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Abstract
The aim of this paper is to determine sharp bound for the second Hankel determinant
of logarithmic coefficients H2,1(Ff /2) of strongly Ozaki close-to-convex functions
in the open unit disk. Furthermore, sharp bound of H2,1(Ff −1/2), where f −1 is the
inverse function of f , is also computed. The results show an invariance property of the
secondHankel determinants of logarithmic coefficients H2,1(Ff /2) and H2,1(Ff −1/2)
for strongly convex functions.
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1 Introduction

Let A denote the class of analytic functions of the form

f (z) = z +
∞∑

k=2

akz
k, (z ∈ U := {z ∈ C : |z| < 1}), (1.1)

and let S be the class of functions in A which are univalent in U.
A function f of the form (1.1) is said to be starlike of order α, (0 ≤ α < 1), inU if

Re
z f ′(z)
f (z)

> α (z ∈ U).

The set of all such functions is denoted by S ∗(α).
By K (α), we denote the class of convex functions of order α (α < 1), in U that

satisfy the following inequality:

Re

{
1 + z f ′′(z)

f ′(z)

}
> α (z ∈ U).

For α := 0, these classes reduce to the well-known classes S ∗ and K , the class
of starlike functions and the class of convex functions, respectively.

Moreover, a function f of the form (1.1) is said to be strongly convex of order α,
(0 < α ≤ 1), in U if

∣∣∣∣arg
{
1 + z f ′′(z)

f ′(z)

}∣∣∣∣ <
πα

2
(z ∈ U).

The set of all such functions is denoted by Kc(α).
A function f ∈ A belongs to C , the class of close-to-convex functions inU, if and

only if there exists g ∈ S ∗ and θ ∈ (−π/2, π/2) such that

Re

{
eiθ

z f ′(z)
g(z)

}
> 0 (z ∈ U).

Geometrically, f is close-to-convex if and only if the image of CR := {z ∈ C : |z| =
R} for every R ∈ (0, 1), has no “hairpin turns”; that is, there are no sections of the
curve f (CR) in which the tangent vector turns backward through an angle ≥ π .

Although the class of close-to-convex functions was introduced by Kaplan [12] in
1952, in 1935 Ozaki [21, 22] had already considered the functions inA satisfying the
following condition:

Re

{
1 + z f ′′(z)

f ′(z)

}
> −1

2
, (z ∈ U). (1.2)
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Functions satisfying the inequality (1.2) are close-to-convex, and therefore, they are
inS by the definition of Kaplan [12].

Recently, Kargar and Ebadian [13] generalized Ozaki’s condition as follows:

Definition 1 [13] Let F (λ) for −1/2 < λ ≤ 1, denote the class of locally univalent
normalized analytic functions f in the unit disk satisfying the condition

Re

{
1 + z f ′′(z)

f ′(z)

}
>

1

2
− λ, (z ∈ U).

When 1/2 ≤ λ ≤ 1, the functions in F (λ) are called Ozaki close-to-convex. The
class F (1) was studied by Ponnusamy et al. [23]. Also, F (1/2) = K . Clearly,
F (λ) ⊂ K ⊂ S ∗ for all λ ∈ (−1/2, 1/2).

Recently, Allu et al. extended the classF (λ) as follows:

Definition 2 [3, 31] Let 0 < α ≤ 1 and 1/2 ≤ λ ≤ 1. Then f ∈ A is called strongly
Ozaki-close-to-convex if and only if

∣∣∣∣arg
{
2λ − 1

2λ + 1
+ 2

2λ + 1

(
1 + z f ′′(z)

f ′(z)

)}∣∣∣∣ <
απ

2
, (z ∈ U). (1.3)

This class is denoted by FO(λ, α).

The classFO(λ, α) is the subclass ofS , and it is obvious thatFO(1/2, α) = Kc(α)

(see [3]).
Associated with each f ∈ S is a function

Ff (z) := log
f (z)

z
= 2

∞∑

k=1

γk z
k, (z ∈ U). (1.4)

The numbers γk are called the logarithmic coefficients of f . It is well known that the
logarithmic coefficients play a crucial role in Milin conjecture (cf. [20], see also [9,
p. 155]). It is surprising that for the classS the sharp estimates of single logarithmic
coefficients are known only for two initial ones, namely

|γ1| ≤ 1 and |γ2| ≤ 1

2
+ 1

e2
= 0.6353 . . .

and are unknown for k ≥ 3. Recently, logarithmic coefficients have been studied by
many researches and upper bounds of logarithmic coefficients of functions in various
subclasses of S have been obtained (e.g., [1, 2, 6, 17, 30, 34]). For a summary of
some of the significant results concerning the logarithmic coefficients for univalent
functions, we refer to [32].

Since each class FO(λ, α) is compact and f (0) = f ′(0) − 1 = 0 for every
f ∈ FO(λ, α), there exists r0 ∈ (0, 1) such that Ur0 := {z ∈ C : |z| < r0} ⊂ f (U)
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for every f ∈ FO(λ, α). Thus, every function inFO(λ, α) is invertible and

f −1(w) = w +
∞∑

k=2

δkw
k

= w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · ,

(w ∈ Ur0),

(1.5)

in Ur0 (see, e.g., [10, pp. 56-57]). Therefore for each f ∈ FO(λ, α) we can define

Ff −1(w) := log
f −1(w)

w
= 2

∞∑

k=1

�kw
k, (w ∈ Ur0). (1.6)

The numbers �k can be called as the logarithmic coefficients of the inverse function
of f .

