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Abstract

In this article, the long-time behaviors of weak solutions for the 2D non-autonomous
magneto-viscoelastic flows are considered. Unlike the results established by Liu and
Liu (Politeh Univ Buchar Sci Bull Ser A Appl Math Phys 81(4):155-166, 2019),
utilizing the method of ¢-trajectories introduced by Malek and Prazak (J Differ Equ
181(2):243-279, 2002), we first justify the existence of finite-dimensional pullback
attractors for the process {L (¢, 7)};>. in the £-trajectories space Xy. Then we obtain
the corresponding finite-dimensional pullback attractors for the process {U (¢, 7)};>
in the original phase space H.

Keywords Magneto-viscoelastic flows - Pullback attractors - Fractal dimension - The
method of ¢-trajectories

Mathematics Subject Classification 35Q35 - 35B41 - 37L.30 - 76A10

1 Introduction

Magneto-viscoelastic flow is a class of important and complex non-Newtonian fluid,
which has a broad application prospect in technological applications. The magneto-
viscoelastic model has received extensive interest in the past years. A general magneto-
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viscoelastic model describing magnetoelastic materials was established by Forster in
[11], which is based on an energetic variational approach (see, e.g., [14]). Since the
magnetoelastic materials are extremely affected by the phenomenon of converting
applied changes of the magnetic field and vice versa, they can be regarded as smart
materials. For instance, the various magnetic materials can be found in sensors to
measure the torque of a force, and can also be used in magnetic actuators and generators
for ultrasonic sounds (see, e.g., [4, 5, 11, 13, 17, 33]).

Forster [11] established the following incompressible magneto-viscoelastic fluid
model:

v, — AV +v-Vo+Vp=V .- (FFT —VITMVM) + VT H, M,
F,+v-VF —VuoF =kAF,

Mi+v-VM =AM — 55 (IM* = DM + Hex:,

divv = 0.

(1.1

System (1.1) consists of the incompressible Navier—Stokes equations coupled with
balance equations for the deformation gradient F' and the magnetization M, where the
magnetization M is a simplification of the Landau-Lifshitz—Gilbert equations with
convection (see, e.g., [3, 11]). In technological applications, we sometimes need to
investigate the perturbations of the external magnetic field to the magneto-viscoelastic
fluid. That is, the magneto-viscoelastic fluid is exposed to an external effective mag-
netic field Hex;. Considering the coupling of magnetic and elastic effects, the study
of magnetoelastic materials has attracted more attention from various technological
applications and the view of mathematical modeling (see e.g., [2, 9, 17, 18, 34, 42]).

Note that if M = 0, system (1.1) is a model for incompressible viscoelastic flows
(see e.g., [21, 24]). If F = 0, it reduces to the simplified Ericksen—Leslie system for
incompressible liquid crystal flows (see e.g., [25, 26]). If M = F = 0, it translates
into the standard Navier—Stokes equations (see e.g., [23, 38]).

In this paper, taking Hex¢ = 0, then we can obtain the following simplified 2D
incompressible magneto-viscoelastic fluid model with non-autonomous external force
term g(x, 1):

v — AV +v-Vo+Vp=V . (FFT —VITMVM) + g(x,1),
Fi+v-VF —VuF =kAF,

M, +v-VM =AM — %(|M|2— DM,

divv =0,

(1.2)

in Q2 x [z, T], where 2 is a bounded regular domain with smooth boundary, t €
Ryt < T,v(x,t) : Qx[1,T] —> R2is the velocity of the fluid, p = p(x,1)
is the scalar pressure, and F : Q x [7,T] — R2%2 is the deformation gradient,
M:Qx[t, T] —> R3 is the magnetization vector. i, k > 0 are viscosity coefficients,
y > 0 stands for the parameter that controls the strength of penalization on the
deviation of |M| from 1. g = g(x, t) is time dependent external force term.
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System (1.2) is given the Dirichlet boundary conditions for v, F and the Neumann
boundary condition for M

oM
v(x,Hlse =0, F(x,t)|se =0, a—nlasz =0, t>r, (1.3)

and the initial conditions

v(x, T) = vy (x), with div vy =0, x € Q, (1.4)
Fx,7)=F(x) =1, M(x,7) = M:(x), x e, (1.5)

where [ is the 2 x 2 identity matrix and n is the unit outward normal vector.
Let i : RZ — R2 be a function and G(r) = for h(s)ds be a potential function as
follows

1
M) = (M> - DM, GM) = Z('M'z - 1?2
and define the basic energy
1 2 1 2 1 2
E@) = lvliz2 + S IFIg: + SIVMIE, + i G(M)dx.

It is well known that the long-time asymptotic behavior of dynamical systems is one
of the most important problems for nonlinear dissipative evolution systems. Until now,
one effective way to deal with this problem for a given evolution system is to study
the existence and structure of its attractor. In particular, the non-autonomous evolution
systems, which can well describe the intrinsic properties of many natural phenomena,
are rather more complicated than autonomous ones. In the past decades, many scholars
have focused on the research of more general non-autonomous differential equations.
The pullback attractors can well describe the pullback asymptotic behavior of non-
autonomous dynamical systems (see [6, 10, 20, 32, 37] and references therein), which
is a minimal family of compact invariant sets under the process and pullback attracts
any bounded subset of the phase space.

In this paper, we aim to establish the existence of pullback attractors with finite
fractal dimension in the original phase space H for the magneto-viscoelastic system
(1.2)—(1.5). For the autonomous case of system (1.2)—(1.5), i.e., when the non-
autonomous external force term g = 0, the solution operator defines a semigroup.
In [28], the authors proved the existence of global attractors for the autonomous case
of system (1.2)—(1.5). However, to the best of our knowledge, there are no results about
the existence of the pullback attractors with finite fractal dimension for the process
{U(¢, T)}s>7 generated by problem (1.2)—(1.5) in the phase space. As Liu and Liu in
[28] pointed out, since the strong coupling nonlinear terms and the Neumann boundary
conditions for problem (1.2)—(1.5), it is difficult to justify the smooth property of the
difference of two solutions and the differentiability of the process {U (¢, 7)};> gen-
erated by problem (1.2)—(1.5) on the pullback attractors. Unlike the results obtained
in [28], to overcome these difficulties, we utilize the novel idea of the method of
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L-trajectories in [1, 27, 30]. This novel method is based on an observation that the
limit behavior of solutions for a given dynamical system in an original phase space
can be equivalently captured by the limit behavior of ¢-trajectories space (see [30] for
more details). By virtue of this method, many scholars have studied a large class of
nonlinear dissipation problems, especially for the problems of lack of good regularity
properties or uniqueness of solutions (see [7, 12, 19, 22, 29, 35, 41, 43] and references
therein). Furthermore, our method can also be used to establish the existence of global
attractor with finite fractal dimension for the autonomous case of system (1.2)—(1.5).
In the sequel, we make the following assumption.
Hypothesis. Assume that the external force g € Ll20 -(R; H) satisfies

(A1) Ry :=sup (/ ||g(s)||izds> < 400,

reR -1

where H is given later.
In this paper, we obtain the main results as follows.

