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Abstract
In this paper, we study elliptic equations inwhich the reaction (right hand side) exhibits
an asymmetric behavior as x → ±∞. More precisely, we assume that we have reso-
nance as x → −∞, while as x → +∞ the equation is superlinear. Using variational
tools combined with the theory of critical groups, we prove several multiplicity theo-
rems for nonlinear, nonhomogeneous equations and for semilinear equations (driven
by the Laplacian).

Keywords Asymmetric reaction · Regularity theory · Maximum principle ·
Resonance · Critical groups

Mathematics Subject Classification 35J20 · 35J60 · 58E05

Communicated by Rosihan M. Ali.

The work was supported by NNSF of China Grant No.12071413, NSF of Guangxi Grant
No.2023GXNSFAA026085, the European Union’s Horizon 2020 Research and Innovation Programme
under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH.

B Zhenhai Liu
zhhliu@hotmail.com

Nikolaos S. Papageorgiou
npapg@math.ntua.gr

1 Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin 537000, People’s
Republic of China

2 Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation,
Guangxi Minzu University, Nanning 530006, Guangxi, People’s Republic of China

3 Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-023-01604-0&domain=pdf
http://orcid.org/0000-0001-6022-1970


19 Page 2 of 31 Z. Liu et al.

1 Introduction

Let � ⊆ R
N (N ≥ 2) be a bounded domain with a C2-boundary ∂�. In this paper, we

study the following Dirichlet (p, q)-equation

{−�pu(z) − �qu(z) = λ̂1(p)|u(z)|p−2u(z) + f (z, u(z)) in �,

u|∂� = 0, 1 < q < p.

}
. (1)

For r ∈ (1,∞), by �r we denote the r -Laplace differential operator defined by

�r u = div(|Du|r−2Du) for all u ∈ W 1,r
0 (�).

Equation (1) is driven by the sum of two such operators with distinct expo-
nents (double phase problem with balanced growth). So, the differential operator
in (1) is not homogeneous. In the reaction (right hand side) of (1), we have a
resonant term u → λ̂1(p)|u|p−2u with λ̂1(p) > 0 being the principal eigen-
value of (−�p,W

1,p
0 (�)) and a Carathéodory perturbation f (z, x) (that is, for all

x ∈ R z → f (z, x) is measurable and for a.e. z ∈ �, x → f (z, x) is continuous)
which exhibits asymmetric behavior as x → ±∞.Ourworkherewasmotivatedby that
of Domingos da Silva-Ribeiro [8], who investigated the “resonant-superlinear” case
for semilinear equations driven by theDirichlet Laplacian. Similar problemswere con-
sidered earlier by Cuesta–de Figueiredo–Srikanth [5] and Cuesta–DeCoster [6]. Other
versions of asymmetric equations can be found in the works of Recova–Rumbos [24]
(semilinear equations), Motreanu–Motreanu–Papageorgiou [17] (nonlinear equations
driven by the p-Laplacian) and Gasiński–Papageorgiou [12], Papageorgiou–Winkert
[22] ((p, 2)-equations).

Here, in addition to the “resonant-superlinear” case (that is, the equation is resonant
as x → −∞ and superlinear as x → +∞), we examine also the “resonant-sublinear”
case which has not been considered in the literature. For both cases, we prove multi-
plicity results.

2 Mathematical Background

The main spaces in the analysis of problem (1) are the Sobolev space W 1,p
0 (�) and

the Banach space C1
0(�̄) = {u ∈ C1(�̄): u|∂�=0}.

On account of the Poincaré inequality, the norm of W 1,p
0 (�) is given by

‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (�).

The spaceC1
0(�̄) is an ordered Banach space with positive (order) coneC+ = {u ∈

C1
0(�̄) : 0 ≤ u(z) for all z ∈ �̄}. This cone has a nonempty interior given by

int C+ = {
u ∈ C+ : 0 < u(z) for all z ∈ �,

∂u

∂n

∣∣∣∣
∂�

< 0
}
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with n(·) being the outward unit normal on ∂� and ∂u
∂n = (Du, n)RN .

For r ∈ (1,∞), let Ar : W
1,r
0 (�) → W−1,r

′
(�) = W 1,r

0 (�)∗ ( 1r + 1
r ′ = 1) be the

nonlinear operator defined by

〈Ar (u), h〉 =
∫

�

|Du|r−2(Du, Dh)RN dz for all u, h ∈ W 1,r
0 (�).

If r = 2, then we write A = A2 ∈ L(H1
0 (�), H−1(�)). We set V = Ap + Aq :

W 1,p
0 (�) → W−1,p′

(�) ( 1p + 1
p′ = 1). This operator has the following properties

(see Gasiński–Papageorgiou [10], Problem 2.192, p.279).

Proposition 1 V : W 1,p
0 (�) → W−1,p′

(�) is bounded (maps bounded sets to
bounded ones), continuous, strictly monotone (thus, it is maximal monotone too) and
of type (S)+, that is,

′′if un
w−→ u in W 1,p

0 (�) and lim supn→∞〈V (un), un − u〉 ≤ 0, then un → u in

W 1,p
0 (�).′′

We will need some facts about the spectrum of (−�p,W
1,p
0 (�)) and of

(−�, H1
0 (�)). First we consider the nonlinear eigenvalue problem:

− �r u(z) = λ̂|u|r−2u in �, u|∂� = 0, 1 < r < ∞. (2)

We say that λ̂ ∈ R is an eigenvalue of (2), if the problem has a nontrivial solution
û ∈ W 1,r

0 (�) known as an eigenfunction corresponding to the eigenvalue λ̂. The set of
eigenvalues is denoted by σ̂ (r). Acting on (2)with û, we see that σ̂ (r) ⊆ R+ = [0,∞).
In fact σ̂ (r) has a smallest element λ̂1(r) which has the following properties:

(a) λ̂1(r) > 0.
(b) λ̂1(r) is isolated in σ̂ (r) (that is, we can find ε > 0 such that (λ̂1(r), λ̂1(r) + ε) ∩

σ̂ (r) = ∅).
(c) λ̂1(r) is simple (that is, if û, ũ are two eigenfunctions corresponding to λ̂1(r),

then û = ϑ ũ for some ϑ ∈ R \ {0}, that is the corresponding eigenspace is a
one-dimensional vector space).

(d) λ̂1(r) = inf

[ ||Du||rr
||u||rr

: u ∈ W 1,r
0 (�), u �= 0

]
. (3)

The infimum in (3) is realized on the corresponding one dimensional eigenspace.
Since in (3) u can be replaced by |u|, we see that the elements of this first eigenspace
have fixed sign. In fact, λ̂1(r) is the only eigenvalue with eigenfunctions of fixed sign.
All other eigenvalues have eigenfunctions which are nodal (sign-changing). By û1(r)
we denote the positive, Lr -normalized (that is, ‖û1(r)‖r = 1) eigenfunction. From
Ladyzhenskaya–Uraltseva [14](p.286), we have that û1(r) ∈ L∞(�) and then the
nonlinear regularity theory of Lieberman [16] implies that û1(r) ∈ C+ \ {0}. In fact
the nonlinear Hopf maximum principle (see Gasiński–Papageorgiou [9] and Pucci–
Serrin [23]) implies that û1(r) ∈ intC+. The set σ̂ (r) ⊆ (0,∞) is closed and so the
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second eigenvalue of (−�r ,W
1,r
0 (�)) is defined by

λ̂2(r) = inf
[̂
λ ∈ σ̂ (r) : λ̂ > λ̂1(r)

]
.

Note that using the Lusternik–Schnirelmann minimax scheme (see Gasiński–
Papageorgiou [9]), we can generate a whole sequence {̃λk(r)}k∈N of eigenvalues
of (−�r ,W

1,r
0 (�)), known as “variational eigenvalues”, such that λ̃k(r) → +∞

as k ∈ +∞. We have λ̃1(r) = λ̂1(r) and λ̃2(r) = λ̂2(r), but we do not know if
the sequence of variational eigenvalues exhausts σ̂ (r). This is the case in the linear
eigenvalue problem (that is, r = 2). So, we consider the following linear eigenvalue
problem

−�u = λ̂u in �, u|∂� = 0. (4)

The spectrum σ̂ (2) of (4) is a sequence {̂λk(2)}k∈N of eigenvalues such that λ̂k(2) →
+∞ as k → ∞ and the corresponding eigenspaces E (̂λk(2)), k ∈ N are all linear
spaces and we have

H1
0 (�) =

⊕
k∈N

E (̂λk(2)).

