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Abstract
We give the alternative proofs to consider Fermat systems of complex differential or
difference or delay-differential equations. In addition, we also use value distribution of
meromorphic functions to consider the existence ofmeromorphic solutions of complex
differential or delay-differential systems.

Keywords Meromorphic functions · Fermat equations · Value distribution · Complex
delay-differential equations

Mathematics Subject Classification 30D35 · 39A45

1 Introduction andMain Results

Let us observe Fermat-type functional equation

f (z)2 + g(z)2 = 1, (1.1)
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where f (z) and g(z) are transcendentalmeromorphic functions. Iyer [12] andGross
[7] obtained that all entire solutions of (1.1) are f (z) = sin(h(z)), g(z) = cos(h(z)),
where h(z) is any entire function, and there are no other entire solutions. If g(z) is a
differential polynomial of f (z) in (1.1), then this equation is always called Fermat-type
differential equation. Using the above Iyer and Gross’s result and a basic computation
on

f (z)2 + f ′(z)2 = 1, (1.2)

we can obtain that allmeromorphic solutions f (z) = sin(z+B), where B is a constant.
Further researches on Fermat-type differential equations with different forms can be
found in [25, 27] or [19, Chapter 6]. Some results on Fermat-type difference equations
can be found in [18, 20, 21] and Fermat-type differential-difference equations or partial
differential-difference equations can be found in [11, 18, 23, 24]. Of course, Eq. (1.1)
can be seen as the functional version of Fermat equation x2 + y2 = 1, where x, y
are rational functions, while the Fermat-type matrix equations Xn + Yn = Zn are
also considered in [1–3], where X ,Y , Z are 2-by-2 rational or integer matrices and
n is a positive integer. The elementary notations and results of Nevanlinna theory,
such as the proximity function m(r , f ), the counting function N (r , f ), the reduced
counting function N (r , f ), the characteristic function T (r , f ), the order ρ( f ) and the
hyper-order ρ2( f ), can be found in [9, 26].

Recently, the present authors and Si [14, Theorem 2.1] considered Fermat-type
matrix differential equation

(
f (z) g(z)
h(z) k(z)

)2

+
(

f ′(z) g′(z)
h′(z) k′(z)

)2

=
(
1 0
0 1

)
, (1.3)

where at least one of f (z), g(z), h(z), k(z) is a non-constant meromorphic function.
The properties on meromorphic matrix solutions are described in [14], where f and
g may satisfy the following bi-Fermat-type differential equation

f (z)2 + f ′(z)2 + g(z)2 + g′(z)2 = 1. (1.4)

Hence, the characteristics of meromorphic solutions f and g of (1.4) are important for
the meromorphic matrix solutions of (1.3). However, the meromorphic solutions or
even entire solutions of (1.4) are difficult to obtain presently. We see that the equation
(1.4) implies many questions indeed, such as the existence of meromorphic solutions
on systems of complex differential equations with different types. Some discussions
on

{
f (z)2 + g(z)2 = sin2 h(z),

f ′(z)2 + g′(z)2 = cos2 h(z),

have been considered in [14], where h(z) is any entire function. In this paper, we
observe the system
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⎧⎪⎨
⎪⎩

f (z)2 + g′(z)2 = 1

2
+ h(z),

f ′(z)2 + g(z)2 = 1

2
− h(z).

(1.5)

It is obvious that all the meromorphic solutions of (1.5) solve the equation (1.4), where
h(z) is any meromorphic function. If h(z) is entire in (1.5), then all meromorphic
solutions f (z) and g(z) are also entire. For example, if h(z) = sin2 z − 1

2 , then

( f , g) =
(
±

√
2
2 sin z,±

√
2
2 cos z

)
solve (1.5). If h(z) is meromorphic with at least

a pole z0, then the multiplicities of the pole z0 of f (z) and g(z) must be equal.
However, it is difficult to give all meromorphic solutions of (1.5) for the variability of
h(z). Without loss of generality, the right-hand sides of the system (1.5) are assumed
to be the unit if h(z) ≡ 0; in this situation, all the meromorphic solutions can be given
completely in Theorem 1.1.

Theorem 1.1 All the transcendental meromorphic solutions of the system of complex
differential equations

{
f (z)2 + g′(z)2 = 1,

f ′(z)2 + g(z)2 = 1,
(1.6)

must satisfy one of the following cases:

(i) f (z) = sin(z + α), g(z) = sin(z + β) and α − β = 2kπ ;
(ii) f (z) = sin(−z + α), g(z) = sin(−z + β) and α − β = 2kπ + π ,

where k is an integer, α and β are constants.