Theorem 1.1 Assuming that (A1) holds, then the following assertions are true:

(i) There exists apullbackattractorfl ={A(t) :t e R} = {e1(A¢(t—0)) : t € R} for
the process {U (t, T)};>r generated by problem (1.2)—(1.5) in H, where A, (t — £)
is the section of pullback attractor .,Zlg = {Ay(t) : t € R} established in Theorem
3.3 for the process {L(t, ©)};>¢ generated by problem (1.2)—(1.5) in X;

(ii) The pullback attractor for the process {U (t, T)};>¢ generated by problem (1.2)-
(1.5) in H has finite fractal dimension.

The rest of this article is arranged as follows. In the second part, we mainly introduce
some basic notations, some useful results and global well-posedness for problem
(1.2)—(1.5). In the third part, using the method of ¢-trajectories in [27, 30, 41], we
first define a process {L(t, 7)};>; on the {-trajectories space X, with the topology
of L2(z, T + £; H) induced by the process {U (¢, 7)};>r generated by system (1.2)—
(1.5), then we prove the existence of pullback attractor flg for the process {L (¢, T)}i>¢
generated by problem (1.2)-(1.5) in X. In addition, analyzing the smoothing property
of the process {L(t, 7)};>, we justify that the pullback attractor .4, for the process
{L(t, )};>¢ generated by problem (1.2)—(1.5) has a finite fractal dimension. Finally,
using a Lipschitz continuous operator on the pullback attractor Az, we obtain that the
corresponding finite-dimensional pullback attractor A for the process {U(t, T)}i>¢
generated by problem (1.2)—(1.5) in H.

2 Preliminaries

In this section, we will present some notations and useful results that are used all
through paper. Let C be a positive constant, which may vary in different situations.
Specifically, we also use Cyp, C1, C(-) to emphasize certain dependence. As usual, for
any 1 < p < oo and k € N, we denote the Lebesgue space and Sobolev space by
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LP($2) and Wk-P () endowed with norms || - ||z» and || - I w«.», respectively, where
1
1 P
p
lullzr = (/ |u|f’dx) c lllyer =Y / 0%u|Pdx |,
@ ol <k ¥ €2

and we also denote the space W(])( P (Q) as completions of C(‘)>o (£2) innorms of wk.p ().
In particular, H*(Q) = WA2(Q), HE(Q) = Wi(Q) with k € Nand p = 2,
H7*(Q) is the dual space of Hé‘(Q). The Lebesgue space L? (0, t; X) consists of

all those functions u that take values in X for almost every s € (0, #), which satisfy
1

(fot ||u(s)||§ds>p < 400, for any 1 < p < oo. For the sake of conciseness, we

do not distinguish functional space when scalar-valued or vector-valued functions are
involved. To deal with problem (1.2)—(1.5) in a proper setting, we also introduce some
function spaces. Let

V:{v: v e Cyo(Q), diVU:O},
where C°(£2) is the space of any smooth functions v which are zero outside of some

compact support depending on v. Denote the closure of VV by H and V with respect to
the L2(2)-norm and H'(§2)-norm, respectively. Let

HE(Q) = {v e HYNQ) : vlpe = 0},

HY Q) =(ve HN Q) : g—”m =0},
n

and the phase space
H=HxVxH\(Q).

Let H and V' be the dual spaces of H and V, respectively, and the injections

V — H = H' < V' are dense and continuous. || - ||ly» and < -, - > stand for the
norm in V' and the duality product between V and V'(also H and its dual space),
respectively.

For simplicity, Einstein summation convention is used in our paper. We denote

n
a-b=> ab; :=a;jb;, (a ® b);j = a;b; for the vectors a and b, A : B = A;; B;j,

i=1

VA:VB = 3 A;;dB;; for the matrices A = (A;;), B = (B;)).
Next, we also introduce the following some useful operators (see e.g., [1]):
The bilinear forma : V x V — R is defined as

2
a(u,v) = E /E)xju,-~3xjv,~dx, forall u,v € V.
Nl Q
i=1,j=1
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Let P be the Helmholtz—Leray orthogonal projection operator from L?(2) onto H.
Then we define the operator A : V — V' by Au = —IPAu, which is the Stokes
operator with the domain D(A) = H 2(Q) NV, endowed with inner product and
norm

2
< Au,v > =Z/ Vui - Vvdx, |uly = IVul?,
Q
i=1

2
= IVui|2,. forallu,veV.
i=1

The mapping B : V x V — V' is defined by

B(u,v) :=P((u-V)v), forallu,v eV,
then

b v ) = B vyw) = 3 [ wrl
u,v, w) = (B(u,v), w) = i’jZZI/Qul ox; w;dx,

with

b(u,v,v) =0, bu,v,w)=—b(u,w,v).
Moreover, we shall use the following some identities (see e.g., [28])

VM |?

V|IVM
div(VIMVM) = ——+ viMaMm,

/(VTMAM)-vdx =/(v-VM)-Ade,
Q Q

/div(FFT)-vdx = —/(VUF) : Fdx. 2.1
Q Q

Now, applying the projection operator [P to problem (1.2)—(1.5), we can get the
following equivalent functional differential equation

v, + AV + B(v,v) = P(V - (FFT —VTMVM)) + Pg(x, 1),
F,4+v-VF —VuoF =«kAF,

M, +v-VM =W,

W =AM — ﬁ(|M|2 —1HM.

(2.2)

@ Springer



Finite Fractal Dimensional Pullback Attractors... Page7of31 17

Definition 2.1 Let (v;, F;, M;) € Hand g € LIOC(R; H). The triple (v, F, M) is
called a weak solution of problem (1.2)—(1.5), forany T > 7, v € R, provided that

veL®(, T;H)NL*(x, T; V),
F e L®(, T; LA R¥”?) N L% (x, T; H' (Q; R**?)),
M e L®(x, T; H(Q;R)) N L*(x, T; H*(Q; R?))

with v, € L3(t,T; V), F, € L*(x,T; H Y (Q)), M, € L?*(x,T; L*(R)) such
that v(x,t) = v, F(x,7) = F;, M(x,t) = M, and if for test functions ¢ €
Whoe(r, T; R) with o(T) = 0, ¥ € V, w € H}(Q; R>?), ¢ € H'(Q; RY), satisfy

/TT/Q_U.(¢t¢)+(v.v)v.(¢)¢)+(FFT — VT MVM) : (¢Vi)dxdr
- /Q v (@O P)dx — / ' /Q Vo (pVidxdr,
/T ' /Q CF () + (0 VF) : (pw) — (VoF) : (peo)dadr
=/ F,(<p(r)a))dx—;</T/ VFi(¢Vw)dxdt,
/ / M @)+ (v V)M - (p)dxdr — fg e (p(D)Y)dx
f / VM : (V) — 2(|M|2—1)1\4-(<p¢>)dxdt.

For the given problem (1.2)—(1.5), the global well-posedness of weak solutions for
the two dimensional magneto-viscoelastic flows on a bounded smooth domain was
obtained in [11, 34]. For convenience, we also briefly present the following results.

