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Abstract

We study an initial boundary value problem of 2D nonhomogeneous magneto-
micropolar equations with density-dependent viscosity in smooth bounded domains.
When the initial density can contain vacuum states, we prove that there is a unique
global strong solution for the system under the assumption that initial velocity is suit-
ably small. In particular, the initial data can be arbitrarily large except the gradient of
velocity. Finally, we obtain the exponential decay rates of strong solutions by using
the energy method.

Keywords Magneto-micropolar equations - Global well-posedness - Exponential
decay - Vacuum
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1 Introduction

In the paper, we first introduce the following standard 3D nonhomogeneous incom-
pressible magneto-micropolar equations
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pr +div(pu) =0,
(pu); + div(pu @ u) — div((u(p) + «)Vu) + VP =2«kV x w+ b - Vb,

(pw); +div(pu @ w) + 4kw — y Aw — AVdivw = 2«V X u, (1.1)
by +vAb+u-Vb—b-Vu =0,
divu = divb = 0,

where p, u, w, b and P are the density, velocity field, micro-rotational, magnetic field
and pressure of the fluid, respectively. The positive constant y and A are the angular
viscosities and « is the micro-rotation viscosity, while v > 0 is the magnetic diffusive
coefficient. The kinematic viscosity (p) satisfies the following hypothesis

1() € C'[0,00), and 0<pu<p(p)<pp<oo, for Vpel0,00). (1.2)

where (1 and [t are some positive constant. In the special case when

p=pr,x2,1), u=(ui(x,x2,1),ur(xi,x2,1),0), (13)
b= (bi(x1, x2, 1), ba(x1,x2,1),0), w=(0,0, w(xi, x2,1)), '
the 3D micropolar equations reduce to the 2D micropolar equations
pr+u-Vo=0,
pus + pu - Vu — div((u(p) + k)Vu) + VP = —2kV+iw + b - Vb,
pwt+pu~Vw+4Kw—yAw=2/<VJ‘-u, (1.4
by +vAb+u-Vb—>b-Vu =0,
divu = divb = 0.

Here u = (u1, uy) is a vector with the corresponding scalar vorticity, and w is a scalar
function in what follows,

V4w =01us — dur, Viw = (—dw, dw). (1.5)

Let © € R? be a bounded smooth domain, and we consider the initial boundary
value problem of (1.4) with the initial condition and the Dirichlet boundary condition:

(0, pu, pw, b)(x,0) = (po, potto, powo, bo)(x), x € Q, (16)
(u,w,b)(x,t) =(0,0,0), x €9, t>0. ’

The system (1.1) describes the motion of electrically conducting micropolar fluids
in the presence of a magnetic field. The magneto-micropolar fluid model was first
proposed by Ahmadi—Shahinpoor [1] in the 1970s, which extends the valid domain
of MHD equations and accounts for microrotation effect. There are some literatures
focused on the mathematical theory of the incompressible viscous magneto-micropolar
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system, in particular, studying well-posedness of solutions to the magneto-micropolar
fluid equations, also refer to [2] for relevant background. However, if the initial den-
sity includes the vacuum state, it has a few results to the existence of solutions for
this system [3—5]. When the fluid is homogeneous (i.e. p = const), the local exis-
tence and uniqueness of strong solutions were firstly established by Rojas-Medar
[6] with using the Galerkin method. Yamazaki [7] studied the global regularity of
the two-dimensional magneto-micropolar fluid system, and they showed that with
zero angular viscosity the solution triple remains smooth for all time. Next, Shang—
Zhao [8] proved the global regularity of classical solutions to 2D magneto-micropolar
fluid equations with only micro-rotational velocity dissipation and magnetic diffusion.
Recently, appealing to arefined pure energy method, Tan-Wu-Zhou [9] investigated the
global existence and decay estimate of solutions to magneto-micropolar fluid equations
by assuming that the H3-norm of the initial data is small, but the higher order deriva-
tives can be arbitrary large. Lin and Xiang [10] considered the global well-posedness
for the 2D incompressible magneto-micropolar fluid system with partial viscosity. Yet
for the density-dependent viscosity and the initial density allowing vacuum states, it
seems to need solve much more difficult problems to the system (1.1).

When the system do not consider the magnetic field (i.e. b = 0), the system
(1.1) reduces to the nonhomogeneous micropolar fluid equations. Eringen [11] first
introduced the micropolar fluids, which accounts for micro-rotation effects and micro-
rotation in a fluid motion system, and can be viewed as non-Newtonian fluids with
nonsymmetric stress tensor. When the connected open set € R? replaces the whole
space R3, and the solution vanishes on Q2 x [0, T], Galdi-Rionero [12] showed
existence and uniqueness of weak solutions to the initial boundary value problem
for the micropolar system. Dong—Zhang [13] and Liu—Wang [14] proved the global
regularity of smooth solutions to the 2D micropolar fluid with the micro-rotation
viscosity y = 0. Zhang—Zhu [15] studied the global strong and classical solution for
the 3D micropolar equations with vacuum, which assumed || o[ or ||/pouo ||i2 +

l/Powoll %2 is small enough. Recently, Song [16] concerned the global well-posedness
for the 3D compressible micropolar system in the critical Besov space, and proposed
the linear system for the compressible micropolar equations could be decomposed into
a compressible Navier—Stokes equation and an incompressible micropolar system.
However, if the influence of magnetic field on the motion is considered, it will also
bring some difficulties on a priori estimates of the system (1.1).

