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Abstract
In this note, we study the steady incompressible nematic liquid crystal flows in R

3.
We establish the anisotropic Liouville-type theorems when a smooth solution (u, d)

satisfies some suitable conditions.

Keywords Liouville-type theorem · Stationary incompressible nematic liquid crystal
equations

Mathematics Subject Classification 35Q35 · 35B53

1 Introduction

We study the Liouville-type problem for the following simplified version of Ericksen–
Leslie system modeling the hydrodynamic flow of stationary incompressible nematic
liquid crystals in R

3 [7, 14]
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⎧
⎪⎨

⎪⎩

u · ∇u − �u + ∇P = −div(∇d � ∇d),

u · ∇d = �d + |∇d|2d,

divu = 0, |d| = 1,

(1.1)

where u(x) is the velocity field, P(x) is the pressure function and d(x) is the
macroscopic average of the nematic liquid crystal orientation field. The nonlinear
super-critical term ∇i d � ∇ j d = ∑3

k=1
∂dk
∂xi

· ∂dk
∂x j

and the additional uniform decays
condition as follows

|u(x)| + |∇d(x)| → 0, as |x | → ∞. (1.2)

There are lots of studies on the global well-posedness and regularity criterion for
nematic liquid crystal equations in [15, 16], and the system (1.1) can be regarded as
the Navier–Stokes equations coupled with the transported harmonic map heat flows.
When ∇d = 0, the system (1.1) reduces to the stationary incompressible Navier–
Stokes equations. About the Liouville-type theorems for the stationary incompressible
Navier-Stokes equations, there is a well-known result that is given in the book [8] of

Galdi who has proved that a smooth solution u = 0 if u ∈ L
9
2 (R3). Later, Chae [2]

improved the condition that as long as �u ∈ L
6
5 (R3). And Seregin [17] also obtained

an improved condition u ∈ L6(R3) ∩ BMO−1. Chae-Wolf [3] showed a logarithmic
improvement of Galdi’s work, assuming that

N (u) :=
∫

R3
|u| 92 {ln(2 + 1/|u|)}−1d < ∞.

Recently, Chae [5] first proved that the smooth solution is trivial by anisotropic inte-
grability condition on the components of the velocity. Relative to previous isotropic
results, anisotropic integrability conditionmeans that the condition itself changeswhen
the coordinate axis is rotated with respect to the origin. For stationary incompressible
nematic liquid crystal equations, Hao et al. [9] obtained the Liouville-type theorems
for incompressible liquid crystal flowwhen u and∇d satisfy the Galdi’s [8] condition,
or some decay conditions. And Jarrin in article [10] extended the Liouville results to
the local Morrey spaces. For more interesting works on Liouville-type problems, we
refer to [1, 3, 4, 13] and the references therein.

We will introduce some notations.

x̃1 � (x2, x3), x̃2 � (x3, x1) x̃3 � (x1, x2)

and for a region � ⊆ R
2 we represent

∫

�

gdx̃1 =
∫

�

gdx2dx3 ,
∫

�

gdx̃2 =
∫

�

gdx3dx1 ,
∫

�

gdx̃3 =
∫

�

gdx1dx2 .
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Given 0 < p, q ≤ ∞, i ∈ {1, 2, 3}, we write g ∈ L p
xi L

q
x̃i
when

‖g‖L p
xi L

q
x̃i

�

⎧
⎨

⎩

∫

R

(∫

R2
|g|qdx̃i

) p
q
dxi

⎞

⎠

1
p

< ∞

for 0 < p, q < ∞ with obvious extensions to the case p = +∞ or q = +∞.
Now, for incompressible nematic liquid crystal equations in R

3, we address
sufficient conditions to prove a Liouville theorem and state the main results as follows:

Theorem 1.1 Let (u, d) be a smooth solution of the stationary nematic liquid crystal
equations (1.1). Suppose

(u,∇d) ∈ L6(R3) ∩ Lr (R3), (1.3)

and

ui ∈ L
r

r−2
xi Ls

x̃i
(R × R

2), ∀i = 1, 2, 3 (1.4)

with r , s satisfying

2

r
+ 1

s
≥ 1

2
, 2 < r < ∞, 1 ≤ s ≤ ∞ (1.5)

then u = 0 and d satisfies the harmonic map equation of

�d + |∇d|2d = 0. (1.6)

Theorem 1.2 Let d: R3 → S
2 be a solution of (1.6) and ∇d ∈ Lr (R3), then d is a

constant map on R
3.