Theorem 2.1 [11, 34] Assume that g € LlOC(R; H), then for any (v, Fy, M) € H,
there exists a unique weak solution (v(t), F(t), M(t)) to problem (1.2)—(1.5) satisfying
the conditions of Definition 2.1 such that (v(x, t), F(x, 1), M(x, 1)) = (v, Fr, M7),
which depends continuously on the initial data (v, Fr, M) with respect to the norm
in H.

Corollary 2.1 [11, 34] Assume that g € L?OC(R; H), the triple (vem, From, Mz m)—
(ve, Fry My) inH, and let {(vp (t), Fp(t), My (2))}m>1 beasequence of weak solution
Sfor problem (1.2)—(1.5) such that (v, (t), Fin(t), My (7)) = (e, Froms Mz m). For
any T > 1,1 € R, if there exists a subsequence of

{(n (), Fon(t), My ()} n>1 converging (x—) weakly in the space

{®), F(), M(t)) € L*® (r, T; H) N L*(z, T; V x HY(Q R>?) x HX( RY)
(v, Fr. My) € L*(x, T; V x H7'(Q) x L*(Q))} to a certain function (v(t), F (1),
M(t)). Then (v(t), F(t), M(t)) is a weak solution for problem (1.2)—(1.5) with
(wx, 1), F(x, 1), M(x, 7)) = (v, Fr, M7).
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Next, we also present the following results in the section 3. Let X be a complete
metric space with distance dy (-, -). We define the Hausdorff semidistance between A
and B by

dist(A, B) = sup ing dx(x,y), A,B C X.

xeA Y&

A two-parameter family of mappings {U (¢, 7), t > 7, T € R} is called a continuous
process in X. If the two-parameter family of mappings {U (¢, 7),t > 7, T € R} from
X to X satisfy

O U,r)y=U0nrU@r,7),forallt <r <t,
(i) U(r,t) = Id,forall T € R,
@) U(t, t)x, - U, 7)x,if x, - x in X.

Let D be the family of nonempty sets parameterized with a real parameter B = {B(t) :
B(t) #@,t € R} in X such that

lim e*[B(r)] =0,
r—>—00

where [B(r)] = sup{||u||§( cu € B(r)}, ap > 0. Similarly, let X; be a £-trajectories
space induced by X, and Dy be the family of nonempty sets parameterized with a real
parameter By = {B,(t) : B¢(t) # ¥, t € R} in X, such that

lim e*5[By(s)] =0,
§—>—00

where [By(s)] = sup{||ul|%, : u € Be(s)}, o9 > 0.

Additionally, for the sake of simplicity, we omit some basic definitions and some
results in [1, 6, 15, 32] for the given non-autonomous dynamical systems (such as
pullback absorbing sets, pullback attractors and fractal dimensions)

3 The Existence of Pullback Attractors
3.1 The Existence of Pullback Attractors in X

In this section, we first make some priori estimates of solutions to establish the exis-
tence of pullback absorbing sets for problem (1.2)—(1.5).

Lemma 3.1 Let (v, F, M) be a weak solution to problem (1.2)—(1.5), the basic energy
E(t) satisfies

d 2 2 2
GEO+ | @IVoP +kIVEP + WPy = (g.v). (3.1)
Q
Proof See the proof of Lemma 2.2 in [28]. O
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Lemma 3.2 Assuming that (A1) holds, Athen for any bounded subset l-}(r) € D and
any t € R, there exists a time 11 = t1(B(t)) > 0 such that for any weak solutions of
problem (1.2)—(1.5) with initial data (v, F;, M;) € B(t), we have

@172 + IF®I72 + VM@ < Ri.

and

4
fo (G + O3 + 1FC + Ol + VM +0)12,) d < Ry

1

foranyt —t > 11, where R; := 1+ g—g + (2‘}/\l + m)Rg; Ry =1+ Cot

@Q

+

)4 4
(2\))\.1 + 2v)»|a0)Rg'

Proof Taking L?—inner product in L2(2) of (2.2)4 with M, using Holder’s inequality
and Young’s inequality, we have

(W, M) = ~[IVM72 — M7 + | MII7.
1 3
IMI72 < Z1IMI74 + 719 (3.2)
3 4
On the other hand, using Holder’s inequality, Young’s inequality and (3.2), we have
1 ) 1 5 1 5 1 4 3
- (W, M) < EIIWlle + EIIMlle =< EIIWlle + 6||M||L4 + §|Q|~ (3.3)
From (3.1)—(3.2), we get
d
aé’(t) + apE(t) = W (1), 3.4)

where g > 0 is given later. Let

g g o))

W(t) :=7||v||iz - 7||F||iz + TIIVMIIiz + o fQ G(M)dx — || Vvl|3, —k[IVF3,
— W3 + (= IVMZ, — IM] 4 + M7, — (W, M)) + (g, v).

Note that

1 o 300 |2
ot()/ G(M)dx = aO/ Z(|M|2 —1)%dx < 7||M||‘;4 + (3.5)
Q Q
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Inserting (3.2), (3.3), (3.5) into (3.4), using Poincaré’s inequality for v and F, we can
obtain that

JOESICE %>||Vv||iz — (- ;’T‘)l)nwniz — (=DM,
- (% - %)MMM@ - %”W”iz + ﬁngniz + %(2 + 3;&» (3.6)
Taking og = min{1, uXy, 2k A1}, then we have
ety + aof(t) < —— gl + Co, 3.7
dt 2 L

where Cp := %(% + 3%). Multiplying (3.7) by !, we have

e(xot

21

d
31 EM] = Coe™' + gl 3.8)

Now integrating (3.8) from 7 to ¢, we obtain

—an(— Co
o112, + IF @12, + IVM@O112, <e D (v |12, + |1 Fe 12, + VM 13,) + w

1 t
(s—1) 2
S rrell A O AR (3.9
Note that
p ) 00 t—n 5
/ e g(s) 2,5 < e Y e g (s)[72ds
. =0 t—(n+1)

t—n

o0
Dl N BT
n=0 !

—(n+1)

1
< (1 + —)Rg,
o

where R,:= sup (ftt_l ||g(s)||izds> < +o0.
teR

From (3.9), we conclude that for any E’(r) € D, there exists atime 7y = to(é(t)) >
0 such that for any (v;, F;, M) € B(7),

1 1
+——)R, (3.10)

Co

2 2 2

t + | F(t + VM (¢ <l+—+
lo@lly . + 1F@OI 2+ IVM@)Il; . < " (ZMM S

forany t — t > 10.
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Next, integrating (3.8) from 7 + ¢ to ¢ 4 ¢ for any ¢ € (0, £), we derive that

o+ OI72 + IFE+OI7. + IVME+ 07,
< eI+ O HIF@ +OI72 + IVM (T +0)|172)
Co 1 t+¢

+—+

e T POV (3.11)
a0 2uhri Jogg L

Combining (3.9) with (3.11), we derive that

—an(i— Co
O (o + O+ IFE + Ol + VMG + 072 + w

1 t+¢

L yrvl PR HOT LS
T+¢

< 7000 [ (o |12, + | Fell3 + IVMel3) + R | + Ry (u12)

5 C 1 1
where R, = a—g + (_ZMM + —2w\1ao)Rg'
Integrating (3.11) with respect to ¢ over (0, £) and using (3.12), we obtain that

4
/0 (WG + 122 + IF @+ O + IVMG + I3, ) d

oy (— 1 - -
<m0 [a—]<||vf||iz+||Ff||iz+||VMf||iz>+ﬁRg}+€Rg- (3.13)

Therefore, for any B(t) € D, there exists a time 7; = 7;(B(1)) > 10 such that for
any (v¢, Fr, M) € B(t), we have

£
[ (I + Ol + 1P+ Ol + VMG + OIF:) de < 1+ R, (314)

foranyt — v > 17. O

In what follows, we use the method of £-trajectories to construct pullback attractors
for system (1.2)—(1.5) in the phase space H (see, e.g., [1, 29, 30]).