For the incompressible magneto-micropolar fluid model, many scholars has been
attracted by its research significance in physics and mathematics. When the initial
density allowing vacuum states and the density-dependent viscosity, Zhang—Zhu [5]
established the global strong solutions for the 3D nonhomogeneous incompressible
magneto-micropolar equations under the condition that the initial energy is small
enough. It is worth noting that these results are valid under the following compatibility
conditions

— (u1 +&)Aug + VPy — 2&curlwg — b - Vby = /pog1,

. (1.7)
— p2Awg — (u2 + A)Vdivwg + 4§wo — 28 curlug = /pog2,
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for some (V Py, g1, g2) € L?. Meanwhile, they also obtain the algebraic decay rates
of the solutions provided that the initial energy is small enough. Later on, Zhong [17]
extended this result to the entire two-dimensional space, and showed the local existence
of strong solutions to 2D nonhomogeneous magneto-micropolar fluid with vacuum as
far field density. Then, he established the global existence and exponential decay of
strong solutions of nonhomogeneous magneto-micropolar fluid equations with large
initial data and vacuum in paper [18]. Recently, With the help of weighted function
and the duality principle of BMO space and Hardy space, Zhong [19] investigated the
global well-posedness to nonhomogeneous magneto-micropolar fluid equations with
zero density at infinity in R?. Furthermore, for the homogeneous Dirichlet boundary
conditions of the velocity and micro-rotational velocity and Navier-slip boundary
condition of the magnetic field, he proved the initial boundary value problem of 3D
nonhomogeneous magneto-micropolar fluid equations in [20]. The above results are
all the density-independent viscosity. It will bring much more difficulties to estimate
the L>°(0, T'; L*)-norm for the gradients of velocity because of the density-dependent
viscosity. However, the paper [5] proved the global regularity of this system (1.1) in
3D space and only obtained the algebraic decay rate. It is worth noting that they require
must be satisfied some small energy conditions. As a result of the standard Sobolev
embedding theorem, a prior estimate for the 3D case cannot be applied to the 2D case.
The purpose of this paper is to establish the global well-posedness of solutions for
(1.4)—(1.6) with vacuum in smooth bounded domains. Especially, there is no need
other small initial energy but only need the initial velocity is suitably small, and we
also yielded the exponential decay rate of strong solutions.

Now, we go back to (1.1). Before stating the main results, we first explain the
notations and conventions used throughout this paper. For 1 <r < oo and k > 0, the
standard Lebesgue and Sobolve spaces are defined as L” = L"(£2), wkr = wkr(Q),
and H*(Q) = WK2(Q), r = 2. The space Holﬁ represent the closure in H'! of the
space C§o, = {f € C3°(Q)|divf = 0}.

The following is our main result of the paper:

Theorem 1.1 Let ¢ € (2,00) be a fixed constant, assume that the initial data
(po, uo, wo, bo) satisfy

0<poe W', uge Hy,, woe Hy.bo € Hy,. (1.8)
Then there exist some small positive constant &y depending only on q, k, v, 2, u,

A2 sup p(p), f. [ Vuoll 2. 1V woll 2 and ||Vboll 2. such that if
[0,p]

Vo3 < #o, (1.9)

there is a unique strong solution (p, u, w, b, P) satisfying that forany0 <t < T <
oo and?2 < r < min{q, 3},
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0=pec (0T W), Vuip) € C (0. T]; LY),

Vi e L® (0, T L2) nL® (r, T H‘) nL2 (r, T W”) ,

Vw e L® (0, T L2> nL® <r, T H1> N L (r, T H2> ,

Vb e L® (0, T L2> nL® (0, T Hl) nL? (o, T W“) ,
(1.10)

PeL®0,T: L) NL® (r, T H‘) nr? (r, T W”) ,

tﬁu,, tﬁwt, tbt € LOO (0, T, Lz) ,

1V, tNw,, tVb; € L2 (0, T: L2) ,

ot ot ot ot ot ot
e2Vu,e2Vw,e2Vb,e? Jpu;,e? Jpw;, e Ab e L? (0, T; L2) ,

A . ® K v . . . sy . .
where o = mln{—Cp 5 T, Cop ﬁ} with C » being the constant of Poincaré’s mequalzt_y.
Moreover, there exists some positive constant C depending only on €2, q, k, v, U, [,
0, |Vuoll 12, IVwoll ;2 and ||Vbol 12 such that for all t > 1,

{ IVuC, Ollgr + IV, Ollgr + IVEC, Dl + IIVPC, D)2 < Ce™ ', (L1D)

I/Pus (O35 + I /owe G, ONT2 + b (- )17, < Ce™ .

Remark 1.1 For the Theorem 1.1, it holds for any function () satisfying (1.2) and
for arbitrarily large initial density, which can contain vacuum condition. The initial
data is no need satisfy any compatibility conditions [21]

1
—div((u(po) + k)Vug) + VPo = p; 8.
for some (P, g) € H' x L2.

Remark 1.2 1t should be noted that we improved the results of [5], we consider the
density-dependent viscosity and the initial data can be arbitrarily large except || Vuy || iz
((1.9)). Finally, we also obtain time-independent estimates and exponential decay rates
for the solutions.