Each eigenspace E (̂λk(2)) has the unique continuation property; that is, if u ∈
E (̂λk(2))(k ∈ N) vanishes on a set of positive Lebesgue measure, then u ≡ 0. Note
that E (̂λk(2)) ⊆ C1

0(�).
In this case, all eigenvalues have variational characterizations. So, for m ∈ N, let

Hm =
m⊕

k=1

E (̂λk(2)). and Ĥm =
⊕
k≥m

E (̂λk(2)).

We have

λ̂1(2) = inf

[ ||Du||22
||u||22

: u ∈ H1
0 (�), u �= 0

]
(5)

and for m ∈ N \ {1} (that is, m ≥ 2), we have

λ̂m(2) =sup

[ ||Du||22
||u||22

: u ∈ Hm, u �= 0

]

=inf

[ ||Du||22
||u||22

: u ∈ Ĥm, u �= 0

]
. (6)

Note that (5) is a particular case of (3) (when r = 2) and the infimum is realized on
E (̂λ1(2)). In (6), both the supremum and the infimum are realized on E (̂λm(2)).

Using (5),(6) and the unique continuation property, we can have the following basic
inequalities.
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Proposition 2 (a) If ϑ ∈ L∞(�) and ϑ(z) ≥ λ̂m(2) for a.e. z ∈ �,ϑ �≡ λ̂m(2), then
there exists c1 > 0 such that

‖Du‖22 −
∫

�

ϑ(z)|u|2dz ≤ −c1‖u‖2 for all u ∈ Hm .

(b) If ϑ ∈ L∞(�) and ϑ(z) ≤ λ̂m(2) for a.e. z ∈ �,ϑ �≡ λ̂m(2), then there exists
c2 > 0 such that

‖Du‖22 −
∫

�

ϑ(z)|u|2dz ≥ c2‖u‖2 for all u ∈ Ĥm .

We will also consider a weighted version of (4). So, let η ∈ L∞(�) \ {0}, η(z) ≥ 0
for a.e. z ∈ � and consider the following linear eigenvalue problem

−�u = λ̃η(z)u in �, u|∂� = 0. (7)

The spectrum of this eigenvalue problem is a sequence {̃λk(η, 2)}k∈N of distinct
eigenvalues such that λ̃k(η, 2) → ∞ as k → ∞. Again we have variational char-

acterizations for all the eigenvalues using the Rayleigh quotient
‖Du‖22∫

� η(z)u2dz
.

Proposition 3 If η, η̂ ∈ L∞(�)\{0}, η(z) ≤ η̂(z) for a.e. z ∈ �, η �= η̂, then
λ̃1(̂η, 2) < λ̃1(η, 2).

Let X be a Banach and ϕ ∈ C1(X), c ∈ R. We set

Kϕ = {u ∈ X : ϕ′(u) = 0},
ϕc = {u ∈ X : ϕ(u) ≤ c}.

Also, if Y2 ⊆ Y1 ⊆ X and k ∈ N0, then by Hk(Y1,Y2) we denote the k
th=-relative

singular homology group with integer coefficients. Given u ∈ Kϕ isolated with c =
ϕ(u), then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U , ϕc ∩U\{u}), for all k ∈ N0,

with U being a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}(isolating neighbor-
hood). The excision property of singular homology implies that the above definition
of critical groups is independent of the isolating neighborhood U .

We say that ϕ ∈ C1(X) satisfies the C-condition, if every sequence {un}n∈N ⊆ X
such that {ϕ(un)}n∈N ⊆ R is bounded and (1+‖un‖X )ϕ′(un) → 0 in X∗ as n → ∞,
admits a strongly convergent subsequence. Suppose that ϕ ∈ C1(X) satisfies the C-
condition and −∞ < inf ϕ(Kϕ). Let c < inf ϕ(Kϕ). Then, the critical groups of
ϕ(·) at infinity are defined by

Ck(ϕ,∞) = Hk(X , ϕc), for all k ∈ N0.
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Using the second deformation theorem (see [20], p.386), we see that this definition
is independent of the choice of the level c < inf ϕ(Kϕ).

Suppose Kϕ is finite. We introduce the following series in t ∈ R.

M(t, u) =
∑
k∈N0

rank Ck(ϕ, u)tk, for all u ∈ Kϕ,

P(t,∞) =
∑
k∈N0

rank Ck(ϕ,∞)tk .

These two series are related by the Morse identity

∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t) for all t ∈ R. (8)

Here, Q(t) = ∑
k∈N0

αk tk is a formal series in t ∈ R with nonnegative integer
coefficients αk . For details, we refer to [20].

If u : � → R is measurable, then for all z ∈ �we define u±(z) = max{±u(z), 0}.
Evidently z → u±(z) are both measurable and u = u+ − u−, |u| = u+ + u−. If
u ∈ W 1,p

0 (�), then u± ∈ W 1,p
0 (�). Finally if 1 < r < ∞, then

r∗ =
⎧⎨
⎩

Nr
N−r if r < N ,

+∞ if N ≤ r .

3 Resonant Superlinear Equations

The hypotheses on the data of (1) are the following:
H0: If q < N , then N ≤ pq

p−q .
H1: f :�×R → R is a Carathéodory function such that f (z, 0) = 0 for a.e. z ∈ �

and
(i) | f (z, x)| ≤ a(z)[1 + |x |r−1] for a.e. z ∈ �, all x ∈ R, with a ∈ L∞(�),

p < r < p∗;
(ii) If F(z, x) = ∫ x

0 f (z, s)ds, then limx→+∞
F(z, x)

x p
= +∞ uniformly for a.e.

z ∈ � and there exist μ ∈ (
(r − p)max{1, N

p }, p∗) such that

0 < β0 ≤ lim inf
x→+∞

f (z, x)x − pF(z, x)

xμ
uniformly for a.e. z ∈ �;

(iii) limx→−∞
f (z, x)

|x |p−2x
= 0 uniformly for a.e. z ∈ �;

(iv) there exist θ ∈ L∞(�) and θ̂ , η̂ > 0 such that

λ̂1(q) ≤ θ(z) for a.e. z ∈ �, θ �≡ λ̂1(q),
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θ(z) ≤ lim inf
x→0

f (z, x)

|x |q−2x
≤ lim sup

x→0

f (z, x)

|x |q−2x
≤ θ̂ uniformly for a.e. z ∈ �,

e(z, x) = f (z, x)x − pF(z, x) ≥ −η̂ for a.e. z ∈ �, all x ≤ 0;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.e.z ∈ �, the function
x → f (z, x) + ξ̂ρ |x |p−2x is nondecreasing on [−ρ, 0].
Remarks: Hypothesis H1(i i) implies that

lim
x→+∞

f (z, x)

x p−1 = +∞ uniformly for a.e.z ∈ �.

So, the perturbation f (z, ·) is (p − 1) superlinear as x → +∞. However f (z, ·)
need not satisfy the Ambrosetti–Rabinowitz condition(see [2]), which is common
in the literature when studying superlinear problems. Hypothesis H1(i i i) implies that
problem (1) is resonant with respect to the principal eigenvalue λ̂1(ρ)when x → −∞.
So, the reaction of problem (1) exhibits an asymmetric behavior asymptotically as
x → ±∞.

The following two functions satisfy hypotheses H1. For the sake of simplicity, we
drop the z-dependence

f1(x) =
⎧⎨
⎩

((θ̂ + 1)|x |τ−2 − |x |s−2)x if x < −1
θ̂ |x |q−2x if − 1 ≤ x ≤ 1
θ̂xr−1 if 1 < x

with θ̂ > λ̂1(q), 1 < τ < s < p < r ,

f2(x) =
⎧⎨
⎩

((θ̂ + 1)|x |τ−2 − |x |s−2)x if x < −1
θ̂ |x |q−2x if − 1 ≤ x ≤ 1
θ̂ (ln x + 1)x p−1 if 1 < x

with θ̂ > λ̂1(q), 1 < τ < s < p.
Note that f1(·) satisfies the AR-condition but f2(·) does not.
Let ϕ : W 1,p

0 (�) → R be the energy functional for problem (1) defined by

ϕ(u) = 1

p
‖Du‖p

p + 1

q
‖Du‖qq − λ̂1(p)

p
‖u‖p

p −
∫

�

F(z, u)dz for all u ∈ W 1,p
0 (�).

Clearly, ϕ ∈ C1(W 1,p
0 (�)). Also, let ϕ− : W 1,p

0 (�) → R be the “negative”
truncation of ϕ(·) defined by

ϕ−(u) = 1

p
‖Du‖p

p + 1

q
‖Du‖qq − λ̂1(p)

p
‖u−‖p

p −
∫

�

F(z,−u−)dz for all u ∈ W 1,p
0 (�).