Let Cyeak ([T, T + £]; H) denote the space of weakly continuous functions from
the interval [z, T 4 £] to the Banach space H (see [36, 38]). Then we consider the
solution z(t) = (v(¢), F(t), M(t)) € Cweak ([T, T + £]; H) with the initial data z, =
(ve, Fr, My) € H. Let x (s, T, Z;) = Z|s¢[r,7+¢] denote £-trajectory corresponding to
the solution. Then we define the £-trajectories space as follows:

X@ = U X(sv T, Z‘L’)9

z.€H

where x (s, T, Z;) is a £-trajectory associated with z;.
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By Lemma 3.2, the {-trajectories space X, is endowed with the topology of
Lz(r, T4£; H). Since Xy C Cyeak ([T, T+£]; H), it makes sense to deal with the point
values of trajectories. From Theorem 2.1, we can define a family of the continuous
process {U (t, T)};>r associated with problem (1.2)—(1.5) in the phase space H by

U, 1)z, =2(t) =z(t, 7, 2;)

for all + > t, which is (H, H)-continuous, where z(¢) is the solution of problem
(1.2)—(1.5) with initial data z(x, t) = z; € H. Considering the weak solution z(z)
depends continuously on the initial data z., we can infer that the process {U (¢, 7)};>+
associated with problem (1.2)-(1.5) in H is r-continuous.

Based on the above results, we first define the mapping b : H — X, is given by

{b(z)}(s) :=2(s, 15 2;) = U(s, 1)(2c) = x (5,7, 27)

for each s € [7, 7 + ¢] and any z, = (v, F;, M) € H.
The second mapping ep : Xy — H is given by

eg(x(s,7:2)) = 2(r + 0L, 7, 2;)

for any x (s, 7;2z;) € X¢and 6 € [0, 1].
Then we can define a new process {L(¢, T)};>r acting on the ¢-trajectories space
induced by process {U (¢, 7)};> as

Lt,T)x(s,T;2;) =2(t +5 —7,7T;Z;)
=U(t+s—1,0)zt,t;2;) = x(t+s—r1,t;2(t,7,2;)), s€E[r,T+Y{]

for any z, = (v, Fy, M;) € H.
The original phase space and the ¢-trajectories space defined above satisfy the
following commutative diagram (see [30] for more details):

H U(t,1) H

{h(zr)(~)}l Tee(x)

X Lt.0) X

Let

< Ry},

Bo:={(v, F, M) e H: |[vlf + IFII3, + IVMI3,

then By € D. From Lemma 3.2, we can infer that any weak solutions of problem (1.2)—
(1.5) with initial data (v, F;y, M;) € By, then there exists a time 79 = t9(Bg) > 0
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such that (v(t), F(t), M(t)) € Bg for any t — 7 > 7¢. Thus, we get
U(t,t)By C By

foranyt — v > 10.
Next, we can define for any t € R

Biy:= |J W0 Fro M) Y (v, Foo Mo) € Bo)

T,5€[t—10,1], T<s
and
By(t) == {x € Xe: eo(x) € Bi(0))-
In particular, for T = ¢, Bi(r) = {(v¢, Fr, My) : V¥ (ve, Fr, My) € By}, Bg(t) =

{x € Xe teo(x) € Bi(1)}.
From the proof of the bounded absorbing subset of Lemma 3.2, we derive that

U, t)Bi(r) C B1(1),
and
L(t, 1)Bi(x) c Bt

for any r € R with t <, and l§1(t) eD.
From Lemma 3.2, we immediately obtain that the following results.

Theorem 3.1 Assuming that (A1) holds, then for any Be (r) € Dy and any © € R,
there exists a time T = 11 (B¢(t)) > 0 such that for any weak solutions of problem
(1.2)—(1.5) with £-trajectory x (s, T; 2;) € B¢(t), we have

lOI72 + IF O3, + IVM©)2, < Ry,

and

4
/O (G + 122 + 1FC + Ol + VM +0)12,) d < Ry

foranyt — t > t1, where 2, := (v, Fy, M7).

Next, we prove the existence of a compact pullback absorbing set in X, of the
process {L(t, T)};>z-

Lemma 3.3 Assuming that (A1) holds, then for any t € R and BS(‘L’) € Dy, there exist
times 1), = rz(lg'g(r)) > 0 such that for any weak solutions of problem (1.2)—(1.5)
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with £-trajectory x € BS(‘E) C X¢, we have

L
/0 (||v<r + )5+ IF @+ )5 + 1M +r>||§,z)dr <Rs

foranyt — 1t > 15, and

¢
/0 (lvr @ + ) v + I E + 1)l 1) + 1Mt + 1) 2) dr < Re

foranyt — t > 15, where Rs, R¢ are determined in the following proof.

Proof From (3.1), we derive that

d
E(Hv(r)niz FIFOIT + IVM©17,) + pll Vo3, + 2« [VF®) 17,

1
FAWOIE = IOl (3.15)

Integrating (3.15) fromt —stot+¢, forany t —7 > 71+ %, s € (0, %), and considering
(3.9), (3.10), we find that

o + Ol + IF¢+ 012, + VM@ + 012,

t+¢ 5 ) )
+ 7 / (IVoI 2, + IVFOIZ + IW@)I2, ) dr
t

—S

1 t+¢
< v =I5 + IFE = )7, + IVME —9)]7, + o lg(s)1172ds
t—s
ST (g By 4 | F 2+ VM |2 >+C—+c< L g
s 2 L2 HAL Olo/Ml ¢
Co
<1+—+C(—+ )Rg, (3.16)
a 728} OtolLM ¢
where y9 = min{u, 2«, 2}.
From (3.16), and taking 7o = 71 + %, we have
t+L 1 Co
/ (Vo2 + IVEO 1 + IWEI2,) dr < — + ——
t—s Yo Yoo
+c( L )R
Yourl  Yooophi §
(3.17)

foranyt — t > 15.
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Therefore, we conclude that

4
/O (IVot + 0122 + IVF@+ 112, + W@+ 013 ) dr < Ry (B.18)

| C 1 1
for any t — T > 1, where R3 := i + yo—go + C(VOIMl + W)Rg'
From (3.2), (3.7), (3.10), we derive that

