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Abstract

The aim of this paper is to determine sharp bound for the second Hankel determinant
of logarithmic coefficients Hj 1(Fr/2) of strongly Ozaki close-to-convex functions
in the open unit disk. Furthermore, sharp bound of H; 1 (F -1 /2), where f —1is the
inverse function of f, is also computed. The results show an invariance property of the
second Hankel determinants of logarithmic coefficients Hy 1 (F¢/2) and Ha 1 (F-1/2)
for strongly convex functions.
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1 Introduction

Let o/ denote the class of analytic functions of the form

f(Z)=Z+Zaka, (zeU:={z€C: |zl <1}), (1.1)
k=2

and let . be the class of functions in 2/ which are univalent in U.
A function f of the form (1.1) is said to be starlike of order o, (0 < « < 1),in U if

Re —Zf @ >

U).
@ (zel)

The set of all such functions is denoted by .*(«).
By J# («), we denote the class of convex functions of order « (¢ < 1), in U that
satisfy the following inequality:

zf"(2)
f(@

Re{1+ }>oz (z € U).

For « := 0, these classes reduce to the well-known classes .* and %, the class
of starlike functions and the class of convex functions, respectively.

Moreover, a function f of the form (1.1) is said to be strongly convex of order «,
O<a<l1),inUif

zf"(z) o
‘arg{1+ f’(Z)H<7 (z € U).

The set of all such functions is denoted by 7. («).
A function f € &7 belongs to €, the class of close-to-convex functions in U, if and
only if there exists g € . and 6 € (—m /2, 7/2) such that

Re{eiezgf;—g)} >0 (zel.

Geometrically, f is close-to-convex if and only if the image of Cr :={z € C: |z| =
R} for every R € (0, 1), has no “hairpin turns”; that is, there are no sections of the
curve f(Cg) in which the tangent vector turns backward through an angle > .

Although the class of close-to-convex functions was introduced by Kaplan [12] in
1952, in 1935 Ozaki [21, 22] had already considered the functions in .27 satisfying the
following condition:

zf" () 1
Re{l—l— 0 } > —3 (z € V). (1.2)
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Functions satisfying the inequality (1.2) are close-to-convex, and therefore, they are
in . by the definition of Kaplan [12].
Recently, Kargar and Ebadian [13] generalized Ozaki’s condition as follows:

Definition 1 [13] Let .# (1) for —1/2 < A < 1, denote the class of locally univalent
normalized analytic functions f in the unit disk satisfying the condition

Re {1 + Zf//(z)} > !

f/(z) 5 —A, (Z S [U)

When 1/2 < A < 1, the functions in .% (1) are called Ozaki close-to-convex. The
class % (1) was studied by Ponnusamy et al. [23]. Also, .%#(1/2) = . Clearly,
FA)CcH c S forall x € (—1/2,1/2).

Recently, Allu et al. extended the class .% (1) as follows:

Definition2 [3,31]Let0 <« < land 1/2 <A < 1. Then f € & is called strongly
Ozaki-close-to-convex if and only if

2)—1 2 zf"(2) am
‘arg{2A+1+2A+1 (1+ f’(z))”<7’ (z € D). (1.3)

This class is denoted by %o (A, ).

The class Z¢ (A, @) is the subclass of ., and it is obvious that % (1/2, &) = ()
(see [3]).

Associated with each f € .% is a function

Fy(z) :==log @ = 22 ykzk, (z € U). (1.4)
k=1

The numbers y; are called the logarithmic coefficients of f. It is well known that the
logarithmic coefficients play a crucial role in Milin conjecture (cf. [20], see also [9,
p. 155]). It is surprising that for the class . the sharp estimates of single logarithmic
coefficients are known only for two initial ones, namely

1 1
lyil<1 and |p| <=+ — =0.6353...
2 e?

and are unknown for £k > 3. Recently, logarithmic coefficients have been studied by
many researches and upper bounds of logarithmic coefficients of functions in various
subclasses of . have been obtained (e.g., [1, 2, 6, 17, 30, 34]). For a summary of
some of the significant results concerning the logarithmic coefficients for univalent
functions, we refer to [32].