Proposition 4 If hypotheses H1 hold, then the functional ϕ−(·) is coercive.
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Proof We argue by contradiction. So, suppose that ϕ−(·) is not coercive. Then, we can
find {un}n∈N ⊆ W 1,p

0 (�) such that

‖un‖ → ∞ and ϕ−(un) ≤ c3 for some c3 > 0, all n ∈ N. (9)

We have

1

p
‖Dun‖p

p + 1

q
‖Dun‖qq ≤ c3 + λ̂1(p)

p
‖u−

n ‖p
p +

∫
�

F(z,−u−
n )dz for all n ∈ N.

(10)

If {u−
n }n∈N ⊆ W 1,p

0 (�) is bounded, then from (10) and hypothesis H1(i) we see

that {un}n∈N ⊆ W 1,p
0 (�) is bounded, which contradicts (9).

So, we may assume that ‖u−
n ‖ → ∞. Let vn = u−

n

‖u−
n ‖ , n ∈ N. Then, ‖vn‖ =

1, vn ≥ 0 for all n ∈ N and we may assume that

vn
w−→ v in W 1,p

0 (�), vn → v in L p(�), v ≥ 0. (11)

From (10), we have

1

p
‖Dvn‖p

p + 1

q‖u−
n ‖p−q

‖Dvn‖qq ≤ c1
‖u−

n ‖p

+ λ̂1(p)

p
‖v−

n ‖p
p −

∫
�

F(z,−u−
n )

‖u−
n ‖p

dz for all n ∈ N. (12)

Hypotheses H1(i), (i i i) imply that given ε > 0, we can find c4 = c4(ε) > 0 such
that

|F(z, x)| ≤ c4 + ε|p|p for a.e.z ∈ �, all x ≤ 0. (13)

From (13), we infer that

{
F(·,−u−

n (·))
‖u−

n ‖p

}
n∈N

⊆ L1(�) is uniformly integrable.

The Dunford–Pettis theorem and hypothesis H1(iii) imply that at least for a subse-
quence we have that

F(·,−u−
n (·))

‖u−
n ‖p

w−→ 0 in L1(�). (14)

So, if in (12) we pass to the limit as n → ∞ and use (11) and (14), we obtain

‖Dv‖p
p ≤ λ̂1(p)‖v‖p

p,
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⇒‖Dv‖p
p = λ̂1(p)‖v‖p

p (see (3)),

⇒v = ϑ û1(p) for some ϑ ≥ 0 (see (11)).

If ϑ = 0, then v = 0 and so we have

‖Dvn‖p
p → 0 ⇒ vn → 0 in W 1,p

0 (�),

which contradicts the fact that ‖vn‖ = 1 for all n ∈ N.
If ϑ > 0, then v ∈ intC+ and so

v−
n (z) → +∞ for a.e.z ∈ �. (15)

We have

d

dx

[
F(z, x)

|x |p
]

= f (z, x)x − pF(z, x)

|x |px
≤ −η̂

|x |p−2x
for a.e. z ∈ �, all x ≤ 0 (see hypothesis H1(iv)),

⇒ F(z, s)

|s|p − F(z, x)

|x |p ≤ − η̂

p

[
1

|x |p − 1

|s|p
]

for a.e. z ∈ �, all x < s < 0.

We pass to the limit as x → −∞ and use hypothesis H1(i i i). We obtain

F(z, s)

|s|p ≤ η̂

p

1

|s|p for a.e. z ∈ �, all s < 0.

⇒ − η̂ ≤ −pF(z, s) for a.e. z ∈ �, all s ≤ 0. (16)

From (8) we have

1

q
‖Du−

n ‖qq −
∫

�

F(z,−u−
n )dz ≤ c1 for all n ∈ N,

⇒ 1

q
λ̂1(q)‖u−

n ‖qq ≤ c5 for some c5 > 0, all n ∈ N (see(16)). (17)

Fatou’s lemma and (15) imply that

‖u−
n ‖q → +∞, which contradicts (17).

Therefore, we infer that

{u−
n }n∈N ⊆ W 1,p

0 (�) is bounded.

Then, from (10) it follows that

{un}n∈N ⊆ W 1,p
0 (�) is bounded.
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which contradicts (9). This proves that ϕ−(·) is coercive. ��
Using the above proposition, we can generate a negative solution for problem (1).

Proposition 5 If hypotheses H1 hold, then problem (1) admits a negative solution
v0 ∈ − int C+ which is a local minimizer of the energy functional ϕ(·).
Proof From Proposition 4, we know that ϕ−(·) is coercive. Also, using the Sobolev
embedding theorem, we see that ϕ−(·) is sequentially weakly lower semicontinuous.
Therefore, by the Weierstrass–Tonelli theorem, we can find v0 ∈ W 1,p

0 (�) such that

ϕ−(v0) = inf

[
ϕ−(u) : u ∈ W 1,p

0 (�)

]
. (18)

On account of hypothesis H1(iv), given ε > 0, we can find δ = δ(ε) > 0 such that

1

q
[θ(z) − ε]|x |q ≤ F(z, x) for a.e. z ∈ �, all |x | ≤ δ. (19)

Recall that û1(q) ∈ intC+. So, we can find t ∈ (0, 1) small such that

t û1(q)(z) ∈ [0, δ] for all z ∈ �. (20)

Then, we have

ϕ−(−t û1(q)) ≤ t p

p
‖Dû1(q)‖p

p + tq

q

[ ∫
�

(̂λ1(q) − θ(z))û1(q)qdz + ε

]

(see (19), (20) and recall ‖û1(q)‖q = 1). (21)

Since û1(q) ∈ intC+, using the hypothesis on θ(·)(see hypothesis H1(iv)), we have

∫
�

[θ(z) − λ̂1(q)]û1(q)dz = β > 0.

Therefore, choosing ε ∈ (0, β), from (21) we obtain

ϕ−(−t û1(q)) ≤ c6t
p − c7t

q for some c6, c7 > 0 and t ∈ (0, 1) small.

Recall that q < p. So, choosing t ∈ (0, 1) even smaller if necessary we have

ϕ−(−t û1(q)) < 0,

⇒ϕ−(v0) < 0 = ϕ−(0) (see (18))

⇒v0 �= 0.

From (18), we have

ϕ′−(v0) = 0,

123



Resonant-Superlinear and Resonant-Sublinear Dirichlet Problems Page 11 of 31 19

⇒〈V (v0), h〉 = λ̂1(p)
∫

�

(v−
0 )p−1hdz +

∫
�

f (z, v−
0 )hdz for all h ∈ W 1,p

0 (�).

(22)

In (22), we use the test function h = v+
0 ∈ W 1,p

0 (�) and obtain

‖Dv+
0 ‖p

p ≤ 0,

⇒v0 ≤ 0, v0 �= 0. (23)

From (22) and (23), it follows that

−�pv0 − �qv0 = λ̂1(p)|v0|p−2v0 + f (z, v0) in �.

Theorem 7.1, p.286, of Ladyzhenskaya–Uraltseva [14] implies that v0 ∈ L∞(�).
Then, using the nonlinear regularity theory of Lieberman [16], we have v0 ∈
(−C+)\{0}. Let ρ = ‖v0‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1(v). We
have

�p(−v0) + �q(−v0) ≤ ξ̂ρ(−v0)
p−1,

⇒v0 ∈ -intC+ (see Pucci–Serrin [23]). (24)

Note that

ϕ

∣∣∣∣−C+
= ϕ−

∣∣∣∣−C+
.

So, from (24) it follows that v0 is a local C1
0(�)-minimizer of ϕ(·). From Gasiński–

Papageorgiou [11] it follows that v0 is a local W
1,p
0 (�)-minimizer of ϕ(·). ��

Using this constant sign solution v0 ∈ − int C+ together with variational tools and
critical groups, we will generate a second nontrivial smooth solution and have the first
multiplicity theorem for problem (1). To this end, we need to strengthen hypothesis
H1(iv) (the behavior of the perturbation f (z, ·) near zero). The new hypotheses on
the perturbation f (z, x) are the following:

H2: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.e.
z ∈ �, hypotheses H2(i), (i i), (i i i), (v) are the same as the corresponding hypotheses
H1(i), (i i), (i i i), (v) and the new condition is (iv) there exist θ̂ ∈ (λ̂2(q),∞)\σ̂ (q)

and η̂ > 0 such that

lim
x→0

f (z, x)

|x |q−2x
= θ̂ uniformly for a.e.z ∈ �,

e(z, x) = f (z, x)x − pF(z, x) ≥ −η̂ for a.e.z ∈ �, all x ≤ 0.

