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Abstract
In this article, the long-time behaviors of weak solutions for the 2D non-autonomous
magneto-viscoelastic flows are considered. Unlike the results established by Liu and
Liu (Politeh Univ Buchar Sci Bull Ser A Appl Math Phys 81(4):155–166, 2019),
utilizing the method of �-trajectories introduced by Málek and Pražák (J Differ Equ
181(2):243–279, 2002), we first justify the existence of finite-dimensional pullback
attractors for the process {L(t, τ )}t≥τ in the �-trajectories space X�. Then we obtain
the corresponding finite-dimensional pullback attractors for the process {U (t, τ )}t≥τ

in the original phase space H.

Keywords Magneto-viscoelastic flows · Pullback attractors · Fractal dimension · The
method of �-trajectories

Mathematics Subject Classification 35Q35 · 35B41 · 37L30 · 76A10

1 Introduction

Magneto-viscoelastic flow is a class of important and complex non-Newtonian fluid,
which has a broad application prospect in technological applications. The magneto-
viscoelasticmodel has received extensive interest in the past years. A generalmagneto-
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viscoelastic model describing magnetoelastic materials was established by Forster in
[11], which is based on an energetic variational approach (see, e.g., [14]). Since the
magnetoelastic materials are extremely affected by the phenomenon of converting
applied changes of the magnetic field and vice versa, they can be regarded as smart
materials. For instance, the various magnetic materials can be found in sensors to
measure the torque of a force, and can also be used inmagnetic actuators and generators
for ultrasonic sounds (see, e.g., [4, 5, 11, 13, 17, 33]).

Forster [11] established the following incompressible magneto-viscoelastic fluid
model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt − μ�v + v · ∇v + ∇ p = ∇ · (F FT − ∇T M∇M) + ∇T HextM,

Ft + v · ∇F − ∇vF = κ�F,

Mt + v · ∇M = �M − 1
γ 2 (|M |2 − 1)M + Hext,

div v = 0.

(1.1)

System (1.1) consists of the incompressible Navier–Stokes equations coupled with
balance equations for the deformation gradient F and the magnetization M , where the
magnetization M is a simplification of the Landau–Lifshitz–Gilbert equations with
convection (see, e.g., [3, 11]). In technological applications, we sometimes need to
investigate the perturbations of the external magnetic field to the magneto-viscoelastic
fluid. That is, the magneto-viscoelastic fluid is exposed to an external effective mag-
netic field Hext. Considering the coupling of magnetic and elastic effects, the study
of magnetoelastic materials has attracted more attention from various technological
applications and the view of mathematical modeling (see e.g., [2, 9, 17, 18, 34, 42]).

Note that if M = 0, system (1.1) is a model for incompressible viscoelastic flows
(see e.g., [21, 24]). If F = 0, it reduces to the simplified Ericksen–Leslie system for
incompressible liquid crystal flows (see e.g., [25, 26]). If M = F = 0, it translates
into the standard Navier–Stokes equations (see e.g., [23, 38]).

In this paper, taking Hext = 0, then we can obtain the following simplified 2D
incompressible magneto-viscoelastic fluidmodel with non-autonomous external force
term g(x, t):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt − μ�v + v · ∇v + ∇ p = ∇ · (F FT − ∇T M∇M) + g(x, t),

Ft + v · ∇F − ∇vF = κ�F,

Mt + v · ∇M = �M − 1
γ 2 (|M |2 − 1)M,

div v = 0,

(1.2)

in � × [τ, T ], where � is a bounded regular domain with smooth boundary, τ ∈
R, τ ≤ T , v(x, t) : � × [τ, T ] → R

2 is the velocity of the fluid, p = p(x, t)
is the scalar pressure, and F : � × [τ, T ] → R

2×2 is the deformation gradient,
M : �×[τ, T ] → R

3 is the magnetization vector.μ, κ > 0 are viscosity coefficients,
γ > 0 stands for the parameter that controls the strength of penalization on the
deviation of |M | from 1. g = g(x, t) is time dependent external force term.
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System (1.2) is given the Dirichlet boundary conditions for v, F and the Neumann
boundary condition for M

v(x, t)|∂� = 0, F(x, t)|∂� = 0,
∂ M

∂n
|∂� = 0, t ≥ τ, (1.3)

and the initial conditions

v(x, τ ) = vτ (x),with div vτ = 0, x ∈ �, (1.4)

F(x, τ ) = Fτ (x) = I , M(x, τ ) = Mτ (x), x ∈ �, (1.5)

where I is the 2 × 2 identity matrix and n is the unit outward normal vector.
Let h : R2 → R

2 be a function and G(r) = ∫ r
0 h(s)ds be a potential function as

follows

h(M) = (|M |2 − 1)M, G(M) = 1

4
(|M |2 − 1)2,

and define the basic energy

E(t) = 1

2
‖v‖2L2 + 1

2
‖F‖2L2 + 1

2
‖∇M‖2L2 +

∫

�

G(M)dx .

It is well known that the long-time asymptotic behavior of dynamical systems is one
of themost important problems for nonlinear dissipative evolution systems. Until now,
one effective way to deal with this problem for a given evolution system is to study
the existence and structure of its attractor. In particular, the non-autonomous evolution
systems, which can well describe the intrinsic properties of many natural phenomena,
are rather more complicated than autonomous ones. In the past decades, many scholars
have focused on the research of more general non-autonomous differential equations.
The pullback attractors can well describe the pullback asymptotic behavior of non-
autonomous dynamical systems (see [6, 10, 20, 32, 37] and references therein), which
is a minimal family of compact invariant sets under the process and pullback attracts
any bounded subset of the phase space.

In this paper, we aim to establish the existence of pullback attractors with finite
fractal dimension in the original phase space H for the magneto-viscoelastic system
(1.2)–(1.5). For the autonomous case of system (1.2)–(1.5), i.e., when the non-
autonomous external force term g = 0, the solution operator defines a semigroup.
In [28], the authors proved the existence of global attractors for the autonomous case
of system (1.2)–(1.5). However, to the best of our knowledge, there are no results about
the existence of the pullback attractors with finite fractal dimension for the process
{U (t, τ )}t≥τ generated by problem (1.2)–(1.5) in the phase space. As Liu and Liu in
[28] pointed out, since the strong coupling nonlinear terms and theNeumann boundary
conditions for problem (1.2)–(1.5), it is difficult to justify the smooth property of the
difference of two solutions and the differentiability of the process {U (t, τ )}t≥τ gen-
erated by problem (1.2)–(1.5) on the pullback attractors. Unlike the results obtained
in [28], to overcome these difficulties, we utilize the novel idea of the method of
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�-trajectories in [1, 27, 30]. This novel method is based on an observation that the
limit behavior of solutions for a given dynamical system in an original phase space
can be equivalently captured by the limit behavior of �-trajectories space (see [30] for
more details). By virtue of this method, many scholars have studied a large class of
nonlinear dissipation problems, especially for the problems of lack of good regularity
properties or uniqueness of solutions (see [7, 12, 19, 22, 29, 35, 41, 43] and references
therein). Furthermore, our method can also be used to establish the existence of global
attractor with finite fractal dimension for the autonomous case of system (1.2)–(1.5).

In the sequel, we make the following assumption.
Hypothesis. Assume that the external force g ∈ L2

loc(R;H) satisfies

(A1) : Rg := sup
r∈R

(∫ r

r−1
‖g(s)‖2L2ds

)

< +∞,

where H is given later.
In this paper, we obtain the main results as follows.

Theorem 1.1 Assuming that (A1) holds, then the following assertions are true:

(i) There exists a pullback attractor Â = {A(t) : t ∈ R} = {e1(A�(t−�)) : t ∈ R} for
the process {U (t, τ )}t≥τ generated by problem (1.2)–(1.5) in H, where A�(t − �)

is the section of pullback attractor Â� = {A�(t) : t ∈ R} established in Theorem
3.3 for the process {L(t, τ )}t≥τ generated by problem (1.2)–(1.5) in X�;

(ii) The pullback attractor for the process {U (t, τ )}t≥τ generated by problem (1.2)–
(1.5) in H has finite fractal dimension.

The rest of this article is arranged as follows. In the second part, wemainly introduce
some basic notations, some useful results and global well-posedness for problem
(1.2)–(1.5). In the third part, using the method of �-trajectories in [27, 30, 41], we
first define a process {L(t, τ )}t≥τ on the �-trajectories space X� with the topology
of L2(τ, τ + �;H) induced by the process {U (t, τ )}t≥τ generated by system (1.2)–
(1.5), then we prove the existence of pullback attractor Â� for the process {L(t, τ )}t≥τ

generated by problem (1.2)–(1.5) in X�. In addition, analyzing the smoothing property
of the process {L(t, τ )}t≥τ , we justify that the pullback attractor Â� for the process
{L(t, τ )}t≥τ generated by problem (1.2)–(1.5) has a finite fractal dimension. Finally,
using a Lipschitz continuous operator on the pullback attractor Â�, we obtain that the
corresponding finite-dimensional pullback attractor Â for the process {U (t, τ )}t≥τ

generated by problem (1.2)–(1.5) in H.