Remark 1.2 (1) It is easy to see that f (z) = sin z and g(z) = sin(−z) solve (1.6) also.
These solutions can be included in the case (i i) by taking f (z) = sin(−z + π)

and g(z) = sin(−z).
(2) It remains open for us to describe all the meromorphic solutions of

{
f (z)2 + g(k)(z)2 = P1(z)e

κ1(z),

f (k)(z)2 + g(z)2 = P2(z)e
κ2(z),

where k ≥ 2 is a positive integer, κ1(z) and κ2(z) are any entire functions, and
P1(z) and P2(z) are any polynomials.

(3) The authors did not find the relevant results on (1.6), although we felt that this
system should have been studied, but we believe that the proof is different.

In addition, the present authors and Si [15] also considered Fermat-type matrix
difference equation

(
f (z) g(z)
h(z) k(z)

)2

+
(

f (z + c) g(z + c)
h(z + c) k(z + c)

)2

=
(
1 0
0 1

)
,
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where at least one of f (z), g(z), h(z), k(z) is a non-constant meromorphic function
and c is a nonzero constant. The following bi-Fermat-type difference equation

f (z)2 + f (z + c)2 + g(z)2 + g(z + c)2 = 1

are also presented in [15]. In this paper, we will obtain all the transcendental
meromorphic solutions of the system of complex difference equations

{
f (z)2 + g(z + c)2 = 1,

g(z)2 + f (z + c)2 = 1,
(1.7)

as follows.

Theorem 1.3 Transcendental entire solutions of (1.7) are expressed by f (z) =
sin(h1(z)), g(z) = sin(h2(z)), where h1(z) and h2(z) are non-constant entire
functions satisfying one of the following cases:

(1) h1(z + c) = h2(z) + π
2 + 2nπ and h2(z + c) = h1(z) + π

2 + 2mπ ;
(2) h1(z + c) = h2(z) + π

2 + 2nπ and h2(z + c) = −h1(z) + π
2 + 2mπ ;

(3) h1(z + c) = −h2(z) + π
2 + 2nπ and h2(z + c) = h1(z) + π

2 + 2mπ ;
(4) h1(z + c) = −h2(z) + π

2 + 2nπ and h2(z + c) = −h1(z) + π
2 + 2mπ ,

where m, n are integers. Furthermore, if f and g are of finite order, then h1(z) and
h2(z) satisfy one of the following two cases:

(i) h1(z) = μz + ν1 and h2(z) = μz + ν2, where μc + ν1 = ν2 + π
2 + 2nπ and

μc + ν2 = ν1 + π
2 + 2mπ. Then 2μc = π + 2(n + m)π ;

(ii) h1(z) = μz + ν1 and h2(z) = −μz + ν2, where μc + ν1 = −ν2 + π
2 + 2nπ and

−μc + ν2 = −ν1 + π
2 + 2mπ. Then 2μc = 2(n − m)π .

Transcendental meromorphic solutions of (1.7) are f (z) = 2β1(z)
1+β1(z)2

and g(z) =
1−β2(z)2

1+β2(z)2
, where β1(z) and β2(z) are transcendental meromorphic functions satisfying

one of the following three cases:

(a) β1(z + c) = β2(z), β1(z) = β2(z + c), β1(z) and β2(z) are periodic functions
with period 2c;

(b) β1(z + c) = β2(z), β1(z) = −β2(z + c), β1(z) and β2(z) are anti-periodic
functions with period 2c;

(c) β1(z+ c) �= β2(z), β1(z+ c)β2(z) = 1, β2(z)2β2(z+2c)2 = 1 and β1(z)2β1(z+
2c)2 = 1.

Remark 1.4 We give an example to show that all cases can occur in Theorem 1.3.
Meromorphic functions f and g below solve the system

{
f (z)2 + g(z + π)2 = 1,

g(z)2 + f (z + π)2 = 1.
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(I) Taking the suitable integers m, n which may be different when they appear.
f (z) = sin(e2i z + z

2 + 2nπ) and g(z) = sin(e2i z + z
2 + 2mπ), where h1(z) and

h2(z) satisfy the case (1); f (z) = sin(e
iz
2 + π

2 + 2nπ) and g(z) = sin(ie
iz
2 +

2mπ), where h1(z) and h2(z) satisfy the case (2); f (z) = sin(ie
iz
2 + 2nπ)

and g(z) = sin(e
iz
2 + π

2 + 2mπ), where h1(z) and h2(z) satisfy the case (3);
f (z) = sin(eiz − z

2 + 2nπ) and g(z) = sin(eiz + z+2π
2 + 2mπ), where h1(z)

and h2(z) satisfy the case (4).
(II) f (z) = sin z and g(z) = sin(z + π

2 ), where h1(z) and h2(z) satisfy the case (i);
f (z) = sin z and g(z) = sin(−z − π

2 ), where h1(z) and h2(z) satisfy the case
(i i).