For q, n ∈ N, the Hankel determinant Hq,n( f ) of f ∈ A of form (1.1) is defined
as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣

. (1.7)

The Hankel determinant H2,1( f ) = a3 − a22 is the well-known Fekete–Szegö
functional. The second Hankel determinant H2,2( f ) is given by H2,2( f ) = a2a4−a23 .

The problem of computing the upper bound of |Hq,n( f )| over various subfamilies
of A is interesting and widely studied in Geometric Function Theory. Sharp upper
bounds of |H2,2( f )| and |H3,1( f )| for subclasses of analytic functions were obtained
by various authors [7, 11, 16, 18, 19, 25–27].

Very recently, Kowalczyk and Lecko [14] introduced the Hankel determinant
Hq,n(Ff /2), which entries are logarithmic coefficients of f , i.e., Hq,n(Ff /2) is
of the form (1.7) with an replaced by γn . Similarly, we can define the determinant
Hq,n(Ff −1/2) by replacing an by �n in (1.7).

For a function f ∈ S given in (1.1), by differentiating (1.4), one can obtain

γ1 = 1

2
a2, γ2 = 1

2

(
a3 − 1

2
a22

)
, γ3 = 1

2

(
a4 − a2a3 + 1

3
a32

)
.

Therefore,

H2,1(Ff /2) = γ1γ3 − γ 2
2 = 1

4

(
a2a4 − a23 + 1

12
a42

)
. (1.8)

Furthermore, if f ∈ S , then for fθ ∈ S , θ ∈ R, defined as

fθ (z) := e−iθ f (eiθ z) (z ∈ U),
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we find that (see [15])

H2,1

(
1

2
Ffθ

)
= e4iθ H2,1

(
1

2
Ff

)
.

Kowalczyk and Lecko [15] obtained sharp bounds for |H2,1(Ff /2)| for the classes
of starlike and convex functions of order α. The problem of computing the sharp
bounds of |H2,1(Ff /2)| for strongly starlike and strongly convex functions has been
considered by Sümer Eker et. al. [29]. Furthermore, upper bounds for the second
Hankel determinant of logarithmic coefficients for some different subclasses of class
S have been obtained by Srivastava et al. [28] and Allu and Arora [4].

For a function f ∈ S given in (1.1), by differentiating (1.6) together with (1.5),
one can obtain

�1 = −1

2
a2, �2 = −1

2
a3 + 3

4
a22 , �3 = −1

2
a4 + 2a2a3 − 5

3
a32 .

Therefore,

H2,1(Ff −1/2) = �1�3 − �2
2 = 1

4

(
a2a4 − a23 − a22a3 + 13

12
a42

)
. (1.9)

The aim of this paper is to give the sharp bounds for |H2,1(Ff /2)| and
|H2,1(Ff −1/2)| for the class of strongly Ozaki close-to-convex functions.

Let P denote the class of analytic functions p in U satisfying p(0) = 1 and
Re p(z) > 0 for z ∈ U. Thus, every p ∈ P can be represented as

p(z) = 1 +
∞∑

k=1

ckz
k, (z ∈ U). (1.10)

Elements ofP are called Carathéodory functions.
To establish our main results, we will require the following lemmas.

Lemma 1 ([5] (see also [15])) If p ∈ P is of the form (1.10) with c1 ≥ 0, then

c1 = 2d1,

c2 = 2d21 + 2(1 − d21 )d2,

c3 = 2d31 + 4(1 − d21 )d1d2 − 2(1 − d21 )d1d
2
2 + 2(1 − d21 )(1 − |d2|2)d3

(1.11)

for some d1 ∈ [0, 1] and d2, d3 ∈ U := {z ∈ C : |z| ≤ 1}.
For d1 ∈ U and d2 ∈ ∂U := {z ∈ C : |z| = 1}, there is a unique function p ∈ P

with c1 and c2 as in (1.11), namely

p(z) = 1 + (d1d2 + d1)z + d2z2

1 + (d1d2 − d1)z − d2z2
, (z ∈ U).
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Lemma 2 [8] Given real numbers A, B, C, let

Y (A, B,C) := max
{∣∣A + Bz + Cz2

∣∣+ 1 − |z|2 : z ∈ U

}
.

I. If AC ≥ 0, then

Y (A, B,C) =
⎧
⎨

⎩

|A| + |B| + |C |, |B| ≥ 2(1 − |C |),
1 + |A| + B2

4(1 − |C |) , |B| < 2(1 − |C |).

II. If AC < 0, then

Y (A, B,C) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |A| + B2

4(1 − |C |) , −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1 − |C |),

1 + |A| + B2

4(1 + |C |) , B2 < min{4(1 + |C |)2,−4AC(C−2 − 1)}
R(A, B,C), otherwise.

where

R(A, B,C) :=

⎧
⎪⎪⎨

⎪⎪⎩

|A| + |B| − |C |, |C |(|B| + 4|A|) ≤ |AB|,
−|A| + |B| + |C |, |AB| ≤ |C |(|B| − 4|A|),
(|A| + |C |)

√
1 − B2

4AC
, otherwise.

