ “)), Pl <X < po,

0 [a1a2 cos o (2x%) + ajas cos (% (x* — 2p%)) + ajal cos (2 (x* —2p%))
+ajabcos (£(x* +2p§ —2p$))]+ O (Q exp (‘Il 0‘)), P2 <X < p3,

0? [a]ag .. Qy—1 COS (gx“) +
u(x, ) = +djay...apm_ycos (I (x* —2p%)) +
+ajay...al, _cos (g(x"‘ - 2pf’n_l)) +
+ayaas .. am 1008 (2(x% +2p% —2p9)) +
I ] Sy 1005(9()( +2pf —21,7/))
.aj .. a} a}(...am_lcos (a(x —2p¥ +2p;‘ —Zpg)) +

tajah . .a,ycos (£ + 2= pg + 21" 2p8 —2p%))|

+0 (gexp(‘rl 0‘)), Pm—1 <x <m,

(2.15)

0’ [—sm( )]+O(g exp(‘rl "‘)), 0<x<pi,
0 [ ay sin (£x%) —aj sin (£ (x* —2p)] + (Q exp(lf‘ D‘)), Pl <X < pa,
0 [ ajay sing (2x%) — ajay sin (2 (x% —2p¥)) — b sin (2 (x* — 2p9))

—ajabsin (£ +2p% —2p$)) ]+ O (g exp(‘r‘ 0‘)), P2 <X < p3,
o3 [7a]a2 o 151n(Q “)
Tau(x,p) = —ajas...am—ysin (%% —2p%)) +
—ajay...a, _;sin (g(x"‘ - pr‘n_l)) +
—a\aha3 .. .ay_sin (2 + 2p§ —2p)) +
.a} ... Gy sin (g(x"‘ +2pf — 2p7))
..a'...a,/(...am_lsin(g(xa—lpf‘-i-Zp;‘—2p,‘2’ )+
—aja) . .ah,ysin (G060 + 21" 421" 2p8 —2p8) |
+0 (9 EXP(M "‘)) Pm1 <x =T,

(2.16)

where

~~

1 1
ax = E(bk +c), a z(bk - Ck)s (2.17)
fork=1,2,...,m— 1.
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Proof Let S(x, ) and C(x, ) be the solutions of (2.1) and (2.4) with the following
conditions

S0, 1) =0, T,8(0, ) =1, CO, w) = 1, and T,C(0, ) = 0.
Using (2.4) for C(x, ), we obtain
cos( )+0( explt‘ ) 0<x < pi,
biC1(p1. ) cos (£ = p§)) + S (pr, oy sin (S = pi)
+0< exp = (x® —P(f)>, p1<x < p2,
baCa(p2. ) cos (L6 = p9)) + SCh(pa, wsin (£ = p))

Clx, n) = +0(— exp o ( — p%)), P2 < Xx < p3,

bin—1Cn—1(pm—1, ) cos (%(xa - Pf{,,_l))—i-
+2C (P, p)sin (£ = ps )+

+O< exp & (x* —p,‘iil)), Pm-1 <X =T

So, we insert the k’th statement into the (k + 1)’th statement to get

cos( )—i—O( exp(f “)), 0<x<pi,

ai cos( )-I—a cos( (x¢ —2p‘f‘)) + O(éexp(éx“)), Pl <X < pa,

ajas cos (Q "‘) + aas cos (g(x“ - 2p‘1’)) + ayajcos (2 (x* 2pg))
+a)aj cos (a(x"‘ +2p% — 2pg)) + 0(% exp (gx"‘)) P2 < X < p3,

aas .. .am— 1cos<9 “)—i—
Clx,m) = +ajay ...am—1 cos (E(x"‘ — Zp?)) +
+ajaz...a, 1cos(g(x"‘—sz‘1 1))
+a§a§a3...am,1cos( (x* +2p¢ —2p§ ))
+a1...a}...a,’c...am_lcos(a(x +2pj ) 0!))

; A R . 1cos< (x* =2p$ +2pf —2pf ))
+alay...al lcos(g(x +2(= 1) pe 4 o(—1ym2 g—zpm))
+0( exp( "‘)), Pm—1 <x <m,

“+ay...a

where a; and a] are defined in (2.17) and j < k <5, j,k,s = 1,2,...,m — 1.
Similarly, we can obtain the asymptotic formula for S(x, u). Applying Definition 2.1,
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we calculate the asymptotic form of T, S(x, n) and T, C(x, n). This completes the
proof by using u(x, u) = (u — h2)C(x, w) + (h3 — phy) S(x, w). m|

From Theorem 2.6 and Definition 2.1, we get that

. 2 7| a
lu(x, )| = O | lol” exp o ,

| Tu o, )| = '~/ (x, ) = <IQ| eXP(' i >> O<x=m.

