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Abstract
In this paper, we consider the nonlinear parabolic equation

⎧
⎨

⎩

ut (t, x) = �u(t, x) + f (u(t, x)), (t, x)∈(0, +∞) × �◦,
u(t, x) = 0, (t, x)∈[0, +∞) × ∂�,

u(0, x) = u0(x) ≥ 0, x∈�,

on the connected locally finite graphG = (V , E), where� is theμ-Laplacian,� ⊂ V
is a bounded domain on graphs, and u0(x) is a nonnegative and nontrivial initial value,
f is locally Lipschitz continuous on R, f (0) = 0 and f (u) > 0 for all u > 0. Using
the concavity method, we prove that when the nonlinear term f and the initial value
u0(x) satisfy certain conditions, the above equation admits the blow-up solutions.
Moreover, we extend the condition of f to p-Laplacian parabolic equation on locally
finite graphs, and we also obtain the blow-up solutions for p > 2.

Keywords Blow-up solutions · Discrete parabolic equation · Banach fixed point
theorem · Concavity method · Locally finite graph

Mathematics Subject Classification 35R02 · 35A01 · 35K91 · 35K92

1 Introduction

Let us start with blow-up phenomenon of parabolic equations on R
N , which was

discussed by Kaplan [17] and Fujita [5, 6]. Fujita [5] considered the following Cauchy
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problem

{
ut (t, x) = �u(t, x) + uq(t, x), (t, x)∈(0, +∞) × R

N ,

u(0, x) = u0(x), x∈RN ,
(1.1)

where q > 1. Fujita obtained the critical exponent q∗ = 1 + 2/N and showed that,
if 1 < q < q∗, then for any nonnegative and nontrivial initial value, the solution of
Eq. (1.1) blows up in finite time. After that, Fujita [6] also considered the following
nonlinear parabolic equation

⎧
⎨

⎩

ut (t, x) = �u(t, x) + f (u(t, x)), (t, x)∈(0, +∞) × �,

u(t, x) = 0, (t, x)∈[0, +∞) × ∂�,

u(0, x) = a(x), x∈�,

(1.2)

where� ⊂ R
m and the initial value a(x) is nonnegative and nontrivial. Fujita supposed

that f satisfies the following conditions, i.e., f is locally Lipschitz continuous and
convex in [0, +∞); f (0) ≥ 0 and f (r) > 0 for r > 0; 1/ f is integrable at r = +∞.

And he showed that if
∫ +∞
r 1/ f (λ)dλ = o(r− 2

m ) as r → 0+, then the solutions of
(1.2) blow up in finite time. Then, Meier [29] investigated the blow-up phenomenon
for the parabolic equations with nonlinear source

⎧
⎨

⎩

ut (t, x) = �u(t, x) + ψ(t) f (u(t, x)), (t, x)∈(0, +∞) × �,

u(t, x) = 0, (t, x)∈(0, +∞) × ∂�,

u(0, x) = u0(x) ≥ 0, x∈�,

(1.3)

where ψ(t) ≈ tq or ψ(t) ≈ eβt with β > 0. Nabongo et al. [30] proved that the
solutions of (1.3) blow up in finite time if the initial data is sufficiently large.

Nowadays, there have been increasingly more studies about partial differential
equations on graphs. For the discrete Laplacian case, in a series of works [9–11],
by variational method, Grigor’yan, Lin and Yang solved several elliptic differential
equations on graphs. For more studies in this direction, see for examples [12–14, 16,
26, 28, 33, 36, 37] and the references therein. Recently, many results also have been
obtained for parabolic equations on graphs or networks, the blow-up phenomenon
of the semilinear heat Eq. (1.1) was studied by Lin and Wu [22] on finite graphs and
locally finite graphs, the discrete parabolic equations of (1.2) were discussed by Chung
et al. [2] on networks, by Lin andWu [23] on locally finite graphs, the critical exponent
for the initial boundary value problem of Eq. (1.3) was investigated by Zhou et al. [41]
on graphs when ψ(t) = eβt and f (u) = uq with β > 0, q > 1, by Chung et al. [4]
on networks. For other related works, see for examples [1, 8, 18, 19, 21, 24, 25, 27,
38, 39] and references therein.

Motivated by Levine [20], Philippin et al. [32] studied the blow-up solutions of
Eq. (1.2) by concavity method on RN , and they obtained that for constant ε > 0, if f
satisfies

(2 + ε)F(u) ≤ u f (u), u > 0, (1.4)
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where F(u) = ∫ u
0 f (s)ds, and the initial value satisfies

−1

2

∫

�

|∇u0|2(x)dx +
∫

�

F(u0(x))dx > 0,

then the solutions of Eq. (1.2) blow up in finite time. Recently, for the discrete ω-
Laplacian case of Eq. (1.2) on networks, Chung et al. [2] develop a new condition of
f depending on domain in place of (1.4), and they extended the results of Philippin et
al. [32] to the case of discrete ω-Laplacian equations on networks and obtained blow-
up solutions by concavity method. Following their works, in this paper, we consider
the blow-up solutions of the discrete μ-Laplacian nonlinear parabolic equations on
graphs.

For clarity, we review the basic settings on graphs. Let G = (V , E) be a graph,
where V denotes the vertex set and E denotes the edge set. Throughout this paper,
we always assume that G satisfies the following conditions (a)–(e), and G is called a
connected locally finite graph.

(a) (Simple) G contains neither loops nor multiple edges.
(b) (Locally finite) For any x ∈ V , there exist only finite vertices y ∈ V such that

xy ∈ E .
(c) (Connected) For any x, y ∈ V , there exist finite edges connecting x and y.
(d) (Symmetric) For any (x, y) ∈ V 2, let ω : V × V → R

+ be a positive symmetric
weight such that ωxy = ωyx , where we write ωxy for ω(x, y).