2 Preliminaries

In this section, we will present some notations and useful results that are used all
through paper. Let C be a positive constant, which may vary in different situations.
Specifically, we also use C0, C1, C(·) to emphasize certain dependence. As usual, for
any 1 ≤ p < ∞ and k ∈ N, we denote the Lebesgue space and Sobolev space by
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L p(�) and W k,p(�) endowed with norms ‖ · ‖L p and ‖ · ‖W k,p , respectively, where

‖u‖L p :=
(∫

�

|u|pdx

) 1
p

, ‖u‖W k,p :=
⎛

⎝
∑

|α|≤k

∫

�

|∂αu|pdx

⎞

⎠

1
p

,

andwe also denote the spaceW k,p
0 (�) as completions ofC∞

0 (�) in norms ofW k,p(�).

In particular, Hk(�) = W k,2(�), Hk
0 (�) = W k,2

0 (�) with k ∈ N and p = 2,
H−k(�) is the dual space of Hk

0 (�). The Lebesgue space L p(0, t; X) consists of
all those functions u that take values in X for almost every s ∈ (0, t), which satisfy
(∫ t

0 ‖u(s)‖p
Xds

) 1
p

< +∞, for any 1 ≤ p ≤ ∞. For the sake of conciseness, we

do not distinguish functional space when scalar-valued or vector-valued functions are
involved. To deal with problem (1.2)–(1.5) in a proper setting, we also introduce some
function spaces. Let

V = {
v : v ∈ C∞

0 (�), div v = 0
}
,

where C∞
0 (�) is the space of any smooth functions v which are zero outside of some

compact support depending on v. Denote the closure of V byH and V with respect to
the L2(�)-norm and H1(�)-norm, respectively. Let

Hk
0 (�) = {v ∈ Hk(�) : v|∂� = 0},

Hk
n (�) = {v ∈ Hk(�) : ∂v

∂n
|∂� = 0},

and the phase space

H = H × V × H1
n (�).

Let H′ and V′ be the dual spaces of H and V, respectively, and the injections
V ↪→ H ≡ H′ ↪→ V′ are dense and continuous. ‖ · ‖V′ and < ·, · > stand for the
norm in V′ and the duality product between V and V′(also H and its dual space),
respectively.

For simplicity, Einstein summation convention is used in our paper. We denote

a · b =
n∑

i=1
ai bi := ai bi , (a ⊗ b)i j = ai b j for the vectors a and b, A : B = Ai j Bi j ,

∇ A
...∇B = ∂k Ai j∂k Bi j for the matrices A = (Ai j ), B = (Bi j ).
Next, we also introduce the following some useful operators (see e.g., [1]):

The bilinear form a : V × V → R is defined as

a(u, v) :=
2∑

i=1, j=1

∫

�

∂x j ui · ∂x j vidx, forall u, v ∈ V.
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Let P be the Helmholtz–Leray orthogonal projection operator from L2(�) onto H.
Then we define the operator A : V → V′ by Au = −P�u, which is the Stokes
operator with the domain D(A) = H2(�) ∩ V, endowed with inner product and
norm

< Au, v > =
2∑

i=1

∫

�

∇ui · ∇vi dx, ‖u‖2V := ‖∇u‖2L2

=
2∑

i=1

‖∇ui‖2L2 , for all u, v ∈ V.

The mapping B : V × V → V′ is defined by

B(u, v) := P((u · ∇)v), for all u, v ∈ V,

then

b(u, v, w) = 〈B(u, v), w〉 =
2∑

i, j=1

∫

�

ui
∂v j

∂xi
w jdx,

with

b(u, v, v) = 0, b(u, v, w) = −b(u, w, v).

Moreover, we shall use the following some identities (see e.g., [28])

div(∇T M∇M) = ∇|∇M |2
2

+ ∇T M�M,
∫

�

(∇T M�M) · vdx =
∫

�

(v · ∇M) · �Mdx,

∫

�

div(F FT ) · vdx = −
∫

�

(∇vF) : Fdx . (2.1)

Now, applying the projection operator P to problem (1.2)–(1.5), we can get the
following equivalent functional differential equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt + μAv + B(v, v) = P(∇ · (F FT − ∇T M∇M)) + Pg(x, t),

Ft + v · ∇F − ∇vF = κ�F,

Mt + v · ∇M = W ,

W = �M − 1
γ 2 (|M |2 − 1)M .

(2.2)
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Definition 2.1 Let (vτ , Fτ , Mτ ) ∈ H and g ∈ L2
loc(R;H). The triple (v, F, M) is

called a weak solution of problem (1.2)–(1.5), for any T ≥ τ, τ ∈ R, provided that

v ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V),

F ∈ L∞(τ, T ; L2(�;R2×2)) ∩ L2(τ, T ; H1(�;R2×2)),

M ∈ L∞(τ, T ; H1(�;R3)) ∩ L2(τ, T ; H2(�;R3))

with vt ∈ L2(τ, T ;V′), Ft ∈ L2(τ, T ; H−1(�)), Mt ∈ L2(τ, T ; L2(�)) such
that v(x, τ ) = vτ , F(x, τ ) = Fτ , M(x, τ ) = Mτ , and if for test functions ϕ ∈
W 1,∞(τ, T ;R) with ϕ(T ) = 0, ψ ∈ V, ω ∈ H1

0 (�;R2×2), φ ∈ H1(�;R3), satisfy

∫ T

τ

∫

�

−v · (ϕtψ) + (v · ∇)v · (ϕψ) + (F FT − ∇T M∇M) : (ϕ∇ψ)dxdt

=
∫

�

vτ (ϕ(τ)ψ)dx − μ

∫ T

τ

∫

�

∇v : (ϕ∇ψ)dxdt,

∫ T

τ

∫

�

−F : (ϕtω) + (v · ∇F) : (ϕω) − (∇vF) : (ϕω)dxdt

=
∫

�

Fτ (ϕ(τ )ω)dx − κ

∫ T

τ

∫

�

∇F
...(ϕ∇ω)dxdt,

∫ T

τ

∫

�

−M · (ϕtφ) + (v · ∇)M · (ϕφ)dxdt −
∫

�

vτ (ϕ(τ)ψ)dx

=
∫ T

τ

∫

�

−∇M : (ϕ∇φ) − 1

γ 2 (|M |2 − 1)M · (ϕφ)dxdt .

For the given problem (1.2)–(1.5), the global well-posedness of weak solutions for
the two dimensional magneto-viscoelastic flows on a bounded smooth domain was
obtained in [11, 34]. For convenience, we also briefly present the following results.

Theorem 2.1 [11, 34] Assume that g ∈ L2
loc(R;H), then for any (vτ , Fτ , Mτ ) ∈ H,

there exists a unique weak solution (v(t), F(t), M(t)) to problem (1.2)–(1.5) satisfying
the conditions of Definition 2.1 such that (v(x, τ ), F(x, τ ), M(x, τ )) = (vτ , Fτ , Mτ ),
which depends continuously on the initial data (vτ , Fτ , Mτ ) with respect to the norm
in H.

Corollary 2.1 [11, 34] Assume that g ∈ L2
loc(R;H), the triple (vτ,m, Fτ,m, Mτ,m)⇀

(vτ , Fτ , Mτ ) inH, and let {(vm(t), Fm(t), Mm(t))}m≥1 be a sequence of weak solution
for problem (1.2)–(1.5) such that (vm(τ ), Fm(τ ), Mm(τ )) = (vτ,m, Fτ,m, Mτ,m). For
any T ≥ τ, τ ∈ R, if there exists a subsequence of
{(vm(t), Fm(t), Mm(t))}m≥1 converging (∗−) weakly in the space{
(v(t), F(t), M(t)) ∈ L∞ (τ, T ;H)

⋂
L2(τ, T ;V × H1(�;R2×2) × H2(�;R3)) :

(vt , Ft , Mt ) ∈ L2(τ, T ;V′ × H−1(�) × L2(�))
}

to a certain function (v(t), F(t),
M(t)). Then (v(t), F(t), M(t)) is a weak solution for problem (1.2)–(1.5) with
(v(x, τ ), F(x, τ ), M(x, τ )) = (vτ , Fτ , Mτ ).
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Next, we also present the following results in the section 3. Let X be a complete
metric space with distance dX (·, ·). We define the Hausdorff semidistance between A
and B by

dist(A, B) = sup
x∈A

inf
y∈B

dX (x, y), A, B ⊂ X .

A two-parameter family of mappings {U (t, τ ), t ≥ τ, τ ∈ R} is called a continuous
process in X . If the two-parameter family of mappings {U (t, τ ), t ≥ τ, τ ∈ R} from
X to X satisfy

(i) U (t, τ ) = U (t, r)U (r , τ ), for all τ ≤ r ≤ t ,
(ii) U (τ, τ ) = I d, for all τ ∈ R,
(iii) U (t, τ )xn → U (t, τ )x , if xn → x in X .