Since each class .%o (A, @) is compact and f(0) = f/(0) — 1 = 0 for every
f € Fo(, ), there exists rg € (0, 1) such that Uy, :={z € C: |z] < ro} C f(U)
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183 Page4of 23 S. Stimer Eker et al.

for every f € (A, o). Thus, every function in .%o (A, ) is invertible and

)y =w+ ) suk

k=2 (1.5)
=w—aw’ + (2a§ —az)w® — (Sa% —Saraz + apwt + -+,
(w € UV())»

in Uy, (see, e.g., [10, pp. 56-57]). Therefore for each f € .#p (A, o) we can define

-

Fp1(w) :=log

1 o0
w(w) = QZrkwk, (w € Uy,). (1.6)
k=1

The numbers I'; can be called as the logarithmic coefficients of the inverse function
of f.
For g, n € N, the Hankel determinant H, ,(f) of f € </ of form (1.1) is defined
as
An  dp+1 *° Apig-—1

An+1 Ap42 "+ dntg
Hy o (f) = : . . . .7

An+q—1 Antq *** An+2(g—1)

The Hankel determinant H> 1(f) = a3 — a% is the well-known Fekete—Szego
functional. The second Hankel determinant Hy 7 (f) is given by Hy 2 (f) = axas — a%.

The problem of computing the upper bound of |H, ,(f)| over various subfamilies
of &7 is interesting and widely studied in Geometric Function Theory. Sharp upper
bounds of |H> 2(f)| and |H3,1 ()| for subclasses of analytic functions were obtained
by various authors [7, 11, 16, 18, 19, 25-27].

Very recently, Kowalczyk and Lecko [14] introduced the Hankel determinant
H, ,(F¢/2), which entries are logarithmic coefficients of f, ie., Hy ,(Fr/2) is
of the form (1.7) with a, replaced by y,,. Similarly, we can define the determinant
Hy »(F-1/2) by replacing a, by I'y in (1.7).

For a function f € .# given in (1.1), by differentiating (1.4), one can obtain

1 1 1, 1 1,
ylzzaz, )/2:5 a3—§a2 s )/3:5 a4—a2a3+§a2 .

Therefore,
1

1
Hy 1(Fr/2) = y1y3 — yi = 1 <a2a4 — a3+ ﬁcé) . (1.8)

Furthermore, if f € ., then for fy € .7, 6 € R, defined as

fo@)=efE%) (zel),
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we find that (see [15])

1 . 1
Hy (5 fe) =e"m, <§ f>~

Kowalczyk and Lecko [15] obtained sharp bounds for |H> 1 (Ff/2)| for the classes
of starlike and convex functions of order «. The problem of computing the sharp
bounds of |Hy, 1 (F/2)| for strongly starlike and strongly convex functions has been
considered by Stimer Eker et. al. [29]. Furthermore, upper bounds for the second
Hankel determinant of logarithmic coefficients for some different subclasses of class
- have been obtained by Srivastava et al. [28] and Allu and Arora [4].

For a function f € .% given in (1.1), by differentiating (1.6) together with (1.5),
one can obtain

r r lotla T Lt >3
= ——ap, = ——a —a5, = ——a araz — —a,.
1 22 2 23 42 3 24 2d3 32

Therefore,
2 1 2 2 13 4
H2,1(Ff—1/2)=F1F3_F2=Z ara4 — aj —a2a3+ﬁa . (1.9)

The aim of this paper is to give the sharp bounds for |H(Fy/2)| and
|Hy,1(F¢-1/2)] for the class of strongly Ozaki close-to-convex functions.

Let & denote the class of analytic functions p in U satisfying p(0) = 1 and
Re p(z) > 0 for z € U. Thus, every p € £ can be represented as

PR =1+ af, (el (1.10)
k=1

Elements of &2 are called Carathéodory functions.
To establish our main results, we will require the following lemmas.

Lemma 1 ([5] (see also [15])) If p € &2 is of the form (1.10) with ¢; > 0, then

c1 = 2dy,
¢y =2d} +2(1 — d})dy, (1.11)
c3 =2d3 +4(1 — d¥)dydy — 2(1 — dH)dyd? +2(1 — d?)(1 — |da|*)d3

for some dy € [0, 1]and d>,d3 € U:={z € C: |z] < 1}.

Ford) € Uand dy € 0U := {z € C : |z| = 1}, there is a unique function p € &
with ¢ and ¢ as in (1.11), namely

1+ (didy + dy)z + dr 7>
14 (didy — d))z — dp7?

p(2) = ,  (zel.
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183 Page 6 of 23 S. Stimer Eker et al.