IMI%, < CUVMIZ, + IMI[72) < CUIVMI3, + [MIl}4 + 1) < R4, (3.19)

where Ry .= C + (ﬁ + 2Mﬁ)Rg.
Applying (3.17), (3.19), the interpolation theorem and the Sobolev imbedding the-
orem (see, e.g., [40]), we have

t+¢ 5 t+¢ 5 5
/ IM(P)]2dr < Cy / AME)2, + IM@)I2)dr
t

—S r—s

t+0
< a/ (1AM — (M — DM |22)dr
t—s

t+¢
+C / UM P> = DM, + 1M )3 )dr
t

-

t+0
<0 / AW, + MO + 1M )dr
t

=S

t+¢
<C3 / W72 + IMEI5,0 + IME)7,0)dr
t—s
3¢ 3, 3¢
<C3|R3+ 7R4 + 7R4 (3.20)

foranyt — 7 > 15.
So we conclude from (3.14), (3.18), (3.20) that

4
/O (||v<t+r>||ip+||F<t+r>||iﬂ+||M(r+r>||i,2)drsRs (3:21)

for any t — t > 1, where Rs := C(R3 + Ri/z + Ry).

From (2.2), we have

v, = —pwAv — B(v,v) + P(V - (FFT — VT MVM)) + Pg,
Fi =kAF +VvF —v-VF, (3.22)
M, =W —v-VM.
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Taking (¢, ) € L*®°(t,t+¢; V X HO1 (£2)) such that || (¢, W)IILOO(t’tM;VxHOl(Q» <1,
we estimate the time derivatives vy, F; as follows:

[{vr, 9} < M‘/;ZVU : Vodx

—l—‘/(v@v):Vgodx
Q

+ +llgl2llell 2

f (FFT = VTMVM) : Vpdx
Q

NSy

1
< (mwanz F 2 + VM, + IF I3, + —||g||Lz> IVl 2
C, (3.23)

IA

and

I(Fr, v)| =

KfVFZV}[/dX—i—/(I%V)F:I//dX—/VUFII/fdx
Q Q Q

< [KIIVFEI20V¥ N2 + Al eIVl 2 + IVl 2 [ F ) 1)l 4]
<. (3.24)

Taking the supremum over all (¢, ¥) in (3.23) and (3.24), then we get

‘ I
0 0
The time derivative M; is estimated from (3.22)3 as follows:

IMell Lt 14620 = N - VIMI L g2 + IAM Lo 222

1 2
+ WII(IMI = DML e 12))
t+£
< / 1o IVME) | adr + VENAM 201102200
t

1 t+4 ﬂ
+3 [ IMO) o+ S5 212y = C-
t

(3.26)
From (3.23)—(3.26), there is a constant Rg > 0 such that
¢
/ (It +r)lv + 1 Fe 4+ )l g1y + 1My (1 + 1) 2) dr < Rg (3.27)
0
foranyt — v > 15. O
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Let
X, = {x € Xy x eLz(r,r+£;Vx HL(Q) x HZ(Q)>;

x, €L (r, T4+ 0V x HY(Q) x L2(9)>} (3.28)

endowed with the following norm

1

T+L ) T+L 2)2
Il =1 | ||x||VxH0.(Q)XH2(Q)ds+( / ||x,||V/XH-1(Q)XLz(mds)
T T

for any v € R. A
Then we also define B’f (1) := {Bf (t) : t € R}, where

Bi(t) ={x € X¢: lxllx, < R},

where R7 is a constant that depends on Rs and Rg.
From Theorem 3.1 and Lemma 3.3, we conclude that L(z, t)Bé(r) C Bg(t) for
any t > 7 and L(¢, ‘L')Bé(‘[) C Bf (t) for any t — t > 1. Furthermore, we have

Theorem 3.2 Assuming that (Ay) holds, then

(t,7+¢;

I A
L(t, 1)BS(r) c B

foranyt > 1.
Proof Similar to the results proved in literature [1], we may just omit it. O

Lemma 3.4 Assuming that (A1) holds, then for any t € R, the mapping L(t, 1) :
X¢ — Xg is Lipschitz continuous on Bg () foranyt > v + L.

Proof For any fixed t € R and any x,, x, € Bg(r), let L(t, t)x, = (vi(t), F1(t),
M (1)), L(t, T)x, = (v2(2), F2(t), M2(2)) for any fixed 1 > 7 + ¢ and denote by

(v, F,M) = (vi — v2, F1 — F», M1 — M>). Since ep(x,) and eo(x,) are uniformly
bounded in H, we can infer from (2.2) that

1 d —n2 -2 - - . T T -
s—lvl 2 +ulVoullia == (-Vv)-vdx + | div(Fi1F] — F2F, ) - vdx
2dt Q Q

—/ div(VI M VM, — VT M,V M») - vdx
Q

=L+ L+, (3.29)
1d - _ ) _ .
§5||F||iz+x||VF||iz =—/Q(U.VF1) : Fdx—i—/Q(VvlFl — V) : Fdx

=1+ Is, (3.30)
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and

ld - 112 112 112

Ea(llMlle + VM) + IVMIl, + 1AM2 + 16 + 17 = Iz + Iy, (3.31)
where

1 _
Is = — / (MI]F = DMy — (M2 = ) My) - Mdx,
yoJa
1 _
Ii= —ﬁf«wz— DM, = (1Mo = 1)My) - AMdx,
Q

Ig == —/(ﬁ-VMl)-de, Io :=/(v1 VM| — vy - VM) - AMdx.
Q Q

For I, 14, I3, using Holder’s inequality, Young’s inequality and Sobolev imbedding
theorem, we have

_ _ 122 _
I < 01340 Vuill2 < ClalEIIVrl, + gnwniz, (3.32)
_ = _ — JIRKE -
I < Bl 4l Fll 4V Fill 2 < IO 2 | F 2 IVFL + IVl VE Il
_ ~ n _ K -
< CUI0IZ, + IFI3DIVELG, + §||VU||iz + guwu’;, (3.33)

and
) . I N
Iy < 180 M1 IV M 2 < CHBI IV BN, (I 2 + 1912, IV B2 1V M, ]2
2 s 4 . _ 5 3.
sc(nvnzannzzuwlnzz+||v||L2||M||Lz||VM1 ||Lz)+§||Vv||Lz
m _ _
+%||VU||L2||VM||L2

_ - [T 1 .
< CUBIT. + 1M+ VML 7,) + gnwuiz + gnwniz. (3.34)

Next, we estimate the terms /3 + I9 and 1> + I5. Using the divergence free condition
on v and (2.1), we first obtain

I = —/ VITMiAM, = VT MaAM,) - Bdx
Q

= —/ [(vi - VM) - AM; + (va - VMs) - AM> — (VT My AM)-
Q

vy — (VI My AM)) - vy ]dx. (3.35)
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From (3.31), (3.35), we find that

I+ Iy = —/ VT M AM, — VT My AM,) - vdx +/(v1 VM| — vy - VM) - AMdx
Q Q

=/[(VTMAM)-vz—(VTMAMz)-f)]dx. (3.36)
Q

Applying results in [34] and Holder’s inequality, Young’s inequality, Sobolev imbed-
ding theorem, we have