(e) (Positive finite measure) μ : V → R
+ defines a positive finite measure on V and

satisfies μ0 = inf x∈V μ(x) > 0.
� ⊂ V is said to be a domain if it is a connected subset of V . We also always assume

that � is a domain satisfying the conditions ( f ) and (g).
(f) (Bounded domain) Let d(x, y) be the minimal number of edges which connect x

and y. For any two vertices x, y ∈ �, if d(x, y) is uniformly bounded from above,
we call � is a bounded domain. The boundary of � is defined by

∂� = {x ∈ � ∃ y /∈ � such that xy ∈ E}

and the interior of � is denoted by �◦ = �\∂�. In fact, a bounded domain �

contains only finitely many vertices. Locally finite graph G is unbounded, thus V
contains infinitely many vertices.

(g) (Dμ < +∞) Let m(x) = ∑
y∼x ωxy , where y ∼ x means xy ∈ E . Dμ is defined

by

Dμ = max
x∈�

m(x)

μ(x)
,

it is obvious that Dμ < +∞ under the condition ( f ). The value of Dμ depends
on the selection of the bounded domain �, and if � changes, the value of Dμ will
also change. This is the fundamental difference between a finite graph and the
bounded domains on a locally finite graph.
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Let C(�) be the set of real functions on �, for any function u ∈ C(�), the μ-
Laplacian of u is defined by

�u(x) = 1

μ(x)

∑

y∼x

ωxy(u(y) − u(x)). (1.5)

The associated gradient form of two functions u, v ∈ C(�) is given as


(u, v)(x) = 1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)). (1.6)

We write 
(u)(x) = 
(u, u)(x) and denote the length of the gradient by

|∇u|(x) = √

(u)(x) =

(
1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))2
) 1

2

.

For any function h ∈ C(�), the integral of h on a bounded domain � reads

∫

�

hdμ =
∑

x∈�

μ(x)h(x).

In this paper, we consider the following nonlinear parabolic equation on locally
finite graphs

⎧
⎨

⎩

ut (t, x) = �u(t, x) + f (u(t, x)), (t, x)∈(0, +∞) × �◦,
u(t, x) = 0, (t, x)∈[0, +∞) × ∂�,

u(0, x) = u0(x), x∈�,

(1.7)

where � is μ-Laplacian defined by (1.5) on �, u0(x) is a nonnegative and nontrivial
initial value, f satisfies the following properties:
(H1) f be locally Lipschitz continuous on R, namely, for all m > 0, there exists a
constant L > 0 such that

| f (a) − f (b)| ≤ L|a − b|, ∀ a, b ∈ [−m, m].

(H2) f (0) = 0 and f (u) > 0 for all u > 0.
Firstly, we use Banach fixed point theorem to prove the short time existence and

the uniqueness of the solution for Eq. (1.7) and obtain our first result.

Theorem 1.1 Assume that f satisfies the conditions (H1) and (H2). If t > 0 is small
enough such that t < 1/(2Dμ + L), then there exists a unique nonnegative solution
u(t, x) to the equation (1.7) in the time interval [0, t].

Next, we only care about the long time nonexistence of the solution, which means
the solution will blow-up in a finite time. To proceed, we give the definition of blow-up
solutions of Eq. (1.7) on locally finite graph.
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Definition 1.2 If there exists x0 ∈ �◦ such that |u(t, x0)| → +∞ as t → T−, then
the solution u(t, x) of Eq. (1.7) blows up in a finite time T .

It is well known that if
∫ +∞
m 1/ f (λ)dλ = +∞ for some m > 0, the solutions of Eq.

(1.7) are global. In fact, Osaood [31] showed that if Eq. (1.7) has blow-up solutions,
f must satisfy

∫ +∞

m

dλ

f (λ)
< +∞ (1.8)

for somem > 0. However, if f only satisfies (1.8), it does not guarantee that Eq. (1.7)
has blow-up solutions. In order to get the blow-up solutions, we should strengthen the
condition of f , i.e., for any two constants δ, ε > 0, f satisfies

(H3) f (u) ≥ δu1+ε, ∀ u ≥ m > 1.

Now, we are ready to state our second result.

Theorem 1.3 Assume that f satisfies the conditions (H1)−(H3). If the initial value

u0(x) is sufficiently large satisfying maxx∈� u0(x) > max{(Dμ/δ)
1
ε , m}, then the

nonnegative solutions u(t, x) of the equation (1.7) blow up in a finite time T .

We can see the condition (H3) is independent of the eigenvalue of −�, which
depends on the domain �. Inspired by Chung et al. [2], we extend their new condition
from networks to graphs. Let 0 < λ1(�) be the first eigenvalue of −� with the
Dirichlet boundary condition, which is defined by

λ1(�) = inf
u �≡0,u|∂�=0

∫

�
|∇u|2dμ

∫

�
u2dμ

. (1.9)

Then, we develop a new condition of f , namely,
(H4) for any constant ε > 0, if there exist some positive constants α and β such that
for all u > 0, there holds

(2 + ε)F(u) ≤ u f (u) + αu2 + β,

where F(u) = ∫ u
0 f (s)ds, 0 < α ≤ ελ1(�)/2, λ1(�) is the first eigenvalue of −�.

Under the new condition (H4), we deduce another main result.