(III) f (z) = 2 tan z
2

1+(tan z
2 )2

and g(z) = 1−(− cot z
2 )2

1+(− cot z
2 )2

, where h1(z) and h2(z) satisfy the

case (a); f (z) = 2 sin z
2

1+(sin z
2 )2

and g(z) = 1−(cos z
2 )2

1+(cos z
2 )2

, where h1(z) and h2(z) satisfy

the case (b); f (z) = 2ecos
z
2

1+(ecos
z
2 )2

and g(z) = 1−(esin
z
2 )2

1+(esin
z
2 )2

, where h1(z) and h2(z)

satisfy the case (c).

Furthermore, we recall that Gao [4, Theorem 1.1] proved the transcendental entire
solutions f (z) and g(z) with finite order of the following system of complex delay-
differential equations

{
f ′(z)2 + g(z + c)2 = 1,

g′(z)2 + f (z + c)2 = 1,
(1.8)

are ( f (z), g(z)) = (sin(z + b1), sin(z + b2)), where c = kπ , k is an integer and b1,
b2 are constants. In this paper, we will give a different proof and give the supplement
on the entire solutions of (1.8).

Theorem 1.5 The transcendental entire solutions of (1.8) are f (z) = sin(h2(z − c))
and g(z) = sin(h1(z−c)), where h′

2(z−c)2 ≡ h′
2(z+c)2 and h′

2(z−c)2h′
1(z)

2 ≡ 1.
Specially, the transcendental entire solutions with finite order of (1.8) satisfy one of
the following four cases:

(i) f (z) = sin(z + b), g(z) = sin(z + b + kπ + 2mπ) and c = kπ ;
(ii) f (z) = sin(−z + b), g(z) = sin(−z + b + kπ + mπ) and c = kπ ;
(iii) f (z) = sin(−z + b), g(z) = sin(z − b + π

2 + kπ + 2mπ) and c = π
2 + kπ ;

(iv) f (z) = sin(z + b), g(z) = sin(−z − b + π
2 + kπ + mπ) and c = π

2 + kπ ,

where k, m are any integers and b is a constant.

In the following, we will consider the system (1.5) from the point of view of value
distribution of meromorphic functions. Theorem 1.1 implies that both f (z)2 + g′(z)2
and f ′(z)2 + g(z)2 can have no zeros. If h(z) has no zeros or finitely many zeros in
(1.5), then both f (z)2 + g′(z)2 − 1

2 and f ′(z)2 + g(z)2 − 1
2 can have no zeros or have

finitely many zeros. If h(z) is a transcendental entire function in (1.5), then at least one
of 1

2 + h(z) and 1
2 − h(z) admits infinitely many zeros by the second main theorem
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of Nevanlinna theory; in this case, it means that for the entire solutions f (z) and g(z)
of (1.5), then at least one of f (z)2 + g′(z)2 and f ′(z)2 + g(z)2 must have infinitely
many zeros.

The above observations inspire us to consider the zeros of a pair of complex differ-
ential polynomials f (z)n+β1(z)g(k)(z)m −α1(z) and g(z)n+β2(z) f (k)(z)m −α2(z),
where β1(z), β2(z), α1(z) and α2(z) are nonzero small functions with respect to f (z)
and g(z) and k, m, n are positive integers. These considerations can be seen as the
variations to the classical results given by Hayman [10, Theorems 8 and 9], namely
the zero distribution of f (z)n f ′(z)−a or f (z)n + b f ′(z)−a, where a, b are nonzero
constants. We agree to say that a meromorphic function f (z) in the complex plane is
properly meromorphic if f (z) has at least one pole.

Theorem 1.6 Let f (z) and g(z) be transcendental meromorphic functions, β1(z),
β2(z), α1(z) and α2(z) be nonzero small functions with respect to f (z) and g(z)
and k, m, n be positive integers. If one of the following conditions is satisfied

(a) at least one of f (z) and g(z) is a transcendental properly meromorphic function
and n ≥ 2m(k + 1) + 4;

(b) f (z) and g(z) are all transcendental entire functions and n ≥ 2m + 2,

then at least one of f (z)n +β1(z)g(k)(z)m −α1(z) and g(z)n +β2(z) f (k)(z)m −α2(z)
have infinitely many zeros.

Remark 1.7 (1) In a recent paper, Gao and Liu [5, Theorem 1.1] considered the zero
distributionof another paired complexdifferential polynomials f (z)ng(k)(z)−a(z)
and g(z)n f (k)(z) − a(z), where a(z) is a nonzero small function with respect to
f (z) and g(z).