LetD be the family of nonempty sets parameterized with a real parameter B̂ = {B(t) :
B(t) �= ∅, t ∈ R} in X such that

lim
r→−∞ eα0r [B(r)] = 0,

where [B(r)] = sup{‖u‖2X : u ∈ B(r)}, α0 > 0. Similarly, let X� be a �-trajectories
space induced by X , andD� be the family of nonempty sets parameterized with a real
parameter B̂� = {B�(t) : B�(t) �= ∅, t ∈ R} in X� such that

lim
s→−∞ eα0s[B�(s)] = 0,

where [B�(s)] = sup{‖u‖2X�
: u ∈ B�(s)}, α0 > 0.

Additionally, for the sake of simplicity, we omit some basic definitions and some
results in [1, 6, 15, 32] for the given non-autonomous dynamical systems (such as
pullback absorbing sets, pullback attractors and fractal dimensions)

3 The Existence of Pullback Attractors

3.1 The Existence of Pullback Attractors in X�

In this section, we first make some priori estimates of solutions to establish the exis-
tence of pullback absorbing sets for problem (1.2)–(1.5).

Lemma 3.1 Let (v, F, M) be a weak solution to problem (1.2)–(1.5), the basic energy
E(t) satisfies

d

dt
E(t) +

∫

�

(μ|∇v|2 + κ|∇F |2 + |W |2)dx = (g, v). (3.1)

Proof See the proof of Lemma 2.2 in [28]. ��
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Lemma 3.2 Assuming that (A1) holds, then for any bounded subset B̂(τ ) ∈ D and
any τ ∈ R, there exists a time τ1 = τ1(B̂(τ )) ≥ 0 such that for any weak solutions of
problem (1.2)–(1.5) with initial data (vτ , Fτ , Mτ ) ∈ B(τ ), we have

‖v(t)‖2L2 + ‖F(t)‖2L2 + ‖∇M(t)‖2L2 ≤ R1,

and

∫ �

0

(
‖v(t + ζ )‖2L2 + ‖F(t + ζ )‖2L2 + ‖∇M(t + ζ )‖2L2

)
dζ ≤ R2

for any t − τ ≥ τ1, where R1 := 1 + C0
α0

+ ( 1
2νλ1

+ 1
2νλ1α0

)Rg; R2 := 1 + C0�
α0

+
( �
2νλ1

+ �
2νλ1α0

)Rg.

Proof Taking L2−inner product in L2(�) of (2.2)4 with M , using Hölder’s inequality
and Young’s inequality, we have

(W , M) = −‖∇M‖2L2 − ‖M‖4L4 + ‖M‖2L2 ,

‖M‖2L2 ≤ 1

3
‖M‖4L4 + 3

4
|�|. (3.2)

On the other hand, using Hölder’s inequality, Young’s inequality and (3.2), we have

− (W , M) ≤ 1

2
‖W‖2L2 + 1

2
‖M‖2L2 ≤ 1

2
‖W‖2L2 + 1

6
‖M‖4L4 + 3

8
|�|. (3.3)

From (3.1)–(3.2), we get

d

dt
E(t) + α0E(t) = �(t), (3.4)

where α0 > 0 is given later. Let

�(t) :=α0

2
‖v‖2L2 + α0

2
‖F‖2L2 + α0

2
‖∇M‖2L2 + α0

∫

�

G(M)dx − μ‖∇v‖2L2 − κ‖∇F‖2L2

− ‖W‖2L2 + (−‖∇M‖2L2 − ‖M‖4L4 + ‖M‖2L2 − (W , M)) + (g, v).

Note that

α0

∫

�

G(M)dx = α0

∫

�

1

4
(|M |2 − 1)2dx ≤ α0

2
‖M‖4L4 + 3α0|�|

4
. (3.5)
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Inserting (3.2), (3.3), (3.5) into (3.4), using Poincaré’s inequality for v and F , we can
obtain that

�(t) ≤ − (
μ

2
− α0

2λ1
)‖∇v‖2L2 − (κ − α0

2λ1
)‖∇F‖2L2 − (1 − α0

2
)‖∇M‖2L2

− (
1

2
− α0

2
)‖M‖4L4 − 1

2
‖W‖2L2 + 1

2μλ1
‖g‖2L2 + |�|

2
(
9

4
+ 3α0

2
). (3.6)

Taking α0 = min{1, μλ1, 2κλ1}, then we have

d

dt
E(t) + α0E(t) ≤ 1

2μλ1
‖g‖2L2 + C0, (3.7)

where C0 := |�|
2 ( 94 + 3α0

2 ). Multiplying (3.7) by eα0t , we have

d

dt
[eα0tE(t)] ≤ C0eα0t + eα0t

2μλ1
‖g‖2L2 . (3.8)

Now integrating (3.8) from τ to t , we obtain

‖v(t)‖2L2 + ‖F(t)‖2L2 + ‖∇M(t)‖2L2 ≤e−α0(t−τ)(‖vτ‖2L2 + ‖Fτ‖2L2 + ‖∇Mτ‖2L2) + C0

α0

+ 1

2μλ1

∫ t

τ

eα0(s−t)‖g(s)‖2L2ds. (3.9)

Note that

∫ t

τ

eα0(s−t)‖g(s)‖2L2ds ≤ e−α0t
∞∑

n=0

∫ t−n

t−(n+1)
eα0s‖g(s)‖2L2ds

≤ e−α0t
∞∑

n=0

eα0(t−n)

∫ t−n

t−(n+1)
‖g(s)‖2L2ds

≤ (1 + 1

α0
)Rg,

where Rg:= sup
t∈R

(∫ t
t−1 ‖g(s)‖2

L2ds
)

< +∞.

From (3.9),we conclude that for any B̂(τ ) ∈ D, there exists a time τ0 = τ0(B̂(τ )) >

0 such that for any (vτ , Fτ , Mτ ) ∈ B(τ ),

‖v(t)‖2L2 + ‖F(t)‖2L2 + ‖∇M(t)‖2L2 ≤ 1 + C0

α0
+ (

1

2μλ1
+ 1

2μλ1α0
)Rg (3.10)

for any t − τ ≥ τ0.
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Next, integrating (3.8) from τ + ζ to t + ζ for any ζ ∈ (0, �), we derive that

‖v(t + ζ )‖2L2 + ‖F(t + ζ )‖2L2 + ‖∇M(t + ζ )‖2L2

≤ e−α0(t−τ)(‖v(τ + ζ )‖2L2 + ‖F(τ + ζ )‖2L2 + ‖∇M(τ + ζ )‖2L2)

+ C0

α0
+ 1

2μλ1

∫ t+ζ

τ+ζ

eα0[s−(t+ζ )]‖g(s)‖2L2ds. (3.11)

Combining (3.9) with (3.11), we derive that

e−α0(t−τ)(‖v(τ + ζ )‖2L2 + ‖F(τ + ζ )‖2L2 + ‖∇M(τ + ζ )‖2L2) + C0

α0

+ 1

2μλ1

∫ t+ζ

τ+ζ

eα0[s−(t+ζ )]‖g(s)‖2L2ds

≤ e−α0(t−τ)
[
e−α1ζ (‖vτ‖2L2 + ‖Fτ‖2L2 + ‖∇Mτ‖2L2) + R̃g

]
+ R̃g, (3.12)

where R̃g = C0
α0

+ ( 1
2μλ1

+ 1
2μλ1α0

)Rg .
Integrating (3.11) with respect to ζ over (0, �) and using (3.12), we obtain that

∫ �

0

(
‖v(t + ζ )‖2L2 + ‖F(t + ζ )‖2L2 + ‖∇M(t + ζ )‖2L2

)
dζ

≤ e−α1(t−τ)

[
1

α1
(‖vτ‖2L2 + ‖Fτ‖2L2 + ‖∇Mτ‖2L2) + �R̃g

]

+ �R̃g. (3.13)

Therefore, for any B̂(τ ) ∈ D, there exists a time τ1 = τ1(B̂(τ )) > τ0 such that for
any (vτ , Fτ , Mτ ) ∈ B(τ ), we have

∫ �

0

(
‖v(t + ζ )‖2L2 + ‖F(t + ζ )‖2L2 + ‖∇M(t + ζ )‖2L2

)
dζ ≤ 1 + �R̃g (3.14)

for any t − τ ≥ τ1. ��
In what follows, we use the method of �-trajectories to construct pullback attractors

for system (1.2)–(1.5) in the phase space H (see, e.g., [1, 29, 30]).
Let Cweak([τ, τ + �];H) denote the space of weakly continuous functions from

the interval [τ, τ + �] to the Banach space H (see [36, 38]). Then we consider the
solution z(t) = (v(t), F(t), M(t)) ∈ Cweak([τ, τ + �];H) with the initial data zτ =
(vτ , Fτ , Mτ ) ∈ H. Let χ(s, τ, zτ ) = z|s∈[τ,τ+�] denote �-trajectory corresponding to
the solution. Then we define the �-trajectories space as follows:

X� :=
⋃

zτ ∈H
χ(s, τ, zτ ),

where χ(s, τ, zτ ) is a �-trajectory associated with zτ .
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By Lemma 3.2, the �-trajectories space X� is endowed with the topology of
L2(τ, τ +�;H). Since X� ⊂ Cweak([τ, τ +�];H), it makes sense to deal with the point
values of trajectories. From Theorem 2.1, we can define a family of the continuous
process {U (t, τ )}t≥τ associated with problem (1.2)–(1.5) in the phase space H by

U (t, τ )zτ = z(t) = z(t, τ ; zτ )

for all t ≥ τ , which is (H,H)-continuous, where z(t) is the solution of problem
(1.2)–(1.5) with initial data z(x, τ ) = zτ ∈ H. Considering the weak solution z(t)
depends continuously on the initial data zτ , we can infer that the process {U (t, τ )}t≥τ

associated with problem (1.2)–(1.5) in H is τ -continuous.
Based on the above results, we first define the mapping b : H → X� is given by

{b(zτ )}(s) := z(s, τ ; zτ ) = U (s, τ )(zτ ) = χ(s, τ, zτ )

for each s ∈ [τ, τ + �] and any zτ = (vτ , Fτ , Mτ ) ∈ H.
The second mapping eθ : X� → H is given by

eθ (χ(s, τ ; zτ )) := z(τ + θ�, τ ; zτ )

for any χ(s, τ ; zτ ) ∈ X� and θ ∈ [0, 1].
Then we can define a new process {L(t, τ )}t≥τ acting on the �-trajectories space

induced by process {U (t, τ )}t≥τ as

L(t, τ )χ(s, τ ; zτ ) = z(t + s − τ, τ ; zτ )

= U (t + s − τ, t)z(t, τ ; zτ ) = χ(t + s − τ, t; z(t, τ, zτ )), s ∈ [τ, τ + �]

for any zτ = (vτ , Fτ , Mτ ) ∈ H.

The original phase space and the �-trajectories space defined above satisfy the
following commutative diagram (see [30] for more details):

H

{b(zτ )(·)}

U (t,τ )
H

X�
L(t,τ )

X�

eθ (χ)

Let

B0 := {(v, F, M) ∈ H : ‖v‖2H + ‖F‖2L2 + ‖∇M‖2L2 ≤ R1},

then B̂0 ∈ D. FromLemma 3.2, we can infer that anyweak solutions of problem (1.2)–
(1.5) with initial data (vτ , Fτ , Mτ ) ∈ B0, then there exists a time τ0 = τ0(B̂0) ≥ 0
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such that (v(t), F(t), M(t)) ∈ B0 for any t − τ ≥ τ0. Thus, we get

U (t, τ )B0 ⊂ B0

for any t − τ ≥ τ0.
Next, we can define for any t ∈ R

B1(t) :=
⋃

τ,s∈[t−τ0,t], τ≤s

{U (s, τ )(vτ , Fτ , Mτ ) : ∀ (vτ , Fτ , Mτ ) ∈ B0}
H

,

and

B�
0(t) := {χ ∈ X� : e0(χ) ∈ B1(t)}.

In particular, for τ = t , B1(τ ) = {(vτ , Fτ , Mτ ) : ∀ (vτ , Fτ , Mτ ) ∈ B0}, B�
0(τ ) =

{χ ∈ X� : e0(χ) ∈ B1(τ )}.
From the proof of the bounded absorbing subset of Lemma 3.2, we derive that

U (t, τ )B1(τ ) ⊂ B1(t),

and

L(t, τ )B�
0(τ ) ⊂ B�

0(t)

for any t ∈ R with τ ≤ t , and B̂1(t) ∈ D.
From Lemma 3.2, we immediately obtain that the following results.

Theorem 3.1 Assuming that (A1) holds, then for any B̂�(τ ) ∈ D� and any τ ∈ R,
there exists a time τ1 = τ1(B̂�(τ )) ≥ 0 such that for any weak solutions of problem
(1.2)–(1.5) with �-trajectory χ(s, τ ; zτ ) ∈ B�(τ ), we have

‖v(t)‖2L2 + ‖F(t)‖2L2 + ‖∇M(t)‖2L2 ≤ R1,

and

∫ �

0

(
‖v(t + ζ )‖2L2 + ‖F(t + ζ )‖2L2 + ‖∇M(t + ζ )‖2L2

)
dζ ≤ R2

for any t − τ ≥ τ1, where zτ := (vτ , Fτ , Mτ ).

Next, we prove the existence of a compact pullback absorbing set in X� of the
process {L(t, τ )}t≥τ .

Lemma 3.3 Assuming that (A1) holds, then for any τ ∈ R and B̂�
0(τ ) ∈ D�, there exist

times τ2 = τ2(B̂�
0(τ )) > 0 such that for any weak solutions of problem (1.2)–(1.5)
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with �-trajectory χ ∈ B�
0(τ ) ⊂ X�, we have

∫ �

0

(
‖v(t + r)‖2H1 + ‖F(t + r)‖2H1 + ‖M(t + r)‖2H2

)
dr ≤ R5

for any t − τ ≥ τ2, and

∫ �

0

(‖vt (t + r)‖V′ + ‖Ft (t + r)‖H−1(�) + ‖Mt (t + r)‖L2
)
dr ≤ R6

for any t − τ ≥ τ2, where R5, R6 are determined in the following proof.

Proof From (3.1), we derive that

d

dt
(‖v(t)‖2L2 + ‖F(t)‖2L2 + ‖∇M(t)‖2L2) + μ‖∇v(t)‖2L2 + 2κ‖∇F(t)‖2L2

+2‖W (t)‖2L2 ≤ 1

μλ1
‖g(t)‖2L2 . (3.15)

Integrating (3.15) from t −s to t +�, for any t −τ ≥ τ1+ �
2 , s ∈ (0, �

2 ), and considering
(3.9), (3.10), we find that

‖v(t + �)‖2L2 + ‖F(t + �)‖2L2 + ‖∇M(t + �)‖2L2

+ γ0

∫ t+�

t−s

(
‖∇v(r)‖2L2 + ‖∇F(r)‖2L2 + ‖W (r)‖2L2

)
dr

≤ ‖v(t − s)‖2L2 + ‖F(t − s)‖2L2 + ‖∇M(t − s)‖2L2 + 1

μλ1

∫ t+�

t−s
‖g(s)‖2L2ds

≤ e−α1(t−s−τ)(‖vτ‖2L2 + ‖Fτ‖2L2 + ‖∇Mτ‖2L2) + C0

α0
+ C(

1

μλ1
+ 1

α0μλ1
)Rg

≤ 1 + C0

α0
+ C(

1

μλ1
+ 1

α0μλ1
)Rg, (3.16)

where γ0 = min{μ, 2κ, 2}.
From (3.16), and taking τ2 = τ1 + �

2 , we have

∫ t+�

t−s

(‖∇v(r)‖2L2 + ‖∇F(r)‖2L2 + ‖W (r)‖2L2

)
dr ≤ 1

γ0
+ C0

γ0α0

+C

(
1

γ0μλ1
+ 1

γ0α0μλ1

)

Rg

(3.17)

for any t − τ ≥ τ2.
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Therefore, we conclude that

∫ �

0

(
‖∇v(t + r)‖2L2 + ‖∇F(t + r)‖2L2 + ‖W (t + r)‖2L2

)
dr ≤ R3 (3.18)

for any t − τ ≥ τ2, where R3 := 1
γ0

+ C0
γ0α0

+ C( 1
γ0μλ1

+ 1
γ0α0μλ1

)Rg .
From (3.2), (3.7), (3.10), we derive that

‖M‖2H1 ≤ C(‖∇M‖2L2 + ‖M‖2L2) ≤ C(‖∇M‖2L2 + ‖M‖4L4 + 1) ≤ R4, (3.19)

where R4 := C + ( C
2μλ1

+ C
2μλ1α0

)Rg .
Applying (3.17), (3.19), the interpolation theorem and the Sobolev imbedding the-

orem (see, e.g., [40]), we have

∫ t+�

t−s
‖M(r)‖2H2dr ≤ C1

∫ t+�

t−s
(‖�M(r)‖2L2 + ‖M(r)‖2L2)dr

≤ C1

∫ t+�

t−s
(‖�M − (|M |2 − 1)M)(r)‖2L2)dr

+ C1

∫ t+�

t−s
(‖(|M |2 − 1)M)(r)‖2L2 + ‖M(r)‖2L2)dr

≤ C2

∫ t+�

t−s
(‖W (r)‖2L2 + ‖M(r)‖3L6 + ‖M(r)‖2L2)dr

≤ C3

∫ t+�

t−s
(‖W (r)‖2L2 + ‖M(r)‖3H1 + ‖M(r)‖2H1)dr

≤ C3

(

R3 + 3�

2
R3/2
4 + 3�

2
R4

)

(3.20)

for any t − τ ≥ τ2.
So we conclude from (3.14), (3.18), (3.20) that

∫ �

0

(
‖v(t + r)‖2H1 + ‖F(t + r)‖2H1 + ‖M(t + r)‖2H2

)
dr ≤ R5 (3.21)

for any t − τ ≥ τ2, where R5 := C(R3 + R3/2
4 + R4).