Lemma 2 [8] Given real numbers A, B, C, let
Y(A, B,C) i=max{|A + Bz + €2+ 1 -1z 1z e T

LIfAC = 0, then

|A|—|—|B|+|C|,2 |B| > 2(1 — |C]),
Y(A,B,C) =
L+ A+ ———, |B| <2(1—|C|).
41 —1CD
II. If AC < O, then
2
1—|Al+ CESTER —4AC(C2—1) < B> A|B| <2(1 —|C)),
Y(A,B,C) = LA+ 2 2 infd(1 + |C)2 —4AC(C—2 — 1))
—_—, < min - _
4(L+1[CD
R(A, B, C), otherwise.
where
|Al+ B —|C], ICI(1B| + 4]A]) < |AB],
R(A.B.C) = | ~IAIFIBIEIC] - |AB| < |C|(|B| — 4]A)).
(JAl +1CDy/1 — ——, otherwise.

4AC

2 Second Hankel Determinant of Logarithmic Coefficients for
Strongly Ozaki Close-to-Convex Functions

Theorem1 Leta € (0, 1]1and A € [1/2,1). If f € Fo (A, ), then

2 2
1+2A
w’ F S 2’
|Ho1(Fy/2)] < 144 @1
A = | o1 +22)? (F —2)2
4 , F>2,
576 16+4F —E

where E = a2(4)2 — 4x —3) and F := a(5 + 2X). The inequalities in (2.1) are
sharp.

Proof Leta € (0,1], A € [1/2,1] and f € Fo (X, @) be of the form (1.1). Then by
(1.3), we have

21 —1 2 <1+Zf (2)

21t () ) = (@), (el (22)
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for some function p € & of the form (1.10). So equating coefficients we obtain

a(l +24)
a=—"ci,
2 4 1
1421
a3 = % (2c2 + Qo + 20k — 1)c%),
2.3)
142
as = % <(8 —21a + 160> — 18k + 300’4 + 12&2)»2)6%

— 64 —Ta — 6al)cicr + 2403).

Since the class .%o (A, @) and | H 1 (Ff/2)| are rotationally invariant, without loss of
generality we may assume that ay > 0, so ¢ := ¢y € [0, 2] (i.e., in view of (1.11) that
dy € [0, 1]). By using (1.8), (2.3) and (1.11), we obtain

1 1
erﬂé=z(@m—aﬁkﬁé>
_ a?(1 +2x)? (2.4)

T | = B +4F (1 —dDdia;

—8(1 — d}) (@} +2)d3 +24(1 = d}) (1 = |dxP)dids ]

where E = o?(40%? — 41 —3) and F = a(5 + 21).
Now, we may have the following cases on d;.

Case 1. Suppose that d; = 1. Then by (2.4) we obtain

2 2
5 a”(1+21)

— =" 8—E

‘V1V3 y@‘ 2304 ( )

Case 2. Suppose that d; = 0. Then by (2.4) we obtain

2(1+20?% 5 o?(1+21)?
—— || < ————.
144 144

Case 3. Suppose that d; € (0, 1). By the fact that |d3| < 1, applying the triangle
inequality to (2.4) we can write

‘V1V3—V22) =

(1 +22)2
2304

—8(1 — d)(d? + 2)d2 + 241 — d)(1 — |daP)drds ] ]

lvivs —vi| = (8 — E)d} +4F(1 —d}d?ds

a?(1+22)%d (1 — d}) 8—E F d? +2
< &+ =didy — L2 +1—|do)?
= 96 '24(1—0112) A 2]
2 2 2
14202 (1—d
_ ¥+ 20 ‘)[|A+Bd2+Cd22|+1—|d2|2] (2.5

96
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where
8—E 3 F
= —zdl, B:=—d; and C :=—
24(1 — dy) 6

Since AC < 0, we apply Lemma 2 only for the case II.
We consider the following sub-cases.
3(a) Note that

— 1 2
Bl 201 ~1C) = o [4(1 —d)Q —dy) + Fdl] 0.

Therefore, |B| < 2(1 —|C|) does nothold ford; € (0, 1),A € [1/2, 1]and« € (0, 1].
3(b) We can easily see that
4(1+1C))’ >0,

Furthermore, since AC < 0 and

A __(=-dpé-dp
c? (d} +2)?

)

the inequality
1
B2 < min {4(1 +|C)?, —4AC <E - 1)}

is false for d; € (0, 1), 2 € [1/2, 1] and @ € (0, 1].
3(c) Since 0 < F < 7, we obtain

1
4CI - 18I = o ((8 — P)d?+ 16) >0,

and this implies
|CI(IB| + 4|A]) — |[AB| = |BC| + |A|(4|C| — |B]) > 0.
Consequently, the inequality |C|(|B| + 4|A|) < |AB] does not hold for d; € (0, 1),

re[l/2,1]and @ € (0, 1].
3(d) We can write

|AB| — |C|(IB] — 4|A|) =

(8 — E)F 4_d12+2<F 8—E 3>
6

1440 —an " " T3 \67' T e(1—a)"!