Remark 1.1 For the harmonic maps equation in (1.6), many scholars studied it from
geometric perspective, e.g. Choi [6] proved Liouville theorem under the image of
the harmonic map d lies in a hemisphere. Schoen and Uhlenbeck [18] established
Liouville theorems for minimizing harmonic maps into the Euclidean sphere. Jin [12]
proved that d is a constant map if d approaches a constant at infinity, which inspired
us that ∇d has a faster decay at infinity, d may be a constant map.

Remark 1.2 In particular case that r = s = 6, the assumption of the above ui reduces
to

ui ∈ (L
3
2
xi ∩ L6

xi )L
6
x̃i

(R × R
2), ∀i = 1, 2, 3

which means a mild decay in horizontal direction combined with the faster decay in
vertical direction, then the smooth solution is a trivial solution.
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Remark 1.3 The smooth solution can be replaced by weak solution in hypothesis of
Theorems 1.1 and 1.2. O.Jarrin showed in [11] that the weak solution (u,∇d) ∈ L p

of (1.1) becomes smooth solution if p > 3.

Remark 1.4 Comparedwith Liouville theorem to incompressible Navier–Stokes equa-
tions in [5], the study of incompressible nematic liquid crystal equations is much more
complicated due to the transported harmonic map heat flows. Our results in this note
improve the Chae’s results in [5] when ∇d = 0 in (1.1).

2 The Proofs of Theorems

Proof of Theorem 1.1 We employ the index sets as follows:

I1 = {2, 3}, I2 = {1, 3}, I3 = {1, 2}.

We choose a smooth non-increasing real valued function φ satisfying

φ(s) =
{
1, 0 ≤ s ≤ 1,
0, s ≥ 4,

and φ(s) ∈ [0, 1] for s ≥ 0. For each R > 0, we define radial cut-off functions

ηR(x) =
3∏

j=1

φ(
x2j
R2 ),

η̄i,R(x) =
∏

j∈Ii

φ(
x2j
R2 ), i = {1, 2, 3},

and

D̃i � {x̃i ∈ R
2||x j | < 2R, ∀ j ∈ Ii}, i = {1, 2, 3}.

Multiplying (1.1)1, (1.1)2 by uηR(x), (�d + |∇d|2d)ηR(x) respectively, and
integrating over R3, we get

∫

R3
u · ∇u · uηR(x)dx −

∫

R3
�u · uηR(x)dx +

∫

R3
∇P · uηR(x)dx

+
∫

R3
div(∇d � ∇d)uηR(x)dx

+
∫

R3
|�d + |∇d|2d|2ηR(x)dx −

∫

R3
(u · ∇d)(�d + |∇d|2d)ηR(x)dx = 0.

(2.1)

Using (A), (B), (C), (D), (E) and (F) to represent the terms on the left-hand side of
(2.1), we will estimate them as follows.
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2.1. Estimate of (A)
By integrating by parts and (1.1)3, we can get

(A) =
∫

R3
u · ∇ |u|2

2
ηR(x)dx

= − 1

2

∫

R3
|u|2 · div(uηR(x))dx

= − 1

2

∫

R3
|u|2u · ∇ηR(x)dx .

2.2. Estimate of (B)
By integrating by parts and (1.1)3, we compute that

(B) =
∫

R3
∇u : ∇(uηR(x))dx

=
∫

R3
|∇u|2 · ηR(x)dx +

∫

R3
∇u : (u ⊗ ∇ηR(x))dx

=: (B1) −
∫

R3
u · div(u ⊗ ∇ηR(x))dx

=: (B1) −
∫

R3
u · ∇u · ∇ηR(x))dx −

∫

R3
|u|2�ηR(x))dx

=: (B1) − 1

2

∫

R3
|u|2 · �ηR(x)dx

=: (B1) + (B2).