The examples illustrating hypotheses H1 (see functions f1(·) and f2(·)) work also

here, only now θ̂ > λ̂2(q), θ̂ /∈ σ̂ (q).
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As we already mentioned earlier, our approach will combine variational arguments
(the mountain pass theorem) with critical groups (Morse theory). To do this, we
need to know that the energy functional ϕ(·) satisfies the compactness condition (the
C-condition). This can be done using the initial (weaker) hypotheses H1(since in H2
we have modified only the behavior of f (z, ·) near zero).
Proposition 6 If hypotheses H1 hold, then the energy functional ϕ(·) satisfies the
C-condition.

Proof Consider a sequence {un}n∈N ⊆ W 1,p
0 (�) such that

|ϕ(un)| ≤ c8 for some c8 > 0, all n ∈ N, (25)

(1 + ‖un‖)ϕ′(un) → 0 in W−1,p′
0 (�). (26)

From (25) we have

‖Dun‖p
p + p

q
‖Dun‖qq − λ̂1(p)‖un‖p

p −
∫

�

pF(z, un)dz ≤ pc8 for all n ∈ N.

(27)

From (26), we have

|〈ϕ′(un), h〉| ≤ εn‖h‖
1 + ‖un‖ for all h ∈ W 1,p

0 (�), with εn → 0+. (28)

In (28), we choose h = −u−
n ∈ W 1,p

0 (�) and obtain

−‖Du−
n ‖p

p − ‖Du−
n ‖qq + λ̂1(p)‖u−

n ‖p
p +

∫
�

f (z1,−u−
n )(−u−

n )dz ≤ εn for all n ∈ N. (29)

Adding (28) and (29) and using hypothesis H1(iv) and the fact that q < p, we obtain

‖Du+
n ‖p

p + p

q
‖Du+

n ‖qq − λ̂1(p)‖u+
n ‖p

p

−
∫

�

pF(z, u+
n )dz ≤ c9 for some c9 > 0, all n ∈ N. (30)

In (28), we use the test function h = u+
n ∈ W 1,p

0 (�) and obtain

−‖Du+
n ‖p

p − ‖Du+
n ‖qq + λ̂1(p)‖u+

n ‖p
p +

∫
�

f (z1, u
+
n )u+

n dz ≤ εn for all n ∈ N.

(31)

We add (30) and(31) and use that q < p. We obtain

∫
�

[ f (z, u+
n )(u+

n ) − pF(z, u+
n )]dz ≤ c10 for some c10 > 0, all n ∈ N. (32)
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Using (32), hypothesis H1(i i i) and reasoning as in the “Claim” in the proof of Propo-
sition 4 of Papageorgiou–Rădulescu–Zhang [21], we show that

{u+
n }n∈N ⊆ W 1,p

0 (�) is bounded. (33)

For all n ∈ N, we have

ϕ(un) = ϕ(u+
n ) + ϕ(−u−

n )

⇒{ϕ(−u−
n )}n∈N ⊆ R is bounded. ( see (25), (33))

But then (33) and Proposition 4 imply that

{u−
n }n∈N ⊆ W 1,p

0 (�) is bounded. (34)

From (33) and (34), it follows that

{un}n∈N ⊆ W 1,p
0 (�) is bounded.

So, we may assume that

un
w−→ u in W 1,p

0 (�) and un → u in Lr (�). (35)

In (28), we use the test function h = un − u ∈ W 1,p
0 (�), pass to the limit as n → ∞

and use (35). We obtain

lim
n→∞〈V (un), un − u〉 = 0,

⇒un → u in W 1,p
0 (�) (see Proposition (1)),

⇒ϕ(·) satisfies the C-condition.

��
We assume that Kϕ is finite or otherwise we already have an infinity of nontrivial solu-
tions of (1) which by the nonlinear regularity theory are smooth(in C1

0(�)). Next we
show the triviality ofC1(ϕ, 0). To do this, we need hypothesis H0 and also hypotheses
H2.

Proposition 7 If hypotheses H0, H2 hold, then C1(ϕ, 0) = 0.

Proof Let θ̂ ∈ (λ̂2(q),∞)\σ̂ (q) be as in hypothesis H2(iv). We consider the C1

function ψ : W 1,p
0 (�) → R defined by

ψ(u) = 1

q
‖Du‖qq − θ̂

q
‖u‖qq for all u ∈ W 1,p

0 (�).
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19 Page 14 of 31 Z. Liu et al.

We introduce the homotopy

ht (u) = tϕ(u) + (1 − t)ψ(u) for all t ∈ [0, 1], all u ∈ W 1,p
0 (�).

Suppose that we can find {tn}n∈N ⊆ [0, 1] and {un}n∈N ⊆ W 1,p
0 (�) such that

tn → t in [0, 1], un → 0 in W 1,p
0 (�), (htn )

′
(un) = 0 for all n ∈ N. (36)

From the equality in (36), we have

tn〈Ap(un), h〉 + 〈Aq(un), h〉
=̂λ1(p)tn

∫
�

|un|p−2unhdz + tn

∫
�

f (z, un)hdz + (1 − tn)θ̂
∫

�

|un|q−2unhdz

(37)

for all h ∈ W 1,p
0 (�), all n ∈ N.

Let ‖ · ‖1,q denote the norm of W 1,q
0 (�)(‖u‖1,q = ‖Du‖q for all u ∈ W 1,q

0 (�))

and recall thatW 1,p
0 (�) ↪→ W 1,q

0 (�).We set vn = un‖un‖1,q , n ∈ N. Then, ‖vn‖1,q = 1
and so we may assume that

vn
w−→ v in W 1,q

0 (�) and vn → v in Lq(�). (38)

From (37) we have

‖un‖p−q
1,q tn〈Ap(vn), h〉 + 〈Aq (vn), h〉

=‖un‖p−q
1,q λ̂1(p)

∫
�

|vn |p−2vnhdz + tn

∫
�

f (z, un)

‖un‖q−1
1,q

hdz + (1 − tn)θ̂
∫

�

|vn |q−2vnhdz

for all h ∈ W 1,p
0 (�), all n ∈ N. (39)

Note that ‖un‖1,q → 0 (see (36) and recall that W 1,p
0 (�) ↪→ W 1,q

0 (�)). In (39)

we choose the test function h = vn − v ∈ W 1,p
0 (�) and exploit the monotonicity of

Ap(·). We have

‖un‖p−q
1,q tn〈Ap(v), vn − v〉 + 〈Aq(vn), vn − v〉

≤‖un‖p−q
1,q λ̂1(p)

∫
�

|vn|p−2vn(vn − v)dz + tn

∫
�

f (z, un)

‖un‖q−1
1,q

(vn − v)dz

+ (1 − tn)θ̂
∫

�

|vn|q−2vn(vn − v)dz. (40)
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On account of hypothesis H0, we have p ≤ q∗ and so W 1,q
0 (�) ↪→ L p(�) (by the

Sobolev embedding theorem). Also, we have

|
∫

�

|vn|p−2vn(vn − v)dz|

≤
∫

�

|vn|p−1|vn − v|dz

≤‖vn‖p−1
p ‖vn − v‖p ≤ c11 for some c11 > 0, all n ∈ N. (41)

Let 〈·, ·〉1,q denote the duality brackets for the pair (W 1,q
0 (�),W−1,q ′

(�)) and recall
that W−1,q ′

(�) ↪→ W−1,p′
(�) (see Gasiński–Papageorgiou [9], p.141). If in (40) we

pass to the limit as n → ∞ and use (38) and (41), we obtain

lim sup
n→∞

〈Aq(vn), vn − v〉
= lim sup

n→∞
〈Aq(vn), vn − v〉1,q ≤ 0

=vn → v in W 1,q
0 (�) and so ‖v‖1,q = 1. (42)

In (39), we pass to the limit as n → ∞ and use (42) and hypothesis H2(iv). We obtain

〈Aq(v), h〉1,q =
∫

�

θ̂ |v|q−2vhdz for all h ∈ W 1,p
0 (�),

⇒ − �qv = θ̂ |v|q−2v in �, v|∂� = 0 (since W 1,p
0 (�) ↪→ W 1,q

0 (�) densely).
(43)

But by hypothesis θ̂ /∈ σ̂ (p). So, from (43) we have v = 0, which contradicts (42).
Therefore, (36) cannot happen and then the homotopy invariance property of critical
groups (see Papageorgiou–Rădulescu–Repovš [20], p.509), we have

Ck(ϕ, 0) = Ck(ψ, 0) for all k ∈ N0. (44)

Since θ̂ > λ̂2(q), θ̂ /∈ σ̂ (p), from Theorem 1.1 of Dancer–Perera [7], we have

C1(ψ, 0) = 0,

⇒C1(ϕ, 0) = 0 (see (44)).