= (K*+ Lt + M),
144(1—;)( L+ M)

where t .= d12 € (0,1) and
K =64+ 16F —8E — EF, L :=128+8F —16E, M := —16F.

@ Springer



The Second Hankel Determinant of Logarithmic Coefficients... Page9of23 183

Since -4 < E <0and0 < F <7, itiseasytoseethat K > 0,L > 0and M <0
forA € [1/2,1]and @ € (0, 1].
For the equation Kt? + Lt + M = 0, we have A > 0. Since

M
?<O and K+L+M >0,

for » € [1/2,1]and @ € (0, 1], the equation K>+ Lt + M = 0 has a unique positive
root#; < 1. Thus, the inequality |AB|—|C| (| B| — 4| A|) < 0holds for (0, d}], where
df = \/t1. So we can write from (2.5) and Lemma 2,

2‘ a?(1+20)%d (1 — d})

-3 = = (1Al +|B| +1C])
2 2
a“(142x)
= ———®(dy),
2304
where
®(x) 1= (E — 4F — 16)x* + 4(F —2)x> + 16, x € [0,d}]. (2.6)

We note that ®'(x) = 0 for x € (0, df) holds only for

[2F-) .
*=V1erar—E ° @7

in the case when F — 2 > 0. Clearly & > 0. Now, we will show that 0 < & < df.
Since —4 < E <0and 0 < F <7, we obtain

4
(16 + 4F — E)2

+4F (208 — 9E — E*) + 16E? — 352E + 1792] <0,

KeY 4+ LE2+ M = — [F3(E+32)+8F2(E+28)

which confirms that 0 < £ < df. Moreover, the function ® attains its maximum value
at & on [0, d;‘]. Thus for F — 2 > 0, we obtain

(14 21)2
‘VIVB - J/zz‘ = W(D(é)
2 2 2
za(1+2)») 4 (F—=2) '
576 16 +4F — E

Furthermore, if F — 2 < 0, then the function ® is decreasing on [0, df]. Thus, we
have

2 2
_2| A2t
‘V1V3 Vz‘ =< 2304 (d1)
2(1 4 20)2 2(1 4 20)2
LU A2 ) = A2
2304 144
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3(e) Next consider the case d; € [df, 1). Using the last case of the Lemma 2,

(14 20)%d; (1 —d?) B2
Mm—ﬁk 5% 1(|m+|C|)1—ﬁE

a®(1+421)2
= AT ),
2304
where
F2(1 — x2)
W(x) = (16 — 8x* — Ex*).[1 , ds, 1.
(x) = ( X x)\/+2(8—E)(x2+2) x €ldy, 1]
For x € [df, 1], we have
F2(1 — x2)
W' (x) =(—16x — 4Ex>),[1
(0 =(=lox X)J T BHar 1)
3F?
4 (Ex* +8x2 — 16) al
F2(1—x?)

— 2 2
26— E)(x> +2) \/1+2(8_E)(x2+2)

Since for -4 < E < 0,
—16x —4Ex3 <0

and
Ex*+8x>—16 <8(x>—2) <0

fora € (0, 1]and x € [di“, 1], we deduce that W is a decreasing function. This implies
that 5 5
L @2
‘V17/3 J/2‘ XYY (d1)
2 2
_« (1421
- 2304

2(1 +20)2
zzflﬁ_jl__l-¢(dfx
2304

W (dy)

where & is given in (2.6).
Summarizing parts from Case 1-3, it follows the inequalities (2.1).
To show the sharpness for the case F — 2 < 0, consider the function

72
=—, e U).
r(2) 522 (zel)
It is obvious that the function p is in & with ¢; = ¢3 = 0 and ¢; = —2. The

corresponding function f € .%o (X, @) is described by (2.2). Hence by (2.3) it follows
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that ap = a4 = 0 and a3 = —a (1 4+ 21)/6. From (2.4), we obtain

a?(1+21)2

p— 2 —
)’“ EIRE ’ 144
For the case F — 2 > 0, consider the function

— 72

m, (z € 1),

p(2) =

where & is given by (2.7). From Lemma 1, it follows that p € &2. The corresponding
function f € %o (A, «) is described by (2.2) and has the following coefficients

1
a :Eaé(l +21),
1
a3 =ce(1+20)[ — 1+ £2(1 4 20 4 2a1)],

1
as =7—2a(1 +20)[ — 362 4 Ta + 6a))
+ &8+ 21a + 18ah + 1602 + 300”2 + 12¢°2%)].