I3+ Ig < VM| allva )l L IAMI 2 + IV M) L5 4 I AMa ) 2
_ 1 ) - 1 1 1 _
< CIVMIZ, IV M1, vall 3 IV ool 2 AN 2
_ 1 _ 1 1 1
+ CIVMIZ, VM, 1502, VD12, I AMa|l 2
_ — _ 1 _
< CIVMI (M2 + 1AM )22 [Vl 2 + G I AN

_ 1 _ 1 _ 1 1 1
+CIVMI (12, + 1AM )11 2, VDI, | AM, 2

< CUIBIZ, + 1M1, + IVMIZ ) (w2l 2 V02l 2 + 102032 IV l125 + 1AM ]125)

1 _ _ _
+ g WIVIIZ + 31V, +21AMIT). (3.37)

Similarly, we have

_ 1 _ -
L+1Is < CIFI5,(IFi 13, IV Fill7, + Vi l13,) + gwnwniz + 2¢[|VE|2,).
(3.38)

For I¢, I7, using the following results

(IM\* My — |Ma*Mp) - (M} — M3) > 0,

2 2 3 v 2 2
IMi["My — [Ma|"Ma| = SIMI(Mi|” + [M2]%),

and Gagliardo—Nirenberg inequality (see, e.g., [40]), then we have

1——L M|*d RS M |>My — |M>|*M5) - Md . M|*d
6=——5 [ IMI"dx+ — | (IMi|"M — |M2|"M>) - Mdx > —— [ |M|dx,
YoJQ Yo JQ YoJQ

(3.39)
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1 _ 1 _
Iy = ——2/ |M|*dx — —2/ (IM* M — | My M3) - AMdx

Yo JQ yoJQ
1 _ 3 _ _

> ——2/ |M|*dx — —2/ (1M1 + | M2 %) M| | AM |dx
veJa 2y Ja

_ _ 1 _
= —C[IVMIZ, + 1M (M s + IM21 ) | - IAMIZ,

_ _ 1 _
> ~CUMIT, +IVMIT) A+ VMU MU, + IVM2221M2170) = SIAMI,.
(3.40)

Substituting the results of (3.32)—(3.40) into (3.29)—(3.31), respectively. Then we
obtain

i(II'II2 +IFI3, + 1M vi? VFE|? VM| AM|?
pe( b 2 2 M) + 1l Vo2 + kIVE2, + VM2, + [ AM)%,

< Cp®Bl17, + I1FI17, + M]3, (3.41)
where

p() =1+ [Vorl7, + IVFIT: + IVMilI72 + (o2l 2 Vo2l 2 + o203 1 Va7,
+ 1AM 7, + IVMLIS M1 54 + IV Ma15 M2

Integrating (3.41) from t 4+ s to ¢ + s, for any s € (0, £), we obtain

15+ )22 + IF @+ )25 + 1M+ 5)II3,

t+s B B
< / P D172 + IF @72 + IME)|5,0)dr
T+s

+ 0@+ )72+ IF @+ )72 + 1M + )5 (3.42)
From Lemmas 3.2, 3.3, using Gronwall’s lemma, we obtain

||1_)(t S)||22 ”1_([ S)”ZZ ||A_4([ S)”z 1
L L H
t+s

< B+ 972+ IF @+ 9072 + I1M(T +5)]13,)exp (/ p(r)dr)

+s
_ _ t+¢
<@+ 972+ IF @+ 9072+ I1M(T +5)]13,)exp (/ p(r)dr)

< Ne(t, DD + )72 + 1F (T + 972 + 1M+ )70, (3.43)

where Ny(t,7) = exp (thH ,o(r)dr) is a finite number depending on (v ¢, F1.r,
Ml,r) and (U2,t7 ., M2,r)-
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Integrating (3.43) with respect to s over (0, £), we derive that

4
f U5+ )12 + 1+ 912 + 151G+ 5)]2,0)ds
0
¢ 2 I 2 v 2
< N, r)f 5@+, + IF @+ )% + IM(T +9)[3,)ds. (344
0
Therefore,
L@ DX = L DT 2 g < Ve DI = 06120 gy (345)

which implies the mapping L(t, t) : X; — X, is Lipschitz continuous on Bg(‘l,') for
allt > 7+ 4. O

From Theorems 3.1, 3.2, Lemmas 3.3, 3.4 and Lemma 2.5 in [1], we can infer

that l’;’f (1) = {BiZ () : t € R} is a family of positive invariant, uniformly pullback
absorbing compact subsets of X, where

¢ .
By(1) = [X € Xe Xl (e oreven @xm2@) T 12 rrevcn-1@xr2@) = R7} .

With a similar method to get the results of the autonomous case from Lemma 2.1
in [1], we can immediately obtain the following result.

Theorem 3.3 Assuming that (A1) holds, then the process {L(t, T)};>r generated by
problem (1.2)—(1.5) possesses a pullback attractor flg = {A¢(t) : t € R} in X¢ and
e1(A¢(t — ) C Bi(t) forany t € R, where

er(Ae(t = 0) ={e1(x) = x € At — )}

foranyt e R.

Next, we still need to prove the smooth property of the process {L (¢, T)};>r gener-
ated by problem (1.2)—(1.5) to prove the pullback attractor with finite fractal dimension
in X,.

Lemma 3.5 Assuming that (A1) holds, then there exists a constant k1 > 0 such that
for any fixedt € Randanyt > v + ¢,

IL(t. D)%, — Lt DX, %,

4
< (Colr, 1, 0) + K1C1 (1, 1, 0)) /0 1 (T + ) — 2, (x + 9)[ds.

where x, and x, are two L-trajectories in Bg(r), k1, Co(t,t, L) and Ci(z,t, L)) are
given in (3.52), (3.66), respectively.
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Proof From (3.28) and Lemma 2.5 in [1], we can infer that X, CC X,. For any fixed
7 € Rand any x,, x, € Bé(r_), l_et L, t)x, = (@), Fi(t), Mi(2)), L(t,T)x, =
(v2(2), Fa(t), Ma(¢)) and (v, F, M) = (vi —v2, F1 — F», M1 —M>) forany t > t4¢.

For any r > t + ¢, integrating (3.41) from ¢t — s to t + £ with s € [0, %], we obtain

10(t 4+ O3, + IFt 4+ O3, + 1M+ O3,

t+L _ _ _
+ Co / IVl + IVEIZ, + IVMI3, + IAM|7,1(r)dr
t

-

t+¢ _ _ _
< c/ pOIBIZ, + 1F 12, + 1M1, 10)dr + [5G — )I2, + 1F(t = )11,
t

—S

+ M =53, (3.46)
where Co = min{u, k, 1} > 0.