��
Nowwehave all the necessary tools to produce a secondnontrivial solution for problem
(1) and have the first multiplicity theorem.

Theorem 8 If hypotheses H0, H2 hold, then problem (1) has at least two nontrivial
solutions v0 ∈ −int C+, u0 ∈ C1

0(�)\{0}.
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Proof From Proposition 5, we already have a solution v0 ∈ −int C+ which is a local
minimizer of ϕ(·). Recall that without any loss of generality Kϕ is assumed to be
finite. Invoking Theorem 5.7.6, p.449, of Papageorgiou–Rădulescu–Repovš [20], we
can find ρ ∈ (0, 1) small such that

ϕ(v0) < inf

[
ϕ(u) : ‖u − v0‖ = ρ

]
= mρ. (45)

On account of hypothesis H2(i i) = H1(i i), if u ∈ int C+, then

ϕ(tu) → −∞ as t ∈ +∞. (46)

Moreover, from Proposition 6 we have that

ϕ(·) satisfies the C-condition. (47)

Then, (45), (46), (47) permit the use of the mountain pass theorem. So, we can find
u0 ∈ W 1,p

0 (�) such that

u0 ∈ Kϕ, ϕ(v0) < m0 ≤ ϕ(u0),

⇒u0 ∈ C1
0(�) (nonlinear regularity) is a solution of (1), u0 �= v0.

From Theorem 6.5.8, p.527, of [20], we have

C1(ϕ1, u0) �= 0. (48)

Then, (48) and Proposition 7 imply u0 �= 0. ��
When q = 2 (a (p, 2)-equation) and if strengthen the regularity of the perturbation
f (z, ·), we can generate a third nontrivial smooth solution.
The problem under consideration is now the following.

{−�pu(z) − �u(z) = λ̂1(p)|u(z)|p−2u(z) + f (z, u(z)) in �,

u|∂� = 0, 2 < p.

}
. (49)

The new hypotheses on f (z, x) are the following:
H3: f : � × R → R is a measurable function such that for a.e. z ∈ � f (z, ·) ∈

C1(R) and
(i) | f ′

x (z, x)| ≤ a(z)[1 + |x |r−2] for a.e.z ∈ �, all x ∈ R, with a ∈ L∞(�),
p < r < p∗;

(ii), (iii) are the same as the corresponding hypotheses H1(i i), (i i i);
(iv) there exists m ≥ 2 such that

f ′
x (z, 0) ∈ [λ̂m(2), λ̂m+1(2)] for a.e.z ∈ �,

f ′
x (·, 0) �≡ λ̂m(2), f ′

x (·, 0) �≡ λ̂m+1(2);
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(v) is the same with hypothesis H1(v).
The following function satisfies these hypotheses:

f (x) =
{

θx if x < 1
θxr−1 + (r − 2)θ ln x if 1 ≤ x

with θ ∈ (λ̂m(2), λ̂m+1(2)).
Now, the energy function ϕ : W 1,p

0 (�) → R has the following form

ϕ(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 − λ̂1(p)

p
‖u‖p

p −
∫

�

F(z, u)dz for all u ∈ W 1,p
0 (�).

In this case ϕ ∈ C2(W 1,p
0 (�))(recall p > 2). The asymmetric behavior of the

reaction as x → ±∞ leads to the following result due to Papageorgiou–Winkert
[22](Proposition 4.8).

Proposition 9 If hypotheses H3 hold, then Ck(ϕ,∞) = 0 for all k ∈ N0.

UsingMorse theoretic tools (critical groups), we can generate a third nontrivial smooth
solution and have the second multiplicity theorem.

Theorem 10 If hypotheses H0, H3 hold, then problem (49) has at least three nontrivial
solutions

v0 ∈ -int C+, u0, w0 ∈ C1
0(�) \ {0}.

Proof From Theorem 8, we already have two nontrivial solutions.

v0 ∈ -int C+, u0 ∈ C1
0(�) \ {0}.

Recall that v0 is a local minimizer of ϕ(·)(see Proposition 5). So, we have

Ck(ϕ, v0) = δk,0Z for all k ∈ N0. (50)

Also, we know that

C1(ϕ, u0) �= 0 (see (48)).

Since ϕ ∈ C2(W 1,p
0 (�)), from Claim 3 in the proof of Proposition 3.5 of

Papageorgiou–Rădulescu [19], we have

Ck(ϕ, v0) = δk,1Z for all k ∈ N0. (51)

Consider the function ψ̂ ∈ C2(H1
0 (�)) defined by

ψ̂(u) = 1

2
‖Du‖22 − 1

2

∫
�

f ′
x (z, 0)u

2dz for all u ∈ H1
0 (�).
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On account of hypothesis H3(iv) and of the unique continuation property of the
eigenspaces of (−�, H1

0 (�)), we have that u = 0 is a nondegenerate critical point of
ψ̂(·) with Morse index dm = dim Hm = dim

⊕m
k=1 E (̂λk(2)). Therefore,

Ck(ψ̂, 0) = δk,dmZ for all k ∈ N0 (see [20], Proposition 6.2.6, p.479). (52)

Letψ = ψ̂ |
W 1,p

0 (�)
(recall that 2 < p). Then, Theorem6.6.26, p.545, of [20] implies

that

Ck(ψ, 0) = Ck(ψ̂, 0) for all k ∈ N0,

⇒Ck(ψ, 0) = δk,dmZ for all k ∈ N0 (see (52)). (53)

A homotopy invariance argument as in the proof of Proposition 7, shows that

Ck(ϕ, 0) = Ck(ψ, 0) for all k ∈ N0,

⇒Ck(ϕ, 0) = δk,dmZ for all k ∈ N0. (54)

From Proposition 9, we know that

Ck(ϕ,∞) = 0 for all k ∈ N0. (55)

Suppose Kϕ = {v0, u0, 0}. From (50),(51),(54),(55) and the Morse identity with
t = −1(see (8)), we have

(−1)0 + (−1)1 + (−1)dm = 0,

a contradiction. Hence, there exists w0 ∈ Kϕ ⊆ C1
0(�) such that w0 /∈ {v0, u0, 0}.

Therefore, w0 is the third nontrivial smooth solution of (49). ��

4 Semilinear Equations

In this section, we deal with the special case of semilinear equations driven by
the Dirichlet Laplacian. In what follows λ̂k = λ̂k(2) for all k ∈ N and û1 =
û1(2) ∈ int C+.

The equation under consideration is the following

{−�u(z) = λ̂1u(z) + f (z, u(z)) in �,

u|∂� = 0.

}
. (56)

The hypotheses on the perturbation f (z, x) are the following:
H4 : f : �×R → R is aCarathéodory function such that for a.e. z ∈ �, f (z, 0) =

0 and
(i) | f (z, x)| ≤ a(z)[1 + |x |r−1] for a.e. z ∈ �, all x ∈ R, with a ∈ L∞(�),

2 < r < 2∗;
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(i i) if F(z, x) = ∫ x
0 f (z, s)ds, then limx→+∞ F(z,x)

x2
= +∞ uniformly for a.e. z ∈

� and there exists μ ∈ ((r − 2) N2 , 2∗) such that

0 < β0 ≤ lim inf
x→+∞

f (z, x)x − 2F(z, x)

xμ
uniformly for a.e. z ∈ �;

(i i i) limx→−∞ f (z,x)
x = 0, limx→−∞ f (z, x) = −∞ uniformly for a.e.z ∈ � and

limx→−∞[ f (z, x)x − 2F(z, x)] = +∞ for a.e. x ∈ �;
(iv) there exist θ ∈ L∞(�) and t̂, η̂ > 0 such that

θ(z) ≤ 0 for a.e. z ∈ �, θ �≡ 0, lim sup
x→0

f (z, x)

x
≤ θ(z) uniformly for a.e. z ∈ �,

∫
�

F(z,−t̂ û1)dz > 0, e(z, x) = f (z, x)x − 2F(z, x) ≥ −η̂ for a.e. z ∈ �, all x ≤ 0;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.e. z ∈ �, the function
x → f (z, x) + ξ̂ρx is nondecreasing on [−ρ, ρ].
Remarks: The asymptotic conditions as x → ±∞ (see H4(i i), (i i i)) remain similar
as beforewhenwe examined (p, q)-equations.Againwehave a “resonant-superlinear”
problem, similar to the one studied by Domingos da Silva-Ribeiro [8]. However, our
conditions on the perturbation f (z, x) are less restrictive. So, our multiplicity theorem
(see Theorem 13 ) extends Theorem 1.2 and Corollary 1.1 of Domingos da Silva-
Ribeiro [8].