Now we simply present the main idea of the proof and give the main difficulty
in this paper. The local existence and uniqueness of strong solutions to the systems
(1.4)—(1.6) follow from the paper [17] (see Lemma 2.1). We need to deduce some
global a priori estimates on strong solution to (1.4)—(1.6) in proper higher regularity,
and then extend the local solution to the global solution. Due to we consider the initial
density can contain vacuum states and even have compact support, in particular, the
viscosity coefficient is also affected by the density. Hence it not only increases the
difficulty of estimating the the L°°(0, T’; L2(§2))-norm of ||Vu||i2, but also solves
the strong coupling between u - Vu, u - Vb and b - Vu. Firstly, the key ingredient
here is to get the time-independent LY, T; L*°(2))-norm of Vu. we derive that
the bound on L?(0, T'; L?(2))-norm of e7Vu by applying the upper bounds on the
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density (3.3) and the Poincaré inequality. And then the most important thing is to
estimate L*°(0, T; LZ(Q))—norm of Vu by the Lemma 2.3 and (3.1). Next, we will
obtain a key estimate (3.28) by multiplying (1.4)4 by b|b|? and Gronwall’s inequality,
which is used to deal with the strong coupling between b - Vu. In addition, we need to
define a function ¢ (1) £ min{l, ¢} to get the estimates on L>(0, T'; L?(2))-norm of
t% Ppurand L*((T), T; L2(Q2))-norm ofe%‘”\/ﬁu,, which avoids the singularity of
Il /pou:ll iz att = (. Because of the coupling between magnetic field and the gradient of
velocity and magnetic field, it is important to obtain the estimates on H?(£2)-norm of w
and L?(£2)-norm of b; by using the standard L2 (2)-estimates of the elliptic system, the
Eq. (1.4)4 and Sobolev’s inequality, which is used to control the L*° (¢(T), T; L2())-
norm of e%”tﬁw, and L>®(¢(T), T; L*>(2))-norm of e%‘”bt, further in order to get
the L1(0, T; L>(£2))-norm of Vu. Finally, with a priori estimates stated above, we
are in a position to prove Proposition 3.1. Meanwhile, it can bound the estimation of
the time derivatives for the solutions (p, u, w, b, P) to extend the local solution to all
time, and thus claims the proof of Theorem 1.1.

The rest of this paper is organized as follows: we introduce some elementary facts
and inequalities in Sect. 2. The Sect. 3 is devoted to a priori estimates. Finally, we will
give the proof of Theorem 1.1 in Sect. 4.

2 Preliminaries

We will recall some known facts and elementary inequalities which will be used
frequently later. The following local existence of strong solutions whose proof is
similar to [17].

Lemma 2.1 Assume that (po, o, wo, bo) satisfies (1.8). Then there exist a small time
T > 0 and a unique strong solution (p,u,w, b, P) to the problem (1.4)—(1.6) in
Q x (0, T) satisfies (1.10)—(1.11).

Lemma 2.2 (See [22]) (Gagliardo—Nirenberg) Let v belongs to L1(S2), and its deriya—
tives of order m, V" v, belong to L" (), 1 < s,r < oo. Then for the derivatives V' v,
0 < j < m, we have

IV7vlls) < CUV™ 0I5 ) V]l sy 2.1
where
1 j 1 1
s=rte(G-P)+d-og
for all a in the interval

<ac=l

S~

’

and the constant C depends only onn, m, j, s, r, o.

Next, we need the following regularity on the Stokes equations to derive the estimates
of the derivatives of the solutions, whose proof can be found in [23].
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Lemma 2.3 Assume that p € WY, g € (2,00), 0 < p < p and u(p) satisfies
(1.2) on [0, p]. Let (u, P) € Hll’a x L? be the unique weak solution to the following
boundary value problem

—div(u(p)Vu) + VP = F, divu =0 in , /de =0. 2.2)

Then we have the following regularity results:
(i) IfF € L?, then (u, P) € H*> x H' and
49 _
lullgz < CIHF Nl 2(A + IV ()l[La) a2,

22
IPllgr = CINFI2(1+ 1V (p)liza) a2 . (2.3)
(ii) IfF € L" for some r € (2,q), then (u, P) € W>" x W' and

qr
lullw2r < CIFlzr (L + Ve (p)llpa) >,
L.
1P llwrr < CIFIlr (1 + 1V (p)lla) F2a (24

Here the constant C depends on , q, r, o .

3 A Priori Estimates

In this section, we first let 7 > 0 be a fixed time and (p, u, w, b, P) be the smooth
solution to (1.4)—(1.6) on 2 x (0, T'] with smooth initial data (pg, ug, wo) satisfying
(1.8). Because of the Lemma 2.1, we will establish some necessary a priori bounds
for strong solutions (o, u, w, b, P) to the initial boundary value problem (1.4)—(1.6)
to extend the local strong solution. Firstly, we assume that the following a priori
hypothesis holds:

Proposition 3.1 There exists a small positive constant g depending only on R, q, k,
v, i, [, 0, IVuollp2, IVwoll g2 and Vol 2 such that if (p, u, w, b, P) is a smooth
solution of (1.4)—(1.6) on Q x (0, T] satisfying

sup IVi(p)lle <2M, sup (| Vul2, < 4| Vuol?,, 3.1)
tel0,T] t€[0,T]

and the following estimate holds:

sup IVi(p)liLe <M, sup e'||Vul2, < 2[Vuoll2,, (3.2)
t€l0,T] te[0,T]

provided that ||Vuo||2L2 < &o.

We begin with the following boundedness of density and elementary estimates.
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188 Page 8o0of23 M. Liu

Lemma 3.1 It holds that

0=<p(x, 1)< sup |pllLe =p, (3.3)
t€[0,T]

sup (Il/pulZs + I/pwl + 1613 )

te[0,T]

T
+/0 (1VulZs + Y IV0IZ, + vIVBIZ, ) dr

= (Iv/Pomol22 + ll/Powol2: + ol ) (3:4)
sup e (1l y/pull2s + I Vpwls + 11612,
tel0,T]

T
+/ e (1 Vuld + yIVwil, + v VbI2,) dr
0
= (Iv/Pouol22 + ll/PowolZ: + ol ) (3.5)

whereo = min{%, #, # }} with C, being the constant of Poincaré’s inequality.