From (2.2), we have

⎧
⎪⎨

⎪⎩

vt = −μAv − B(v, v) + P(∇ · (F FT − ∇T M∇M)) + Pg,

Ft = κ�F + ∇vF − v · ∇F,

Mt = W − v · ∇M .

(3.22)
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Taking (ϕ, ψ) ∈ L∞(t, t + �;V× H1
0 (�)) such that ‖(ϕ, ψ)‖L∞(t,t+�;V×H1

0 (�)) ≤ 1,
we estimate the time derivatives vt , Ft as follows:

|〈vt , ϕ〉| ≤ μ

∣
∣
∣
∣

∫

�

∇v : ∇ϕdx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

(v ⊗ v) : ∇ϕdx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

�

(F FT − ∇T M∇M) : ∇ϕdx

∣
∣
∣
∣ + ‖g‖L2‖ϕ‖L2

≤
(

μ‖∇v‖L2 + ‖v‖2L4 + ‖∇M‖2L4 + ‖F‖2L4 + 1√
λ1

‖g‖L2

)

‖∇ϕ‖L2

≤ C, (3.23)

and

|〈Ft , ψ〉| =
∣
∣
∣
∣κ

∫

�

∇F : ∇ψdx +
∫

�

(v · ∇)F : ψdx −
∫

�

∇vF : ψdx

∣
∣
∣
∣

≤ [
κ‖∇F‖L2‖∇ψ‖L2 + (‖v‖L4‖∇F‖L2 + ‖∇v‖L2‖F‖L4)‖ψ‖L4

]

≤ C . (3.24)

Taking the supremum over all (ϕ, ψ) in (3.23) and (3.24), then we get

∫ �

0
‖vt (t + r)‖V′dr +

∫ �

0
‖Ft (t + r)‖H−1(�)dr ≤ C . (3.25)

The time derivative Mt is estimated from (3.22)3 as follows:

‖Mt‖L1(t,t+�;L2(�)) ≤ ‖(v · ∇)M‖L1(t,t+�;L2(�)) + ‖�M‖L1(t,t+�;L2(�))

+ 1

γ 2 ‖(|M |2 − 1)M‖L1(t,t+�;L2(�))

≤
∫ t+�

t
‖v(r)‖L4‖∇M(r)‖L4dr + √

�‖�M‖L2(t,t+�;L2(�))

+ 1

γ 2

∫ t+�

t
‖M(r)‖3L6dr +

√
�

γ 2 ‖M‖L2(t,t+�;L2(�)) ≤ C .

(3.26)

From (3.23)–(3.26), there is a constant R6 > 0 such that

∫ �

0

(‖vt (t + r)‖V′ + ‖Ft (t + r)‖H−1(�) + ‖Mt (t + r)‖L2
)
dr ≤ R6 (3.27)

for any t − τ ≥ τ2. ��
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Let

X� :=
{
χ ∈ X� : χ ∈ L2

(
τ, τ + �;V × H1

0 (�) × H2(�)
)

;
χt ∈ L1

(
τ, τ + �;V′ × H−1(�) × L2(�)

)}
(3.28)

endowed with the following norm

‖χ‖X�
:=

{∫ τ+�

τ

‖χ‖2
V×H1

0 (�)×H2(�)
ds +

(∫ τ+�

τ

‖χt ‖V′×H−1(�)×L2(�)ds

)2}
1
2

for any τ ∈ R.
Then we also define B̂�

1(t) := {B�
1(t) : t ∈ R}, where

B�
1(t) = {

χ ∈ X� : ‖χ‖X�
≤ R7

}
,

where R7 is a constant that depends on R5 and R6.
From Theorem 3.1 and Lemma 3.3, we conclude that L(t, τ )B�

0(τ ) ⊂ B�
0(t) for

any t ≥ τ and L(t, τ )B�
0(τ ) ⊂ B�

1(t) for any t − τ ≥ τ2. Furthermore, we have

Theorem 3.2 Assuming that (A1) holds, then

L(t, τ )B�
0(τ )

L2(τ,τ+�;H) ⊂ B�
0(t)

for any t ≥ τ .

Proof Similar to the results proved in literature [1], we may just omit it. ��
Lemma 3.4 Assuming that (A1) holds, then for any τ ∈ R, the mapping L(t, τ ) :
X� → X� is Lipschitz continuous on B�

0(τ ) for any t ≥ τ + �.

Proof For any fixed τ ∈ R and any χ1 , χ2 ∈ B�
0(τ ), let L(t, τ )χ1 = (v1(t), F1(t),

M1(t)), L(t, τ )χ2 = (v2(t), F2(t), M2(t)) for any fixed t ≥ τ + � and denote by
(v̄, F̄, M̄) = (v1 − v2, F1 − F2, M1 − M2). Since e0(χ1) and e0(χ2) are uniformly
bounded in H, we can infer from (2.2) that

1

2

d

dt
‖v̄‖2L2 + μ‖∇v̄‖2L2 = −

∫

�

(v̄ · ∇v1) · v̄dx +
∫

�

div(F1FT
1 − F2FT

2 ) · v̄dx

−
∫

�

div(∇T M1∇M1 − ∇T M2∇M2) · v̄dx

:= I1 + I2 + I3, (3.29)

1

2

d

dt
‖F̄‖2L2 + κ‖∇ F̄‖2L2 = −

∫

�

(v̄ · ∇F1) : F̄dx +
∫

�

(∇v1F1 − ∇v2F2) : F̄dx

:= I4 + I5, (3.30)
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and

1

2

d

dt
(‖M̄‖2L2 + ‖∇ M̄‖2L2) + ‖∇ M̄‖2L2 + ‖�M̄‖2L2 + I6 + I7 = I8 + I9, (3.31)

where

I6 := 1

γ 2

∫

�

((|M1|2 − 1)M1 − (|M2|2 − 1)M2) · M̄dx,

I7 := − 1

γ 2

∫

�

((|M1|2 − 1)M1 − (|M2|2 − 1)M2) · �M̄dx,

I8 := −
∫

�

(v̄ · ∇M1) · M̄dx, I9 :=
∫

�

(v1 · ∇M1 − v2 · ∇M2) · �M̄dx .

For I1, I4, I8, using Hölder’s inequality, Young’s inequality and Sobolev imbedding
theorem, we have

I1 ≤ ‖v̄‖2L4‖∇v1‖L2 ≤ C‖v̄‖2L2‖∇v1‖2L2 + μ

8
‖∇v̄‖2L2 , (3.32)

I4 ≤ ‖v̄‖L4‖F̄‖L4‖∇F1‖L2 ≤ C‖v̄‖L2‖F̄‖L2‖∇F1‖2L2 +
√

μκ

4
‖∇v̄‖L2‖∇ F̄‖L2

≤ C(‖v̄‖2L2 + ‖F̄‖2L2)‖∇F1‖2L2 + μ

8
‖∇v̄‖2L2 + κ

8
‖∇ F̄‖2L2 , (3.33)

and

I8 ≤ ‖v̄‖L4‖M̄‖L4‖∇M1‖L2 ≤ C‖v̄‖
1
2
L2‖∇v̄‖

1
2
L2(‖M̄‖L2 + ‖M̄‖

1
2
L2‖∇ M̄‖

1
2
L2)‖∇M1‖L2

≤ C

(

‖v̄‖
2
3
L2‖M̄‖

4
3
L2‖∇M1‖

4
3
L2 + ‖v̄‖L2‖M̄‖L2‖∇M1‖2L2

)

+ 3μ

32
‖∇v̄‖2L2

+
√

μ

8
‖∇v̄‖L2‖∇ M̄‖L2

≤ C(‖v̄‖2L2 + ‖M̄‖2L2)(1 + ‖∇M1‖2L2) + μ

8
‖∇v̄‖2L2 + 1

8
‖∇ M̄‖2L2 . (3.34)

Next, we estimate the terms I3 + I9 and I2 + I5. Using the divergence free condition
on v and (2.1), we first obtain

I3 = −
∫

�

(∇T M1�M1 − ∇T M2�M2) · v̄dx

= −
∫

�

[(v1 · ∇M1) · �M1 + (v2 · ∇M2) · �M2 − (∇T M1�M1)·
v2 − (∇T M2�M2) · v1]dx . (3.35)
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From (3.31), (3.35), we find that

I3 + I9 = −
∫

�

(∇T M1�M1 − ∇T M2�M2) · v̄dx +
∫

�

(v1 · ∇M1 − v2 · ∇M2) · �M̄dx

=
∫

�

[(∇T M̄�M̄) · v2 − (∇T M̄�M2) · v̄]dx . (3.36)

Applying results in [34] and Hölder’s inequality, Young’s inequality, Sobolev imbed-
ding theorem, we have

