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Abstract
We find the metric dimension of the zero-divisor graph of the matrix semiring over a
commutative entire antinegative semiring.
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1 Introduction

In recent years, much research has been devoted to investigating different graphs
prescribed to algebraic structures, such as groups, rings and semirings. Among these
graphs, in this author’s opinion, two of the most important ones appear to be the
commuting graph that describes the way that the elements in the algebraic structure
commute with each other, and the zero-divisor graph that describes the way in which
the elements mutually annihilate.

In this paper, we concern ourselves with the latter. The zero-divisor graph of a
commutative ring was first introduced by Beck in [1]. Later, Anderson and Livingston
in [2] made a slight adjustment to the definition of the zero-divisor graph in order to
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be able to investigate the zero-divisor structure of commutative rings. After that, the
definition was extended to non-commutative rings [3], as well as semigroups [4] and
nearrings [5]. The zero-divisor graphs of semirings have been studied in [6–8].

For a simple undirected graph G and its vertex v, we choose an ordered subset
W = {w1, w2, . . . , wk} of the vertex set of graphG. Then,we call the vector r(v|W ) =
(d(v,w1), d(v,w2), . . . , d(v,wk)) the representation of v with respect to W . A set
W is called a resolving set for G if distinct vertices of G have distinct representations
with respect toW . A resolving set of minimal cardinality for G is called a basis of G,
and the cardinality of the basis is defined as the metric dimension of G and denoted
by dimM(G) [9].

The metric dimension was first introduced by Slater [10]. He was tackling the
problem of trying to (uniquely) determine the location of an intruder in a network.
The concept was then also studied by Harary and Melter [11]. It turned out that the
metric dimension has many applications, for example, in pharmaceutical chemistry
[9, 12], robot navigation in space [13], combinatorial optimization [14], as well as
sonar and coast guard long range navigation [10, 15].

However, it turns out that determining the metric dimension of a graph is not that
easy. It is actually an NP-complete problem, even in special cases such as bounded-
degree planar graphs [16], split graphs, bipartite graphs and their complements and
line graphs of bipartite graphs [17].

Mathematicians have recently studied the metric dimensions of various graphs cor-
responding to many different algebraic structures. For example, the metric dimension
of a zero-divisor graph of a commutative ring was studied in [18–21], a total graph of
a finite commutative ring in [22], an annihilating-ideal graph of a finite ring in [23], an
annihilator graph of a ring in [24] and a commuting graph of a dihedral group in [25].
A related concept of strong metric dimension has also been introduced and studied,
in the case of zero-divisor graphs of rings in [26, 27] and in the case of annihilator
graphs of commutative rings in [28].

In this paper, we study themetric dimension of the zero-divisor graph of a commuta-
tive entire antinegative semiring. A semiring is a set S equipped with binary operations
+ and · such that (S,+) is a commutative monoid with identity element 0 and (S, ·)
is a monoid with identity element 1. Furthermore, addition and multiplication in S are
connected by distributivity and the element 0 annihilates S. Semiring S is commuta-
tive if we have ab = ba for all a, b ∈ S. Semirings are often divided according to
the properties of their elements: for example, semiring S is called zero-divisor free
or entire if ab = 0 for some a, b ∈ S implies a = 0 or b = 0. Furthermore, S is
called antinegative or zero-sum-free (or simply an antiring), if a + b = 0 for a, b ∈ S
implies a = b = 0. The most basic example of an antiring is the binary Boolean
semiring B, which consists of the set {0, 1} where 0 is the additive identity, 1 is the
multiplicative identity and 1 + 1 = 1. Commutative semirings often arise naturally;
the set of nonnegative integers (or reals) with the usual operations of addition and
multiplication, for example, forms a commutative semiring. But there are many more
examples of commutative semirings, such as distributive lattices, tropical semirings,
dioïds, fuzzy algebras, inclines and bottleneck algebras.

The theory of semirings has also proved to have a lot of applications. For example,
there exist applications in optimization theory, automatic control, models of discrete
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event networks and graph theory [29–32]. The reader is encouraged to consult [33]
for a comprehensive theory of semirings.

This paper is organized as follows. In the next section,we examine somepreliminary
graph-theoretical notions and results. In Sect. 3, we calculate the metric dimension of
the zero-divisor graph of Mn(B) (see Theorem 3.11). In the last section, we use this
result to calculate the metric dimension of the zero-divisor graph of Mn(S), where S
is an arbitrary commutative entire antinegative semiring (see Theorem 4.4).