Proof 1t follows from the transport equation (1.4); to get the (3.3) (see Lious [17]).
Next, we prove the (3.4), adding (1.4)> x u to (1.4)2 x w and integrating by parts leads
to

1d
52 (Waul: + 1vowis) + (s 4+ ) 19Ul + v VWi + 4wl
<4k / wVL - udx < dellwll3, + k[ Vull?,, (3.6)

which gives
d 2 2 2 2
= (1vouls +1vAwii:) +2 (s vall, + yIvell) <0 3.7

Multiplying (1.4)4 by b and integration by parts over €2, we derive that
1d
5 77 1bIZ2 + vIVAIG. =0, (3.8)

this combining with (3.7) and integrating the inequality in ¢ gives (3.4). It follows
from the Poincaré’s inequality and (3.3) that

Cy,p _
Iv/pull2, < lplizellul?, < f@uwniz) <o (ulvul?,).

Cy,p _
IVowl72 < llpllzelwl?, < %(ynwui» <o ' (yIVwl3,),

C _
1613, < Tf’wnwuiz) <o 'w|VbI3,), (3.9)
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where o £ min{%, #, CL,,} with C,, being the constant of Poincaré’s inequality.
Form (3.9), (3.9) and (3.7) yields that

d
— (I/pull3 > + IvVowl7, + 16172 ) + ollv/pulls, + ollv/pwli, + o bl
dt L L L L

+ ulVulls, + v Vw3, + v[IVb]3, <0, (3.10)

then this multiplies by ¢°’ we have

d
Z1e™ (I/pul} + IV/pwl}: + 16132)]

+ e (gnwniz +ylIVwl?, + v||Vb||iz) <. (3.11)

Integrating the above inequality in ¢ leads to (3.6) and completes the Proof of Lemma
3.1.

Lemma3.2 Let (p,u, w, b, P) be a smooth solution to (1.4)—(1.6) satisfying (3.1).

Then there exists some positive constant C depending only on 2, q, k, v, i, i, p,
IVuoll 2, IVwoll ;2 and ||Vbo| 12 such that

T
sup (||VL¢||22+||V11)||12+||Vb||iz)+/O (Il + Iv/pwil?
tel0,T]

+IAbI2, + |||b||Vb|||iz) dt < C||Vuol3,. (3.12)
JSup ¢! (1vull2 + 1Vl +1V512,) + /O e (I/puil2 + 1pwil
+Ab)7, + |||b||Vb|||iz) dt < C|[Vugll7.. (3.13)
Proof We can get the following equation from (1.4);

w(p)e +u-Vu(p) =0. (3.14)

Next, multiplying (1.4), and (1.4)3 by u; and w; respectively and integrating by parts,
we have

1

var | (B0 +0 VUl +yIVuP +acu?) dx+/p|uz|2dx+/l)|wz|2dx
1

- _/P”'W'”rdx—/pu-vw-wzdx - E/u-W(p)|Vu|2dx

6
—ZK/VJ‘wu,dx—FZK/VJ‘~uw[dx+/b-Vu[dx N7 (3.15)
i=1
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Now, we will estimate each term on the right hand of (3.15) as following. Firstly,
Applying to the Holder’s, Sobolev’s and Gagliardo—Nirenberg inequality along with
(3.1) that

i+ 2] < |/,0M'VM'Mtdxl+|//m'vw'wtdx|
_1
< Cp2lullLoe (l/Purll 2 IVull 2 + I/ pwell 2 Vwll12)
1 1 1
Cp2 ||u||2z||V2M||Zz(||ﬁuz||L2 IVull2 + [IVowell 2 IVwll2)

1
< SUVPull: + IVpwiliz) + CAVulz, + IVwIg) [ Vulgr. (3.16)

IA

According to Holder’s inequality and (3.1), we have

1
3] < 5|/u-u(p>|w|2dx|
< CIVu)lizalul 2 IVul?,
L492

< CIVull3:Vull g (3.17)
Using integration by parts, we get
Iy + Is = -2« / Vlwu,dx + 2k / vi. uwrdx
=2k / vi. u;wdx + 2k / vt uwedx

d
=2K—/vi-uwdx. (3.18)
dt

It follows from integration by parts, Sobolev’s inequality, (1.4)4 and (1.4)s5 together
with b|yq=0 that

d
16:—E/b-Vu-bdx—i—/b,~Vu~bdx+/b~Vu~b,dx

—%/b-Vu-bdx—i—/(va—u-Vb+b-Vu)-Vu-bdx
+/b-Vu-(va—u~Vb+b~Vu)dx

< —%/b-Vu-bdx+2v/|Vu||b||Ab|dx+2f|b|2|Vu|2dx
+2/|u||Vu||b||Vb|dx

d v 2 6 3
< T b-Vu-bdx + ZIIAblle + ClIbll}s + ClIVullys
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+ CllullL= VOl 211161 Vulll 2
d v 2 2 4 2 2
= I b-Vu-bdx + ZHAblle + ClIDI72 VDN 2 + ClIVull 211V 2
1 1
+ Cllull IVull; 1Dl VBN 2 Va4
d v
<-— / b Vi bdx + LI8DIL, + CIBILIVBIL, + ClIVIZ V22
+ ClbI L IVDl 2 IVull 2 I Vull g1 (3.19)
Therefore, substituting (3.16)—(3.19) into (3.15), we have

1d

3 ((u(,o) + k) |Vu|2+ )/|Vw|2—i—4lcw2 —vtiouw +b~Vu~b) dx

+ IPuells 2 + lv/ow 7,
1
< = (Ipud72 + IVowd32) + CUVull, + Vw7 )Vl g

V
+ ZnAbniz + ClIbIZ 2 IVDIT 2 + ClBN 4 IVEI 2 1 Va2 |Vl 1. (3.20)