(2) Remark the following system

{
f (z)n + g(k)(z) = P1(z)e

Q1(z),

g(z)n + f (k)(z) = P2(z)e
Q2(z),

(1.9)

where P1(z), P2(z), Q1(z) and Q2(z) are any non-constant polynomials. If n = 1,
then the system (1.9) changes into

F(z) + F (k)(z) = P1(z)e
Q1(z) + P2(z)e

Q2(z)

by letting F(z) = f + g and summing the two equations of (1.9). If n ≥ 2, by the
sum of two equations, then (1.9) changes into

f (z)2 + g(z)2 + ( f (z) + g(z))(k) = P1(z)e
Q1(z) + P2(z)e

Q2(z).

A natural question is to describe all the entire or meromorphic solutions of the
above equation which is similar as the differential equation of Tumura–Clunie
type

f (z)n + f (k)(z) = P1(z)e
Q1(z) + P2(z)e

Q2(z).
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The above equation was considered frequently, such as [16, 17] and their
references.

Combining the similar proofs of Theorem 1.6 with the important result [8, Lemma
8.3] in difference, we can obtain the following result without giving the proof details.

Theorem 1.8 Let f (z) and g(z) be transcendental meromorphic functions with hyper-
order less than one, β1(z), β2(z), α1(z) and α2(z) be nonzero small functions with
respect to f (z) and g(z). If one of the following conditions is satisfied

(a) n ≥ 2m(k + 1) + 4 and at least one of f (z) and g(z) is a transcendental properly
meromorphic function;

(b) n ≥ 2m + 2, f and g are all transcendental entire functions,

where n, k and m are positive integers, then at least one of f (z)n + β1(z)g(k)(z +
c1)m − α1(z) and g(z)n + β2(z) f (k)(z + c2)m − α2(z) have infinitely many zeros.

Corollary 1.9 Let s1(z) and s2(z) be nonzero polynomials, t1(z) and t2(z) be entire
functions. If n ≥ 2m(k + 1) + 4, then the system

{
f (z)n + β1(z)g

(k)(z)m − α1(z) = s1(z)e
t1(z),

g(z)n + β2(z) f
(k)(z)m − α2(z) = s2(z)e

t2(z),
(1.10)

has no any transcendental meromorphic solutions and

{
f (z)n + β1(z)g

(k)(z + c1)
m − α1(z) = s1(z)e

t1(z),

g(z)n + β2(z) f
(k)(z + c2)

m − α2(z) = s2(z)e
t2(z),

(1.11)

has no any transcendental meromorphic solutions with hyper-order less than one.

2 Proofs of Theorems

Proof of Theorem 1.1 Firstly, we confirm that all meromorphic solutions f (z) and g(z)
must be entire from (1.6). Otherwise, assume that z0 is a pole of f (z)with multiplicity
m, then z0 is a pole of g(z) with multiplicity m − 1 from the first equation of (1.6).
From the second equation of (1.6), z0 is a pole of g(z) with multiplicity m + 1, which
is impossible. Combining the first equation of (1.6) with Iyer and Gross’s result in the
introduction, we assume that

{
f (z) = sin(h1(z)),

g′(z) = cos(h1(z)),
(2.1)

where h1(z) is a non-constant entire function. By the second equation of (1.6), we
assume that

{
f ′(z) = cos(h2(z)),

g(z) = sin(h2(z)).
(2.2)
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Using the first equation of (2.1) and the first equation of (2.2), we have

h′
1(z) cos(h1(z)) = cos(h2(z)). (2.3)

The second equation of (2.1) and the second equation of (2.2) imply that

h′
2(z) cos(h2(z)) = cos(h1(z)). (2.4)

By (2.3) and (2.4), we conclude

h′
1(z)h

′
2(z) cos(h1(z)) = cos(h1(z)),

which implies that h′
1(z)h

′
2(z) ≡ 1. Since h1(z) and h2(z) are non-constant entire

functions, then there are two possibilities only:

(1) h′
1(z) = es(z) and h′

2(z) = e−s(z), where s(z) is a non-constant entire function.
(2) h1(z) = λz + α and h2(z) = 1

λ
z + β, where λ is a nonzero constant, α and β are

any constants.