2 Preliminaries

For a semiring S, we denote by Z(S) the set of zero-divisors in S, Z(S) = {x ∈ S;
there exists 0 �= y ∈ S such that xy = 0 or yx = 0}. We denote by �(S) the zero-
divisor graph of S. The vertex set V (�(S)) of �(S) is the set of elements in Z(S)\{0}
and an unordered pair of vertices x, y ∈ V (�(S)), x �= y, is an edge x − y in �(S) if
xy = 0 or yx = 0. The sequence of edges x0 − x1, x1 − x2,..., xk−1 − xk in a graph
is called a path of length k. The distance between vertices x and y is the length of the
shortest path between them, denoted by d(x, y). The diameter diam(�) of the graph
� is the longest distance between any two vertices of the graph.

Next, we shall also need the following definition.

Definition 2.1 Let v be a vertex of a graph G. Then the open neighbourhood of v is
N (v) = {u ∈ V (G); there exists an edge uv in G} and the closed neighbourhood of
v us N [v] = N (v)∪{v}. Two distinct vertices u and v of G are twins if N (u) = N (v)

or N [u] = N [v].
The following lemma can be found in [34].

Lemma 2.2 [34] Suppose u and v are twins in a connected graph G and the set W is
a resolving set for G. Then u or v is in W.

In this paper, we mostly concern ourselves with the semirings of matrices. For a
semiring S, we denote by Mn(S) the semiring of all n by n matrices with entries
in S. We shall denote by Ei j ∈ Mn(S) the matrix with 1 at entry (i, j) and zeros
elsewhere. For a matrix A ∈ Mn(S), we shall denote by Ai j ∈ S the (i, j)-th entry of
A. Furthermore, let Nn denote the set {1, 2, . . . , n}.

We shall see that the semiring of Boolean matrices Mn(B) plays a special role in
the search for the metric dimension of the zero-divisor graph of an entire antiring.
Thus, the next section studies the metric dimension of �(Mn(B)).

3 TheMetric Dimension of the Zero-Divisor Graph of Boolean
Matrices

In this section, we study the metric dimension of �(Mn(B)). Let’s start with the
simplest case of two-by-two matrices.
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Example 3.1 LetW =
{[

1 0
1 0

]
,

[
1 1
0 0

]}
⊂ M2(B). It can be easily verified thatW is a

resolving set for�(M2(B)), so dimM(�(M2(B))) ≤ 2. Since�(M2(B)) has 8 vertices
and Theorem 1 from [7] states that diam(�(M2(B))) ≤ 3, we conclude that no set of
cardinality 1 can be a resolving set for �(M2(B)), therefore dimM(�(M2(B))) = 2.

Now,we turn to the case n ≥ 3. For every I , J ⊆ Nn wedefine the set of allmatrices
with their zero rows and columns prescribed by I and J , respectively, by TI ,J = {A ∈
Mn(B); Aik = Akj = 0 for every i ∈ I , j ∈ J and every k ∈ Nn, and for every s /∈
I , u /∈ J there exist ts, vu ∈ Nn such that Asts �= 0 and Avuu �= 0}. Also, we denote
by tI ,J = |TI ,J | the cardinality of set TI ,J .

The next two lemmas investigate the values of tI ,J for various sets I , J ⊆ Nn .

Lemma 3.2 If |I | = n − 1 or |J | = n − 1, then tI ,J = 1.

Proof Suppose |I | = n − 1. Then any matrix A ∈ TI ,J has only one nonzero row. In
this row, the zero elements are exactly determined by the set J , so TI ,J has exactly
one element. Similarly, we reason in the case |J | = n − 1. 	


Lemma 3.3 For every I , J � Nn, we have tI ,J =
n−|J |∑
k=0

(−1)k
(n−|J |

k

)
(2n−|J |−k − 1)n−|I |.