By changing x to m —x in (2.1) and using the jump condition (2.4), we get a new prob-
lem. Applying the definition of 2.1, we obtain the asymptotic form of w(x, u)v(x, t)
and Ty v(x, w). Specially,

i 2 IT| o
[v(x, w)| = O | lel| exp ;(ﬂ —x) ;

[ Tyv(x, n)| = |xl ' (x, w)| = (|Q| exp <| |( —x)“)), 0<x<m.
In addition, using (2.2) and Remark 2.4, we obtain

A(p) = We(u(p), v(p))
= Bi(v(n))
= —wo () B2 (u(1))
= wo(p) (csu(p, WTxv(p, u) — bsTou(p, Wv(p, k). (2.18)
It follows from equation (2.18) that the characteristic function A () is the combination
of the solutions and from [16] it is clear that every solution is an entire function of
order % As aresult, A(u) is an entire function of order % so that its roots are, (, the
eigenvalues of L. The asymptotic form of the characteristic function will be:
_ 5 e (@ / c(Q o 5 o«

A(pn) = 0 wo () [amz ...Qpy—1Sin (an ) +ajay...ap—1sin (a ( 2p1 )) +
+ajay...a,_jsin (s(ﬂ"‘ - Zp%_l)) +d\dhaz .. .ay—_ sin (g(ﬂ“ +2p§ — 2p§)>
+-+ap ...al{...a}...umfl sin (g(n“ +2pf — Zp‘j’f))
+a ...a;...a;-...a;(...am,l sin (g(ﬂ“ —2p¢ +2p‘;‘ 7217?)) +

+aldy...a, 71sin( (2= + 21" 28— 2p%))|

+0 (oo (ae)).

As aresult of Valiron’s theorem ([22, Thm. 13.4]) and (2.19), we obtain the following
asymptotic form.

(2.19)
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Table 1 Eigenvalues and asymptotic results for Example 2.9

n On,a En.a

a=0.7 a=0.38 a =09 o =0.99 a=0.7 a=0.38 a=09 a=0.99

1 0.6902 0.6801 0.6679 0.6558 0.699 0.676 0.662 0.655
2 1.3864 1.4247 1.4202 1.3939 0.702 0.708 0.704 0.696
3 1.8690 1.9207 2.0068 2.0897 0.631 0.637 0.663 0.696
4 3.1125 3.0263 2.9211 2.8390 0.788 0.752 0.724 0.709
10 8.9998 9.0220 8.9560 9.2168 0.892 0.897 0.887 0.920
20 18.9288 19.3153 19.2437 18.8692 0.939 0.960 0.953 0.942
30 28.6067 29.0718  29.4662  29.2323 0.971 0.972 0.973 0.973

Theorem 2.7 Let u, = Q,% be the eigenvalues of the problem L, then we have the
following asymptotic formula

on =ar'"“n+0(1) (2.20)

asn — oQ.

Remark 2.8 The asymptotic forms of the solutions and characteristic function for the
operators L and L, are similar to the operator L.

Example 2.9 Consider the following PDCSLP withh; =0, hp =0, H =0, H, =0
and h3 = H3 = 1 with one jump pointin p = 7,

—ToTyy = @y
T, y(©0) — y(0) = 0. uTuy(r) + y(r) = 0, 2.21)

T T 1
y(Z+)_2y(Z_)=O’ Tay( +) — ay( -)=0.

The characteristic function and the eigenfunctions are

Aw) = —0° Fsin<gn°‘)+§sin(3<n 2 Xy >>]+ St cos(2n)
4 o 4 o 4

1/5 . 3 il
+E<f sm( 7%) — fsm( (¢ 2(*)“)))

4 4
o2 cos(2x%) + Q—n sin(2:x9), 0<x<Z,
.o (¥) = 105 cos(Zx®) + 3 cos(Z(x* = 2(5)™) + zo- sin(%x®),
— gy sin(% (x* =2(5)")), f<x=m

Example 2.10 Consider the following PDCSLP with i =0, hp, =0, Hy =0, H, =
0 and h3 = H3 = 1 with one jump pointin p = 7