Theorem 1.4 Assume that f satisfies the conditions (H1), (H2) and (H4). If the initial
value u0(x) satisfies

− 1

2

∫

�

|∇u0|2(x)dμ +
∫

�

(F(u0(x)) − β)dμ > 0, (1.10)

then the nonnegative solutions u(t, x) of the equation (1.7) blow up in a finite time T .
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Finally, we also consider a p-Laplacian parabolic equation on locally finite graphs

⎧
⎨

⎩

ut (t, x) = �pu(t, x) + f (u(t, x)), (t, x)∈(0, +∞) × �◦,
u(t, x) = 0, (t, x)∈[0, +∞) × ∂�,

u(0, x) = u0(x), x∈�,

(1.11)

where p-Laplacian �p of u ∈ C(�) is represented by

�pu(x) = 1

2μ(x)

∑

y∼x

ωxy(|∇u|p−2(y) + |∇u|p−2(x))(u(y) − u(x)), ∀ p > 1.

(1.12)
The first eigenvalue of −�p with the Dirichlet boundary condition is given as

λ1(�) = inf
u �≡0,u|∂�=0

∫

�
|∇u|pdμ

∫

�
|u|pdμ

.

It is easy to see that p-Laplacian is μ-Laplacian when p = 2, but p-Laplacian is
nonlinear operator since �p(u + v)(x) �= �pu(x) + �pv(x) by (1.12). In particular,
there were many interesting works for p-Laplacian equations on graphs. Han et al.
[12] studied a nonlinear p-Laplacian Schrödinger equation with p > 2 on locally
finite graphs. After that, Shao et al. [34] made essential improvements to p > 1,
and they obtained the existence and convergence of solutions under more general
conditions. To further explore this field, refer to studies such as [7, 15, 35] and their
respective references.Whatmakes Theorem 1.4 interesting is that it can be nontrivially
generalized to p-Laplacian parabolic Eq. (1.11). When p > 2, we have the following
theorem.

Theorem 1.5 Assume that f satisfies the conditions (H1), (H2) and

(H5) (p + ε)F(u) ≤ u f (u) + αu p + β, u > 0,

for any ε > 0 and some constants α, β > 0 satisfying 0 < α ≤ ελ1(�)/p with p > 2,
where λ1(�) is the first eigenvalue of −�p with the Dirichlet boundary condition. If
the nonnegative and nontrivial initial value u0(x) satisfies

− 1

p

∫

�

|∇u0|p(x)dμ +
∫

�

(F(u0(x)) − β)dμ > 0, (1.13)

then the nonnegative solutions u(t, x) of Eq. (1.11) blow up in a finite time T .

Although we study the same type of equation as Lin and Wu [23] on graphs, they
use the method of heat kernel estimate, and we propose a different method to prove
the nonexistence of global solutions for Eq. (1.7). Following the lines of Chung et al.
[2], we prove Theorems 1.4 and 1.5 by concavity method. Compared with Chung et al.
[2], we extend their results to locally finite graphs. In addition, this paper also studies
the p-Laplacian parabolic equation on graphs, which is discussed by Chung et al. [3]
on Euclidean space RN .
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The remaining parts of this paper are organized as follow: in Sect. 2, we introduce
formulas of integration by parts about μ-Laplacian and p-Laplacian on graphs, and
then, we introduce two important comparison principles on locally finite graphs and
deduce that the solutions u(t, x) of Eq. (1.7) are nonnegative. In Sect. 3, by Banach
fixed point theorem, we prove Theorem 1.1 and obtain the short time existence and
the uniqueness of a solution for (1.7). In Sect. 4, we consider the maximal existence
time of the solutions to (1.7) and, respectively, prove Theorems 1.3 and 1.4, then we
prove the blow-up solutions of Eq. (1.11) and complete the proof of Theorem 1.5.

2 Preliminary Analysis

2.1 Formula of Integration by Parts

The set of all functions with compact support is denoted by

Cc(�) = {u ∈ C(�) : {x ∈ � : u(x) �= 0} is of finite cardinality} ,

where C(�) is the set of all real functions on �. For any p > 1, let W 1,p
0 (�) be the

completion of Cc(�), with respect to the norm

‖u‖
W 1,p

0 (�)
=

( ∫

�

(|∇u|p + u p)dμ

) 1
p

.

Since the bounded domain � only contains finite vertices, W 1,p
0 (�) is exactly a finite

dimensional linear function space R|�◦|, where |�◦| is the number of vertices in �◦.
Now, we introduce two important conclusions. Lemma 2.1 comes from Zhang and

Zhao [40] directly, and we omit this part of the proof.

Lemma 2.1 (Formula of integration by parts 1 [40]) Suppose that u ∈ W 1,2
0 (�) and

�u is well defined as (1.5). Let v ∈ Cc(�), where � ⊂ V is a bounded domain. Then,
we have

∫

�


(u, v)dμ = −
∫

�

�uvdμ.

Lemma 2.2 (Formula of integration by parts 2) Suppose that u ∈ W 1,p
0 (�) and �pu

is well defined as (1.12) with p > 1. Let v ∈ Cc(�), where � ⊂ V is a bounded
domain. Then, we have

∫

�

|∇u|p−2
(u, v)dμ = −
∫

�

�puvdμ.
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Proof Inspired by Zhang et al. [40], together with the definition of associated gradient
in (1.6) and p-Laplacian in (1.12), we have

∫

�

�puvdμ =
∑

x∈�

μ(x)�pu(x)v(x)

= 1

2

∑

x∈�

∑

y∼x

ωxy(|∇u|p−2(y) + |∇u|p−2(x))(u(y) − u(x))v(x)

= −1

2

∑

y∈�

∑

x∼y

ωxy |∇u|p−2(y)(u(x) − u(y))v(x)

− 1

2

∑

x∈�

∑

y∼x

ωxy |∇u|p−2(x)(u(y) − u(x))(−v(x))

= −1

2

∑

x∈�

∑

y∼x

ωxy |∇u|p−2(x)(u(y) − u(x))(v(y) − v(x))

= −
∫

�

|∇u|p−2
(u, v)dμ.