Similar to the proof of Lemma 3.4 in [1], using Gronwall’s lemma to (3.46), we
obtain

10+ 017, + 1 F¢t+ 017, + 1M+ 07,

t+¢ B B B
+ Co/ V)2, + IVFIZ, + VM3, + |AM|2,](r)dr
t

—S

B _ t+0
< Ko(t, (0 = )72 + 1F = )72 + 1Mt — 9)|7,0)exp ( f p(r)dr)
t—s
+ 8¢ — 93,
HIF@E = )72+ 1M =93 (3.47)

where K, (¢, 7) := f;ﬁ p(r)dr + 1.
2

For any ¢ > 7 + ¢, integrating (3.41) from 7 + s to t — s with s € [0, %], we have

5(t — )17 + I1F(t = )72 + 1M — )3,

t—s _ _
< / p)IB)72 + IF 72 + IME)50dr + [5(x + 9117,
T+s

FIF@+ )7 + IM(T + 53, (3.48)
Applying Gronwall’s Lemma to (3.48), we get

5(t — )17, + IF(t = )72 + 1M — )3,
t—s

<5 + )72 + IF @+ 972 + 1M (T +9)[13,)exp (/ p(r)dr)

+s

B _ t—s
<3 + 9052 + IF @+ 972 + 1M (T +9)[13)exp (/ p(r)dr>. (3.49)
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Considering (3.47) and (3.49), we have
Z —_ —_ —_
co/O VDT, + IV, + IVMI3, + IAM7,1( + r)dr
) B ) _ 5 t+4
< Ke(t, D0 + )17, + |F (T + )72 + IM(T +9)17,)exp (/ p(r)dr)
T

1—s

+ B+ 972+ IF @+ 972+ 1M (T + 5)lI35,)exp (f p(r)dr)
T

<2Ko(t, DNt D5 + )72 + I F (T + 97, + IM(T + )3, (3.50)
where Ny (f, T) := exp ([ftH p(r)dr).
Integrating (3.50) with respect to s over (0, %), we get
¢ 2 2 112 7112
fo UVOlT, + IVFIT: + VM, + [AM|7,1( + r)dr

- 4K¢(t, T)Ne(t, T)

4
2 _ —
Col /0 U5 + )72 + IF (@ + )72 + 1M (T + 5)]17,)ds.

(3.51)

Noticing that K,(¢, 7), N¢(t, T) are bounded for any fixed ¢ € [t + £, +00), we can
infer that

4
[0 IVolZ, + IVEIZ, + VM3, + IAM]|3,1(t + r)dr
14
sco(r,r,afo B+ 972+ IF @+ 9072+ I1M(T +5))50ds. (3.52)

Therefore,

2 2
||L(t7 T)Xl - L(I, T)Xz ”Lz(t,tJrE;VXHOl(Q)xHZ(Q)) < CO(Tv t, e)”Xl — X2 ”Lz(r,r-',-Z;H)
(3.53)

for any x,, x, € Bé(r) andany r > 7 + £.
Taking the difference of (2.2) solved by (v, F1, M1), (v2, F2, M>), we have

U = —pAD — B(1,v1) — B, ) + P(V - (FIF{ — F2Fy)
— V- (VI'Mi VM — VT MV M),
F,=kAF —v-VF| —vy-VF + Vv F| — Vuy P>,
_ L -1
My =AM —0-VMy —v2- VM + 1M1 > = DM — (1Ma)* — DM>].
(3.54)
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Taking (¢, ) € L*®°(t,t+¢; V X HO1 (£2)) such that || (¢, W)IILOO(t’tM;VxHOl(Q» <1,
we estimate the time derivatives 7;, F, as follows:

|(6t,<p)|:'u/ Vﬁ:V(pdx—/ 11:V<pdx—/ J2-<pdx+/ J3 - pdx
Q Q Q Q
(3.55)

’

, (3.56)

(Fi, )| = KfVF:ledx+/J4:1pdx—/.l5:1pdx
Q Q Q

where

JN=0Qu +n®v, J,L:=V-(FF —FKFD,
J=V - (VM VM, — VI My VM),
Jy:=v-VF —vy-VF,Js:=Vu F| — Vo F>.
Let us estimate the terms on the right hand sides of (3.55), (3.55) one by one. From

Lemma 3.3, using Holder’s, Young’s, Sobolev’s and Poincaré’s inequalities, we derive
that

‘M/QVE : Vodx| < pllvlivlielv < Cliolv. (3.57)
x/QvF DVydx| < €| Flgllyllgn < CIF g, (3.58)

and
'/QJI : Vodx| < Cllalv vy + s llv). (3.59)

From (2.1), we conclude that

‘/ Jo - pdx
Q

5/ |V§0||F||Fl|dx+/ IVol|F||F2|dx
Q Q

< IVl 2IIFll 2l Fill g+ + IV@ll 2| Fl g2 | Fall 14
< CIFlgUIF g + 1Pl ), (3.60)

5/ |¢||VM1||AM|dx+/ lo|[VM||AM;|dx
Q Q

’/ J3 - pdx
Q

<Nl VMl allAM | 12 + @l 4 IVM | L4 | AM: |l 2

1 1 ! .
< ClIVMili}, (”Ml”zz + IIAM1||22> AM]|>

1/ o1
+CIVMI;, (IIMlliz + ||AM||22) [AM][ 2, (3.61)
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and

‘/h:tpdx

Q

‘/Jszlpdx
Q

5/ |ﬁ||VF1||w|dx+f 2|V F [ [dx
Q Q

< IOl IVl 21l e + o2l g« IV E L2 191
< CUBIVIF I g1 + 1 F Nl lv2llv), (3.62)

S/ IVv1||F|I¢Idx+/ Vo[l F2l|y|dx
Q Q

< IVl 2 I F gl o + 10l 21 P2l a9 s
< CAlilIVIE I + 18IV F2ll 1) (3.63)

Plugging (3.57)—(3.63) into (3.55), (3.55) and taking the supremum over all (¢, ¥),
we conclude that

t+¢ t+6 _
/ lvg |- dr +/ I1Fellg-1@dr < CAIVI2¢ ete:v) + WF 2,040 1Y
t t
+||M||L2(I,I+Z;H2))‘ (364)
Similar to the above estimates, we can estimate the time derivative ]\;If as follows:
e ~
/ IMellp2dr < IAMII L1 e 20 + 1@ - VIMillpig iqe.02)
t

+ vz - V)M“Ll(l‘,t+Z:L2)

+ ﬁ”M"L'(t,t+K;L2(SZ))

3 t+L _
T ) UMM+ M 70))rdr
1
< Clvllz2girevy + CIMI L2 i ve 52 (3.65)

We obtain from (3.52), (3.64) and (3.65) that

¢ ) ) 2
(/0 (e (e +=r)liv + 1 Fe (& + D)l g-1(0) + 1M (2 +r)||L2)dV>

<k Ci(1,t, e)/oe(na(r + 972+ IF @+ 9072+ 1M (T +5)]l7,)ds. (3.66)
Therefore,

IL(t, ) x, — L(t, D xullz, < k1Ci(@ 6, Ollx, — ol 2oy (3.67)

for any x,, x, € BS(‘L’) andany r > 7 + £. O
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Combining with Lemma 2.2 in [1], Theorem 3.3 and Lemma 3.5, we can obtain
that the following result.