In the following, we will affirm that the case (1) cannot happen. Taking the first
derivative of (2.3), we have

h′′
1 cos h1 − h′2

1 sin h1 = −h′
2 sin h2. (2.5)

Taking derivative again for (2.5), we have

h′′′
1 cos h1 − 3h′′

1h
′
1 sin h1 − h′3

1 cos h1 = −h′′
2 sin h2 − h′2

2 cos h2. (2.6)

Substitute cos h2 and sin h2 into (2.6), we conclude that

(
(h′′′

1 h
′
2 − h′3

1 h
′
2 − h′′

2h
′′
1 + h′3

2 h
′
1)

2 + (3h′′
1h

′
1h

′
2 − h′2

1 h
′′
2)

2
)
cos2 h1

= (3h′′
1h

′
1h

′
2 − h′2

1 h
′′
2)

2. (2.7)

By [26, Theorem 1.46] and (2.3), we have that h1 and h2 are small functions with
respect to cos h1. Using the Valiron–Mohon’ko lemma [13, Theorem 2.2.5] to (2.7),
then

3h′′
1h

′
1h

′
2 − h′2

1 h
′′
2 ≡ 0 (2.8)

and

(h′′′
1 h

′
2 − h′3

1 h
′
2 − h′′

2h
′′
1 + h′3

2 h
′
1)

2 + (3h′′
1h

′
1h

′
2 − h′2

1 h
′′
2)

2 ≡ 0,

otherwise T (r , cos h1) = S(r , cos h1). Integrating (2.8), we have μh′3
1 = h′

2, where
μ is a nonzero constant. Combining the above with h′

1(z)h
′
2(z) ≡ 1, we get that h′

1
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and h′
2 are constants, which is impossible in (1). Now, we will show that λ = ±1

within the case (2). From (2.5), we have

λ2 sin(λz + α) = 1

λ
sin

(
1

λ
z + β

)
.

By a basic computation and (2.3), we have

λ4(1 − cos2(λz + α)) = 1

λ2
− cos2(λz + α).

Hence, λ2 = 1. From (2.3), if λ = 1, we have α − β = 2kπ , if λ = −1, we have
α − β = 2kπ + π , where k is an integer. The proof of Theorem 1.1 is completed. ��
Proof of Theorem 1.3 Firstly, suppose that f (z) and g(z) are transcendental entire func-
tions. Combining the system (1.7) with Iyer and Gross’s result again, we assume
that

{
f (z) = sin(h1(z)),

g(z + c) = cos(h1(z)),
(2.9)

and
{
g(z) = sin(h2(z)),

f (z + c) = cos(h2(z)),
(2.10)

where h1(z) and h2(z) are non-constant entire functions. From the first equation of
(2.9) and the second equation of (2.10), we have

f (z + c) = sin h1(z + c) = cos h2(z) = cos(−h2(z)) = sin
(
±h2(z) + π

2

)
.

Hence,

h1(z + c) = ±h2(z) + π

2
+ 2nπ, (2.11)

where n is an integer. From the second equation of (2.9) and the first equation of (2.10),
we have

g(z + c) = sin h2(z + c) = cos h1(z) = sin
(
±h1(z) + π

2

)
.

Hence,

h2(z + c) = ±h1(z) + π

2
+ 2mπ, (2.12)

where m is an integer. There exist four possibilities as follows:
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(1) If h1(z + c) = h2(z) + π
2 + 2nπ and h2(z + c) = h1(z) + π

2 + 2mπ , then we
have

h1(z + c) = h1(z − c) + π + 2(n + m)π,

and

h2(z + c) = h2(z − c) + π + 2(n + m)π.

If f and g are of finite order, then h1(z) and h2(z) are first polynomials by Pólya’s
theorem [22] or [9, Theorem 2.9], then the above two equations imply that h1(z)
and h2(z) must be linear polynomials by a basic computation. From h1(z + c) =
h2(z) + π

2 + 2nπ , we have h1(z) = μz + ν1 and h2(z) = μz + ν2, where
μc+ν1 = ν2+ π

2 +2nπ andμc+ν2 = ν1+ π
2 +2mπ.Then, 2μc = π+2(n+m)π .

(2) If h1(z + c) = h2(z) + π
2 + 2nπ and h2(z + c) = −h1(z) + π

2 + 2mπ , then we
have

h1(z + c) = −h1(z − c) + π + 2(n + m)π,

and

h2(z + c) = −h2(z − c) + 2(m − n)π.

Obviously, there are no polynomials h1(z) and h2(z) satisfying the above two
equations for the reason that h1(z+c) and−h1(z−c) have the opposite coefficients
of the highest degree. Thus, f and g cannot be entire functions with finite order
in this case.

(3) If h1(z + c) = −h2(z) + π
2 + 2nπ and h2(z + c) = h1(z) + π

2 + 2mπ , then we
have

h1(z + c) = −h1(z − c) + 2(n − m)π,

and

h2(z + c) = −h2(z − c) + π + 2(n + m)π.

In this case, f and g cannot be entire functions with finite order by the same
method used in (2).