2 Second Hankel Determinant of Logarithmic Coefficients for
Strongly Ozaki Close-to-Convex Functions

Theorem 1 Let α ∈ (0, 1] and λ ∈ [1/2, 1]. If f ∈ FO(λ, α), then

∣∣H2,1(Ff /2)
∣∣ ≤

⎧
⎪⎪⎨

⎪⎪⎩

α2(1 + 2λ)2

144
, F ≤ 2,

α2(1 + 2λ)2

576

(
4 + (F − 2)2

16 + 4F − E

)
, F > 2,

(2.1)

where E := α2(4λ2 − 4λ − 3) and F := α(5 + 2λ). The inequalities in (2.1) are
sharp.

Proof Let α ∈ (0, 1], λ ∈ [1/2, 1] and f ∈ FO(λ, α) be of the form (1.1). Then by
(1.3), we have

2λ − 1

2λ + 1
+ 2

2λ + 1

(
1 + z f ′′(z)

f ′(z)

)
= (p(z))α, (z ∈ U), (2.2)
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for some function p ∈ P of the form (1.10). So equating coefficients we obtain

a2 = α(1 + 2λ)

4
c1,

a3 = α(1 + 2λ)

24

(
2c2 + (2α + 2αλ − 1)c21

)
,

a4 = α(1 + 2λ)

576

(
(8 − 21α + 16α2 − 18αλ + 30α2λ + 12α2λ2)c31

− 6(4 − 7α − 6αλ)c1c2 + 24c3

)
.

(2.3)

Since the classFO(λ, α) and |H2,1(Ff /2)| are rotationally invariant, without loss of
generality we may assume that a2 ≥ 0, so c := c1 ∈ [0, 2] (i.e., in view of (1.11) that
d1 ∈ [0, 1]). By using (1.8), (2.3) and (1.11), we obtain

γ1γ3 − γ 2
2 = 1

4

(
a2a4 − a23 + 1

12
a42

)

= α2(1 + 2λ)2

2304

[
(8 − E)d41 + 4F(1 − d21 )d

2
1d2

−8(1 − d21 )(d
2
1 + 2)d22 + 24(1 − d21 )(1 − |d2|2)d1d3

]
,

(2.4)

where E = α2(4λ2 − 4λ − 3) and F = α(5 + 2λ).
Now, we may have the following cases on d1.

Case 1. Suppose that d1 = 1. Then by (2.4) we obtain

∣∣∣γ1γ3 − γ 2
2

∣∣∣ = α2(1 + 2λ)2

2304
(8 − E)

Case 2. Suppose that d1 = 0. Then by (2.4) we obtain

∣∣∣γ1γ3 − γ 2
2

∣∣∣ = α2(1 + 2λ)2

144
|d2|2 ≤ α2(1 + 2λ)2

144
.

Case 3. Suppose that d1 ∈ (0, 1). By the fact that |d3| ≤ 1, applying the triangle
inequality to (2.4) we can write

∣∣γ1γ3 − γ 2
2

∣∣ =
∣∣∣∣
α2(1 + 2λ)2

2304

[
(8 − E)d41 + 4F(1 − d21 )d21d2

−8(1 − d21 )(d21 + 2)d22 + 24(1 − d21 )(1 − |d2|2)d1d3
] ∣∣∣

≤ α2(1 + 2λ)2d1(1 − d21 )

96

[∣∣∣∣
8 − E

24(1 − d21 )
d31 + F

6
d1d2 − d21 + 2

3d1
d22

∣∣∣∣+ 1 − |d2|2
]

= α2(1 + 2λ)2d1(1 − d21 )

96

[∣∣A + Bd2 + Cd22
∣∣+ 1 − |d2|2

]
(2.5)
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where

A := 8 − E

24(1 − d21 )
d31 , B := F

6
d1 and C := −d21 + 2

3d1
.

Since AC < 0, we apply Lemma 2 only for the case II.
We consider the following sub-cases.
3(a) Note that

|B| − 2(1 − |C |) = 1

6d1

[
4(1 − d1)(2 − d1) + Fd21

]
> 0.

Therefore, |B| < 2(1−|C |) does not hold for d1 ∈ (0, 1), λ ∈ [1/2, 1] and α ∈ (0, 1].
3(b)We can easily see that

4
(
1 + |C |)2 > 0.

Furthermore, since AC < 0 and

1

C2 − 1 = − (1 − d21 )(4 − d21 )

(d21 + 2)2
< 0,

the inequality

B2 < min

{
4(1 + |C |)2,−4AC

(
1

C2 − 1

)}

is false for d1 ∈ (0, 1), λ ∈ [1/2, 1] and α ∈ (0, 1].
3(c) Since 0 < F ≤ 7, we obtain

4|C | − |B| = 1

6d1

(
(8 − F)d21 + 16

)
> 0,

and this implies

|C |(|B| + 4|A|) − |AB| = |BC | + |A|(4|C | − |B|) > 0.

Consequently, the inequality |C |(|B| + 4|A|) ≤ |AB| does not hold for d1 ∈ (0, 1),
λ ∈ [1/2, 1] and α ∈ (0, 1].