Proof Notice that tI ,J is exactly equal to the number of matrices of size (n − |I |) ×
(n−|J |)with entries inB that have no zero row or column. So, let us examine the set of
(n−|I |)×(n−|J |)matriceswith elements inB. Obviously, there are exactly (2n−|J |−
1)n−|I | matrices that have all rows nonzero, but naturally some of themmay have a few
zero columns. Suppose therefore that a matrix has at least k zero columns for some k ∈
Nn−|J |. We have

(n−|J |
k

)
possible ways to choose these k columns. But if we disregard

the zero columns, there are 2n−|J |−k − 1 possible ways to choose the remaining
elements in every (nonzero) row. Since there are n − |I | rows, this yields (2n−|J |−k −
1)n−|I | matrices. Now, if we sum this over all possible k, we will have counted some
matrices (with more than k zero columns) multiple times, but the inclusion exclusion
principle then yields that there are exactly

∑n−|J |
k=0

(n−|J |
k

)
(−1)k(2n−|J |−k − 1)n−|I |

matrices of size (n − |I |) × (n − |J |) with entries in B that have no zero rows or
columns. 	

Remark 3.4 (1) There is no known closed formula for the expression of Lemma 3.3

in the general case, even in the special case of square matrices (see [35]).
(2) Obviously, the number tI ,J is only dependent on the cardinalites of sets I and J .

Therefore for any 1 ≤ i, j ≤ n − 1, we can define ti, j = t{1,...,i},{1,..., j}.

The next lemma shows that all elements in TI ,J are twins.

Lemma 3.5 For every I , J � Nn, all elements of the set TI ,J are twins in �(Mn(B)).

Proof Choose A ∈ TI ,J and observe that AB = 0 for B ∈ Mn(B) if and only if
B ∈ TK ,L for some K , L ⊆ Nn with Nn\J ⊆ K , and CA = 0 for C ∈ Mn(B) if and
only if C ∈ TK ,L for some K , L ⊆ Nn with Nn\I ⊆ L . Thus, all matrices in TI ,J
have the same neighbours in �(Mn(B)). 	
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Our next task is to construct a resolving set for �(Mn(B)). Thus, for every ∅ �

I , J � Nn , let XI ,J denote an arbitrarily chosen element of TI ,J . Also, for every
∅ � I � Nn with |I | ≤ n − 2, let YI ,∅ denote an arbitrarily chosen element of
TI ,∅ and let Z∅,I denote an arbitrarily chosen element of T∅,I . Now, define R with

R =
( ⋃

∅�I ,J�Nn

X I ,J

)
∪

( ⋃
∅�I�Nn&|I |≤n−2

YI ,∅ ∪ Z∅,I

)
∪TNn−1,∅∪T∅,Nn−1 . Finally,

define WR =
( ⋃

∅⊆I ,J�Nn&I∪J �=∅
TI ,J

)
\R. We shall prove that WR is a resolving set

for �(Mn(B)). But before we do that, let us examine the cardinality of WR .

Lemma 3.6 |WR | = 2(n−1)+
n−2∑

i, j=0&i j �=0

(n
i

)(n
j

)[∑n− j
k=0 (−1)k

(n− j
k

) (
2n− j−k − 1

)n−i

− 1
]
.

Proof Observe firstly that by the construction of R, for any set I ⊆ Nn with |I | = n−1,
we have T∅,I ⊂ R if and only if TI ,∅ ⊂ R if and only if I = Nn−1. This implies that
there exist 2(n − 1) sets of the form T∅,I and TI ,∅ with |I | = n − 1 that are subsets
of WR . Note that in this case |T∅,I | = |TI ,∅| = 1 by Lemma 3.2; hence, we have the
first 2(n − 1) elements in WR . Notice next that R contains exactly one element from
TI ,J for every ∅ ⊆ I , J � Nn with I ∪ J �= ∅ and |I |, |J | ≤ n − 2 and that there are
exactly

(n
i

)(n
j

)
different possible pairs of sets I and J in Nn with |I | = i and |J | = j .

Lemma 3.3 now concludes this proof. 	

Remark 3.7 Note that by Lemmas 2.2 and 3.5 every resolving set for �(Mn(B)) has to
contain all but perhaps one element fromevery set TI ,J . This, by a similar calculation as

in theproof ofLemma3.6yields
n−2∑

i, j=0&i j �=0

(n
i

)(n
j

)[∑n− j
k=0 (−1)k

(n− j
k

) (
2n− j−k − 1

)n−i

− 1
]

= |WR | − 2(n − 1) distinct elements that belong to each and every resolving set

of �(Mn(B)).

In order to find themetric dimension of�(Mn(B)), we shall also need the following
two lemmas.