— ToTuy = py
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Fig. 1 Eigenfunctions of Example 2.9 for different values of n and o
nTyy(0) = y(0) =0, uTyy(r)+y(r) =0,
T b4 1
Y5+ =35 =0, Tay( +) - ay(——) =0. (2.22)

The characteristic function and the eigenfunctions are

A(p) = - o° [ésin(gn“)—kisin(g(n —2 Ly ))] —Oa cos( %)
3 o 3 o 2

" é (é Sin(gn“) — i@ - 2(§)a)))

3 3 o 2
o5 cos(g" X+ 5 sm(g” @), 0<x<7%,
Un,a(x) = { 02(3 cos(Lx a)+ Feos(2 (x* = 2(5)")) + 5 sin(%x®),
— 3o SIN(E Y = 2(D)*)), I<x<m.

The eigenvalues and eigenfunctions are presented in Table 1 and Fig. 1. We use
the Roots function in Maple 2021, to compute the zeros g, o of the function A(u).
We compared the eigenvalues with first term of asymptotic form (2.20) as &, , =
mf;f‘,a . The eigenvalues and ratios &, o are presented in Tables 1 and 2. According to
asymptotic form (2.20), the values of &, , must tend to one, that hold for results of &, ,
in Tables 1 and 2. The first four eigenfunctions for different values of « are plotted in
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Fig. 2 Eigenfunctions of Example 2.10 for different values of n and «

3.5

Table 2 Eigenvalues and asymptotic results for Example 2.10

n On,a En.a
a=0.7 a=0.8 a=09 o =0.99 a=0.7 a=0.8 a=09 a=0.99

1 0.8190 0.7985 0.7743 0.7506 0.830 0.794 0.767 0.750
2 1.1503 1.2010 1.2451 1.2787 0.583 0.597 0.617 0.638
3 2.3121 2.3131 2.2028 2.0745 0.781 0.767 0.728 0.694
4 2.7374 2.7675 2.8925 3.0108 0.693 0.688 0.717 0.752
10 8.8289 9.3208 8.8171 8.9637 0.895 927 0.874 0.895
20 18.5084 18.9557 19.4448 18.9225 0.938 0.942 0.963 0.945
30 28.3659 28.9557 29.2035 28.8841 0.958 0.960 0.965 0.962

Figs. 1 and 2. It is well known that the nth eigenfunction of classical Sturm—Liouville
problem defined on [0, 7], has (n — 1) zero in interval (0, ). The graphs in Figs. 1

and 2 indicate that this result holds also for PDCSLP with jump conditions.

3 Uniqueness Result

In this section, we formulated the inverse PDCSLPs. To this end, first we necessity
the following lemma about poles, residues, and asymptotic formulas to determine a

meromorphic Herglotz—Nevanlinna function, see [14, Thm 2.3].
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Lemma 3.1 Suppose that the functions h(z) and hy(z) are two meromorphic
Herglotz—Nevanlinna function with the similar sets of residues and poles. If

hi(it) — ha(it) —> 0, ast — o0,
then h1 = ho.
Define the Weyl-Titchmarsh m-functions

Tou(p, () Tov(p, 1)
m_(u) =———, my(u)=—"—.
u(p, i) v(p, 1)

3.1
As a consequence of theorem [14, Thms. 2.1 and 2.2] we obtain:

Lemma 3.2 The functions m_ () and m4 () satisfy in the conditions of Herglotz—
Nevanlinna’s functions.

Proof Suppose that the functions u and i are solutions of £;u = pu and CGu="Li=
fu. It is easy to see that

X
(n— ﬁ)/o u@u)wi(t)dot = W (u, u)(x) — W (u, u)(0).
From definition of m_(w) in the point x = p and the condition (2.6), we get

Im () w7, = Im(m_(uw)|u(p)l*.

Then, the function m_(u) is Herglotz—Nevanlinna function. Similarly the function
m4 (w) is also Herglotz—Nevanlinna function. O

Lemma 3.3 For every arbitrary v > 0 with v < argu < 2w — v, the following
asymptotic formula for m_(u) and m4 () hold:

my(u) =i/u+o(Jw), m_(n) =iJu+o(/w), asp—oo. (3.2

Specially, when  — —oo, we have

my(w) = —/Iul + o/, m_(w) = —/lul +o(/In) asp — —00.(3.3)

Proof Using the asymptotic forms of u(x, u) and T,u(x, i) in (2.15) and (2.16)
and similar asymptotic forms for v(x, ) and T,v(x, w), it can be checked by direct
calculations that the asymptotic forms of m_(u) and m (u) are satisfying in (3.2)-
(3.3). O