The following function satisfies hypotheses H4. As before for the sake of simplicity,
we drop the z-dependence

f (x) =
⎧⎨
⎩

− ln |x | + θ if x < −1
cx − sin x if − 1 ≤ x ≤ 1
θxr−1 if 1 < x

with sin 1 < c < 1 and θ = c − sin 1 > 0.
We introduce the C1−functional ζ± : H1

0 (�) → R defined by

ζ+(u) = 1

2
‖Du‖22 − λ̂1

2
‖u+‖22 −

∫
�

F(z, u+)dz,

ζ−(u) = 1

2
‖Du‖22 − λ̂1

2
‖u−‖22 −

∫
�

F(z,−u−)dz, for all u ∈ H1
0 (�).

Reasoning as in Proposition 4, we have

Proposition 11 If hypotheses H4 hold, then ζ−(·) is coercive.
Next we determine what kind of critical point for ζ±(·) is the origin(u = 0).

Proposition 12 If hypotheses H4 hold, then u = 0 is a local minimizer for the func-
tionals ζ±(·).
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Proof On account of hypothesis H4(iv), given ε > 0, we can find δ = δ(ε) > 0 such
that

F(z, x) ≤ 1

2
[θ(z) + ε]x2 for a.e. z ∈ �, all |x | ≤ δ. (57)

Let u ∈ C1
0(�) with ‖u‖C1

0 (�) ≤ δ. We have

ζ−(u) = 1

2
‖Du‖22 − λ̂1

2
‖u−‖22 −

∫
�

F(z,−u−)dz

≥ 1

2
‖Du‖22 − λ̂1

2
‖u−‖22 − 1

2

[ ∫
�

θ(z)(u−)2dz + ε

2
‖u−‖22

]

≥ 1

2

[
‖Du‖22 −

∫
�

[λ̂1 + θ(z)](u−)2dz − ε

2λ̂1
‖Du−‖22

]
(see (52)). (58)

Note that

λ̂1 + θ(z) ≤ λ̂1 for a.e. z ∈ �, λ̂1 + θ(·) �≡ λ̂1.

So, from Proposition 2 we have

‖Du−‖22 −
∫

�

[λ̂1 + θ(z)](u−)2dz ≥ c12‖Du−‖22 for some c12 > 0.

Returning to (58) we have

ζ−(u) ≥ 1

2

[
‖Du+‖22 + (c10 − ε

λ̂1
)‖Du−‖22

]
.

Choosing ε ∈ (0, λ̂1c10), we obtain

ζ−(u) ≥ c13‖u‖2 ≥ 0 = ζ−(0) for some c13 > 0, all u ∈ C1
0(�), ‖u‖C1

0 (�) ≤ δ.

This means that
u = 0 is a local C1

0(�)−minimizer of ζ−(·),
⇒ u = 0 is a local H1

0 (�)-minimizer of ζ−(·),(see Brezis-Nirenberg [3] and [11]).
Similarly we show that u = 0 is a local minimizer for ζ+(·) too. ��

Now we can have our multiplicity theorem for problem (56).

Theorem 13 If hypotheses H4 hold, then problem (56) has at least three nontrivial
solutions

v0, v̂ ∈ −int C+, û ∈ int C+.
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Proof From Proposition 11 we know that ζ−(·) is coercive. Also using the Sobolev
embedding theorem, we see that ζ−(·) is sequentially weakly lower semicontinuous.
So, by the Weierstrass–Tonelli theorem, we can find v0 ∈ H1

0 (�) such that

ζ−(v0) = inf
[
ζ−(u) : u ∈ H1

0 (�)
]
. (59)

Using hypothesis H4(iv) we have

ζ−(−t̂ û1) = −
∫

�

F(z,−t̂ û1)dz < 0,

⇒ζ−(v0) < 0 = ζ−(0)(see(59)),

⇒v0 �= 0.

From (59), we have

ζ ′−(v0) = 0 in H−1(�),

⇒〈ζ ′−(v0), h〉 = 0 for all h ∈ H1
0 (�). (60)

In (60) we choose h = v+
0 ∈ H1

0 (�). We obtain

‖Dv+
0 ‖22 = 0, ⇒ v0 ≤ 0, v0 �= 0.

We have

−�v0 = λ̂1v0 + f (z, v0) in �, v0|∂� = 0.

Then, the classical regularity theory (see Gilbarg–Trudinger [13]) implies v0 ∈
(−C+) \ {0}. Let ρ = ‖v0‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H4(v).
We have

− �v0 + ξ̂ρv0 = λ̂1v0 + f (z, v0) + ξ̂ρv0 ≥ 0

⇒�(−v0) ≤ ξ̂ρ(−v0),

⇒v0 ∈ −int C+ (by the Hopf maximum principle).

We assume that Kζ is finite. Otherwise we already have an infinity of negative smooth
solutions and so we are done. From Proposition 12 we know that u = 0 is a local
minimizer of ζ−(·). Using Theorem 5.7.6, p.449, of [20], we can find ρ ∈ (0, 1) small
such that

ζ−(v0) < ζ−(0) < inf
[
ζ−(u) : ‖u‖ = ρ

] = m−, ρ < ‖v0‖. (61)

Since ζ−(·) is coercive (see Proposition 11), we have that

ζ−(·) satisfies the C-condition (see [20]), Proposition 5.1.15, p.369). (62)
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Then (61), (62) and the mountain pass theorem, imply that we can find v̂ ∈ H1
0 (�)

such that

v̂ ∈ Kζ− ⊆ −C+,m− ≤ ζ−(v̂),

⇒v̂ ∈ −int C+ (by the Hopf maximum principle).

From Proposition 12 we know that u = 0 is also a local minimizer for ζ+(·). By the
regularity theory Kζ+ ⊆ C+ and again without any loss of generality, we assume that
Kζ+ is finite. So, as before we can find ρ ∈ (0, 1) small such that

ζ+(0) = 0 < inf
[
ζ+(u) : ‖u‖ = ρ

] = m+. (63)

From Papageorgiou–Rădulescu–Zhang [21] (see the “Claim” in the proof of Proposi-
tion 4), we have that

ζ+(·) satisfies the C-condition. (64)

Finally on account of hypothesis H4(i i), if u ∈ int C+, then we have

ζ+(tu) → −∞ as t → ∞. (65)

Then, (63), (64), (65) permit the use of the mountain pass theorem. So, we can find
û ∈ H1

0 (�) such that

û ∈ Kζ+ ⊆ C+, ζ+(0) = 0 < m+ ≤ ζ+(û),

⇒û ∈ int C+ is a third solution of (56).

So, we have produced three nontrivial smooth solutions and provided sign information
for all of them. ��
Next for problem (56) we consider the case where the perturbation f (z, ·) is sublin-
ear “resonant-sublinear” equation). To the best of our knowledge, this case was not
considered in the past.

The hypotheses on f (z, x) are the following:
H5 : f : �×R → R is a measurable function such that for a.e. z ∈ �, f (z, 0) =

0, f (z, ·) ∈ C1(R) and
(i) | f ′

x (z, x)| ≤ a(z)[1 + |x |r−2] for a.e. z ∈ �, all x ∈ R, with a ∈ L∞(�),
2 < r < 2∗;

(i i) there exist m ∈ N and functions θ, θ̂ ∈ L∞(�) such that

λ̂m − λ̂1 ≤ θ(z) ≤ θ̂ (z) ≤ λ̂m+1 − λ̂1 for a.e.z ∈ �,

θ �≡ λ̂m − λ̂1, θ̂ �≡ λ̂m+1 − λ̂1,

θ(z) ≤ lim inf
x→+∞

f (z, x)

x
≤ lim sup

x→+∞
f (z, x)

x
≤ θ̂ (z) uniformly for a.e.z ∈ �;
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(i i i) limx→−∞ f (z,x)
x = 0, limx→−∞ f (z, x) = −∞ uniformly for a.e.z ∈ �;

f (z, x)x − 2F(z, x) → +∞ for a.e.z ∈ �, as x → −∞,

− η̂ ≤ f (z, x)x − 2F(z, x) for a.e.z ∈ � with η̂ > 0;

(iv) there exists l ∈ N such that

f ′
x (z, 0) ∈ [λ̂l , λ̂l+1] for a.e.z ∈ �,

f ′
x (·, 0) �≡ λ̂l , f ′

x (·, 0) �≡ λ̂l+1.