This ends the proof of Lemma 2.2. ��

2.2 Comparison Principle

Now, we introduce the following comparison principles on locally finite graphs, which
were studied by Chung et al. [2] on networks. We extend their results to the bounded
domain on locally finite graphs, which provides a new proof method of comparison
principle discussed by Lin and Wu [23].

Lemma 2.3 (Comparison principle) Let f satisfies (H1). For any T > 0 (T may be
+∞), we assume that u(t, x) and v(t, x) are continuous and differentiable with
respect to t in (0, T ) × �, and satisfy

⎧
⎨

⎩

ut (t, x) − �u(t, x) − f (u(t, x)) ≥ vt (t, x) − �v(t, x) − f (v(t, x)), (t, x)∈(0, T ) × �◦,

u(t, x) ≥ v(t, x), (t, x)∈[0, T ) × ∂�,

u(0, x) ≥ v(0, x), x∈�.

(2.1)
Then, u(t, x) ≥ v(t, x) for any (t, x) ∈ [0, T ) × �.

Proof For any 0 < T ′ < T , since f be locally Lipschitz continuous on R, then there
exists a constant L > 0 such that

| f (a) − f (b)| ≤ L|a − b|, ∀ a, b ∈ [−m, m], (2.2)

where m = maxx∈�◦ maxt∈(0, T ′] {|u(t, x)|, |v(t, x)|}.
For any (t, x) ∈ [0, T ′]×�, let τ(t, x) = u(t, x)− v(t, x), it follows from (2.1)

that
τt (t, x) − �τ(t, x) − [ f (u(t, x)) − f (v(t, x))] ≥ 0. (2.3)
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In fact,μ-Laplacian� is a linear operator, which ensures (2.3) holds. For any (t, x) ∈
[0, T ′] × �, we consider

τ̃ (t, x) = e−2Ltτ(t, x). (2.4)

Inserting (2.4) into (2.3), we have

τ̃t (t, x) − �τ̃(t, x) + 2L τ̃ (t x) − e−2Lt [ f (u(t, x)) − f (v(t, x))] ≥ 0. (2.5)

Since u(t, x), v(t, x) are continuous with respect to t and � is a bounded domain,
we can always find (t0, x0) ∈ [0, T ′] × � such that

τ̃ (t0, x0) = min
x∈�

min
t∈[0, T ′]

τ̃ (t, x). (2.6)

Then, the conclusion of Lemma 2.3 is equivalent to

τ̃ (t0, x0) ≥ 0 (2.7)

for all (t, x) ∈ [0, T ′] × �.
Next, we prove (2.7) by contradiction. We suppose τ̃ (t0, x0) < 0. It follows from

(2.1) that τ̃ (t, x) ≥ 0 in [0, T ′] × ∂� and τ̃ (0, x) ≥ 0 in �, then we deduce that
(t0, x0) ∈ (0, T ′] × �◦. In view of (2.6), we fix t0 and get

τ̃ (t0, y) ≥ τ̃ (t0, x0) (2.8)

for any y ∈ �. Then, (2.8) implies

�τ̃(t0, x0) = 1

μ(x0)

∑

y∼x0

wx0 y (̃τ (t0, y) − τ̃ (t0, x0)) ≥ 0. (2.9)

Fix x0 ∈ �◦, since τ̃ (t, x0) is differentiable with respect to t in (0, T ′], then it yields

τ̃t (t0, x0) ≤ 0. (2.10)

By (2.2) and the assumption τ̃ (t0, x0) < 0, we have

2L τ̃ (t0 x0) − e−2Lt0 [ f (u(t0, x0)) − f (v(t0, x0))]

≤ 2L τ̃ (t0, x0) + Le−2Lt0 |u(t0, x0) − v(t0, x0)|
= 2L τ̃ (t0, x0) + L |̃τ(t0, x0)|
= L τ̃ (t0 , x0) < 0. (2.11)

In view of (2.9)–(2.11), there holds

τ̃t (t0, x0) − �τ̃(t0, x0) + 2L τ̃ (t0, x0) − e−2Lt0 [ f (u(t0, x0)) − f (v(t0, x0))] < 0,
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which contradicts (2.5). Hence, τ̃ (t, x) ≥ 0 for any (t, x) ∈ (0, T ′] × �◦, then we
have τ(t, x) ≥ 0 for any (t, x) ∈ [0, T ′] × �.

Finally, since T ′ is arbitrary, we get the desired conclusion. ��
Lemma 2.4 (Strong comparison principle) Suppose that f satisfies (H1). For any
T > 0 (T may be +∞), we assume that u(t, x) and v(t, x) are continuous and
differentiable with respect to t in (0, T ) × �, and satisfy

⎧
⎨

⎩

ut (t, x) − �u(t, x) − f (u(t, x)) ≥ vt (t, x) − �v(t, x) − f (v(t, x)), (t, x)∈(0, T ) × �◦,

u(t, x) ≥ v(t, x), (t, x)∈[0, T ) × ∂�,

u(0, x) ≥ v(0, x), x∈�.

(2.12)
If there exists a vertex x∗ ∈ �◦ such that u(0, x∗) > v(0, x∗), then u(t, x) > v(t, x)
for any (t, x) ∈ (0, T ) × �◦.