Lemma 3.8 Suppose that A, B ∈ Mn(B) are zero-divisors such that A ∈ TIA,JA for
some sets IA, JA ∈ Nn with |IA|, |JA| = 1. Then d(A, B) ≤ 2.

Proof Denote IA = {i} and JA = { j}. Since B is a zero-divisor, B ∈ TIB ,JB for some
IB, JB ⊆ Nn and there exists k ∈ Nn such that k ∈ IB or k ∈ JB . If k ∈ IB then
E jk B = AE jk = 0, so d(A, B) ≤ 2. Similarly, if k ∈ JB then BEki = Eki A = 0
and again d(A, B) ≤ 2. 	

Lemma 3.9 Suppose that A, B ∈ Mn(B) are zero-divisors such that either

(1) A ∈ TIA,∅ and B ∈ TIB ,∅ for some sets IA, IB � Nn with IA ∩ IB = ∅, or
(2) A ∈ T∅,JA and B ∈ T∅,JB for some sets JA, JB � Nn with JA ∩ JB = ∅.
Then d(A, B) = 3.
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Proof Obviously, it suffices to prove one of the two assertions; the other one can be
done with a symmetrical proof. Suppose therefore that A ∈ TIA,∅ and B ∈ TIB ,∅ for
some sets IA, IB � Nn with IA ∩ IB = ∅. By [7, Theorem 1], diam(�(Mn(B))) ≤ 3.
Since AB �= 0 and BA �= 0, we only have to prove that d(A, B) �= 2. Note that
AC, BC �= 0 for every 0 �= C ∈ Mn(B). So, suppose there exists C ∈ Z(Mn(B))

such that CA = CB = 0. But CA = 0 implies C ∈ TIC ,JC for some IC , JC ⊆ Nn

with Nn\IA ⊆ JC . Similarly, CB = 0 implies Nn\IB ⊆ JC . But IA ∩ IB = ∅,
resulting in JC = Nn , so C = 0, a contradiction. 	


We can now prove that WR is a resolving set for �(Mn(B)).

Theorem 3.10 For any n ≥ 3, the set WR is a resolving set for �(Mn(B)).

Proof Observefirstly that Z(Mn(B))\{0} = ⋃
∅⊆I ,J�Nn&I∪J �=∅

TI ,J , so Z(Mn(B))\{0} =
WR ∪ R. Now, choose arbitrary A, B ∈ R. We have to prove that A and B have differ-
ent representations with respect toWR . Denote by IA, JA and IB, JB the sets such that
A ∈ TIA,JA and B ∈ TIB ,JB . By the definition of R, we have IA �= IB or JA �= JB . Sup-
pose without loss of generality that IA �= IB . Now, we have |IA| ≥ |IB | or |IB | ≥ |IA|,
and again without loss of generality we can assume that |IA| ≥ |IB |.

We examine firstly the case that |IA| ≥ 2.We denote JC = Nn\IA �= ∅ and observe
that |JC | ≤ n − 2, thus |T∅,JC | ≥ 2. Therefore, by the definition of WR , there exists a
matrix C ∈ WR such that C ∈ T∅,JC . This implies that CA = 0 and since IA � IB ,
we see that CB �= 0. By definition, C is not a right zero-divisor, so d(A,C) = 1 and
d(B,C) ≥ 2 and therefore A and B have different representations with respect toWR .

Now, assume that |IA| ≤ 1. Since IA �= IB , IA �= ∅, so it is left for us to examine the
case |IA| = 1.We have two possibilities, either |IB | = 1 or IB = ∅. Assume firstly that
|IB | = 1. Then IA �= {n} or IB �= {n}. We can assume without loss of generality that
IA �= {n}. Let us denote JC = Nn\IA and observe that |JC | = n − 1 and JC �= Nn−1,
so by the definition of WR , there exists a matrix C ∈ WR such that C ∈ T∅,JC . This
implies that CA = 0 and CB �= 0. Since C is not a right zero-divisor, we conclude
that d(A,C) = 1 and d(B,C) ≥ 2, so A and B have different representations with
respect toWR . Finally, assume that IB = ∅. Note that JB �= Nn , so choose any k /∈ JB
and observe that by the definition of WR and the fact that n ≥ 3 there exists C ∈ WR

such that C ∈ T∅,{k}. Now, Lemma 3.9 yields d(B,C) = 3. Denote by l the only
element of IA and observe that Ekl A = CEkl = 0, so d(A,C) ≤ 2, again concluding
that A and B have different representations with respect to WR . 	