3(d)We can write

|AB| − |C |(|B| − 4|A|) = (8 − E)F

144(1 − d21 )
d41 − d21 + 2

3d1

(
F

6
d1 − 8 − E

6(1 − d21 )
d31

)

= 1

144(1 − t)
(Kt2 + Lt + M),

where t := d21 ∈ (0, 1) and

K := 64 + 16F − 8E − EF, L := 128 + 8F − 16E, M := −16F .
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Since −4 ≤ E < 0 and 0 < F ≤ 7, it is easy to see that K > 0, L > 0 and M < 0
for λ ∈ [1/2, 1] and α ∈ (0, 1].

For the equation Kt2 + Lt + M = 0, we have 
 > 0. Since

M

K
< 0 and K + L + M > 0,

for λ ∈ [1/2, 1] and α ∈ (0, 1], the equation Kt2 + Lt + M = 0 has a unique positive
root t1 < 1. Thus, the inequality |AB|−|C | (|B| − 4|A|) ≤ 0 holds for (0, d∗

1 ], where
d∗
1 = √

t1. So we can write from (2.5) and Lemma 2,

∣∣∣γ1γ3 − γ 2
2

∣∣∣ ≤ α2(1 + 2λ)2d1(1 − d21 )

96
(−|A| + |B| + |C |)

= α2(1 + 2λ)2

2304
�(d1),

where
�(x) := (E − 4F − 16)x4 + 4(F − 2)x2 + 16, x ∈ [0, d∗

1 ]. (2.6)

We note that �′(x) = 0 for x ∈ (0, d∗
1 ) holds only for

x =
√

2(F − 2)

16 + 4F − E
=: ξ, (2.7)

in the case when F − 2 > 0. Clearly ξ > 0. Now, we will show that 0 < ξ < d∗
1 .

Since −4 ≤ E < 0 and 0 < F ≤ 7, we obtain

K ξ4 + Lξ2 + M = − 4

(16 + 4F − E)2

[
F3(E + 32) + 8F2(E + 28)

+4F(208 − 9E − E2) + 16E2 − 352E + 1792
]

< 0,

which confirms that 0 < ξ < d∗
1 . Moreover, the function� attains its maximum value

at ξ on [0, d∗
1 ]. Thus for F − 2 > 0, we obtain

∣∣∣γ1γ3 − γ 2
2

∣∣∣ ≤ α2(1 + 2λ)2

2304
�(ξ)

= α2(1 + 2λ)2

576

(
4 + (F − 2)2

16 + 4F − E

)
.

Furthermore, if F − 2 ≤ 0, then the function � is decreasing on [0, d∗
1 ]. Thus, we

have ∣∣∣γ1γ3 − γ 2
2

∣∣∣ ≤ α2(1 + 2λ)2

2304
�(d1)

≤ α2(1 + 2λ)2

2304
�(0) = α2(1 + 2λ)2

144
.
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3(e) Next consider the case d1 ∈ [d∗
1 , 1). Using the last case of the Lemma 2,

∣∣∣γ1γ3 − γ 2
2

∣∣∣ ≤ α2(1 + 2λ)2d1(1 − d21 )

96

⎛

⎝(|A| + |C |)
√

1 − B2

4AC

⎞

⎠

= α2(1 + 2λ)2

2304

(d1),

where


(x) := (16 − 8x2 − Ex4)

√

1 + F2(1 − x2)

2(8 − E)(x2 + 2)
, x ∈ [d∗

1 , 1].

For x ∈ [d∗
1 , 1], we have


 ′(x) =(−16x − 4Ex3)

√

1 + F2(1 − x2)

2(8 − E)(x2 + 2)

+ (Ex4 + 8x2 − 16)
3F2x

2(8 − E)(x2 + 2)2

√

1 + F2(1 − x2)

2(8 − E)(x2 + 2)

.

Since for −4 ≤ E < 0,
−16x − 4Ex3 < 0

and
Ex4 + 8x2 − 16 < 8(x2 − 2) < 0

for α ∈ (0, 1] and x ∈ [d∗
1 , 1], we deduce that
 is a decreasing function. This implies

that ∣∣∣γ1γ3 − γ 2
2

∣∣∣ ≤ α2(1 + 2λ)2

2304

(d1)

≤ α2(1 + 2λ)2

2304

(d∗

1 )

= α2(1 + 2λ)2

2304
�(d∗

1 ),

where � is given in (2.6).
Summarizing parts from Case 1-3, it follows the inequalities (2.1).
To show the sharpness for the case F − 2 ≤ 0, consider the function

p(z) := 1 − z2

1 + z2
, (z ∈ U).

It is obvious that the function p is in P with c1 = c3 = 0 and c2 = −2. The
corresponding function f ∈ FO(λ, α) is described by (2.2). Hence by (2.3) it follows

123
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that a2 = a4 = 0 and a3 = −α(1 + 2λ)/6. From (2.4), we obtain

∣∣∣γ1γ3 − γ 2
2

∣∣∣ = α2(1 + 2λ)2

144
.

For the case F − 2 > 0, consider the function

p(z) := 1 − z2

1 − 2ξ z + z2
, (z ∈ U),

where ξ is given by (2.7). From Lemma 1, it follows that p ∈ P . The corresponding
function f ∈ FO(λ, α) is described by (2.2) and has the following coefficients

a2 =1

2
αξ(1 + 2λ),

a3 =1

6
α(1 + 2λ)

[− 1 + ξ2(1 + 2α + 2αλ)
]
,

a4 = 1

72
α(1 + 2λ)

[− 3ξ(2 + 7α + 6αλ)

+ ξ3(8 + 21α + 18αλ + 16α2 + 30α2λ + 12α2λ2
)]

.