Hence, from (2.4) we obtain

2 2 2
1 o2(1+21) (F-2)
_ — 4 .
”’”’3 ”2’ 576 T l6rar—E
This completes the proof.
For A = 1/2, we get the bounds for the class 7 («) given in [29].

Corollary 1 Leta € (0, 1]. If f € (@), then

a? 1

—, O<a<-,

‘VIV%_V2’< 36 3
T2 = ) @213 + 18 +17) 1 -

144 +6atd) = 3 7

The inequalities are sharp.

3 Second Hankel Determinant of Logarithmic Coefficients for Inverse
Functions

The following lemma will be used in the proof of the main result of this section.

Lemma3 LetT € (2, 11] and S € (4, 39]. Define H : [0, 1] — R by
H(x) = hy(x)y/ ha(x),
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183 Page 120f23 S. Stimer Eker et al.

where for x € [0, 1],

T2(1 — x)

hi(x) := Sx* —8x +16 and hy(x) =1+ —— "
1(x) x x + 16 and ha(x) +2(S+8)(x+2)
Then H is a convex function.

Proof To prove the lemma, we will use the same method as in [24, p. 2524]. By
differentiating H twice, we obtain

(ha ()2 H" (x) =1 (x) (ha(x))” + K} (x)ha (x)h) (x)

1 " 1 ’ 2
+ ghl(x)hz(x)hz(x) - Zhl(x)(hz(x))
_ G(x)
T16(S 4+ 8)2(x + 2%

where for x € [0, 1],

G (x) :=[(8x* + 28x7 + 3x? — 80x + 32)S — 312x +240]T*
+[(—32x* — 184x% — 336x? — 64x + 256) 5>
+ (—256x" — 1472x% — 2688x? + 256x + 3584)S + 6144x + 12288]7>
+ (32x* +256x% + 768x* + 1024x + 512) §?
+ (512x* 4 4096x% + 12288x% + 16384x + 8192) 5>
+ (2048x* + 16384x? + 49152x% + 65536x + 32768)S.

We show that our assertion is true by proving that G(x) > 0 for x € [0, 1]. For
x €[0,1]and S € (4, 39], define

J(u) := Ag + Au + Ayi®
where
Ay = (32x4 +256x3 + 768x2 + 1024x + 512) 3
+ (512x4 + 4096x> + 12288x% 4 16384x + 8192) 52
+ (2048x4 + 16384x> + 49152x2 + 65536x + 32768) S
Ap = (—32x4 — 184x3 — 336x2 — 64x + 256) s2

+ (—256x4 —1472x3 — 2688x2% + 256x + 3584) S
+ 6144x + 12288
Ay = <8x4 +28x3 + 3x2 — 80x + 32) S — 312x + 240.
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I. Consider the first case A < 0. Then

J(4) = (32x4 42563 + 768x2 + 1024x + 512) 3
+ (384x4 + 3360x> + 10944x% 4 16128x + 9216) s?
+ (1152x4 +10944x° + 38448x2 + 65280x + 47616) S + 19584x + 52992 > 0
for x € [0, 1]. Furthermore,
J(121) = ko + k1S + k2 S? + k383,
where for x € [0, 1],

ko := —3824568x + 5000688
ki := 88200x* + 248220x> — 232173x% — 1074768x + 934944
ky := —3360x* — 18168x> — 28368x> + 8640x + 39168

k3 = 32x* +256x° 4 768x% + 1024x + 512.

Since k3 > O for x € [0, 1] and S > 4, we see that
J(121) = ko + ki S + (ka + 4k3) S,
and
ky + 4kz = —3232x* — 17144x> — 25296x2 + 12736x + 41216 > 0.
Hence and by the fact that § > 4, we obtain
J(121) > ko + (k1 + 4ky + 16k3) S.

Thus, since kg > 0, if k| + 4ky + 16k3 > 0, then J(121) > 0.
If ky + 4k, + 16k3 < 0, then

(k1 + 4ky + 16k3) S > (k1 + 4k, + 16k3) 39,
and therefore for x € [0, 1],

J(121) > ko + (k1 + 4k + 16k3) 39
= —504192x* — 2674464x> — 3946176x% — 147171336x + 201456528 > 0.