Multiplying (1.4)4 by Ab and integrating the resulting equality over 2 along with
Holder’s and Gagliardo-Nirenberg inequalities that

d
T IVbIL: +2v]18bI1 7,
t
< / |Vu||Vb|*dx + / |Vu||b||Ab|dx
2 2 2 4 v 2
< ClIVul21V-ull 2 + CA + 1BV + 7 1AbI, (3.21)
which combining with (3.20), we can directly yield that

A + Ipuell72 + IV/owel3 2 + vIIAD]7,
< CUIVull3 2 + IVwIlZ D) Vull g1 + CIVD
+ Clbl L IVBI 2Vl 2 [ Vel 1 (3.22)

where

A(t) 2 /((M(p) + 1) |Vul® + y|Vw|? + |Vb|? + dkcw? = V* -uw + b - Vu - b)dx,
(3.23)

and satisfies
a4 2 2 2 4
S19ullz2 + IVl + VI — Cullb]},
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< A@W) < C|Vull7, + C| Vw3, + C|Vb|3,. (3.24)

According to Lemma 2.3 with F = pu; — pu - Vu — 2k V-w + b - Vb and combining
with (3.1) and (3.3), we obtain

lull g2 + 1Pl
< Cllpurll 2 + lou - Vall 2 + ClIVwl 2 + Cllb - Vbl ) (1 + Vi ()10)72
< CAH Ipurll 2 + CIVull 2 IVul 51 V2ul 2, + CIVwll 2 + ClIBIIVBI
< CIVAurl 2 + CIVul NVl + 3l + CIVwll2 + CHBIVBz,
(3.25)

which directly yields that

lull g2 + 1Pl g1 < Cli/puclip2 + ClIVull 21| Vully, + ClIVwllz2 + ClIBIVDI 2.
(3.26)

Next, multiplying (1.4)4 by b|b|?> and integrating the resulting equality over Q and
together with Gagliardo—Nirenberg inequalities, we derive

1d
4 dt
2,2

= ClIVull211B17 M 74

< ClIVull 2116121 211V IB12 ] 2

V
16174 + vIIBIVBIIL: + S IVIBI I,

IA

v
2IVIBRIZ: + CIVulg 1b]

IA

v 2,12 4 4
levlbl 72+ ClIVull;2 + CIIVbI; 2, (3.27)

this together with Gronwall’s inequality and (3.4) implies
4 ! 2
sup [|b]l7 4 +/ 1&6]IVhI|I7.dt < C. (3.28)
1€[0,T] 0

Putting (3.26) into (3.22) and along with the above inequality, Young’s inequality and
(3.1), we show that

A0+ 1Bl + /w3 + vIob12,
< CVul$, + ClIVwll}» + CIIVbI} > + ClIVwIF [ Vull3,
+ CIIVB 2 VUl 2 | Vull;
< CIVull$, + ClIVwll}2 + CIIVBI}, + €ll bl VD] 2. (3.29)
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Then, adding (3.27) multiplied by 4(C + 1) to (3.29) and choosing € suitably small,
it follows from (3.1)

d

S (AW +4Cr+ DI + IVpu: Iz + IVpwilz: + vIABIL: + 16 V5|2
< CIVull$, + ClIVwll}, + ClIVbI;.
< CUIVull}, + IVwi3 2 + IVBII72) (A + 4(Cy + DIIbIIT ). (3.30)

By (3.1) and (3.4), noting that

0-

T 1 T
f IVulj2dt < —— sup e[| Vul3, / IVul7.dt < Cl|Vuoli3,.  (3.31)
0 €7 1€[0,T] 0

Hence, integrating (3.30) over [0, T] and together with Gonwall’s inequality and (3.4)
leads to (3.12). Then, multiplying (3.21) by ¢°” and combining with (3.24) and (3.12)
yields

d
T7¢7 (AW +4C1+ DIBIZ) + ¢ (Il
+ IPwell3, + vIADbIT, + [1161VDI]l2)
< Ce” (A1) +4(C1 + DIIbIT)UIVull72 + Vw7, + IVBII72) + 0e AQD)
+40e” (Cr + Dbl (332)

which applying to the Gonwall’s inequality, we can deduce (3.13) from (3.1), (3.5)
and (3.12). It finishes the proof of Lemma 3.2. (|

Lemma3.3 Let (p,u, w, b, P) be a smooth solution to (1.4)—(1.6) satisfying (3.1).

Then there exists some positive constant C depending only on L, q, k, v, |4, [&, P,
IVuoll 12, IVwoll ;2 and |Vbo|| 2 such that

¢(T)
sup t(||ﬁu,||§2+||ﬁw,||iz+||bt||iz>+f() t(IVue |13,

te[0,T]
+ IVwill7, + IVE13,)dt < Cl|Vuoll7,, (3.33)
2 2 r 2
sup e (Iy/pus 72 + Iv/pwill72 + 1b:1122) + / ¢ (I Vurll3
tel¢(T),T] ¢(T)
+ Vw72 + IVB13,)dt < C||Vuol7,. (3.34)

Here, {(T) is defined by ¢ (t) £ min{1, t}.
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Proof Differentiating (1.4), and (1.4)3 with respect to ¢ respectively yields that

pu + pu - Vuy —div((n(p) + €)Vuy) + VP +div(u(p)Vu)
=(u-Vo)u+u-Vu) — puy - Vu — 2kVrw, + b, - Vb+b - Vb, (3.35)
pwy + pu - Vw; +4kwy, — yAw, = (u - Vp)(w; +u - Vw) — puy - Vw
+ 26Vt u,. (3.36)

Next, multiplying (3.35) by u; and (3.36) by w;, together with integration by parts
and (1.4)1, we get