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.e.z ∈ �, the function
x → f (z, x) + ξ̂ρx is nondecreasing on [−ρ, ρ].

In addition to the functionals ζ±, let ζ : H1
0 (�) → R be the energy functional for

problem (56) defined by

ζ(u) = 1

2
‖Du‖22 − λ̂1

2
‖u‖22 −

∫
�

F(z, u)dz for all u ∈ H1
0 (�).

Note that ζ ∈ C2(H1
0 (�)). Next we show that ζ(·) satisfies the compactness condition

(the C-condition).

Proposition 14 If hypotheses H5 hold, then the functional ζ(·) satisfies the C-
condition.

Proof We consider a sequence {un}n∈N ⊆ H1
0 (�) such that

|ζ(un)| ≤ c14 for some c14 > 0, all n ∈ N, (66)

(1 + ‖un‖)ζ ′(un) → 0 in H−1(�) as n → ∞. (67)

From (67), we have

|〈A(un), h〉 − λ̂1

∫
�

unhdz −
∫

�

f (z, un)hdz| ≤ εn‖h‖
1 + ‖un‖ (68)

for all h ∈ H1
0 (�), with εn → 0+.

In (68), we use the test function h = −u−
n ∈ H1

0 (�). We obtain

‖Du−
n ‖22 − λ̂1‖u−

n ‖22 −
∫

�

f (z,−u−
n )(−u−

n )dz ≤ εn for all n ∈ N. (69)

Suppose that ‖u−
n ‖ → ∞ and let vn = v−

n

‖v−
n ‖ , n ∈ N. Then ‖vn‖ = 1, vn ≥ 0 for

all n ∈ N. So, we may assume that

vn
w−→ v in H1

0 (�), vn → v in L2(�). (70)
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From (69) we have

‖Dv−
n ‖22 − λ̂1‖vn‖22 −

∫
�

f (z,−u−
n )

‖u−
n ‖ vndz ≤ εn

‖u−
n ‖2 for all n ∈ N. (71)

Note that { f (·,−u−
n (·))

‖u−
n ‖ }n∈N ⊆ L2(�) is bounded and so on account of hypothesis

H5(i i i), we have at least for a subsequence we have that

f (·,−u−
n (·))

‖u−
n ‖

w−→ 0 in L2(�)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 16).

Therefore, if we pass to the limit as n → ∞ in (71) and use (70) we obtain

‖Dv‖22 ≤ λ̂1‖v‖22,
⇒‖Dv‖22 = λ̂1‖v‖22 (see(5)),

⇒v = μû1 with μ ≥ 0 (recall v ≥ 0).

If μ = 0, then v = 0 and so from (71) we have

‖Dvn‖2 → 0, ⇒ vn → 0 in H1
0 (�)

a contradiction to the fact that ‖vn‖ = 1 for all n ∈ N.
If μ > 0, then v = μû1 ∈ int C+ and so we have

u−
n (z) → +∞ for a.e.z ∈ �. (72)

From (66) we have

‖Du+
n ‖22 + ‖Du−

n ‖22 − ‖u+
n ‖22 − ‖u−

n ‖22
−

∫
�

2F(z, u+
n )dz −

∫
�

2F(z,−u−
n )dz ≤ 2c14 for all n ∈ N. (73)

From (68) with h = u+
n ∈ H1

0 (�), we have

− ‖Du+
n ‖22 + λ̂1‖u+

n ‖22 +
∫

�

f (z, u+
n )u+

n dz ≤ εn,

⇒ − ‖Du+
n ‖22 + λ̂1‖u+

n ‖22 +
∫

�

2F(z, u+
n )dz ≤ c15 (74)

for some c15 > 0, all n ∈ N (see hypothesis H5(i i i)).
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Adding (73) and (74), we obtain

‖Du−
n ‖22 − λ̂1‖u−

n ‖22 −
∫

�

2F(z,−u−
n )dz ≤ c16 for some c16 > 0, all n ∈ N.

(75)

In (68), we use the test function h = −u−
n ∈ H1

0 (�) and obtain

−‖Du−
n ‖22 + λ̂1‖u−

n ‖22 +
∫

�

f (z,−u−
n )(−u−

n )dz ≤ εn for all n ∈ N. (76)

We add (75) and (76) and have

∫
�

[ f (z,−u−
n )(−u−

n ) − 2F(z,−u−
n )]dz ≤ c17 for some c17 > 0, all n ∈ N.

Using hypothesis H5(i i i),(72) and Fatou’s lemma, we have a contradiction. This
proves that

{u−
n }n∈N ⊆ H1

0 (�) is bounded. (77)

Now suppose that ‖v+
n ‖ → ∞. Let yn = u+

n

‖u+
n ‖ , n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all

n ∈ N. So, we may assume that

yn
w−→ y in H1

0 (�), yn → y in L2(�). (78)

From (67) and (77), we have

〈A(u+
n ), h〉 − λ̂1

∫
�

u+
n hdz −

∫
�

f (z, u+
n )hdz ≤ c18‖h‖

for some c18 > 0, all h ∈ H1
0 (�), all n ∈ N,

⇒ 〈A(yn), h〉 − λ̂1

∫
�

ynhdz −
∫

�

f (z, u+
n )

‖u+
n ‖ hdz ≤ ε′

n with ε′
n → 0+ as n → ∞.

(79)

In (79), we use the test function h = yn − y ∈ H1
0 (�) and we note that

{ f (·,u+
n (·))

‖u+
n ‖ }n∈N ⊆ L2(�) is bounded (see hypotheses H5(i), (i i)). So, if we pass to the

limit as n → ∞, we have

lim
n→∞〈A(yn), yn − y〉 = 0,

⇒‖Dyn‖2 → ‖Dy‖2,
⇒yn → y in H1

0 (�) and so ‖y‖ = 1, y ≥ 0 (80)

(by the Kadec–Klee property of Hilbert spaces).
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Recall that { f (·,u+
n (·))

‖u+
n ‖ }n∈N ⊆ L2(�) is bounded. So, we may assume that

{
f (·,u+

n (·))
‖u+

n ‖
w−→ η in L2(�),

η = θ̃ (·)y, with θ(z) ≤ θ̃ (z) for a.e.z ∈ �.
(81)

(see hypothesis H5(i i) and see [1], proof of Proposition 16). So, if in (79) we pass to
the limit as n → ∞ and use (80) and (81), we obtain

〈A(y), h〉 =
∫

�

[λ̂1 + θ̃ (z)]yhdz for all h ∈ H1
0 (�),

⇒ − A(y)(z) = [λ̂1 + θ̃ (z)]y(z) in �, y|∂� = 0. (82)

From (81) and hypothesis H5(i i), we have

λ̂m ≤ λ̂1 + θ̃ (z) for a.e.z ∈ �, λ̂1 + θ̃ (·) �≡ λ̂m .

Invoking Proposition 3 we have

λ̃1(λ̂1 + θ̃ (·)) < λ̃1(λ̂m) ≤ λ̃1(λ̂1) = 1,

⇒ y must be nodal, a contradiction ( see (82), (80)).

This proves that

{u+
n }n∈N ⊆ H1

0 (�) is bounded.

⇒{un}n∈N ⊆ H1
0 (�) is bounded (see (77)).

We may assume that

un
w−→ u in H1

0 (�), un → u in L2(�). (83)

In (68) we choose the test function h = un − u ∈ H1
0 (�), pass to the limit as n → ∞

and use (83). We obtain

lim
n→∞〈A(un), un − u〉 = 0,

⇒‖Dun‖ → ‖Du‖2,
⇒un → u in H1

0 (�) (Kadec–Klee property).

This proves that ζ(·) satisfies the C-condition. ��
Proposition 14 allows us to compute the critical groups of ζ(·) at infinity. Recall that
as before without any loss of generality, we assume that Kζ is finite.

Proposition 15 If hypotheses H5 hold, then Ck(ζ,∞) = 0 for all k ∈ N0.
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Proof Let β ∈ L∞(�) such that β(z) > 0 for a.e.z ∈ � and ϑ0 ∈ (λ̂m − λ̂1, λ̂m+1 −
λ̂1). We consider the homotopy (t, u) → ĥt (u) defined by

ĥt (u) = 1

2
‖Du‖22 − λ̂1

2
‖u‖22 − (1 − t)θ0

2
‖u+‖22 − t

∫
�

F(z, u)dz − (1 − t)
∫

�

β(z)udz

for all t ∈ [0, 1], all u ∈ H1
0 (�).