I3 + I9 ≤ ‖∇ M̄‖L4‖v2‖L4‖�M̄‖L2 + ‖∇ M̄‖L4‖v̄‖L4‖�M2‖L2

≤ C‖∇ M̄‖
1
2
L2‖∇2 M̄‖

1
2
L2‖v2‖

1
2
L2‖∇v2‖

1
2
L2‖�M̄‖L2

+ C‖∇ M̄‖
1
2
L2‖∇2 M̄‖

1
2
L2‖v̄‖

1
2
L2‖∇v̄‖

1
2
L2‖�M2‖L2

≤ C‖∇ M̄‖L2 (‖M̄‖L2 + ‖�M̄‖L2 )‖v2‖L2‖∇v2‖L2 + 1

8
‖�M̄‖2L2

+ C‖∇ M̄‖
1
2
L2 (‖M̄‖

1
2
L2 + ‖�M̄‖

1
2
L2 )‖v̄‖

1
2
L2‖∇v̄‖

1
2
L2‖�M2‖L2

≤ C(‖v̄‖2L2 + ‖M̄‖2L2 + ‖∇ M̄‖2L2 )(‖v2‖L2‖∇v2‖L2 + ‖v2‖2L2‖∇v2‖2L2 + ‖�M2‖2L2 )

+ 1

8
(μ‖∇v̄‖2L2 + 3‖∇ M̄‖2L2 + 2‖�M̄‖2L2 ). (3.37)

Similarly, we have

I2 + I5 ≤ C‖F̄‖2L2(‖F1‖2L2‖∇F1‖2L2 + ‖∇v1‖2L2) + 1

8
(μ‖∇v̄‖2L2 + 2κ‖∇ F̄‖2L2).

(3.38)

For I6, I7, using the following results

(|M1|2M1 − |M2|2M2) · (M1 − M2) ≥ 0,
∣
∣
∣|M1|2M1 − |M2|2M2

∣
∣
∣ ≤ 3

2
|M̄|(|M1|2 + |M2|2),

and Gagliardo–Nirenberg inequality (see, e.g., [40]), then we have

I6 = − 1

γ 2

∫

�

|M̄|2dx + 1

γ 2

∫

�

(|M1|2M1 − |M2|2M2) · M̄dx ≥ − 1

γ 2

∫

�

|M̄|2dx,

(3.39)
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I7 = − 1

γ 2

∫

�
|M̄|2dx − 1

γ 2

∫

�
(|M1|2M1 − |M2|2M2) · �M̄dx

≥ − 1

γ 2

∫

�
|M̄ |2dx − 3

2γ 2

∫

�
(|M1|2 + |M2|2)|M̄||�M̄|dx

≥ −C
[
‖∇ M̄‖2L2 + ‖M̄‖2L4 (‖M1‖4L8 + ‖M2‖4L8 )

]
− 1

8
‖�M̄‖2L2

≥ −C(‖M̄‖2L2 + ‖∇ M̄‖2L2 )(1 + ‖∇M1‖2L2‖M1‖2L4 + ‖∇M2‖2L2‖M2‖2L4 ) − 1

8
‖�M̄‖2L2 .

(3.40)

Substituting the results of (3.32)–(3.40) into (3.29)–(3.31), respectively. Then we
obtain

d

dt
(‖v̄‖2L2 + ‖F̄‖2L2 + ‖M̄‖2H1) + μ‖∇v̄‖2L2 + κ‖∇ F̄‖2L2 + ‖∇ M̄‖2L2 + ‖�M̄‖2L2

≤ Cρ(t)(‖v̄‖2L2 + ‖F̄‖2L2 + ‖M̄‖2H1), (3.41)

where

ρ(t) = 1 + ‖∇v1‖2L2 + ‖∇F1‖2L2 + ‖∇M1‖2L2 + ‖v2‖L2‖∇v2‖L2 + ‖v2‖2L2‖∇v2‖2L2

+ ‖�M2‖2L2 + ‖∇M1‖2L2‖M1‖2L4 + ‖∇M2‖2L2‖M2‖2L4 .

Integrating (3.41) from τ + s to t + s, for any s ∈ (0, �), we obtain

‖v̄(t + s)‖2L2 + ‖F̄(t + s)‖2L2 + ‖M̄(t + s)‖2H1

≤
∫ t+s

τ+s
ρ(r)(‖v̄(r)‖2L2 + ‖F̄(r)‖2L2 + ‖M̄(r)‖2H1)dr

+ ‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1 . (3.42)

From Lemmas 3.2, 3.3, using Gronwall’s lemma, we obtain

‖v̄(t + s)‖2L2 + ‖F̄(t + s)‖2L2 + ‖M̄(t + s)‖2H1

≤ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ t+s

τ+s
ρ(r)dr

)

≤ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ t+�

τ

ρ(r)dr

)

≤ N�(t, τ )(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1), (3.43)

where N�(t, τ ) = exp
(∫ t+�

τ
ρ(r)dr

)
is a finite number depending on (v1,τ , F1,τ ,

M1,τ ) and (v2,τ , F2,τ , M2,τ ).

123



Finite Fractal Dimensional Pullback Attractors… Page 21 of 31 17

Integrating (3.43) with respect to s over (0, �), we derive that

∫ �

0
(‖v̄(t + s)‖2L2 + ‖F̄(t + s)‖2L2 + ‖M̄(t + s)‖2H1)ds

≤ N�(t, τ )

∫ �

0
(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)ds. (3.44)

Therefore,

‖L(t, τ )χ1 − L(t, τ )χ2‖2L2(t,t+�;H)
≤ N�(t, τ )‖χ1 − χ2‖2L2(τ,τ+�;H)

, (3.45)

which implies the mapping L(t, τ ) : X� → X� is Lipschitz continuous on B�
0(τ ) for

all t ≥ τ + �. ��
From Theorems 3.1, 3.2, Lemmas 3.3, 3.4 and Lemma 2.5 in [1], we can infer

that B̂�
1(t) := {B�

1(t) : t ∈ R} is a family of positive invariant, uniformly pullback
absorbing compact subsets of X�, where

B�
1(t) =

{
χ ∈ X� : ‖χ‖L2

(
τ,τ+�;V×H1

0 (�)×H2(�)
) + ‖χt ‖L2(τ,τ+�;V′×H−1(�)×L2(�)) ≤ R7

}
.

With a similar method to get the results of the autonomous case from Lemma 2.1
in [1], we can immediately obtain the following result.

Theorem 3.3 Assuming that (A1) holds, then the process {L(t, τ )}t≥τ generated by
problem (1.2)–(1.5) possesses a pullback attractor Â� = {A�(t) : t ∈ R} in X� and
e1(A�(t − �)) ⊂ B1(t) for any t ∈ R, where

e1(A�(t − �)) = {e1(χ) : χ ∈ A�(t − �)}

for any t ∈ R.

Next, we still need to prove the smooth property of the process {L(t, τ )}t≥τ gener-
ated by problem (1.2)–(1.5) to prove the pullback attractorwith finite fractal dimension
in X�.

Lemma 3.5 Assuming that (A1) holds, then there exists a constant κ1 > 0 such that
for any fixed τ ∈ R and any t ≥ τ + �,

‖L(t, τ )χ1 − L(t, τ )χ2‖2X�

≤ (C0(τ, t, �) + κ1C1(τ, t, �))
∫ �

0
‖χ1(τ + s) − χ2(τ + s)‖2

H
ds,

where χ1 and χ2 are two �-trajectories in B�
0(τ ), κ1, C0(τ, t, �) and C1(τ, t, �)) are

given in (3.52), (3.66), respectively.

123



17 Page 22 of 31 C. Ai, J. Shen

Proof From (3.28) and Lemma 2.5 in [1], we can infer that X� ⊂⊂ X�. For any fixed
τ ∈ R and any χ1 , χ2 ∈ B�

0(τ ), let L(t, τ )χ1 = (v1(t), F1(t), M1(t)), L(t, τ )χ2 =
(v2(t), F2(t), M2(t)) and (v̄, F̄, M̄) = (v1−v2, F1− F2, M1− M2) for any t ≥ τ +�.

For any t ≥ τ + �, integrating (3.41) from t − s to t + � with s ∈ [0, �
2 ], we obtain

‖v̄(t + �)‖2L2 + ‖F̄(t + �)‖2L2 + ‖M̄(t + �)‖2H1

+ C0

∫ t+�

t−s
[‖∇v̄‖2L2 + ‖∇ F̄‖2L2 + ‖∇ M̄‖2L2 + ‖�M̄‖2L2 ](r)dr

≤ C
∫ t+�

t−s
ρ(r)[‖v̄‖2L2 + ‖F̄‖2L2 + ‖M̄‖2H1 ](r)dr + ‖v̄(t − s)‖2L2 + ‖F̄(t − s)‖2L2

+ ‖M̄(t − s)‖2H1 , (3.46)

where C0 = min{μ, κ, 1} > 0.
Similar to the proof of Lemma 3.4 in [1], using Gronwall’s lemma to (3.46), we

obtain

‖v̄(t + �)‖2L2 + ‖F̄(t + �)‖2L2 + ‖M̄(t + �)‖2H1

+ C0

∫ t+�

t−s
[‖∇v̄‖2L2 + ‖∇ F̄‖2L2 + ‖∇ M̄‖2L2 + ‖�M̄‖2L2 ](r)dr

≤ K�(t, τ )(‖v̄(t − s)‖2L2 + ‖F̄(t − s)‖2L2 + ‖M̄(t − s)‖2H1)exp

(∫ t+�

t−s
ρ(r)dr

)

+ ‖v̄(t − s)‖2L2

+ ‖F̄(t − s)‖2L2 + ‖M̄(t − s)‖2H1 , (3.47)

where K�(t, τ ) := ∫ t+�

τ+ �
2
ρ(r)dr + 1.