1d
2dt
= —/((u Vo) +u-Vu) + pu; - Vu) - uydx

/<p|u,|2 + plw,[H)dx + /((M(p) + ) Vur* + |V [* + dcw)dx

— /((u -Vp)(wy +u - Vw) + pu; - Vw)w,dx

— 2k /(VLwt cup + V. u;wy)dx + / u-Vu(p)Vu - Vudx
6
+/b,-Vb-u,dx—i—/b-Vb,-utdxéZJ,-. (3.37)
i=1

It follows from integration by parts, Holder’s, Gagliardo—Nirenberg and Sobolev’s
inequality together with (3.1) and (3.12) that

Ji < f(p|u|<|u||u,||v2u| + [l | Vue |V + |ue|[Vul? + lu | V) + plug*|Vul)dx

=102 2 Si02
< pllullgelludllolIVoullp2 4+ pllullzIVul Lol Vuell 2

+ Alluell o lull o | Vel 21V 6
+ 25 ull o /B | 3 Vatell 2 + I1/Bte 1241 Vel .2

< CAIVul 2 IVala el 2 + CA 1Vull 2L/l 22l 2 [Vt 2
- ClIVul 2Bl 2

< CAIVurl IVl lal g2 + CF3 IVl 2l /e [ V001

"
IVurll3 > + Cllul3,2 + Cliy/pusl7,. (3.38)

=

ool

Similarly, we can directly yield that

S = C/(plul(lullwzllvzwl + [ul[Vw [[Vw| + |w |[Vu|[Vw]

+ 2|wi [[Vw;]) + plug||w:[[Vw])dx
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Sin2 2 ~n2
< pllullzsllwelipsllV w2 + pllullzsIVwllzell Vw2

+ Al s Vull 2V ol o
+ 267 lull sl /Bwell 3 1V will 2 + 52 1 /Pwill 3 el o | Vo | .2

< CAIV 2 IVl wll g2 + CFE IVul 2l /Bw w2 Vgl
+ CA IVl 2l Bl aw IVl

< COIV 2 IVl w2 + CAHIVul 2 /Bl IVl
+ CAHIVal 2 /B IV Vw2

14
IVuillzs + S 1YWz + CUVowillzs + lwlize)- (3.39)

It deduces from the integration by parts and Cauchy-Schwarz inequality that
— L 2 2
I3 = 4k / V& uwedx < A llwelly, + 6 lIVuellga. (3.40)

With the help of (3.1) and Sobolev’s inequality, we get
Ja = Cllull 4 IVu(E)llLallVull 4q [IVuellz2
La—2 La-2
= ClIVull2IVull g1 I Vue | 2

"
< gnwtniz + Clull3. (3.41)

By Sobolev’s inequality and (3.28), we have

A

Js+ Jo <

1 1
101l L IVuell 21161 s < CloA LIV DN o M Vil 2

A

"
S IVualze + C@Ibi T + el Vo7 (3.42)
Substituting (3.38) and (3.42) into (3.37), it shows

d
E(Ilﬁutlliz +Iowel2o) + i Vi3, + yIIVw?,

< CUPully> + IVpwell7 2 + w32 + wl?2) + C@ b2 + el Vb7 5.
(3.43)

Multiplying (1.4)3 by w and integrating by parts yield

2 2 1
dicllwlizs +vIVwize = I = pwr — pu - Vw = 2 V= -l 2 |lwll 2

<klwl?, + Cllowl7, + llpu - Vw2, + [ Vul3,),
(3.44)
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which implies that
lwligr = Cllpwellz2 + llou - Vw2 + [[Vull2). (3.45)

According to the standard L?-estimates of the elliptic system (see [24]) and together
with (3.1), (3.3), (3.18) and (3.45), we obtain

lwllgz = lwllg + V2wl 2
< |lwllgt + Cllow; — pu - Vw — 4w — 2%Vt ull 2
< C(llpwilig2 + lpu - Vwll 2 + [ Vull2)

_1 -
< Cp2ll/pwill2 + Cpllull s IVwlizs + CliVull 2
1 1
< Cly/pwill 2 + CollVull 21Vl V2wl 2, + ClIVull 2
1
< CllVpwell 2 + Ellwllyz + ClIVul 72 IVwlig2 + ClIVull 2, (3.46)
which gives

w2 = CliVowllz2 + ClIVwliz2 + ClIVull 2. (3.47)

Combining with (1.4)4, (3.12), Gagliardo-Nirenberg and Sobolev’s inequality leads
to

IBe1172 < CIADIZ: + Cllul 7 IVBI72 + ClIbIT IVl 4
< Cl|Ab7, + Cllull I Vull s I VBl 2 + CIVEIT 2 | Varll 21| Vil g

1 1
< CllAbIT, + [Vull 2 IVull 2 1 Vull 2, 1Vl 2 + CUVE I [ Vull 2Vl o
< C|Ab|I7, + Cl|Vul3, + ClIVull7, + C|Vb3,. (3.48)

Then, we deduce from (3.22), (3.26), (3.47) and (3.27) that

d
E(Ilﬁuzlliz +IvPwel3o) + Vi3, + vIIVw 7,

< C(Ivpurl3> + lIv/pwell3 > + 1 AN, + [1611VD]113 )
+ CUIVull3, + Vw3, + 1V6I32) + el Vb |12, (3.49)

Differentiating (1.4)4 with respect to t, we get
b,t—va,—i—u,~Vb+u-Vb[+b,~Vu+b-Vu,=0, (350)

which multiplying by b, and along with integration by parts, Sobolev’s inequality and
(3.12), we have
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S+ vIVBIZ = CAllurlIbll 2 + Ielbr DI Vbl 2
< Clur s bl s + el o e | ) 19l .2
< CAUIVul 2 1VBl 2 + IVall 2152 19B ) IV 2
< gnwtniz + Col[Vugll72 + Clibi |72 (3.51)

where C; is a positive constant. Next, adding (3.49)><2% to (3.51) and choosing
& = 355 it yields -

d 2C,
2 N/l + Bl + 161 52) + Cl VG, + v IVl + 5 A

< CUI/puells + I/pwell3, + 14BN, + 116IVDI|17,)
+ CUIVulZ, + Vw2, + [VD]12,). (3.52)