We can now prove the following theorem, which is the main result of this section.

Theorem 3.11 For any n ≥ 2, the metric dimension of �(Mn(B)) equals

dimM(�(Mn(B)) = 2(n − 1) +
n−2∑

i, j=0&i j �=0

(
n

i

)(
n

j

)

×
⎡
⎣n− j∑
k=0

(−1)k
(
n − j

k

) (
2n− j−k − 1

)n−i − 1

⎤
⎦ .
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Proof If n = 2, Example 3.1 tells us that dimM(�(M2(B)) = 2, so the result
holds in this case. So, assume from now on that n ≥ 3. By Lemma 3.6, we have

|WR | = 2(n − 1) + ∑n−2
i, j=0&i j �=0

(n
i

)(n
j

) [∑n− j
k=0 (−1)k

(n− j
k

) (
2n− j−k − 1

)n−i − 1
]

and by Theorem 3.10, we have dimM(�(Mn(B)) ≤ |WR |.
Now, we have to prove that the inequality dimM(�(Mn(B)) ≥ |WR | also holds. So,

letW be an arbitrary resolving set for�(Mn(B)). Remark 3.7 assures us that there are at

least
∑n−2

i, j=0&i j �=0

(n
i

)(n
j

) [∑n− j
k=0 (−1)k

(n− j
k

) (
2n− j−k − 1

)n−i − 1
]
“twin” elements

inW (all but perhaps one element from TI ,J for every 0 ⊆ I , J � Nn with I ∪ J �= ∅
and |I |, |J | ≤ n−2).Now, choose i, k �= j ∈ Nn and define IA = {i}, JA = { j}, IB =
{i}, JB = {k}. Let us examine two arbitrary matrices A ∈ TIA,JA , B ∈ TIB ,JB . If
neither of A and B is in W , then Lemma 3.8 implies that the only way for A and B to
have different representations according to W is that there exists C ∈ W such that C
is a neighbour of A, but not B, or vice versa. But such C has to be either an element
of TNn\{ j},JC or TNn\{k},JC for some Nn\{i} �= JC � Nn . So, we now have one of
the following four possibilities: every element of TIA,JA is in W , every element of
TIB ,JB is in W , some element of TNn\{ j},JC is in W , or some element of TNn\{k},JC is
inW . In every case, we see thatW has to contain one additional element to the “twin”
elements described above (in the first two cases, this is the one additional element
from TIA,JA or TIB ,JB , since we counted all but one of the elements from these sets
above). We can reason similarly in case IA = {i}, JA = {k}, IB = { j}, JB = {k}
for any i �= j, k ∈ Nn , yielding again one of the four options: every element of
TIA,JA is in W , every element of TIB ,JB is in W , some element of TIC ,Nn\{i} is in
W , or some element of TIC ,Nn\{ j} is in W (for some Nn\{k} �= IC � Nn). We
can easily see that in this way, we must have at least 2(n − 1) (distinct) additional
elements in W (one for any two distinct rows and one for any two distinct columns),

thus |W | ≥ 2(n−1)+∑n−2
i, j=0&i j �=0

(n
i

)(n
j

) [∑n− j
k=0 (−1)k

(n− j
k

) (
2n− j−k − 1

)n−i − 1
]
,

which proves the theorem. 	


4 The General Case

Now, we examine the metric dimension of the zero-divisor graph of Mn(S) for an
arbitrary commutative entire antinegative semiring S. We shall need the following
definition.

Definition 4.1 Let S be an entire antinegative semiring and A ∈ Mn(S). Then the
pattern of A is the matrix patt(A) ∈ Mn(S) such that for every i, j ∈ Nn we have
patt(A)i j = 1 if and only if Ai j �= 0 and patt(A)i j = 0 otherwise.

Lemma 4.2 Let S be an entire antiring. For every 0 �= A ∈ Z(Mn(S)) matrices A
and patt(A) are twins in �(Mn(S)).

Proof This follows directly from the fact that S is an entire antinegative semiring. 	

Lemma 4.3 Let S be an entire antiring, � ⊆ Nn × Nn and αi j , βi j ∈ S\{0} for
all (i, j) ∈ �. If matrices

∑
(i, j)∈� αi j Ei j and

∑
(i, j)∈� βi j Ei j are nonzero zero-

divisors, they are twins in �(Mn(S)).
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Proof Denote A = ∑
(i, j)∈� αi j Ei j and B = ∑

(i, j)∈� βi j Ei j . By Lemma 4.2, both
A and patt(A), as well as B and patt(B) are twins in �(Mn(S)). By definition though,
patt(A) = patt(B), so A and B are also twins. 	