For any t ≥ τ + �, integrating (3.41) from τ + s to t − s with s ∈ [0, �
2 ], we have

‖v̄(t − s)‖2L2 + ‖F̄(t − s)‖2L2 + ‖M̄(t − s)‖2H1

≤
∫ t−s

τ+s
ρ(r)(‖v̄(r)‖2L2 + ‖F̄(r)‖2L2 + ‖M̄(r)‖2H1)dr + ‖v̄(τ + s)‖2L2

+ ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1 . (3.48)

Applying Gronwall’s Lemma to (3.48), we get

‖v̄(t − s)‖2L2 + ‖F̄(t − s)‖2L2 + ‖M̄(t − s)‖2H1

≤ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ t−s

τ+s
ρ(r)dr

)

≤ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ t−s

τ

ρ(r)dr

)

. (3.49)
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Considering (3.47) and (3.49), we have

C0

∫ �

0
[‖∇v̄‖2L2 + ‖∇ F̄‖2L2 + ‖∇ M̄‖2L2 + ‖�M̄‖2L2 ](t + r)dr

≤ K�(t, τ )(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ t+�

τ

ρ(r)dr

)

+ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ t−s

τ

ρ(r)dr

)

≤ 2K�(t, τ )N�(t, τ )(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1), (3.50)

where N�(t, τ ) := exp
(∫ t+�

τ
ρ(r)dr

)
.

Integrating (3.50) with respect to s over (0, �
2 ), we get

∫ �

0
[‖∇v̄‖2L2 + ‖∇ F̄‖2L2 + ‖∇ M̄‖2L2 + ‖�M̄‖2L2 ](t + r)dr

≤ 4K�(t, τ )N�(t, τ )

C0�

∫ �
2

0
(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)ds.

(3.51)

Noticing that K�(t, τ ), N�(t, τ ) are bounded for any fixed t ∈ [τ + �,+∞), we can
infer that

∫ �

0
[‖∇v̄‖2L2 + ‖∇ F̄‖2L2 + ‖∇ M̄‖2L2 + ‖�M̄‖2L2 ](t + r)dr

≤ C0(τ, t, �)
∫ �

0
(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)ds. (3.52)

Therefore,

‖L(t, τ )χ1 − L(t, τ )χ2‖2L2(t,t+�;V×H1
0 (�)×H2(�))

≤ C0(τ, t, �)‖χ1 − χ2‖2L2(τ,τ+�;H)

(3.53)

for any χ1 , χ2 ∈ B�
0(τ ) and any t ≥ τ + �.

Taking the difference of (2.2) solved by (v1, F1, M1), (v2, F2, M2), we have

v̄t = −μAv̄ − B(v̄, v1) − B(v2, v̄) + P(∇ · (F1FT
1 − F2FT

2 )

− ∇ · (∇T M1∇M1 − ∇T M2∇M2)),

F̄t = κ�F̄ − v̄ · ∇F1 − v2 · ∇ F̄ + ∇v1F1 − ∇v2F2,

M̄t = �M̄ − v̄ · ∇M1 − v2 · ∇ M̄ + 1

γ 2 [(|M1|2 − 1)M1 − (|M2|2 − 1)M2].
(3.54)
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Taking (ϕ, ψ) ∈ L∞(t, t + �;V× H1
0 (�)) such that ‖(ϕ, ψ)‖L∞(t,t+�;V×H1

0 (�)) ≤ 1,

we estimate the time derivatives v̄t , F̄t as follows:

|〈v̄t , ϕ〉| =
∣
∣
∣
∣μ

∫

�

∇v̄ : ∇ϕdx −
∫

�

J1 : ∇ϕdx −
∫

�

J2 · ϕdx +
∫

�

J3 · ϕdx

∣
∣
∣
∣ ,

(3.55)
∣
∣〈F̄t , ψ〉∣∣ =

∣
∣
∣
∣κ

∫

�

∇ F̄ : ∇ψdx +
∫

�

J4 : ψdx −
∫

�

J5 : ψdx

∣
∣
∣
∣ , (3.56)

where

J1 := v̄ ⊗ v1 + v2 ⊗ v̄, J2 := ∇ · (F1FT
1 − F2FT

2 ),

J3 := ∇ · (∇T M1∇M1 − ∇T M2∇M2),

J4 := v̄ · ∇F1 − v2 · ∇ F̄, J5 := ∇v1F1 − ∇v2F2.

Let us estimate the terms on the right hand sides of (3.55), (3.55) one by one. From
Lemma 3.3, using Hölder’s, Young’s, Sobolev’s and Poincaré’s inequalities, we derive
that

∣
∣
∣
∣μ

∫

�

∇v̄ : ∇ϕdx

∣
∣
∣
∣ ≤ μ‖v̄‖V‖ϕ‖V ≤ C‖v̄‖V, (3.57)

∣
∣
∣
∣κ

∫

�

∇ F̄ : ∇ψdx

∣
∣
∣
∣ ≤ κ‖F̄‖H1‖ψ‖H1 ≤ C‖F̄‖H1 , (3.58)

and
∣
∣
∣
∣

∫

�

J1 : ∇ϕdx

∣
∣
∣
∣ ≤ C‖v̄‖V(‖v1‖V + ‖v2‖V). (3.59)

From (2.1), we conclude that

∣
∣
∣
∣

∫

�

J2 · ϕdx

∣
∣
∣
∣ ≤

∫

�

|∇ϕ||F̄ ||F1|dx +
∫

�

|∇ϕ||F̄ ||F2|dx

≤ ‖∇ϕ‖L2‖F̄‖L4‖F1‖L4 + ‖∇ϕ‖L2‖F̄‖L4‖F2‖L4

≤ C‖F̄‖H1(‖F1‖H1 + ‖F2‖H1), (3.60)
∣
∣
∣
∣

∫

�

J3 · ϕdx

∣
∣
∣
∣ ≤

∫

�

|ϕ||∇M1||�M̄|dx +
∫

�

|ϕ||∇ M̄||�M2|dx

≤ ‖ϕ‖L4‖∇M1‖L4‖�M̄‖L2 + ‖ϕ‖L4‖∇ M̄‖L4‖�M2‖L2

≤ C‖∇M1‖
1
2
L2

(

‖M1‖
1
2
L2 + ‖�M1‖

1
2
L2

)

‖�M̄‖L2

+ C‖∇ M̄‖
1
2
L2

(

‖M̄‖
1
2
L2 + ‖�M̄‖

1
2
L2

)

‖�M2‖L2 , (3.61)
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and

∣
∣
∣
∣

∫

�

J4 : ψdx

∣
∣
∣
∣ ≤

∫

�

|v̄||∇F1||ψ |dx +
∫

�

|v2||∇ F̄ ||ψ |dx

≤ ‖v̄‖L4‖∇F1‖L2‖ψ‖L4 + ‖v2‖L4‖∇ F̄‖L2‖ψ‖L4

≤ C(‖v̄‖V‖F1‖H1 + ‖F̄‖H1‖v2‖V), (3.62)
∣
∣
∣
∣

∫

�

J5 : ψdx

∣
∣
∣
∣ ≤

∫

�

|∇v1||F̄ ||ψ |dx +
∫

�

|∇v̄||F2||ψ |dx

≤ ‖∇v1‖L2‖F̄‖L4‖ψ‖L4 + ‖∇v̄‖L2‖F2‖L4‖ψ‖L4

≤ C(‖v1‖V‖F̄‖H1 + ‖v̄‖V‖F2‖H1). (3.63)

Plugging (3.57)–(3.63) into (3.55), (3.55) and taking the supremum over all (ϕ, ψ),
we conclude that

∫ t+�

t
‖v̄t‖V′dr +

∫ t+�

t
‖F̄t‖H−1(�)dr ≤ C(‖v̄‖L2(t,t+�;V) + ‖F̄‖L2(t,t+�;H1)

+‖M̄‖L2(t,t+�;H2)). (3.64)

Similar to the above estimates, we can estimate the time derivative M̄t as follows:

∫ t+�

t
‖M̄t‖L2dr ≤ ‖�M̄‖L1(t,t+�;L2(�)) + ‖(v̄ · ∇)M1‖L1(t,t+�;L2)

+ ‖(v2 · ∇)M̄‖L1(t,t+�;L2)

+ 1

γ 2 ‖M̄‖L1(t,t+�;L2(�))

+ 3

2γ 2

∫ t+�

t
[‖M̄‖L4(‖M1‖2L8 + ‖M2‖2L8)](r)dr

≤ C‖v̄‖L2(t,t+�;V) + C‖M̄‖L2(t,t+�;H2). (3.65)

We obtain from (3.52), (3.64) and (3.65) that

(∫ �

0
(‖v̄t (t + r)‖V′ + ‖F̄t (t + r)‖H−1(�) + ‖M̄t (t + r)‖L2)dr

)2

≤ κ1C1(τ, t, �)
∫ �

0
(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)ds. (3.66)

Therefore,

‖L(t, τ )χ1 − L(t, τ )χ2‖X�
≤ κ1C1(τ, t, �)‖χ1 − χ2‖L2(τ,τ+�;H) (3.67)

for any χ1 , χ2 ∈ B�
0(τ ) and any t ≥ τ + �. ��
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Combining with Lemma 2.2 in [1], Theorem 3.3 and Lemma 3.5, we can obtain
that the following result.