Thus, since A, < 0, we deduce that

J@) > min{J(4), J(121)} > 0, u € [4, 121].
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183 Page 140f 23 S. Stimer Eker et al.

II. Next we consider the case A, > 0. Then
J(u) = Ao+ Aru + Asu® > Ag + (A1 +4A2)u =: J ().
We can easily see that
J4) = (32x4 +256x3 + 768x2 + 1024x + 512) 3

n (384x4 +3360x3 + 10944x% + 16128x + 9216) s2

+ (1 152x% + 10944x3 + 38448x2 + 65280x + 47616) S
+ 19584x + 52992 > 0.

Furthermore, ~
J(121) = qo + 1S + ¢28* + 357,

where

qgo := 592416x + 1603008
g1 = —25056x* — 148176x> — 274644x> + 57792x + 481920
gr = —3360x* — 18168x> — 28368x2 + 8640x + 39168

g3 := 32x* 4 256x3 + 768x + 1024x + 512.

Since S > 4, we obtain
J(121) > qo + q15 + (g2 +493)S>.
Since gg > 0, g1 > 0 and
g + 4g3 = —3232x* — 17144x3 — 25296x> + 12736x + 41216 > 0,

it follows that J(121) > 0. ) )
Hence, since the function J is linear with respect to u, J(4) > 0 and J(121) > 0,
we deduce that

J(u) > J(u) > min{J(4), J(121)} > 0, u € [4,121].

Finally, note that the cases I and Il imply that J (1) > Oforu € (4, 121], S € [4, 39]
and x € [0, 1], which shows that G(x) > 0. This completes the proof of Lemma 3.
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Theorem2 Leta € (0, 11and A € [1/2,1). If f € Fo (A, ), then

|Ha, 1 (Fp-1/2)]
2(1 +21)2
%’ T <2,
2 2 2
a“(1424) (T —2)
< , T 2,S<2( 2T2 L 8T 40—T—2),
576 ( 16+4T+S> - = + 8T +
2(1 +21)2
%(SJFS)’ T>2’S>2( 2T2+8T+40—T—2),
(3.1)

where T = a(1 + 101) and S := o?(441% + 41 —9).
The inequalities in (3.1) are sharp.

Proof Let o € (0,1], A € [1/2,1] and f € Fp (A, «) be of the form (1.1). Then,
(2.2) holds for some function p € & of the form (1.10). Since the class .%o (1, @) and
|Hy, 1 (Ff-1/2)] are rotationally invariant, without loss of generality we may assume
that a; > 0. Thus, by (2.3) we assume that ¢ := ¢; € [0, 2], i.e., in view of (1.11)
that d; € [0, 1]. By (1.9), (2.3) and (1.11), we get

Hz)](Ff—l/Z) =TI — F%
1 2_ 2 13 4
= Z ( 204 — dz — ajas + Ea2 (32)
a2 4202
2304 ’

where

© :=—8Q2+d}) (1 —d)dy — 4T (1 — d})dids (3.3)
+24(1 —dD) (1 — |dao)dvds + (8 + S)d |

for some d; € [0, 1]and da, d3 € U.
I. Assume first that 7 = «(1 + 10A) < 2. Then, by applying the triangle inequality
to (3.3) and by the fact that |d»| < 1 and |d3| < 1, we obtain

|©] < (S —4T)d} +4(T —2)d? + 16. (3.4)
Since S —4T < 0Oand T < 2, by (3.4) we have
|®] < 16,

which together with (3.2) shows the first inequality in (3.1).
II. Next assume that T = (1 + 10A) > 2.

Case 1. Suppose that d; = 1. Then by (3.2) and (3.3), we obtain

2 2
a”(14210)
‘F1F3 - F%‘ = W(S-l— S).
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Case 2. Suppose that d; = 0. Then by (3.2) and (3.3), we obtain

2 2 2 2
a?(1421) a?(1 4 21)
— ) < ——.