Hence, from (2.4) we obtain

∣∣∣γ1γ3 − γ 2
2

∣∣∣ = α2(1 + 2λ)2

576

(
4 + (F − 2)2

16 + 4F − E

)
.

This completes the proof.

For λ = 1/2, we get the bounds for the class Kc(α) given in [29].

Corollary 1 Let α ∈ (0, 1]. If f ∈ Kc(α), then

∣∣∣γ1γ3 − γ 2
2

∣∣∣ ≤

⎧
⎪⎪⎨

⎪⎪⎩

α2

36
, 0 < α ≤ 1

3
,

α2(13α2 + 18α + 17)

144(α2 + 6α + 4)
,

1

3
< α ≤ 1.

The inequalities are sharp.

3 Second Hankel Determinant of Logarithmic Coefficients for Inverse
Functions

The following lemma will be used in the proof of the main result of this section.

Lemma 3 Let T ∈ (2, 11] and S ∈ (4, 39]. Define H : [0, 1] → R by

H(x) := h1(x)
√
h2(x),
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where for x ∈ [0, 1],

h1(x) := Sx2 − 8x + 16 and h2(x) := 1 + T 2(1 − x)

2(S + 8)(x + 2)
.

Then H is a convex function.

Proof To prove the lemma, we will use the same method as in [24, p. 2524]. By
differentiating H twice, we obtain

(h2(x))
3/2H ′′(x) =h′′

1(x)
(
h2(x)

)2 + h′
1(x)h2(x)h

′
2(x)

+ 1

2
h1(x)h2(x)h

′′
2(x) − 1

4
h1(x)

(
h′
2(x)

)2

= G(x)

16(S + 8)2(x + 2)4
,

where for x ∈ [0, 1],

G(x) :=[(8x4 + 28x3 + 3x2 − 80x + 32)S − 312x + 240
]
T 4

+ [(− 32x4 − 184x3 − 336x2 − 64x + 256
)
S2

+ (− 256x4 − 1472x3 − 2688x2 + 256x + 3584
)
S + 6144x + 12288

]
T 2

+ (32x4 + 256x3 + 768x2 + 1024x + 512
)
S3

+ (512x4 + 4096x3 + 12288x2 + 16384x + 8192
)
S2

+ (2048x4 + 16384x3 + 49152x2 + 65536x + 32768
)
S.

We show that our assertion is true by proving that G(x) ≥ 0 for x ∈ [0, 1]. For
x ∈ [0, 1] and S ∈ (4, 39], define

J (u) := A0 + A1u + A2u
2

where

A0 :=
(
32x4 + 256x3 + 768x2 + 1024x + 512

)
S3

+
(
512x4 + 4096x3 + 12288x2 + 16384x + 8192

)
S2

+
(
2048x4 + 16384x3 + 49152x2 + 65536x + 32768

)
S

A1 :=
(
−32x4 − 184x3 − 336x2 − 64x + 256

)
S2

+
(
−256x4 − 1472x3 − 2688x2 + 256x + 3584

)
S

+ 6144x + 12288

A2 :=
(
8x4 + 28x3 + 3x2 − 80x + 32

)
S − 312x + 240.
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I. Consider the first case A2 ≤ 0. Then

J (4) =
(
32x4 + 256x3 + 768x2 + 1024x + 512

)
S3

+
(
384x4 + 3360x3 + 10944x2 + 16128x + 9216

)
S2

+
(
1152x4 + 10944x3 + 38448x2 + 65280x + 47616

)
S + 19584x + 52992 > 0

for x ∈ [0, 1]. Furthermore,

J (121) = k0 + k1S + k2S
2 + k3S

3,

where for x ∈ [0, 1],

k0 := −3824568x + 5000688

k1 := 88200x4 + 248220x3 − 232173x2 − 1074768x + 934944

k2 := −3360x4 − 18168x3 − 28368x2 + 8640x + 39168

k3 := 32x4 + 256x3 + 768x2 + 1024x + 512.

Since k3 > 0 for x ∈ [0, 1] and S > 4, we see that

J (121) ≥ k0 + k1S + (k2 + 4k3)S
2,

and

k2 + 4k3 = −3232x4 − 17144x3 − 25296x2 + 12736x + 41216 > 0.

Hence and by the fact that S > 4, we obtain

J (121) ≥ k0 + (k1 + 4k2 + 16k3) S.

Thus, since k0 > 0, if k1 + 4k2 + 16k3 ≥ 0, then J (121) > 0.
If k1 + 4k2 + 16k3 < 0, then

(k1 + 4k2 + 16k3) S > (k1 + 4k2 + 16k3) 39,

and therefore for x ∈ [0, 1],

J (121) ≥ k0 + (k1 + 4k2 + 16k3) 39

= −504192x4 − 2674464x3 − 3946176x2 − 147171336x + 201456528 > 0.

Thus, since A2 ≤ 0, we deduce that

J (u) ≥ min{J (4), J (121)} > 0, u ∈ [4, 121].
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II. Next we consider the case A2 > 0. Then

J (u) = A0 + A1u + A2u
2 ≥ A0 + (A1 + 4A2

)
u =: J̃ (u).