Note that

ĥ0(u) = γ (u) = 1

2
‖Du‖22 − λ̂1

2
‖u‖22 − θ0

2
‖u+‖22 −

∫
�

β(z)udz,

ĥ1(u) = ζ(u) for all u ∈ H1
0 (�).

Suppose we can find {tn}n∈N ⊆ [0, 1] and{un}n∈N ⊆ H1
0 (�) such that

ĥtn (un) → −∞ and (1 + ‖un‖)(ĥtn )′(un) → 0 in H−1(�). (84)

From the second convergence in (84), we have

|〈A(un), h〉 − λ̂1

∫
�

unhdz − (1 − t)θ0

∫
�

u+
n hdz − tn

∫
�

f (z, un)hdz

− (1 − tn)
∫

�

β(z)hdz| ≤ εn‖h‖
1 + ‖un‖ for all h ∈ H1

0 (�), with εn → 0+. (85)

Assume that ‖un‖ → ∞ and set vn = un‖un‖ , n ∈ N. Then ‖vn‖ = 1 for all n ∈ N and
we may assume that

vn
w−→ v in H1

0 (�), vn → v in L2(�). (86)

From (85) we have

|〈A(vn), h〉 − λ̂1

∫
�

vnhdz − (1 − t)θ0

∫
�

v+
n hdz − tn

∫
�

f (z, un)

‖un‖ hdz

− (1 − tn)
∫

�

β(z)

‖un‖hdz| ≤ ε′
n with ε′

n → 0 as n → ∞. (87)

In (87) we use the test function h = vn − v ∈ H1
0 (�), pass to the limit as n → ∞

and use (86). Then,

lim
n→∞〈A(vn), vn − v〉 = 0,

⇒‖Dvn‖2 → ‖Dv‖2,
⇒vn → v in H1

0 (�) (Kadec–Klee property), ‖v‖ = 1. (88)
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Hypotheses H5(i), (i i), (i i i) imply that

f (·, un(·))
‖un‖

w−→ θ∗(·)v+ in L2(�), (89)

with θ∗ ∈ L∞(�) such that θ(z) ≤ θ∗(z) ≤ θ̂ (z) for a.e.z ∈ � (see [1]). Therefore,
if in (87) we let n → ∞ and use (88),(89), we obtain

〈A(vn), h〉 = λ̂1

∫
�

vhdz +
∫

�

[(1 − t)θ0 + tθ∗(z)]v+hdz for all h ∈ H1
0 (�).

(90)

Suppose v− �= 0 and in (90) choose the test function h = −v− ∈ H1
0 (�). We have

‖Dv−‖22 = λ̂1‖v−‖22, ⇒ v = μû1 with μ < 0.

Then, v(z) < 0 for all z ∈ � and so

un(z) → −∞ for a.e.z ∈ �.

Then, reasoning as in the proof of Proposition 4 (see the part of the proof after
(15)), we reach a contradiction. This means that v ≥ 0 and from (90) we have

−�v(z) = [λ̂1 + θ̂t (z)]v(z) in �, v|∂� = 0, (91)

with θ̂t (z) = (1 − t)θ0 + tθ∗(z), θ̂t ∈ L∞(�), 0 ≤ t ≤ 1. From the choice of θ0 and
(89) we see that

{
λ̂m ≤ λ̂1 + θ̂t (z) ≤ λ̂m+1 for a.e.z ∈ �,

λ̂m �≡ λ̂1 + θ̂t (·), λ̂m+1 �≡ λ̂1 + θ̂t (·).
}

. (92)

Using Proposition 3, we have

λ̃1(λ̂1 + θ̂t ) < λ̃1(λ̂m) ≤ λ̃1(λ̂1) = 1,

⇒ v must be nodal (see (91)), a contradiction.
Therefore {un}n∈N ⊆ H1

0 (�) is bounded and this implies that {htn (un)}n∈N ⊆ R is
bounded, contradicting (84). So, (84) cannot happen and then using Proposition 3.2
of Liang-Su [15] (see also Chang [4], Theorem 5.1.21, p.334), we have

Ck(h0,∞) = Ck(h1,∞) for all k ∈ N0,

⇒Ck(γ,∞) = Ck(ζ,∞) for all k ∈ N0. (93)

Let u ∈ Kγ We have

−�u(z) = λ̂1u(z) + θ0u
+(z) + β(z) in �, u|∂� = 0. (94)

123



Resonant-Superlinear and Resonant-Sublinear Dirichlet Problems Page 29 of 31 19

Suppose u− �= 0 and act on (94) with −u− ∈ H1
0 (�). Then,

0 ≤ ‖Du−‖22 − λ̂1‖u−‖22 −
∫

�

β(z)u−dz < 0

(recall β(z) > 0 for a.e.z ∈ �), a contradiction. Hence, u ≥ 0, u �= 0(since β �= 0).
From (94), the regularity theory (see Gilbarg-Trudinger [13]) and the Hopf maximum
principle we infer that u ∈ intC+ (note that since β �= 0, then u �= 0). Let y ∈ intC+.
Using Picone’s identity (seeMotreanu–Motreanu–Papageorgiou [18], p.255), we have

0 ≤ ‖Dy‖22 −
∫

�

(Du, D(
y2

u
))RN dz

= ‖Dy‖22 −
∫

�

(−�u)
y2

u
dz (by Green’s identity)

= ‖Dy‖22 −
∫

�

[λ̂1 + θ0]y2dz −
∫

�

β(z)
y2

u
dz (see (94))

≤ ‖Dy‖22 −
∫

�

[λ̂1 + θ0]y2dz

Let y = û1 ∈ int C+. We have

0 ≤ −θ0

∫
�

û21 dz < 0 see (5)

a contradiction. Therefore, Kγ = ∅ and the Proposition 6.2.28, p.491, in [20], implies
that

Ck(γ,∞) = 0 for all k ∈ N0,

⇒Ck(ζ,∞) = 0 for all k ∈ N0 (see (93)) .

��
Remark: Ifm = 2 (see hypothesis H5(i i)), then we can have an alternative proof that
Kγ = ∅. We outline this alternative proof. Let u ∈ Kγ . We have

−�u = λ̂1u + θ0u
+ + β(z) in �, u|∂� = 0.

As before acting with −u− ∈ H1
0 (�), we infer that u ≥ 0, u �= 0. On the other hand

choosing θ0 close to λ̂2 − λ̂1 and invoking the antimaximum principle (see Motreanu–
Motreanu–Papageorgiou [18], p.263), we infer that u ∈ −int C+, a contradiction.

Note that hypothesis H5(iv) implies that u = 0 is a nondegenerate critical point
of ζ(·) with Morse index dl = dim Hl = dim

⊕l
k=1 E (̂λk). Then using Proposition

6.2.6, p.479, of [20], we have:

Proposition 16 If hypotheses H5 hold, then Ck(ζ, 0) = δk,dlZ for all k ∈ N0.
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We are ready for the multiplicity theorem of the “resonant-sublinear” case.

Theorem 17 If hypotheses H5 hold, then problem (56) has at least three nontrivial
solutions v0 ∈ −int C+, u0, û ∈ C1

0(�).

Proof As before using the functional ζ−(·) which is coercive via the Weierstrass–
Tonelli theorem,weproduce v0 ∈ −intC+ a solution of (56)which is a localminimizer
of ζ(·). Hence,

Ck(ζ, v0) = δk,0Z for all k ∈ N0. (95)

Using v0 and Proposition 14, as in the proof of Theorem 8, using the mountain pass
theorem, we generate a second nontrivial solution u0 ∈ C1

0(�) (regularity theory).
For this solution, we have

Ck(ζ, u0) = δk,1Z for all k ∈ N0. (see [20], p.529). (96)

From Proposition 15 and 16, we have

Ck(ζ,∞) = 0 for all k ∈ N0,Ck(ζ, 0) = δk,dlZ for all k ∈ N0. (97)

Suppose Kζ = {v0, u0, 0}. Then from (95),(96),(97) and the Morse identity with
t = −1, we have

(−1)0 + (−1)1 + (−1)dl = 0,

⇒(−1)dl = 0, a contradiction.

Therefore, there exists û ∈ Kζ , û /∈ {v0, u0, 0}. Hence û ∈ C1
0(�)(regularity theory)

is the third nontrivial smooth solution of (56). ��
Remark: It is interesting to know if the above result for the “resonant-sublinear” case
remains valid if we consider (p, q)-equations.
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