Multiplying (3.52) by ¢ and integrating it over [0, T], then together with (3.5) and
(3.13) leads to

sup t(I/purll3> + I/owells + 1be113,)
t€(0,T]
T 2 2
+ f t(IVur |2, + Vw12, + Vb, | 2)dt
0

T
<C sup (te™") f e (I/purll3> + Il/owell3, + 1861375 + [11611VbIII32)dx
te[0,T]

+C sup (te” “’)/ e (IVull3, + Vw3, + | VbII3,)dt
t€(0,T]

< C[Vuol[3.. (3.53)
Multiplying (3.52) by €%’ and together with (3.48), we derive

d 20
T ¢ (I/Pucllz + I/pwill2 + 1b:1172)

+ e IV |72 + Vw72 + VB 117)
< Ce” (I/pusl72 + IIvowi 72 + 18BN + 11bIIVBII72) + o Ce 1B 7

+ C (| Vul72 + Vw72 + [VB32) + 0 Ce” (I/puclly 2 + lIv/pwill72)
< Ce”' (I/purl32 + IIvpwi 22 + 14bI7 + 11bI1VBI[7,)

+ Ce (| Vull7, + Vw7, + 11V ). (3.54)

Finally, integrating (3.54) by tover [{(T), T'], and it deduces from (3.5) and (3.13) to
lead to (3.34). The proof of Lemma 3.3 is finished.
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Lemma3.4 Let (p,u,w,b, P) be a smooth solution to (1.4)—(1.6) satisfying (3.1).
Then there exists some positive constant C depending only on L, q, k, v, |4, [, P,
Vuollz2, Vwoll 2 and |Vbo| 12 such that

T
/0 IVulledt < Cl[Vuoll2,. (3.55)

Proof First, it follows from Lemma 2.2, (3.3), (3.1), Holder’s, Sobolev’s and
Gagliardo-Nirenberg inequalities that for any r € (2, min(q, 3)),

IVullLe < lullwzr < Cllpuslier + llow - Vullr + [IVwlir + 16 - Vb L)

qr
x L+ IV (p)lliza) >
< Cllpuellps + Clilul[Vulll s + ClIVwllgs + ClIbI L= I VD]| 14

_3 3 3
< CpilIpurllHlluclljs + Cllull ol Vull Lo
1 1
+ CIV2wll 2 + Clbll4lIVDIl

1 1
< ClVpucll ;2 IVuell s, + Cllull gr + Cllwll g1 + C”Vb”iz + CIIAbIIiz,
(3.56)

which together with (3.26) and (3.47), it shows

1 1
IVullze < Cly/pudl L IVul 2, + CAlpusll 2 + Il/owel12) + CIVbII,
L L
+ CUIVull 2 + IVwliL2) + CllIBIVDI 2. (3.57)

Hence, it follows from (3.1), (3.4), (3.33) and (3.34), that for ¢ € [0, {(T)],

aT)
/ IVu||pedt
0

NN CRNNYIC I , 1
=< C(/ t”llﬁmlliﬂﬂ“(/ 12| Vuy||72d0)#
0 0
o« ' (o
+C/ 1722 | pull 2 + 12 1/ owi | 2)dt +/ IVbll;.dt
0 0

{(T) {(T) ot ot
+ c/ (Va2 + [Vwl2)dt + C/ 3 I1bI1Vb],2)e % di
0 0

B o N 3¢ W 1
2 1 Y | 3 3 1
<C sup (tllﬁuzlle)4(/ 172t 3df)“(/ 12| Vugllp2)*
te[0,¢(T)] 0 0
¢(T) ¢(1) ,
+Cf e‘”|||b||Vb|||detf e™'dt < C||Vugl?,. (3.58)
0 0
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Similarly, it follows from (3.1), (3.5) and (3.34), that for ¢ € [¢(T), T1,

T T T
/ IVl podt < CliVuoll 2 +C(| e dn3(| e IVul2adn)?
¢(T) ¢(T) ¢(T)

< C[Vuoll72. (3.59)

this together with (3.58) yields (3.55). This completes the proof of Lemma 3.4. [
With Lemmas 3.1-3.4 at hand, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. First, it follows from (1.4)1, multiplying (3.14) by
[Vi(p)|92d i 1(p) and integrating the resulting equality by parts, we obtain that

d
Z1Vro)liLe = ClIVufL V(o)L (3.60)

which together with Gronwall’s inequality and (3.55) yields

T
sup [[Vu(p)llLe = [IVi(po)llLa eXP{CI[ Vil poodt}
1€[0,T1 0

< IVie(po)llza exp{Csl|Vuoll? .}
= 2[Vi(peo)llLa, (3.61)

where ||Vu()||i2 < g £ min{l, %}. Next, it deduces from (3.30), (3.5) and (3.12)
gives

t 2
sup €| Vul7,
t€[0,T]

T T
2 12 2 2 2
< sup ([Vull;2) / e” | Vulljodt + sup ||Vw||L2/ e Vwlly,dt
te[0.7] 0 te[0.7] 0

T
+ sup VB2, f | Vb|dr
1€[0,T] 0

< C(IVuol2)* < IVuoll3.. (3.62)

where ||Vuo||i2 < g9 = min{ey, C’i}. Thus, we gain the (3.1) from (3.61) and
(3.62). It completes the proof of the Proposition 3.1. (|