(4) If h1(z + c) = −h2(z) + π
2 + 2nπ and h2(z + c) = −h1(z) + π

2 + 2mπ , then we
have

h1(z + c) = h1(z − c) + 2(n − m)π,

and

h2(z + c) = h2(z − c) + 2(m − n)π.

123



Meromorphic Solutions of Nonlinear Systems of Fermat Type Page 11 of 17 196

Using the similar method in (1). We can get that h1(z) = μz + ν1 and h2(z) =
−μz + ν2, where μc+ ν1 = −ν2 + π

2 + 2nπ and −μc+ ν2 = −ν1 + π
2 + 2mπ.

Then, 2μc = 2(n − m)π .

Secondly, suppose that f (z) and g(z) are transcendental meromorphic functions.
By Gross’s result in [6], we assume that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (z) = 2β1(z)

1 + β2
1 (z)

,

g(z + c) = 1 − β1(z)2

1 + β2
1 (z)

,

(2.13)

and

⎧⎪⎪⎨
⎪⎪⎩

f (z + c) = 2β2(z)

1 + β2(z)2
,

g(z) = 1 − β2(z)2

1 + β2(z)2
,

(2.14)

whereβ1(z) andβ2(z) are non-rationalmeromorphic functions. From the first equation
of (2.13) and the first equation of (2.14), we obtain

β1(z + c) − β2(z) = β1(z + c)β2(z)(β1(z + c) − β2(z)). (2.15)

From the second equation of (2.13) and the second equation of (2.14), we have

β1(z)
2 = β2(z + c)2. (2.16)

The basic discussions are stated as follows:

(1) If β1(z + c) = β2(z) and β1(z) = β2(z + c), then β1(z) = β1(z + 2c) and
β2(z) = β2(z + 2c).

(2) If β1(z + c) = β2(z) and β1(z) = −β2(z + c), then β1(z) + β1(z + 2c) = 0 and
β2(z) + β2(z + 2c) = 0.

(3) If β1(z + c) �= β2(z), then β1(z + c)β2(z) = 1 follows by (2.15). Furthermore,
β2(z)2β2(z + 2c)2 = 1 and β1(z)2β1(z + 2c)2 = 1 follows by (2.16). ��

Proof of Theorem 1.5 Using the Iyer and Gross’s result again, we assume that

{
f ′(z) = cos(h1(z)),

g(z + c) = sin(h1(z)),
(2.17)

and
{
g′(z) = cos(h2(z)),

f (z + c) = sin(h2(z)),
(2.18)
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where h1(z) and h2(z) are non-constant entire functions. By a basic computation from
the above two systems, we obtain

{
h′
1(z) cos(h1(z)) = cos(h2(z + c)),

h′
2(z) cos(h2(z)) = cos(h1(z + c)).

(2.19)

Shifting the first equation of (2.19), it follows

{
h′
1(z + c) cos(h1(z + c)) = cos(h2(z + 2c)),

h′
2(z) cos(h2(z)) = cos(h1(z + c)).

(2.20)

Hence, we have

h′
1(z + c)h′

2(z) cos(h2(z)) = cos(h2(z + 2c)). (2.21)

We will affirm that h′
1(z+ c)h′

2(z) ≡ ±1. Let A(z) = h′
1(z+ c)h′

2(z). Taking the first
derivative of (2.21), we have

A′(z) cos(h2(z)) − A(z)h′
2(z) sin(h2(z)) = −h′

2(z + 2c) sin(h2(z + 2c)).(2.22)

Combining the square of (2.22) with (2.21), we have

A′(z)2 cos2(h2(z)) + A(z)2h′
2(z)

2 sin2(h2(z))

−2A(z)A′(z)h′
2(z) sin(h2(z)) cos(h2(z))

= h′
2(z + 2c)2 sin2(h2(z + 2c))

= h′
2(z + 2c)2(1 − A(z)2 cos2(h2(z))).

Hence, we have

(
A′(z)2 − A(z)2(h′

2(z)
2 − h′

2(z + 2c)2)
)
cos2(h2(z)) + A(z)2h′

2(z)
2 − h′

2(z + 2c)2

= 2A(z)A′(z)h′
2(z) sin(h2(z)) cos(h2(z)).

Taking the square of above equation, we obtain

(
(A′(z)2 − A(z)2(h′

2(z)
2 − h′

2(z + 2c)2)) cos2(h2(z)) + A(z)2h′
2(z)

2 − h′
2(z + 2c)2

)2

=
(
2A(z)A′(z)h′

2(z) sin(h2(z)) cos(h2(z))

)2

= 4A(z)2A′(z)2h′
2(z)

2 cos2(h2(z))(1 − cos2(h2(z))).