T —F2‘=
‘ 3= 2 144 - 144

Case 3. Suppose that d; € (0, 1). Since |d3| < 1, by applying the triangle inequality
to (3.2) we can write

2 2 2
14+20)%di(1 —d
s 3| < CEEAEZD a4 pay 1 caf +1- 1], G
where s
8+ S T i +2
A= _;Zd?’ B = —dl, C:= 1 .
24(1 = dy) 6 3d;

Since AC < 0, we apply Lemma 2 only for the case II.
We have

2<T=a+101) <11,

and therefore
9<S—a(44)\ + 41 —9) <39

forA € [1/2,1]and @ € (0, 1].
We consider the following sub-cases.
3(a)
Note that

d12+2>

T
Bl =2(1—|C)=—d —2(1—
Bl =201 = [C]) = <di ( 302

1
= —(4d? — 12d) + Td?* + 8
6d]< 1 1+ 1+>

1
=— (40 -dpQ@—d)+Td?) > 0.
6d1(( D( D+ 1>>
Therefore, |B| < 2(1 —|C|) does nothold ford; € (0, 1),A € [1/2, 1]and« € (0, 1].
3(b) We can easily see that

1 9}
c? (@} +2)7?
1 4 2
T @Y

1 2 2
1
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1
—4AC (— — 1) < 0.
C2

1
B2 < min {4(1 +|C)%, —4AC <E - 1)}

which yields

Therefore, the inequality

is false for d; € (0, 1), 2 € [1/2, 1] and @ € (0, 1].

3(c) Since
&?+2 T
4/C| — |B| = 4-L -
IC| —|B| 34, g
1
= 2 (B -T)df +16)
1
> 8(16—3af%) >0,
we have

ICI(IB| +4|A]) — |AB| = |BC| + |A[(4|C| — |B]) > 0.

Consequently, the inequality |C|(|B| + 4|A]) < |AB| does not hold for d; € (0, 1),
re[l/2,11and @ € (0, 1].
3(d) We can write

8+ 5T d+2 (T 48+ S
|[AB| — |C|(|B| — 4|A]) = @+9) d4 — it (_d 8+ )d3)

14401 —d) ' 3 \6"' T 240 —a))!

_ 1 2
= T =y PR R,

where ¢ := d12 € (0,1) and
P:=64+8S+ 16T + ST, Q:=128+4+8T +16S, R:=—16T.

Itiseasytoseethat P > 0, Q >0and R <O forA € [1/2,1]and ¢ € (O, 1].
For the equation Pt> 4+ Qt + R = 0, we have A > 0. Since

R
F<O and P+ QO+ R >0,

for A € [1/2, 1]and & € (0, 1], the equation Pt> + Qt + R = 0 has a unique positive
root#; < 1. Thus, the inequality |AB| —|C|(|B| —4|A|) < 0holds for (0, dj*], where
d* = /1. So we can write from (3.5) and Lemma 2,

a?(1+2x)%d; (1 — d?)
96

_a?(1 4202

2304

rrs - 13| < (=11 + |B] +ICI)
(d).
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where
D(x) = (=16 — 4T — S)x* +4(T —2)x> + 16, x €0, 1].

We note that &' (x) = 4(—16 —4T — S)x3 +8(T —2)x = 0 forx € (0, 1) holds only

for
_[2r-2 36
= 16+4T+S_'$’ (36)

in the case when T > 2, i.e., for (1 4+ 101) > 2. Clearly 0 < £ < 1 and the function
® attains at £ its maximum value on [0, 1]. Therefore, in the case when 0 < & < di‘*
we have

2(1 4+ 20)2
(rlm—r%\ < CAF2N g

- 2304
a?(1421)%

e St PO o o 4 _ 2
- — [( 16 — 4T — S)E* + 4(T — 2)¢ +16]

a2(1421)% At (T —2)?
576 164+4T+ S/

3(e) Next consider the case x € [d]™, 1). Using the last case of the Lemma 2,

2 2 2 2
o2(1 4 202, (1 — d?) B
I —F2‘< P aai+1cpJ1 — =—
rirs -3 < 5 (1AL +1CD\ T =
a?(1 4 21)2

_eldren, oo 2
= 301 Wiy ha(dy).

where for x € [0, 1],

hi(x) :=Sx>—8x+16 and ha(x):=1+ &
2(S +8)(x +2)

It is easy to see that /5 is a positive decreasing function in [d}*, 1).
i) If § < 4, then h is a positive decreasing function in [d]*, 1). Hence,

ped 5 R_P< 2T —2) )2 ( 2T —2) ) R
SHOF+R= 6+a7+5) T9\iexar+s) "

4
(16 +4T + 5)2

—1652 — 3525 — 1792] <0.