Suppose that the eigenvalues of the PDCSLPs (2.5)—(2.7) and PDCSLPs (2.6)—(2.10)
are denoted by {1, },° | and {v,}7° |, respectively. In this part, we express the funda-
mental theorem of uniqueness result for the problems (2.1)—(2.10). For the uniqueness
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theorem we need using the similar operators L;, with operators L; but with different
coefficients g (x), h, H, Hy, by, ¢k, di, px. Given a function

_ Aw _
wo(pu(p, Wv(p, pn)° Hy = o0,
f(p) = " (3.4)
_ A
wo(p)[Teu(p, ) +Hiu(p, i)1[Tev(p, )+ Hav(p,0)]° Hy # oo.

It is easy to check that f(u) is a meromorphic function and the set of poles of f (1)
is all values of {1, }°2 ; U {v,}°2 ,. Using Eq. (2.18) and H, = Z_iHl’ we have

n=1

Tyv(p, 1) +b Tqu(p, 1 H,

o I STup,w) = %
/J, =
—c u(p, jt) +b v(p, W) H) # 0o
S Teu(p. )+H u(p, 1) S Tyo(p, i+ v(p. py* 11 ’
=My () + M_(w),
where from (3.1)
—csmy(u), Hy = 0o, —bsm_(n), Hy = oo,
My () = M_(pn) = . (3.5)
—H2+ni+(p,)’ H; e R, EEmMEE H; e R.

Lemma 3.4 Fixed Hy € RU{oo}. Foreveryarbitraryv > Qwithv < argu < 2w —v,
the following asymptotic formula for M_ () and M () hold:

ibs /it +o(/m), H = oo,

M_(p) =14 1
icg 1
Sito(Jr). HieR,
and
ics /it +o( /1), Hy = 00,
Moy =1 1
1L Dg 1
N/ +o (ﬁ) , HyeR.
Proof The proof is similar to Lemma 3.3. O

Theorem 3.5 If u, = fin, wy = @y, and v, = Yy, for n > 0, and wo(x) = wo(x),

hj = fzj, and H; = ﬁj, (J = 1,2,3) and if {wy ;:':cxf and {vn}:ff are pairwise

disjoint, then L = L.

Proof From Lemma 3.2, m_(u) and m4(u) are Herglotz—Nevanlinna functions.
Therefore, one can easily check that the functiorl M4 () and M_ ~(,u) are Herglgtz—
Nevanlinna functions. The functions m_(u), M_ (), my (), My (n), and f(u)
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defined by a similar way by replacing L to L. We define

Since the functions f(u©) and f (u) have the same poles and zeros, G(u) is an entire
function. Applying Lemmas 3.3 and 3.4, we have

S
G =L 1 400
YT ?

7

for any v > 0 in the area of v < argu < 2w — v. By applying Liouville’s theorem,
we get

Gu) =1

then

fG0 = f(w.

From (3.4) and (3.5), the poles of M_(w) and M (n) are exactly the same {w,,}floz]

and {v,}°° |, respectively. Then, we get

Res M_(n) = Res f(u) and Res M (u) = Res f(n), for n =1,2,3,....
H=wy MU=y H=Vn

H=wn

which means that

Res M_(u) = Res M_(u) and Res M4 () = Res Mo (n), for n=1,2,3,....
H=wn H=wn H=Vn H=Vn

Applying the Borg’s theorem [21] for the M-Weyl-Titchmarsh functions M (1) and
M_(n), we get

h
I
[al}

m}

Assuming by = ¢y = 1 in Eq. (2.11) we have «1 = k3. From this assumption, the
main result (Theorem 3.5) can be extended to the case p € (ps — 1, ps+1)-

Corollary 3.6 Let i, = jin, Wy = @y, and v, = vy, for n > 0, and wo(x) = wo(x),
hj =hj, H = H;, (j =0,1,2), by = ¢; = 1, and if {w,},°5 and {v,}/°5 are
separate in pairs, then Lo = f,o.

Letby =cxk = 1,dy =0fork =1,2,...,m — 1 in Egs. (2.4), then our PDCSLP
changes to the continuous case equation.
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Corollary 3.7 If i1, = jin, Wy = @y, and v, = vy, forn > 0, hj = ﬁj, Hj = I:I', (=
0,1,2), and by = cx = 1, dy = O0fork = 1,2,...,m — 1, if {w,} 25 and {va}25
are separate in pairs, then Ly = Lo.
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