Observe the coefficients of cos4(h2(z)) and cos2(h2(z)), for avoiding a contradiction
with Valiron–Mohon’ko lemma [13, Theorem 2.2.5], we have
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⎧⎪⎨
⎪⎩

A(z)2h′
2(z)

2 − h′
2(z + 2c)2 ≡ 0,

4A(z)2A′(z)2h′
2(z)

2 ≡ 0,

A′(z)2 − A(z)2(h′
2(z)

2 − h′
2(z + 2c)2) ≡ 0.

(2.23)

Since A(z) and h′
2(z) are nonzero entire functions, then A′(z) ≡ 0 follows by the

second equation of (2.23) and

h′
2(z)

2 − h′
2(z + 2c)2 ≡ 0

that is

h′
2(z − c)2 − h′

2(z + c)2 ≡ 0

follows by the third equation of (2.23). So A(z)2 ≡ 1 that is

h′
2(z)

2h′
1(z + c)2 = h′

2(z − c)2h′
1(z)

2 ≡ 1. (2.24)

Furthermore, if f and g are finite order, then h1 and h2 are polynomials. From (2.24),
we can assume h1(z) = α1z+β1 and h2(z) = α2z+β2, where (α1α2)

2 = 1. Next, we
will affirm α1 = ±1 and α2 = ±1. Taking the first derivative of the second equation
of (2.19), we have

h′′
2(z) cos(h2(z)) − h′

2(z)
2 sin(h2(z)) = −h′

1(z + c) sin h1(z + c).

Namely,

−α2
2 sin(α2z + β2) = −α1 sin(α1z + α1c + β1).

Combining the square of above equation with the second equation of (2.19), we have

α4
2[1 − cos2(α2z + β2)] = α2

1[1 − α2
2 cos

2(α2z + β2)].

From (α1α2)
2 = 1, we have

α4
2[1 − cos2(α2z + β2)] = 1

α2
2

− cos2(α2z + β2).

By a basic computation, we have α2
2 = 1 and α2

1 = 1. From (2.21) and (2.19), we
have the following four cases:

(i) If α1 = 1 and α2 = 1, then c = kπ and β1 = β2 + kπ + 2mπ ;
(ii) If α1 = −1 and α2 = −1, then c = kπ and β1 = β2 + kπ + mπ ;
(iii) If α1 = 1 and α2 = −1, then c = π

2 + kπ and β1 = −β2 + π
2 + kπ + 2mπ;

(iv) If α1 = −1 and α2 = 1, then c = π
2 + kπ and β1 = −β2 + π

2 + kπ + mπ.

Then, the corresponding entire solutions with finite order of (1.8) are:

123



196 Page 14 of 17 Y. Li, K. Liu

(i) f (z) = sin(z + b) and g(z) = sin(z + b + kπ + 2mπ), c = kπ ;
(ii) f (z) = sin(−z + b) and g(z) = sin(−z + b + kπ + mπ), c = kπ ;
(iii) f (z) = sin(−z + b) and g(z) = sin(z − b + π

2 + kπ + 2mπ), c = π
2 + kπ ;

(iv) f (z) = sin(z + b) and g(z) = sin(−z − b + π
2 + kπ + mπ), c = π

2 + kπ ,

where k,m are any integers and b is a constant. The proof of Theorem 1.5 is completed.
��

Proof of Theorem 1.6 Let

ψ(z) = β1(z)g(k)(z)m − α1(z)

f (z)n
+ 1

and

φ(z) = β2(z) f (k)(z)m − α2(z)

g(z)n
+ 1.

Then, we will discuss the following three cases.

(1) If f (z) and g(z) are all transcendental properly meromorphic functions, using the
first main theorem of Nevanilnna theory and [9, Theorem 3.1], then we have

nT (r , f (z)) = T (r , f n(z)) ≤ T

(
r ,

ψ(z) − 1

β1(z)g(k)(z)m − α1(z)

)
+ O(1)

≤ T (r , ψ(z)) + T

(
r ,

1

β1(z)g(k)(z)m − α1(z)

)
+ O(1)

≤ T (r , ψ(z)) + T (r , g(k)(z)m) + S(r)

≤ T (r , ψ(z)) + m(k + 1)T (r , g(z)) + S(r), (2.25)

where S(r) = o(T (r)) and T (r) = max{T (r , f (z)), T (r , g(z))}. Hence, we
conclude

T (r , ψ(z)) ≥ nT (r , f (z)) − m(k + 1)T (r , g(z)) + S(r). (2.26)

Similarly, we conclude

T (r , φ(z)) ≥ nT (r , g(z)) − m(k + 1)T (r , f (z)) + S(r). (2.27)