Lemmas 2.2 and 4.3 imply that for infinite entire antirings S, the metric dimension
of�(Mn(S)) is infinite. Therefore,we shall limit ourselves to studyingfinite semirings.
Note that any entire antiring with two elements is isomorphic to B, so we can also
assume that |S| ≥ 3.

We can now prove our main result.

Theorem 4.4 Let S be an entire finite antiring with |S| ≥ 3 and n ≥ 2. Then the
following formula holds:

dimM(�(Mn(S))) = |S|n2 − 2n
2 −

n∑
k=0

(−1)k
(
n

k

)[(
|S|n−k − 1

)n −
(
2n−k − 1

)n]

+ dimM(�(Mn(B))) − 2(n − 1).

Proof Throughout this proof, we shall (by a slight abuse of notation) consider that B
is a proper subsemiring in S. SupposeW is a resolving set for �(Mn(S)). Lemmas 2.2
and 4.3 imply that for every � ⊆ Nn × Nn at most one zero-divisor matrix with
its pattern of zero and non-zero entries prescribed by � is not in W . This yields
|Z(Mn(S))|−|Z(Mn(B))| elements that have to be included inW (and we can assume
without loss of generality that the missing elements from W are exactly the matrices
from Z(Mn(B))). Suppose firstly that n ≥ 3. Lemmas 2.2 and 3.5 tell us that W also
has to additionally contain all but perhaps one element from TI ,J for every I , J � Nn .
Since none of these matrices have the same pattern, this yields by Remark 3.7 and
Theorem 3.11 additional dimM(�(Mn(B))) − 2(n − 1) elements that have to be in
W . If n = 2, dimM(�(M2(B))) = 2(2 − 1), so in both cases dimM(�(Mn(S))) ≥
|Z(Mn(S))| − |Z(Mn(B))| + dimM(�(Mn(B))) − 2(n − 1).

On the other hand, let W = Z(Mn(S))\Z(Mn(B)) and if n ≥ 3, we also add to
W the dimM(�(Mn(B))) − 2(n − 1) elements from Remark 3.7. By construction,
|W | = |Z(Mn(S))| − |Z(Mn(B))| + dimM(�(Mn(B))) − 2(n − 1) for every n ≥ 2.
Let us prove that W is a resolving set. Choose arbitrary non-zero matrices A �=
B ∈ Z(Mn(S)). Now, if A and B have the same pattern, one of them is in W by
definition. Suppose therefore that A and B have different patterns. Remark 3.7 now
ensures that if matrices patt(A) and patt(B) belong to the same set TI ,J for some
∅ ⊆ I , J � Nn , at least one of them is in W . So, let us assume that patt(A) ∈ TIA,JA
and patt(B) ∈ TIB ,JB , where IA �= IB or JA �= JB . Without loss of generality (if
necessary, swapping the roles of rows and columns, or matrices A and B respectively),
assume that IA �= IB and |IA| ≤ |IB |. Since |S| ≥ 3, at least one zero-divisor
matrix with every pattern of its zero and nonzero entries is in W , so we can choose
C ∈ W such that patt(C) ∈ T∅,Nn\IB . Therefore patt(C) is not a right zero-divisor, but
patt(C)patt(B) = 0, and since IB � IA also patt(C)patt(A) �= 0. Lemma 4.2 now
implies that A and B have different representations with respect to W . This proves
that dimM(�(Mn(S))) ≤ |Z(Mn(S))|− |Z(Mn(B))|+dimM(�(Mn(B)))−2(n−1).
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Finally, observe that the zero-divisors in Mn(S) are exactly those matrices with at
least one zero row or column, so with a similar argument as in the proof of Lemma 3.3,

we can prove that |Z(Mn(S))| = |S|n2 −
n∑

k=0
(−1)k

(n
k

) (|S|n−k − 1
)n
. This yields that

|Z(Mn(S))| − |Z(Mn(B))|

= |S|n2 − 2n
2 −

n∑
k=0

(−1)k
(
n

k

)[(
|S|n−k − 1

)n −
(
2n−k − 1

)n]
,

which proves the assertion. 	
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