[T3(S —32) 4+ 8T%(S — 28) + 4T (S* — 95 — 208)
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Therefore by Part 3(d), it follows that 0 < & < d{™. Since h1+/h2 is decreasing in
[d}*, 1) and as easy to check h1(d]*)\/h2(d]*) = O (d]*), we get

2 2
142
’[*11'*3 _ r%‘ < w
2304
2 2
142
— Q_S_jl__l-¢(dr*)
2304
a?(1+21)2
< 7

- 2304

h(di™)y/ h2(d]™)

@ (8).

ii) When4 < § <39and 2 < T < 11, we can write

H(d}) = hi(d)y/ha(dd),

where H is the function defined in Lemma 3. Since by Lemma 3 the function H is
convex, we deduce that

H(d12) < max{H (d{*), H(1)} = max{H (d}*), 8 + S}.

Suppose that S < 2(v/2T2 +8T +40 — T — 2), i.e., that S§2 < —4ST — 8§ +
4T? + 16T + 144. Then

PE* 4 Q&> + R . S [432T — 168% + ST? + 85T? — 36ST
(16 +4T + S)2
—352S——32T3——224T2——832T-—1792]

4
<% [4T(—4ST —8S +4T% + 16T + 144
—06+4T+Sﬂ[ ( +ATT + 16T + 144)

— 1682 + ST + 8ST? — 36ST — 3528 — 3273
—224T2-832T-—1792]

4
T (16 +4T + 5)2

—MTﬁ—mmﬂ—zﬁT—rm4<o,

L4682+ST3—SST2—68ST—{ﬁZS

which by Part 3(d) yields 0 < & < d{*. Since then ®(§) > 8 + S, we get
H(d}) < max{H(d}"), H(1)} = max{H (d}"), 8 + 5} < ®(&).
Suppose that S > 2(v/2T% + 8T + 40 — T — 2). Then,
H(d{*) = ®(d[") < ®(E) <8+
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and hence
H(dlz) < max{H (d}*), H(1)} = max{H (d{*),8 4+ S} =8+ S.
Summarizing parts from Case 1-3, it follows (3.1).
In order to show that the inequalities are sharp, first let f € %o (A, o) be defined
by (2.2) with

1+Z2 > 2%
p(2) 3=1_—12=1+22Z , (z € U),
k=1

Then, in view of (2.3) we have

1+ 2A
ar =0, ag:u, as = 0.
6
Thus, from (3.2) we get
13 1 1 1
|H2,1(Ff_1/2)| = &aé — Za%a3 + Za4a2 — Za%
_a?(1+20)?
B 144
which shows that the first bound in (3.1) is sharp.
Next let f € .%o (A, @) be defined by (2.2) with
1 +26z + 22
p(2) = Tz (z € ),

where & given by (3.6). Then in view of (2.3) we have

Ca(l420)
a=——7p £,
1422
a3 _ed+20 (1 + Qo + 20k — 1)&2) ,
1421
a =% [(8 =21+ 1602 — 1803 + 3002 + 120%27)¢

+21a + 18X — 6].
Thus, from (3.2) we get

13 1 1 1
- —a%ag + —aqap — —a%

|Hy 1 (Fp-1/2)] = w21 1 1
2(1 4+ 21)% T —2)2
U o PR Gt Y
576 16+4T + S

which shows that the second bound in (3.1) is sharp.
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Finally, let f € %o (), «) be defined by (2.2) with

1+2z+2°
P@)i=——5—. (el
-z
Then, in view of (2.3) we have
a(l+2A o?
ar :¥, a3z = ?(1 +)\.)(1 +2)\.)
142
as =%(6a2k2 + 15021 4 8 + 1).
Thus, from (3.2) we get
Ho 1 (Fpa/2)] = | 2 — LaZas + 1 L
- = |—a, — —-a5a —agar — —a
2 4872 T 4B T MR TS
2 2
a“(142x)
=——"—(8+Y9),
2304 B+5)

which shows that the third bound in (3.1) is sharp.

In [33], it was shown that the bounds of H>(f) and Hz,z(f_l) for the convex
functions of order alpha were the same, reflecting other invariant properties related to
the coefficients f and f~!. Sim et al. [24] improved these bounds to achieve sharp
bounds. The following result shows that for A = 1/2,i.e., for the class J#; («), the sharp
bounds for the second Hankel determinant of logarithmic coefficients Hp | (Fr/2),

given in Corollary 1, and H 1 (Fy-1/2) are also the same.
Corollary2 Leta € (0, 1]. If f € . (@), then

o2

%7
a?(130® + 18a +17) 1
s <o
144(a? + 6 + 4) 3

‘F1F3_F%’§

The inequalities are sharp.
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