Proof By Lemma 2.3, we deduce that u(t, x) ≥ v(t, x) for any (t, x) ∈ [0, T ) × �.
Furthermore, f satisfies (2.2) since f be locally Lipschitz continuous on R. Take
τ(t, x) as the same as Lemma 2.3. Then, for any 0 < T ′ < T , we get τ(t, x) ≥ 0 for
all (t, x) ∈ [0, T ′] × �. This together with condition (g) give

�τ(t, x∗) = 1

μ(x∗)
∑

y∼x∗
wx∗y(τ (t, y) − τ(t, x∗))

≥ − 1

μ(x∗)
∑

y∼x∗
wx∗yτ(t, x∗)

≥ −Dμτ(t, x∗). (2.13)

Then, from (2.12) we deduce that

τt (t, x
∗) − �τ(t, x∗) − [

f (u(t, x∗)) − f (v(t, x∗))
] ≥ 0 (2.14)

for any t ∈ (0, T ′]. Taking into account (2.2) and the fact τ(t, x) ≥ 0 for all (t, x) ∈
[0, T ′] × �, combining (2.13) and (2.14), we have

τt (t, x
∗) ≥ �τ(t, x∗) + [

f (u(t, x∗)) − f (v(t, x∗))
]

≥ −Dμτ(t, x∗) − L|τ(t, x∗)|
≥ −(Dμ + L)τ (t, x∗).

By calculating directly, we deduce that for any t ∈ (0, T ′]

τ(t, x∗) ≥ τ(0, x∗)e−(Dμ+L)t > 0 (2.15)

since τ(0, x∗) > 0.
Now, we prove Lemma 2.4 by contradiction, we suppose that there exists (t0, x0) ∈

(0, T ′] × �◦ such that

τ(t0, x0) = min
x∈�◦ min

t∈(0, T ′]
τ(t, x) = 0.
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Then, it follows that

τt (t0, x0) ≤ 0, �τ(t0, x0) ≥ 0.

By (2.14), we have

0 ≤ τt (t0, x0) − �τ(t0, x0) ≤ 0.

Hence, we get

�τ(t0, x0) = 0.

This leads to u(t0, y) = u(t0, x0) = 0 for all y ∼ x0, and u(t0, x) = 0 for all x ∈ �

since � is a bounded and connected domain. This contradicts (2.15), therefore, for
any (t, x) ∈ (0, T ′] × �◦, we have u(t, x) > v(t, x).

Finally, since T ′ is arbitrary, we complete the proof of Lemma 2.4. ��
Let T = +∞ and v(t, x) ≡ 0 for all (t, x) ∈ [0, +∞) × �, it follows from

Lemma 2.4 that the solutions u(t, x) of Eq. (1.7) are nonnegative for all (t, x) ∈
[0, +∞)×� since f (0) = 0. Furthermore, byLemma2.4,we can get amuch stronger
conclusion. Since u0(x) is a nonnegative and nontrivial initial value, we deduce that
the solutions u(t, x) of Eq. (1.7) are positive for all (t, x) ∈ (0, +∞) × �◦. As for
the p-Laplacian parabolic Eq. (1.11), we can also obtain the comparison principle,
and the strong comparison principle under p > 2, hence the similar conclusions also
hold.

3 Short Time Existence

To begin with, we define a Banach space

Xt0 = {u : [0, t0] × � → R | u|∂� = 0, u(·, x) ∈ C[0, t0] for each x ∈ �} ,

with the norm

‖u‖Xt0
= max

x∈�
max

t∈[0, t0]
|u(t, x)|,

where t0 > 0 is a fixed constant. Then, we consider the operator D : Xt0 → Xt0
defined by

D[u](t, x) =
{
u0(x) + ∫ t

0 �u(s, x)ds + ∫ t
0 f (u(s, x))ds, (t, x)∈[0, t0] × �◦,

0, (t, x)∈[0, t0] × ∂�.

It is easy to prove the operator D is well-defined, namely, D maps Xt0 to Xt0 . We omit
this part of the proof. Next in order to use Banach fixed point theorem, we prove an
important lemma.
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Lemma 3.1 Assume that f satisfies (H1). If t0 is sufficiently small, then the operator
D is a strict contraction in the ball

B(u0, 2‖u0‖Xt0
) = {u ∈ Xt0 | ‖u − u0‖Xt0

≤ 2‖u0‖Xt0
}.

Proof Let u, v ∈ B(u0, 2‖u0‖Xt0
). Since f satisfies (H1), there exists a constant

L > 0 such that

| f (a) − f (b)| ≤ L|a − b|, ∀ a, b ∈ [−m, m],

where m = 3‖u0‖Xt0
. Then, for any (t, x) ∈ [0, t0] × �, we have

∣
∣
∣
∣

∫ t

0
�u(s, x)ds

∣
∣
∣
∣ ≤

∫ t

0

1

μ(x)

∑

y∼x

ωxy |u(s, y) − u(s, x)|ds

≤ 2‖u‖Xt0
Dμt,

then it implies that

|D[u](t, x) − D[v](t, x)| =
∣
∣
∣
∣

∫ t

0
�(u − v)(s, x)ds +

∫ t

0
[ f (u(s, x)) − f (v(s, x))]ds

∣
∣
∣
∣

≤ 2‖u − v‖Xt0
Dμt + L‖u − v‖Xt0

t

≤ Ct0‖u − v‖Xt0
, (3.1)

where C = 2Dμ + L . It follows from (3.1) that

‖D[u] − D[v]‖Xt0
≤ Ct0‖u − v‖Xt0

.