Theorem 3.4 Assuming that (A1) holds, then the fractal dimension of a pullback
attractor Ay = {A¢(t) : t € R} in Xy of the process {L(t, t)}>. generated by
problem (1.2)—(1.5) obtained in Theorem 3.3 is finite.

Proof Since each section Ay (¢) of pullback attractor Ay = {Ay(t) : t € R}isbounded
in X/, there exist a positive constant R and some x, € A,(¢) such that

Ae(6) C By, (203 B). (3.68)
From Lemma 3.5, we can infer that there is a constant Cp = C» (¢, £) > 0 such that

Lt D)x1 — L, Dxellx, < Callxt — x2llx,, forany xi, x2 € Ae(t), t = 7+ L.
(3.69)

On the other hand, from Theorem 3.3 and (3.69), we derive that

Ag(t) = L(t, ©)Ag(r) C L(t, T)Bx,(xo; R) C Bx,(L(t,T)xy; R), forany t > v 4 £.
(3.70)

It follows from (3.69) and X, CC X¢, then there exist a finite number N of balls with
the same radius § centered in &1, &, - - -, €y € X such that

N
R
Ae(t) C Bx, (L(t,T)xy; R) C U Bx, (i 5), forany t>t+¢. (3.71)
i=1

Considering (3.69)—(3.71) and Theorem 3.3, we get

N RN R
At = Lt DA € L@ 0By, G ) € B, (LG 0 ),

i=1 i=1

forany ¢ >t +¢. (3.72)
Since each ball Bx, (L(t, 7)&;; g) can be covered by N balls with the same radius 252
centered in &;1, &, - - -, &Ny € Xy, we have
N N R
Aoy < [JU Bx, (L. 083 55)- (3.73)
j=li=1
Repeatedly, we can obtain that
N Nt R
Aoy < J U Bx (L@ & o). (3.74)

j=1i=1
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For any ¢ > 0, we can choose some positive integer n sufficiently large such that

25,, <eg< zni_]; then we can infer from (3.74) that

In N (Ae (1))
drt (Ae() = i :
F (Ac(®) = lim sup D)
In NS (A1)  InN
< iy BN CA@) _n 375)
n— 00 IH(F) In2
This completes the proof of Theorem 3.4.
]

3.2 The Existence of Pullback Attractors in H

In order to obtain that the process {U (¢, t)};>. generated by problem (1.2)—(1.5) has a
pullback attractor with finite fractal dimension in the original phase space H, we also
need to prove the following results.

Lemma 3.6 Assuming that (A1) holds, then the mapping e;: BS(‘L’ —¥{) = Bi(1) =
el (Bg(t — {)) is Lipschitz continuous for any fixed t € R. That is, for any two £-

trajectories X, X, € Bé(t), there exists a positive constant C dependent on € such
that

¢
ller(x,) — e Ol < C/o 1, (T + ) = X, (T + 9)lIds. (3.76)

Proof For any fixed t € R and any x,, x, € Bg(l'), let Lz, 7)x, = (vi(1), F1(1),
M(t)), L(t,v)x, = (n2(t), F2(t), Ma(¢t)) forany t > 7 4+ £. We use (v, F, M) =
(v1 — va, F1 — F2, M1 — M>) to denote the difference of two solutions for problem
(1.2)—(1.5).

For any fixed t € R and any s € (0, £), using Gronwall’s lemma for (3.41), we get

10(r + O3, + 1F(t + O3, + [M(T + 03,
T+L

< (0@ + )N + IF@ + )37, + 1Mz + 9)II3,)exp (/ p(r)dr)

+s

_ _ T+
<0+ + IF@ + )7, + 1Mz + 9)II3,)exp (f p(r)dr) :
(3.77)
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Integrating (3.77) with respect to s over (0, £), we can conclude that
15 + 012, + 1F(t + 012, + 1M(T + 03,

1 T+L £ _ -
< jexp (f p(r)dr)/o (5 + 972 + IF @ + )72 + 1M + 5)]17,)ds

e - -
<C(, r)/o N5z + )72 + 1F (@ + )17, + 1M +5)]13,)ds, (3.78)

where C(¢, 1) := lNg(t), N¢(t) :=exp (ff“z ,o(r)dr) is afinite number depending
on (vl,‘[a Fi¢, M) and (v ¢, Fq, M o).

Finally, we can infer from (3.78) that the mapping e: BS(‘L’ —£¢) — Bi(1) is
Lipschitz continuous. The proof is complete. O

According to the above results, we now give the proof of Theorem 1.1 as follows:

Proof of Theorem 1.1. From Lemma 2.3 in [1], Theorem 3.4 and Lemma 3.6, we can
infer that for any # € R, the sections .A(¢) of the pullback attractor Aare compact and
their fractal dimensions are uniformly finite. From the invariance of Ag: Lit—14¢,5s—
OAe(s — ) = Ag(t — £) for any ¢ > s, we derive that

U(t,s)A(s) =U(t, s)e1(Ae(s — £))
=e (L@t —2,s —0Ai(s — £) = e (Ae(t — ) = A1) (3.79)

for any > s.
For any bounded subset B of H, from the definition of Bj(¢) and B(l; (1), then there
exists some time T = T(B) > 0 such that

U(t,T)B C Bi(t) = eo(B5(1)) (3.80)

foranyr —tv > 7.
Therefore, we only need to prove that

lim distg(U (1, 7) B1(2), A1) = 0.

Otherwise, there exist some sequence {(vy,, F,, Mp)}n>1 C Bi(t,), apositive constant
g0 and some 7,, > 0 such that for any t — 7, > 7,,, we have

distg (U (¢, t) (Vn, Fu, My), A(t)) > €o. (3.81)

On the other hand, from the definition of Bj, we can infer that there exists a sequence
{xn}n>1 C Bg(t,,) such that

(Vn, Fy My) = eo(xn)-
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Since {x,}n>1 is bounded in X, and flz is a pullback attractor in X, of the process
{L(, 7)}:>r generated by problem (1.2)—(1.5), there exist a subsequence { X, }n;>1
of {xn}n>1 and a subsequence {7, }n;>1 of {7 },>1 such that

Lt =€, t)xn;, = x € Ae(t =€) in Xeasj — +o0.
Using the continuity of e1, we have

U, fn_/)(vn_/a Fl’lj7 Mnj) = e (L(t — ¢, Tnj)Xn_,') —e1(x) € A(t) in H
asj — +oo0.

The contradiction to (3.81) completes the proof. O

Remark 3.1 For system (1.2)—(1.5), if we consider the external force term eg(x, t)
depending on a small parameter ¢ € (0, 1] as a small perturbation to the autonomous
system, then we obtain a continuous process U®(-, -) driven by the non-autonomous
dynamical system. Since the upper semicontinuity implies some stability for the attrac-
tors of the systems under some perturbations (see [8, 16, 31, 32, 39] and references
therein). It is also interesting and important to consider the relationship between the
pullback attractors As = {A%() : t € R} for the perturbed system (1.2)—(1.5) with
¢ € (0, 1] and the global attractor A for the unperturbed system (1.2)—(1.5) with
e =0 (see, e.g., [28]).
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