We can easily see that

J̃ (4) =
(
32x4 + 256x3 + 768x2 + 1024x + 512

)
S3

+
(
384x4 + 3360x3 + 10944x2 + 16128x + 9216

)
S2

+
(
1152x4 + 10944x3 + 38448x2 + 65280x + 47616

)
S

+ 19584x + 52992 > 0.

Furthermore,
J̃ (121) = q0 + q1S + q2S

2 + q3S
3,

where

q0 := 592416x + 1603008

q1 := −25056x4 − 148176x3 − 274644x2 + 57792x + 481920

q2 := −3360x4 − 18168x3 − 28368x2 + 8640x + 39168

q3 := 32x4 + 256x3 + 768x2 + 1024x + 512.

Since S > 4, we obtain

J̃ (121) > q0 + q1S + (q2 + 4q3)S
2.

Since q0 > 0, q1 > 0 and

q2 + 4q3 = −3232x4 − 17144x3 − 25296x2 + 12736x + 41216 > 0,

it follows that J̃ (121) > 0.
Hence, since the function J̃ is linear with respect to u, J̃ (4) > 0 and J̃ (121) > 0,

we deduce that

J (u) ≥ J̃ (u) ≥ min{ J̃ (4), J̃ (121)} > 0, u ∈ [4, 121].

Finally, note that the cases I and II imply that J (u) > 0 for u ∈ (4, 121], S ∈ [4, 39]
and x ∈ [0, 1], which shows that G(x) ≥ 0. This completes the proof of Lemma 3.
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Theorem 2 Let α ∈ (0, 1] and λ ∈ [1/2, 1]. If f ∈ FO(λ, α), then

∣∣H2,1(Ff −1/2)
∣∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α2(1 + 2λ)2

144
, T ≤ 2,

α2(1 + 2λ)2

576

(
4 + (T − 2)2

16 + 4T + S

)
, T > 2, S ≤ 2

(√
2T 2 + 8T + 40 − T − 2

)
,

α2(1 + 2λ)2

2304
(8 + S), T > 2, S > 2

(√
2T 2 + 8T + 40 − T − 2

)
,

(3.1)
where T := α(1 + 10λ) and S := α2(44λ2 + 4λ − 9).

The inequalities in (3.1) are sharp.

Proof Let α ∈ (0, 1], λ ∈ [1/2, 1] and f ∈ FO(λ, α) be of the form (1.1). Then,
(2.2) holds for some function p ∈ P of the form (1.10). Since the classFO(λ, α) and
|H2,1(Ff −1/2)| are rotationally invariant, without loss of generality we may assume
that a2 ≥ 0. Thus, by (2.3) we assume that c := c1 ∈ [0, 2], i.e., in view of (1.11)
that d1 ∈ [0, 1]. By (1.9), (2.3) and (1.11), we get

H2,1(Ff −1/2) = �1�3 − �2
2

= 1

4

(
a2a4 − a23 − a22a3 + 13

12
a42

)

= α2(1 + 2λ)2

2304
�,

(3.2)

where
� := − 8(2 + d21 )(1 − d21 )d

2
2 − 4T (1 − d21 )d

2
1d2

+ 24(1 − d21 )(1 − |d2|2)d1d3 + (8 + S)d41
(3.3)

for some d1 ∈ [0, 1] and d2, d3 ∈ U.
I.Assume first that T = α(1+10λ) ≤ 2. Then, by applying the triangle inequality

to (3.3) and by the fact that |d2| ≤ 1 and |d3| ≤ 1, we obtain

|�| ≤ (S − 4T )d41 + 4(T − 2)d21 + 16. (3.4)

Since S − 4T < 0 and T ≤ 2, by (3.4) we have

|�| ≤ 16,

which together with (3.2) shows the first inequality in (3.1).
II. Next assume that T = α(1 + 10λ) > 2.

Case 1. Suppose that d1 = 1. Then by (3.2) and (3.3), we obtain

∣∣∣�1�3 − �2
2

∣∣∣ = α2(1 + 2λ)2

2304
(8 + S).
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Case 2. Suppose that d1 = 0. Then by (3.2) and (3.3), we obtain

∣∣∣�1�3 − �2
2

∣∣∣ = α2(1 + 2λ)2

144
|d2|2 ≤ α2(1 + 2λ)2

144
.

Case 3. Suppose that d1 ∈ (0, 1). Since |d3| ≤ 1, by applying the triangle inequality
to (3.2) we can write

∣∣∣�1�3 − �2
2

∣∣∣ ≤ α2(1 + 2λ)2d1(1 − d21 )

96

[ ∣∣∣A + Bd2 + Cd22

∣∣∣+ 1 − |d2|2
]
, (3.5)

where

A := − 8 + S

24(1 − d21 )
d31 , B := T

6
d1, C := d21 + 2

3d1
.

Since AC < 0, we apply Lemma 2 only for the case II.
We have

2 < T = α(1 + 10λ) ≤ 11,

and therefore

4

9
< S = α2(44λ2 + 4λ − 9) ≤ 39

for λ ∈ [1/2, 1] and α ∈ (0, 1].
We consider the following sub-cases.
3(a)
Note that

|B| − 2(1 − |C |) = T

6
d1 − 2

(
1 − d21 + 2

3d21

)

= 1

6d1

(
4d21 − 12d1 + Td21 + 8

)

= 1

6d1

(
4(1 − d1)(2 − d1) + Td21

)
> 0.