Hence, if t0 is small enough such that Ct0 < 1, we deduce that the operator D is a
strict contraction in the ball B(u0, 2‖u0‖Xt0

). ��
Finally, by Banach fixed point theorem, we obtain the existence and uniqueness of

solutions to Eq. (1.7) in the time interval [0, t0] if t0 < 1/(2Dμ + L). This completes
the proof of Theorem 1.1.

4 Blow-Up Solutions

In this section, we consider the maximal existence time of the solutions to Eq. (1.7)
and prove Theorems 1.3 and 1.4. Then, we shall prove the nonexistence of global
solutions to Eq. (1.11) and complete the proof of Theorem 1.5.

Proof of Theorem 1.3 To begin with, let us recall the condition (H3) of f , for any
constants δ, ε > 0,

(H3) f (u) ≥ δu1+ε, u ≥ m,
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where m > 1.
We assume that f satisfies the conditions (H1)−(H3) and u1 > max{(Dμ/δ)

1
ε , m},

where u1 = maxx∈� u0(x). Let u(t, x) is the solution of (1.7) in [0, +∞) × �, and
let xt ∈ � be a vertex such that u(t, xt ) = maxx∈� u(t, x), and then, we just have to
prove that there exists T > 0 such that

u(t, xt ) → +∞

as t → T−.
By Lemma 2.3, we have u(t, x) ≥ 0 for all (t, x) ∈ [0, +∞) × �. Noting that

u(t, xt ) is continuous for all t > 0 and differentiable for almost all t > 0, we deduce
that

ut (s, xs) = �u(s, xs) + f (u(s, xs))

= 1

μ(xs)

∑

y∼xs

ωxs y (u(s, y) − u(s, xs)) + f (u(s, xs))

≥ −Dμu(s, xs) + δu1+ε(s, xs) (4.1)

for almost all s > 0 and u(s, xs) ≥ m.
We now claim that for all t > 0,

u(t, xt ) > u1

always holds. It follows from (4.1) and the fact u1 > (Dμ/δ)
1
ε that

lim
s→0+ ut (s, xs) ≥ lim

s→0+[−Dμu(s, xs) + δu1+ε(s, xs)]
= −Dμu1 + δu1+ε

1 > 0,

then there exists a constant s1 > 0 such that u(s, xs) is increasing in (0, s1). Hence,
we get u(t, xt ) > u1 in (0, s1). By contradiction, we suppose there exists s > 0 such
that u(s, xs) ≤ u1. Let (0, s1) bemaximal onwhich u(t, xt ) > u1 and u(s, xs) = u1,
s ∈ (0, s1). Then, there exists s∗ ∈ (0, s1) such that ut (s∗, xs∗) < 0 and u(s∗, xs∗) >

u1, however,

0 > ut (s
∗, xs∗) ≥ −Dμu(s∗, xs∗) + δu1+ε(s∗, xs∗) > 0,

which is a contradiction. Consequently, for all t > 0, we have u(t, xt ) > u1, this
leads to (4.1) holds for almost all s > 0.

Let F : [u1, +∞) → (0, F(u1)] be a function defined by

F(u) =
∫ +∞

u

ds

−Dμs + δs1+ε
< +∞, u ≥ u1. (4.2)
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Since u1 > m > 1 and ε > 0, the anomalous integral of (4.2) converges for all u ≥ u1.

Furthermore, we have −Dμs + δs1+ε > 0 for all s ≥ u1 due to u1 > (Dμ/δ)
1
ε . As a

consequence, F is a decreasing continuous function from [u1, +∞) onto (0, F(u1)],
its inverse function is denotes by G. In view of (4.1), there holds

t ≤
∫ t

0

ut (s, xs)

−Dμu(s, xs) + δu1+ε(s, xs)
du =

∫ u(t, xt )

u1

ds

−Dμs + δs1+ε
,

then it implies
F(u(t, xt )) ≤ F(u1) − t . (4.3)

Let inverse function G operate the two sides of (4.3), we deduce that

u(t, xt ) ≥ G(F(u1) − t),

it follows that u(t, xt ) → +∞ as t → F(u1)−, and the finite blow-up time is

F(u1) =
∫ +∞

u1

ds

−Dμs + δs1+ε
< +∞.

This ends the proof of Theorem 1.3. ��
Proof of Theorem 1.4 Since the condition (H3) is strong and independent of the eigen-
value of−�, inspired by Chung et al. [2], we develop a new condition of f as follows,
for any ε > 0,

(H4) (2 + ε)F(u) ≤ u f (u) + αu2 + β, u > 0,

where F(u) = ∫ u
0 f (s)ds, 0 < α ≤ ελ1(�)/2, α and β are positive constants, λ1(�)

is the first eigenvalue of −� with the Dirichlet boundary condition.
Now, we prove Theorem 1.4 by concavity method, which was studied by Levine

[20]. It is obvious that u(t, x) ≥ 0 for all (t, x) ∈ [0, +∞) × � by Lemma 2.3. Let

I (t) =
∫

�

u2(t, x)dμ, ∀ t ≥ 0

then by formula of integration by parts from Lemma 2.1 and (1.7), we have

d

dt
I (t) = 2

∫

�

u(t, x)ut (t, x)dμ

= 2
∫

�

u(t, x) (�u(t, x) + f (u(t, x))) dμ

= −2
∫

�

|∇u|2(t, x)dμ + 2
∫

�

u(t, x) f (u(t, x))dμ. (4.4)
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We define a functional J (t) by

J (t) = −1

2

∫

�

|∇u|2(t, x)dμ +
∫

�

(F(u(t, x)) − β)dμ, ∀ t ≥ 0.