2.3. Estimate of (C)
By integrating by parts and (1.1)3, we show that

(C) = −
∫

R3
Pdiv(uηR(x))dx

= −
∫

R3
Pu · ∇ηR(x)dx .

2.4. Estimate of (D)
By integrating by parts and (1.1)3, we obtain that

(D) =
∫

R3
ui∇ j (∇i d · ∇ j d)ηR(x)dx

=
∫

R3
ui (∇i∇ j d · ∇ j d + ∇i d · ∇2

j d)ηR(x)dx

=
∫

R3

1

2
ui∇i |∇d|2ηR(x) + (u · ∇d) · �dηR(x)dx
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= −
∫

R3

1

2
|∇d|2u · ∇ηR(x)dx +

∫

R3
(u · ∇d) · �dηR(x)dx

= : (D1) + (D2).

2.5. Estimate of (F)
Recalling that |d| = 1, we can easily get that

(F) = −
∫

R3
u · ∇d · �dηR(x)dx −

∫

R3
u · ∇d · |∇d|2dηR(x)dx

= −
∫

R3
u · ∇d · �dηR(x)dx −

∫

R3
u · ∇ |d|2

2
· |∇d|2ηR(x)dx

= −
∫

R3
u · ∇d · �dηR(x)dx .

It is obvious that (D2) + (F) = 0. Putting the above estimates of (A), (B), (C), (D),
(E) and (F) together in (2.1), we have

− 1

2

∫

R3
|u|2u · ∇ηR(x)dx +

∫

R3
|∇u|2ηR(x)dx − 1

2

∫

R3
|u|2 · �ηR(x)dx

−
∫

R3
Pu · ∇ηR(x)dx −

∫

R3

1

2
|∇d|2u · ∇ηR(x)dx +

∫

R3
|�d + |∇d|2d|2ηR(x)dx = 0.

Furthermore, we can write

∫

R3
|∇u|2ηR(x)dx +

∫

R3
|�d + |∇d|2d|2ηR(x)dx

= 1

2

∫

R3
|u|2u · ∇ηR(x)dx + 1

2

∫

R3
|u|2 · �ηR(x)dx

+
∫

R3
Pu · ∇ηR(x)dx +

∫

R3

1

2
|∇d|2u · ∇ηR(x)dx

= 1

2

∫

R3
|u|2 · �ηR(x)dx +

∫

R3
Qu · ∇ηR(x)dx

�(G1) + (G2),

(2.2)

where Q is denoted by

Q = 1

2
|u|2 + 1

2
|∇d|2 + P. (2.3)

We will estimate (G1) and (G2) separately in the following subsections.
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2.6. Estimate of (G1)

(G1) = 1

2

3∑

i=1

∫

{R≤|xi |≤2R}

∫

D̃i

|u|2η̄i,R{ 2

R2 φ′(
x2i
R2 ) + 4x2i

R4 φ′′(
x2i
R2 )}dx̃i dxi

≤ C

R2

3∑

i=1

(

∫

{R≤|xi |≤2R}

∫

D̃i

|u|6dx) 13 (

∫

{R≤|xi |≤2R}

∫

D̃i

1dx̃i dxi )
2
3

≤C
3∑

i=1

(

∫

{R≤|xi |≤2R}

∫

R2
|u|6dx) 13 .

By letting R → +∞, we obtain

lim
R→+∞(G1) = 0. (2.4)

2.7. Estimate of (G2)

Taking the divergence to the equation (1.1)1, we have

�P = −
3∑

i, j=1

∂i∂ j (uiu j + ∂i d
k∂ j d

k),

which can be written

P = −
3∑

i, j=1

Ri R j (uiu j + ∂i d
k∂ j d

k) + g

where R j = ∂ j√−�
is the j − th Riesz transform and �g = 0 in R

3. Because of the

continuity of the operator R j and the condition (u,∇d) ∈ L6(R3), it holds that

g = 0, ‖P‖Lr ≤ ‖u‖2L2r + ‖∇d‖2L2r ,∀r ∈ (1,+∞),

which easily to get the estimate of Q that

‖Q‖Lr ≤ ‖u‖2L2r + ‖∇d‖2L2r . (2.5)