Theorem 3.4 Assuming that (A1) holds, then the fractal dimension of a pullback
attractor Â� = {A�(t) : t ∈ R} in X� of the process {L(t, τ )}t≥τ generated by
problem (1.2)–(1.5) obtained in Theorem 3.3 is finite.

Proof Since each sectionA�(t) of pullback attractor Â� = {A�(t) : t ∈ R} is bounded
in X�, there exist a positive constant R and some χ0 ∈ A�(t) such that

A�(t) ⊂ BX�
(χ0; R). (3.68)

From Lemma 3.5, we can infer that there is a constant C2 = C2(t, �) > 0 such that

‖L(t, τ )χ1 − L(t, τ )χ2‖X�
≤ C2‖χ1 − χ2‖X�

, forany χ1, χ2 ∈ A�(t), t ≥ τ + �.

(3.69)

On the other hand, from Theorem 3.3 and (3.69), we derive that

A�(t) = L(t, τ )A�(τ ) ⊂ L(t, τ )BX�
(χ0 ; R) ⊂ BX�

(L(t, τ )χ0 ; R), forany t ≥ τ + �.

(3.70)

It follows from (3.69) and X� ⊂⊂ X�, then there exist a finite number N of balls with
the same radius R

2 centered in ξ1, ξ2, · · ·, ξN ∈ X� such that

A�(t) ⊂ BX�
(L(t, τ )χ0; R) ⊂

N⋃

i=1

BX�
(ξi ; R

2
), for any t ≥ τ + �. (3.71)

Considering (3.69)–(3.71) and Theorem 3.3, we get

A�(t) = L(t, τ )A�(τ ) ⊂
N⋃

i=1

L(t, τ )BX�
(ξi ; R

2
) ⊂

N⋃

i=1

BX�
(L(t, τ )ξi ; R

2
),

for any t ≥ τ + �. (3.72)

Since each ball BX�
(L(t, τ )ξi ; R

2 ) can be covered by N balls with the same radius R
22

centered in ξi1, ξi2, · · ·, ξi N ∈ X�, we have

A�(t) ⊂
N⋃

j=1

N⋃

i=1

BX�
(L(t, τ )ξi j ; R

22
). (3.73)

Repeatedly, we can obtain that

A�(t) ⊂
N⋃

j=1

N n−1
⋃

i=1

BX�
(L(t, τ )ξi j ; R

2n
). (3.74)
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For any ε > 0, we can choose some positive integer n sufficiently large such that
R
2n ≤ ε < R

2n−1 ; then we can infer from (3.74) that

d X�

F (A�(t)) = lim
ε→0+ sup

ln N X�
ε (A�(t))

ln( 1
ε
)

≤ lim
n→∞

ln N X�
ε (A�(t))

ln( 2
n

R )
= ln N

ln 2
< ∞. (3.75)

This completes the proof of Theorem 3.4.
��

3.2 The Existence of Pullback Attractors inH

In order to obtain that the process {U (t, τ )}t≥τ generated by problem (1.2)–(1.5) has a
pullback attractor with finite fractal dimension in the original phase space H, we also
need to prove the following results.

Lemma 3.6 Assuming that (A1) holds, then the mapping e1: B�
0(τ − �) → B1(τ ) =

e1(B�
0(τ − �)) is Lipschitz continuous for any fixed τ ∈ R. That is, for any two �-

trajectories χ1, χ2 ∈ B�
0(τ ), there exists a positive constant C dependent on � such

that

‖e1(χ1) − e1(χ2)‖2H ≤ C
∫ �

0
‖χ1(τ + s) − χ2(τ + s)‖2

H
ds. (3.76)

Proof For any fixed τ ∈ R and any χ1 , χ2 ∈ B�
0(τ ), let L(t, τ )χ1 = (v1(t), F1(t),

M1(t)), L(t, τ )χ2 = (v2(t), F2(t), M2(t)) for any t ≥ τ + �. We use (v̄, F̄, M̄) =
(v1 − v2, F1 − F2, M1 − M2) to denote the difference of two solutions for problem
(1.2)–(1.5).
For any fixed τ ∈ R and any s ∈ (0, �), using Gronwall’s lemma for (3.41), we get

‖v̄(τ + �)‖2L2 + ‖F̄(τ + �)‖2L2 + ‖M̄(τ + �)‖2H1

≤ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ τ+�

τ+s
ρ(r)dr

)

≤ (‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)exp

(∫ τ+�

τ

ρ(r)dr

)

.

(3.77)
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Integrating (3.77) with respect to s over (0, �), we can conclude that

‖v̄(τ + �)‖2L2 + ‖F̄(τ + �)‖2L2 + ‖M̄(τ + �)‖2H1

≤ 1

�
exp

(∫ τ+�

τ

ρ(r)dr

)∫ �

0
(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)ds

≤ C(�, τ )

∫ �

0
(‖v̄(τ + s)‖2L2 + ‖F̄(τ + s)‖2L2 + ‖M̄(τ + s)‖2H1)ds, (3.78)

whereC(�, τ ) := 1
�

N�(τ ), N�(τ ) := exp
(∫ τ+�

τ
ρ(r)dr

)
is a finite number depending

on (v1,τ , F1,τ , M1,τ ) and (v2,τ , F2,τ , M2,τ ).
Finally, we can infer from (3.78) that the mapping e1: B�

0(τ − �) → B1(τ ) is
Lipschitz continuous. The proof is complete. ��

According to the above results, we now give the proof of Theorem 1.1 as follows:

Proof of Theorem 1.1. From Lemma 2.3 in [1], Theorem 3.4 and Lemma 3.6, we can
infer that for any t ∈ R, the sectionsA(t) of the pullback attractor Â are compact and
their fractal dimensions are uniformly finite. From the invariance of Â�: L(t − �, s −
�)A�(s − �) = A�(t − �) for any t ≥ s, we derive that

U (t, s)A(s) = U (t, s)e1(A�(s − �))

= e1(L(t − �, s − �)A�(s − �)) = e1(A�(t − �)) = A(t) (3.79)

for any t ≥ s.
For any bounded subset B of H, from the definition of B1(t) and B�

0(t), then there
exists some time τ̃ = τ̃ (B) > 0 such that

U (t, τ )B ⊂ B1(t) = e0(B�
0(t)) (3.80)

for any t − τ ≥ τ̃ .
Therefore, we only need to prove that

lim
τ→−∞ distH(U (t, τ )B1(τ ),A(t)) = 0.

Otherwise, there exist some sequence {(vn, Fn, Mn)}n≥1 ⊂ B1(τn), a positive constant
ε0 and some τ̃n0 > 0 such that for any t − τn ≥ τ̃n0 , we have

distH(U (t, τn)(vn, Fn, Mn),A(t)) ≥ ε0. (3.81)

On the other hand, from the definition of B1, we can infer that there exists a sequence
{χn}n≥1 ⊂ B�

0(τn) such that

(vn, Fn, Mn) = e0(χn).
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Since {χn}n≥1 is bounded in X� and Â� is a pullback attractor in X� of the process
{L(t, τ )}t≥τ generated by problem (1.2)–(1.5), there exist a subsequence {χn j }n j ≥1
of {χn}n≥1 and a subsequence {τn j }n j ≥1 of {τn}n≥1 such that

L(t − �, τn j )χn j → χ ∈ A�(t − �) in X�as j → +∞.

Using the continuity of e1, we have

U (t, τn j )(vn j , Fn j , Mn j ) = e1(L(t − �, τn j )χn j ) → e1(χ) ∈ A(t) in H

as j → +∞.

The contradiction to (3.81) completes the proof. ��
Remark 3.1 For system (1.2)–(1.5), if we consider the external force term εg(x, t)
depending on a small parameter ε ∈ (0, 1] as a small perturbation to the autonomous
system, then we obtain a continuous process U ε(·, ·) driven by the non-autonomous
dynamical system. Since the upper semicontinuity implies some stability for the attrac-
tors of the systems under some perturbations (see [8, 16, 31, 32, 39] and references
therein). It is also interesting and important to consider the relationship between the
pullback attractors Âε = {Aε(t) : t ∈ R} for the perturbed system (1.2)–(1.5) with
ε ∈ (0, 1] and the global attractor A0 for the unperturbed system (1.2)–(1.5) with
ε = 0 (see, e.g., [28]).
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