Since the initial value u0(x) satisfies (1.10), we deduce that J (0) > 0. Taking the
derivative of J (t) with respect to t, we have

d

dt
J (t) =

∫

�

�u(t, x)ut (t, x)dμ +
∫

�

f (u(t, x))ut (t, x)dμ

=
∫

�

(�u(t, x) + f (u(t, x))) ut (t, x)dμ

=
∫

�

u2t (t, x)dμ ≥ 0, (4.5)

which implies that J (t) is a nondecreasing function, and thus, J (t) ≥ J (0) > 0 for
all t ≥ 0. Integrating (4.5) from 0 to t , we have

J (t) =
∫ t

0

∫

�

u2t (s, x)dμds + J (0). (4.6)

Let

K (t) =
∫ t

0
I (s)ds + M, ∀ t ≥ 0, (4.7)

where M > 0 is a sufficiently large constant to be determined later. Taking the deriva-
tive of K (t) with respect to t, we have by (4.4),

d

dt
K (t) = I (t) = 2

∫ t

0

∫

�

u(s, x)ut (s, x)dμds +
∫

�

u20(x)dμ. (4.8)

Noting that 0 < λ1(�) is the first eigenvalue of −� with the Dirichlet boundary
condition, by (1.9) we obtain that

∫

�

|∇u|2(t, x)dμ ≥ λ1(�)

∫

�

u2(t, x)dμ.
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This together with condition (H4) and (4.4), (4.6), taking the second derivative of
K (t), we have

1

2

d2

dt2
K (t) = −

∫

�

|∇u|2(t, x)dμ +
∫

�

u(t, x) f (u(t, x))dμ

≥ −
∫

�

|∇u|2(t, x)dμ +
∫

�

(
(2 + ε)F(u(t, x)) − αu2(t, x) − β

)
dμ

≥
(

−2 + ε

2
+ ε

2

)∫

�

|∇u|2(t, x)dμ

+
∫

�

(
(2 + ε)F(u(t, x)) − αu2(t, x) − (2 + ε)β

)
dμ

≥ (2 + ε)

(

−1

2

∫

�

|∇u|2(t, x)dμ +
∫

�

(F(u(t, x)) − β) dμ

)

+ ε

2

(∫

�

|∇u|2(t, x)dμ − λ1(�)

∫

�

u2(t, x)dμ

)

≥ (2 + ε)

(∫ t

0

∫

�

u2t (s, x)dμds + J (0)

)

. (4.9)

Using the Schwarz inequality and the Hölder inequality to (4.8), we have that for any
ρ > 0,

(
d

dt
K (t)

)2

≤ 4(1 + ρ)

(∫ t

0

∫

�

u(s, x)ut (s, x)dμds

)2

+
(

1 + 1

ρ

) (∫

�

u20(x)dμ

)2

= 4(1 + ρ)

(
∑

x∈�

μ(x)
∫ t

0
u(s, x)ut (s, x)ds

)2

+
(

1 + 1

ρ

)(∫

�

u20(x)dμ

)2

≤ 4(1 + ρ)

(
∑

x∈�

(

μ(x)
∫ t

0
u2(s, x)ds

) 1
2
(

μ(x)
∫ t

0
u2t (s, x)ds

) 1
2
)2

+
(

1 + 1

ρ

)(∫

�

u20(x)dμ

)2

≤ 4(1 + ρ)

(
∑

x∈�

μ(x)
∫ t

0
u2(s, x)ds

)(
∑

x∈�

μ(x)
∫ t

0
u2t (s, x)ds

)

+
(

1 + 1

ρ

)(∫

�

u20(x)dμ

)2

= 4(1 + ρ)

(∫ t

0

∫

�

u2(s, x)dμds

)(∫ t

0

∫

�

u2t (s, x)dμds

)

+
(

1 + 1

ρ

)(∫

�

u20(x)dμ

)2

. (4.10)
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In view of (4.7), (4.9) and (4.10), there holds for any ξ > 0,

d2K (t)

dt2
K (t) − (1 + ξ)

(
d

dt
K (t)

)2

≥ 2(2 + ε)

(∫ t

0

∫

�

u2t (s, x)dμds + J (0)

)(∫ t

0

∫

�

u2(s, x)dμds + M

)

− 4(1 + ρ)(1 + ξ)

(∫ t

0

∫

�

u2(s, x)dμds

) (∫ t

0

∫

�

u2t (s, x)dμds

)

−
(

1 + 1

ρ

)

(1 + ξ)

(∫

�

u20(x)dμ

)2

. (4.11)

Choosing ξ = ρ = √
(2 + ε) /2 − 1 > 0, and we obtain from (4.11) that

d2K (t)

dt2
K (t) − (1 + ξ)

(
d

dt
K (t)

)2

≥ 2(2 + ε)J (0)M − (2 + ε)
(√

2 (2 + ε) + 2
)

2ε

(∫

�

u20(x)dμ

)2

. (4.12)

Since J (0) > 0, if we choose M > 0 sufficiently large, say

M =
(√

2 (2 + ε) + 2
) (∑

x∈� μ(x)u20(x)
)2

4J (0)ε
,

then it follows from (4.12) that

d2K (t)

dt2
K (t) − (1 + ξ)

(
d

dt
K (t)

)2

> 0.

As a consequence,

d

dt

K ′(t)
K 1+ξ (t)

> 0.

Hence, we get an ordinary differential equation

{
K ′(t) ≥ K ′(0)

K 1+ξ (0)
K 1+ξ (t), t > 0,

K (0) = M .