Therefore, |B| < 2(1−|C |) does not hold for d1 ∈ (0, 1), λ ∈ [1/2, 1] and α ∈ (0, 1].
3(b)We can easily see that

1

C2 − 1 = 9d21
(d21 + 2)2

− 1

= − 1

(d21 + 2)2
(d41 − 5d21 + 4)

= − 1

(d21 + 2)2
(1 − d21 )(4 − d21 ) < 0,
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which yields

−4AC

(
1

C2 − 1

)
< 0.

Therefore, the inequality

B2 < min

{
4(1 + |C |)2,−4AC

(
1

C2 − 1

)}

is false for d1 ∈ (0, 1), λ ∈ [1/2, 1] and α ∈ (0, 1].
3(c) Since

4|C | − |B| = 4
d21 + 2

3d1
− T

6
d1

= 1

6
((8 − T )d21 + 16)

≥ 1

6
(16 − 3d21 ) > 0,

we have
|C |(|B| + 4|A|) − |AB| = |BC | + |A|(4|C | − |B|) > 0.

Consequently, the inequality |C |(|B| + 4|A|) ≤ |AB| does not hold for d1 ∈ (0, 1),
λ ∈ [1/2, 1] and α ∈ (0, 1].

3(d)We can write

|AB| − |C |(|B| − 4|A|) = (8 + S)T

144(1 − d21 )
d41 − d21 + 2

3d1

(
T

6
d1 − 4(8 + S)

24(1 − d21 )
d31

)

= 1

144(1 − t)
(Pt2 + Qt + R),

where t := d21 ∈ (0, 1) and

P := 64 + 8S + 16T + ST , Q := 128 + 8T + 16S, R := −16T .

It is easy to see that P > 0, Q > 0 and R < 0 for λ ∈ [1/2, 1] and α ∈ (0, 1].
For the equation Pt2 + Qt + R = 0, we have 
 > 0. Since

R

P
< 0 and P + Q + R > 0,

for λ ∈ [1/2, 1] and α ∈ (0, 1], the equation Pt2 + Qt + R = 0 has a unique positive
root t1 < 1. Thus, the inequality |AB|−|C |(|B|−4|A|) ≤ 0 holds for (0, d∗∗

1 ], where
d∗∗
1 := √

t1. So we can write from (3.5) and Lemma 2,

∣∣∣�1�3 − �2
2

∣∣∣ ≤ α2(1 + 2λ)2d1(1 − d21 )

96
(−|A| + |B| + |C |)

= α2(1 + 2λ)2

2304
�(d1),

123



183 Page 18 of 23 S. Sümer Eker et al.

where
�(x) := (−16 − 4T − S)x4 + 4(T − 2)x2 + 16, x ∈ [0, 1].

We note that �′(x) = 4(−16−4T − S)x3 +8(T −2)x = 0 for x ∈ (0, 1) holds only
for

x =
√

2(T − 2)

16 + 4T + S
=: ξ, (3.6)

in the case when T > 2, i.e., for α(1+ 10λ) > 2. Clearly 0 < ξ < 1 and the function
� attains at ξ its maximum value on [0, 1]. Therefore, in the case when 0 < ξ ≤ d∗∗

1
we have

∣∣∣�1�3 − �2
2

∣∣∣ ≤ α2(1 + 2λ)2

2304
�(ξ)

= α2(1 + 2λ)2

2304

[
(−16 − 4T − S)ξ4 + 4(T − 2)ξ2 + 16

]

= α2(1 + 2λ)2

576

(
4 + (T − 2)2

16 + 4T + S

)
.

3(e) Next consider the case x ∈ [d∗∗
1 , 1). Using the last case of the Lemma 2,

∣∣∣�1�3 − �2
2

∣∣∣ ≤ α2(1 + 2λ)2d1(1 − d21 )

96

⎛

⎝(|A| + |C |)
√

1 − B2

4AC

⎞

⎠

= α2(1 + 2λ)2

2304
h1(d

2
1 )

√
h2(d21 ),

where for x ∈ [0, 1],

h1(x) := Sx2 − 8x + 16 and h2(x) := 1 + T 2(1 − x)

2(S + 8)(x + 2)
.

It is easy to see that h2 is a positive decreasing function in [d∗∗
1 , 1).

i) If S ≤ 4, then h1 is a positive decreasing function in [d∗∗
1 , 1). Hence,

Pξ4 + Qξ2 + R =P

(
2(T − 2)

16 + 4T + S

)2
+ Q

(
2(T − 2)

16 + 4T + S

)
+ R

= 4

(16 + 4T + S)2

[
T 3(S − 32) + 8T 2(S − 28) + 4T (S2 − 9S − 208)

−16S2 − 352S − 1792
]

< 0.
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Therefore by Part 3(d), it follows that 0 < ξ < d∗∗
1 . Since h1

√
h2 is decreasing in

[d∗∗
1 , 1) and as easy to check h1(d∗∗

1 )
√
h2(d∗∗

1 ) = �(d∗∗
1 ), we get

∣∣∣�1�3 − �2
2

∣∣∣ ≤ α2(1 + 2λ)2

2304
h1(d

∗∗
1 )

√
h2(d∗∗

1 )

= α2(1 + 2λ)2

2304
�(d∗∗

1 )

≤ α2(1 + 2λ)2

2304
�(ξ).

ii)When 4 < S ≤ 39 and 2 < T ≤ 11, we can write

H(d21 ) = h1(d
2
1 )

√
h2(d21 ),

where H is the function defined in Lemma 3. Since by Lemma 3 the function H is
convex, we deduce that

H(d21 ) ≤ max{H(d∗∗
1 ), H(1)} = max{H(d∗∗

1 ), 8 + S}.