In addition, we can obtain the following inequality by the expression of ψ(z),

T (r , ψ(z)) ≤ T (r , f (z)n) + T (r , β1(z)g
(k)(z)m − α1(z)) + O(1)

≤ T (r , f (z)n) + T (r , g(k)(z)m) + S(r)

≤ nT (r , f (z)) + m(k + 1)T (r , g(z)) + S(r). (2.28)

The next inequality can be proved as the above by the expression of φ(z)

T (r , φ(z)) ≤ nT (r , g(z)) + m(k + 1)T (r , f (z)) + S(r). (2.29)
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Thus, S(r , ψ(z)) = o(T (r)) and S(r , φ(z)) = o(T (r)). Using the second main
theorem of Nevanlinna theory and [9, Theorem 3.1], we obtain

T (r , ψ(z)) ≤ N (r , ψ(z)) + N

(
r ,

1

ψ(z)

)
+ N

(
r ,

1

ψ(z) − 1

)
+ S(r , ψ(z))

≤ N

(
r ,

1

f (z)

)
+ N (r , g(z)) + N

(
r ,

1

f (z)n + β1(z)g(k)(z)m − α1(z)

)

+N

(
r ,

1

β1(z)g(k)(z)m − α1(z)

)
+ N (r , f (z)) + S(r , ψ)

≤ 2T (r , f (z)) + N

(
r ,

1

f (z)n + β1(z)g(k)(z)m − α1(z)

)

+(m(k + 1) + 1)T (r , g(z)) + S(r , ψ(z)). (2.30)

Similarly, we have

T (r , φ(z)) ≤ 2T (r , g(z)) + N

(
r ,

1

g(z)n + β2(z) f (k)(z) − α2(z)

)

+(m(k + 1) + 1)T (r , f (z)) + S(r , φ(z)). (2.31)

Hence, if f (z)n +β1(z)g(k)(z)m −α1(z) and g(z)n +β2(z) f (k)(z)m −α2(z) have
finitely many zeros, we have

(n − 2m(k + 1) − 3)(T (r , f (z)) + T (r , g(z))) ≤ S(r),

which is impossible with n ≥ 2m(k + 1) + 4, our conclusion is proved.
(2) If only one of f (z) and g(z) is transcendental properly meromorphic function,

without loss of generality, let f (z) be properly meromorphic and g(z) be entire.
By removing the counting function of poles of g(z), then Eq. (2.27) remains true
and Eq. (2.26) changes into

T (r , ψ(z)) ≥ nT (r , f (z)) − mT (r , g(z)) + S(r), (2.32)

and (2.30) changes into

T (r , ψ(z)) ≤ 2T (r , f (z)) + N

(
r ,

1

f (z)n + β1(z)g(k)(z)m − α1(z)

)

+mT (r , g(z)) + S(r , ψ(z)), (2.33)

and (2.31) changes into

T (r , φ(z)) ≤ T (r , g(z)) + N

(
r ,

1

g(z)n + β2(z) f (k)(z) − α2(z)

)

+(m(k + 1) + 1)T (r , f (z)) + S(r , φ(z)).
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Hence, if f (z)n +β1(z)g(k)(z)m −α1(z) and g(z)n +β2(z) f (k)(z)m −α2(z) have
finitely many zeros, we can get

(n − 2m(k + 1) − 3)T (r , f (z)) + (n − 2m − 1)T (r , g(z)) ≤ S(r),

which is impossible with n ≥ 2m(k + 1) + 4.
(3) If f (z) and g(z) are all transcendental entire functions, then Eq. (2.27) changes

into

T (r , φ(z)) ≥ nT (r , g(z)) − mT (r , f (z)) + S(r),

and Eq. (2.26) changes into

T (r , ψ(z)) ≥ nT (r , f (z)) − mT (r , g(z)) + S(r),

and (2.30) changes into

T (r , ψ(z)) ≤ T (r , f (z)) + N

(
r ,

1

f (z)n + β1(z)g(k)(z)m − α1(z)

)

+mT (r , g(z)) + S(r , ψ(z)),

and (2.31) changes into

T (r , φ(z)) ≤ T (r , g(z)) + N

(
r ,

1

g(z)n + β2(z) f (k)(z) − α2(z)

)

+mT (r , f (z)) + S(r , φ(z)).

Hence, if f (z)n +β1(z)g(k)(z)m −α1(z) and g(z)n +β2(z) f (k)(z)m −α2(z) have
finitely many zeros, we can get

(n − 2m − 1)[T (r , f (z)) + T (r , g(z))] ≤ S(r),

which is impossible with n ≥ 2m + 2. The proof of Theorem 1.6 is completed.��
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