Lemma3.5 Let (p,u, w, b, P) be a smooth solution to (1.4)—(1.6) satisfying (3.1).
Then there exists some positive constant C depending only on L, q, k, v, |4, [, P,

Vuollz2, IVwoll 2 and |Vbo| 12 such that
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2 2 2 2
sup lpllginwre + sup t(lullZe + 1PI2: + lwlis + 151%2)
t€[0,T] t€[0,T]

T
+f ce” (lullfz + P15 + w3y + 1617,
0

+ llulyzr + 1P I3 + Wiz, + 1515,.,)dt < C. (3.63)

Proof 1t is easy to deduce from (3.60) and (3.61) that

IVellrzare < 20V ooll 2aLe- (3.64)

We notice that (1.4)4 combining with (3.4), (3.12), Gagliardo-Nirenberg and Sobolev’s
inequality that
1613, < CAlbelZ2 + llu - VBIZ 5 + 116 VulZ, + 1613,1)

< Clbll72 + Clluli36IVBI7 5 + Cllbl 7l Vul7 2 + CIIVAIT

< Cllbell72 + CIVul 3, IVl 21V2bl 2 + ClbI 2111 g2 I VUl + ClIVDI3

1
< Clbll3, + ClIVbII3, + Eubn;z, (3.65)
which combining with (3.25) and (3.47) shows

lull?s + 1P+ lwliZ, + 1613,
< CUIpullys + IIvowell 2 + 15:1172)
+ CUIVull7, + IVwli3, + 1VBII7) + CllIBIIVDI3
< CUIPuell72 + Iv/owell 2 + 15:172) + CUIVulF > + Vw2, + [VB]17,),

(3.66)
where
1B1IVBII1Z, < ClbIIZ VDI, < ClibilI3, + CIVDI,. (3.67)

Then, it follows from (3.5), (3.13), and (3.34) that

sup t(lull 3z + 1P + lwll3 + 1217,2)

t€[0,T]
g 2 2 2 2
+f0 ce” (ullfp + P50 + llwll3y. + 1b113,2)dt < C. (3.68)

It deduces from Lemma 2.3, Sobolev’s inequality, (3.3), (3.12), (3.13), (3.66) and
(3.68) that for any r € (2, q),

2 2
lullyyzr + 1Py

< C (llousliy + lpu - Vully, + IVwlg, + b Vbl )
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x (1+ Vi (o) 120) T
<C (ﬁznuzn%r + ﬁznuniqﬁ_% IVulge + IV2w]7, + ”””if—% ||Vb||%q>
= € (IVur s + VUl V20l + 12012, + I VBIZ 1V%5113. )
< C (Vs + 18613 ) + € (I/Burl2 + I1/owi 2 + b3 )

+C (||Vu||§2 +IVwl?, + ||Vb||iz) + ClIbIIVDIII7,. (3.69)

We infer from (1.4)3, regularity theory of elliptic equations, (3.3), (3.12), (3.13), (3.66)
and (3.68) that for any r € (2, q),

lwllye, < C (lowllyr + lou - VwllZ, + [wlg, + I Vull7,

w
<C (ﬁznwtu%r + ﬁzllulliq% IVwlze + Vw7, + ||v2w||iz)
= C (IVw s + 1Vl 20Vl + V), + 192w]2,)

= (Vw3 + 1wl 2) + € (1Vul2 + 1Vwl3:) . (3.70)

Similarly, we can obtain from (1.4)4 and Sobolev’s inequality that

1612,2, < C (1B, + llu - VDI + b - Vull3,
w

< ClIVh I, + ||u||;q_% Vb7, + ||b||;q_% IVull7,)

= C (IVB 32 + IVulRo 192013, + V6131 V2ul ;)
< CUIVBN72 + I/pudl32 + 18I, + ClIBII VA3
+C (IVul, + 1Vwl3,) 3.71)

and this along with (3.69) and (3.70) by (3.5) (3.3), (3.12), (3.13) and (3.68) gives

T
/ ge”! (||u||$w +HIPIGr + Iwlly, + ||b||$Vz,r) dr < C. (3.72)
0

This combines (3.64) and (3.68) by indicates (3.63) and the proof of Lemma 3.5 is
finished. 0

4 Proof of Theorem 1.1

With all the a priori estimates obtained in Sect. 3 at hand, we are now in a position to
prove Theorem 1.1.
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By Lemma 2.1, there exists a T, > 0 such that the problem (1.4)—(1.6) has a unique
local strong solution (p, u, w, b) on Q x (0, T,). We plan to extend the local solution
to all time.

Set

T* =sup{T| (p,u,w,b) is astrong solution on x (0, T1}. “.1)

First, forany 0 < t < Ty, < T < T™* with T finite, one deduces from (3.12), (3.33)
and (3.63) that for any g > 2,

Vu,Vw,Vb e C([¢(1), T]; L), 4.2)

where one has used the standard embedding
L®@@), T; HYNH' (@), T; HY) <> C( @), T; L) for any q € (2, 00).
Moreover, it deduces from (3.64), (3.3), (3.12), (3.13) and ( [25], Lemma 2.3) that

p e C(0,T]; Wh), pu e C(0,T]; L?), pw e C(0,T; L?»).  (4.3)

Finally, if T, < oo, it follows from (4.2), (4.3), (3.4) and (3.12) that

(o, u,w,b)(x, T*) = hn}l (p,u, w,b)(x,1)
t—T*

satisfies the initial condition (1.8) at t = T*. Thus, taking (o, u, w, b)(x, T*) as the
initial data, due to Lemma 2.1, it can extend the strong solutions beyond T*. This
contradicts the assumption of 7* in (4.1). The proof of Theorem 1.1 is completed.
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