Suppose that S ≤ 2(
√
2T 2 + 8T + 40 − T − 2), i.e., that S2 ≤ −4ST − 8S +

4T 2 + 16T + 144. Then

Pξ4 + Qξ2 + R = 4

(16 + 4T + S)2

[
4S2T − 16S2 + ST 3 + 8ST 2 − 36ST

−352S − 32T 3 − 224T 2 − 832T − 1792
]

≤ 4

(16 + 4T + S)2

[
4T (−4ST − 8S + 4T 2 + 16T + 144)

− 16S2 + ST 3 + 8ST 2 − 36ST − 352S − 32T 3

−224T 2 − 832T − 1792
]

= 4

(16 + 4T + S)2

[
−16S2 + ST 3 − 8ST 2 − 68ST − 352S

−16T 3 − 160T 2 − 256T − 1792
]

< 0,

which by Part 3(d) yields 0 < ξ < d∗∗
1 . Since then �(ξ) ≥ 8 + S, we get

H(d21 ) ≤ max{H(d∗∗
1 ), H(1)} = max{H(d∗∗

1 ), 8 + S} ≤ �(ξ).

Suppose that S > 2(
√
2T 2 + 8T + 40 − T − 2). Then,

H(d∗∗
1 ) = �(d∗∗

1 ) ≤ �(ξ) ≤ 8 + S
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and hence

H(d21 ) ≤ max{H(d∗∗
1 ), H(1)} = max{H(d∗∗

1 ), 8 + S} = 8 + S.

Summarizing parts from Case 1–3, it follows (3.1).
In order to show that the inequalities are sharp, first let f ∈ FO(λ, α) be defined

by (2.2) with

p(z) := 1 + z2

1 − z2
= 1 +

∞∑

k=1

2z2k, (z ∈ U),

Then, in view of (2.3) we have

a2 = 0, a3 = α(1 + 2λ)

6
, a4 = 0.

Thus, from (3.2) we get

∣∣H2,1(Ff −1/2)
∣∣ =

∣∣∣∣
13

48
a42 − 1

4
a22a3 + 1

4
a4a2 − 1

4
a23

∣∣∣∣

= α2(1 + 2λ)2

144
,

which shows that the first bound in (3.1) is sharp.
Next let f ∈ FO(λ, α) be defined by (2.2) with

p(z) := 1 + 2ξ z + z2

1 − z2
, (z ∈ U),

where ξ given by (3.6). Then in view of (2.3) we have

a2 =α(1 + 2λ)

2
ξ,

a3 =α(1 + 2λ)

6

(
1 + (2α + 2αλ − 1)ξ2

)
,

a4 =α(1 + 2λ)ξ

72

[
(8 − 21α + 16α2 − 18αλ + 30α2λ + 12α2λ2)ξ2

+21α + 18αλ − 6] .

Thus, from (3.2) we get

∣∣H2,1(Ff −1/2)
∣∣ =

∣∣∣∣
13

48
a42 − 1

4
a22a3 + 1

4
a4a2 − 1

4
a23

∣∣∣∣

= α2(1 + 2λ)2

576

(
4 + (T − 2)2

16 + 4T + S

)
,

which shows that the second bound in (3.1) is sharp.
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Finally, let f ∈ FO(λ, α) be defined by (2.2) with

p(z) := 1 + 2z + z2

1 − z2
, (z ∈ U).

Then, in view of (2.3) we have

a2 =α(1 + 2λ)

2
, a3 = α2

3
(1 + λ)(1 + 2λ)

a4 =α(1 + 2λ)

36
(6α2λ2 + 15α2λ + 8α2 + 1).

Thus, from (3.2) we get

∣∣H2,1(Ff −1/2)
∣∣ =

∣∣∣∣
13

48
a42 − 1

4
a22a3 + 1

4
a4a2 − 1

4
a23

∣∣∣∣

= α2(1 + 2λ)2

2304
(8 + S),

which shows that the third bound in (3.1) is sharp.

In [33], it was shown that the bounds of H2,2( f ) and H2,2( f −1) for the convex
functions of order alpha were the same, reflecting other invariant properties related to
the coefficients f and f −1. Sim et al. [24] improved these bounds to achieve sharp
bounds. The following result shows that forλ = 1/2, i.e., for the classKc(α), the sharp
bounds for the second Hankel determinant of logarithmic coefficients H2,1(Ff /2),
given in Corollary 1, and H2,1(Ff −1/2) are also the same.

Corollary 2 Let α ∈ (0, 1]. If f ∈ Kc(α), then

∣∣∣�1�3 − �2
2

∣∣∣ ≤

⎧
⎪⎪⎨

⎪⎪⎩

α2

36
, 0 < α ≤ 1

3
,

α2(13α2 + 18α + 17)

144(α2 + 6α + 4)
,

1

3
< α ≤ 1.

The inequalities are sharp.
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