By a straightforward calculation, we get

K (t) ≥
(

1

Mξ
− ξ

∑
x∈� μ(x)u20(x)

M1+ξ
t

)− 1
ξ

.
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This leads to K (t) → +∞ as

t →
(√

2 (2 + ε) + 2
)2 (∑

x∈� μ(x)u20(x)
)

4J (0)ε2
,

which implies u(t, x) blows up in a finite time, and we complete the proof of Theo-
rem 1.4. ��

Finally, we consider the blow-up solutions of the p-Laplacian parabolic Eq. (1.11)
and complete the proof of Theorem 1.5 when p > 2.

Proof of Theorem 1.5 By comparison principle, we have u(t, x) ≥ 0 for all (t, x) ∈
[0, +∞) × �. Then, by formula of integration by parts from Lemma 2.2 and (1.11),
we deduce that

d

dt

∫

�

u2(t, x)dμ = 2
∫

�

u(t, x)ut (t, x)dμ

= 2
∫

�

u(t, x)
(
�pu(t, x) + f (u(t, x))

)
dμ

= −2
∫

�

|∇u|p(t, x)dμ + 2
∫

�

u(t, x) f (u(t, x))dμ. (4.13)

The functional Jp(t) is defined by

Jp(t) = − 1

p

∫

�

|∇u|p(t, x)dμ +
∫

�

(F(u(t, x)) − β) dμ, t ≥ 0.

Taking into account (1.13), we have Jp(0) > 0. Then, taking the derivative of Jp(t),
by Lemma 2.2 we have

J ′
p(t) =

∫

�

|∇u|p−2(t, x)
 (u(t, x), ut (t, x)) dμ +
∫

�

f (u(t, x))ut (t, x)dμ

=
∫

�

(
�pu(t, x) + f (u(t, x))

)
ut (t, x)dμ

=
∫

�

u2t (t, x)dμ ≥ 0, (4.14)

which implies that Jp(t) > 0 for all t ≥ 0. Integrating (4.14) from 0 to t , we get

Jp(t) =
∫ t

0

∫

�

u2t (s, x)dμds + Jp(0). (4.15)

Let

R(t) =
∫ t

0

∫

�

u2(s, x)dμds + N , t ≥ 0, (4.16)
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where N > 0 is a sufficiently large constant. Then, it follows from (4.13) that

R′(t) =
∫

�

u2(t, x)dμ = 2
∫ t

0

∫

�

u(s, x)ut (s, x)dμds +
∫

�

u20(x)dμ.

Furthermore, in view of the condition (H5), together with (4.15), we deduce that

1

2
R′′(t) = −

∫

�

|∇u|p(t, x)dμ +
∫

�

u(t, x) f (u(t, x))dμ

≥
(

− (p + ε)

p
+ ε

p

)∫

�

|∇u|p(t, x)dμ

+
∫

�

(
(p + ε)F(u(t, x)) − αu p(t, x) − β

)
dμ

≥ (p + ε)

(

− 1

p

∫

�

|∇u|p(t, x)dμ +
∫

�

(F(u(t, x)) − β) dμ

)

+ ε

p

(∫

�

|∇u|p(t, x)dμ − λ1(�)

∫

�

u p(t, x)dμ

)

≥ (p + ε)

(∫ t

0

∫

�

u2t (s, x)dμds + Jp(0)

)

. (4.17)

By the same method as (4.10), for any ρ > 0, it follows that

R′(t)2 ≤ 4(1 + ρ)

(∫ t

0

∫

�

u2(s, x)dμds

) (∫ t

0

∫

�

u2t (s, x)dμds

)

+
(

1 + 1

ρ

) (∫

�

u20(x)dμ

)2

. (4.18)

Together with (4.16)–(4.18), we have for any ξ > 0,

R′′(t)R(t) − (1 + ξ)R′(t)2 ≥ 2(p + ε)

(∫ t

0

∫

�

u2t (s, x)dμds + Jp(0)

)

(∫ t

0

∫

�

u2(s, x)dμds + N

)

− 4(1 + ρ)(1 + ξ)

(∫ t

0

∫

�

u2(s, x)dμds

)

(∫ t

0

∫

�

u2t (s, x)dμds

)

−
(

1 + 1

ρ

)

(1 + ξ)

(∫

�

u20(x)dμ

)2

. (4.19)
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Noting that p > 2, we choose ξ = ρ = √
(p + ε)/2 − 1 > 0, then it follows from

(4.19) that

R′′(t)R(t) − (1 + ξ)R′(t)2 ≥ 2(p + ε)Jp(0)N − (p + ε)
(√

2 (p + ε) + 2
)

2(p − 2 + ε)

(∫

�

u20(x)dμ

)2

.

Since Jp(0) > 0, if we choose N > 0 sufficiently large such that

N =
(√

2 (p + ε) + 2
) (∑

x∈� μ(x)u20(x)
)2

4Jp(0)(p − 2 + ε)
.

As a consequence, we have

d

dt

R′(t)
R1+ξ (t)

> 0.

Hence, by calculating directly we get

R(t) ≥
(

1

N ξ
− ξ

∑
x∈� μ(x)u20(x)

N 1+ξ
t

)− 1
ξ

,

which yields that u(t, x) blows up in a finite time

T =
(√

2 (p + ε) + 2
)2 (∑

x∈� μ(x)u20(x)
)

4Jp(0)(p − 2 + ε)2
,

and we complete the proof of Theorem 1.5. ��
Remark 4.1 In fact, Theorem 1.5 is equivalent to Theorem 1.4 when p = 2. Therefore,
Theorem 1.5 generalizes the conclusion of Theorem 1.4 to the case p > 2. However,
the case 1 < p < 2 has not been solved.
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