By employing the anisotropic condition to (G2),

(G2) =
3∑

i=1

2

R2 |
∫

R3
xi η̄i,RQui · φ′

(
x2i
R2

)

dx |

≤C

R

3∑

i=1

∫

{R<|xi |<2R}

∫

D̃i

|Q||ui |dx̃idxi

123



180 Page 8 of 10 J. Zhang, S. Wang

≤C

R

3∑

i=1

∫

{R<|xi |<2R}

(∫

D̃i

|Q| r2 dx̃i
) 2

r
(∫

D̃i

|ui |sdx̃i
) 1

s
(∫

D̃i

1dx̃i

) rs−r−2s
rs

dxi

≤CR
2(rs−r−2s)

rs −1
3∑

i=1

∫

{R<|xi |<2R}

(∫

D̃i

|Q| r2 dx̃i
) 2

r
(∫

D̃i

|ui |sdx̃i
) 1

s
dxi

≤CR
2(rs−r−2s)

rs −1

×
3∑

i=1

(∫

{R<|xi |<2R}

∫

D̃i

|Q| r2 dx̃idxi
) 2

r
{∫

{R<|xi |<2R}

(∫

D̃i

|ui |sdx̃i
) r

s(r−2)
dxi

} r−2
r

≤CR
2(rs−r−2s)

rs −1
(∫

R3
|Q| r2 dx

) 2
r

3∑

i=1

{∫

{R<|xi |<2R}

(∫

D̃i

|ui |sdx̃i
) r

s(r−2)
dxi

} r−2
r

≤CR
2(rs−r−2s)

rs −1

⎧
⎨

⎩
(

∫

R3
|u|rdx) 2r +

(∫

R3
|∇d|rdx

) 2
r

⎫
⎬

⎭

×
3∑

i=1

{∫

{R<|xi |<2R}

(∫

R2
|ui |sdx̃i

) r
s(r−2)

dxi

} r−2
r

,

where we have employed the estimate of Q in the last inequality. Noting that the
condition (1.5) holds for

2(rs−r−2s)
rs − 1 ≤ 0.

Hence

lim
R→+∞(G2) = 0. (2.6)

Putting the estimates (G1) and (G2) into (2.2), we have

∫

R3
|∇u|2ηR(x)dx +

∫

R3
|�d + |∇d|2d|2ηR(x)dx = 0, as R → +∞.

Hence, it holds that

∇u = 0,

and

�d + |∇d|2d = 0. (2.7)

Since u ∈ L6(R3), we have u = 0 and finish the proof of Theorem 1.1. ��
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Proof of Theorem 1.2 Taking the inner product of (2.7) with x · ∇d over R3, it leads
to

∫

R3
(x · ∇)d · (�d + |∇d|2d)dx = 0. (2.8)

By the fact

∫

R3
(x · ∇)d|∇d|2ddx =

∫

R3

1

2
|∇d|2x · ∇|d|2dx = 0,

which implies

∫

R3
(x · ∇)d�ddx =

∫

R3
x j∂ j di∂k∂kdidx = 0. (2.9)

However, from the second equality in (2.9), it gets

∫

R3
x j∂ j di∂k∂kdidx

= −
∫

R3
(ε jk∂ j di · ∂kdi + x j∂k∂ j di∂kdi )dx

= −
∫

R3
|∇d|2dx −

∫

R3
x j∂ j (

1

2
|∇d|2)dx

= −
∫

R3
|∇d|2dx + 3

2

∫

R3
|∇d|2dx

=1

2

∫

R3
|∇d|2dx .

(2.10)

where

ε jk =
{
1, x j = xk,
0, x j �= xk,

Combining the (2.9) and (2.10), implies

∫

R3
|∇d|2dx = 0.

Hence ∇d ≡ 0 and d is a constant map. This completes the proof of Theorem 1.2. ��
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