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Abstract
We study an initial boundary value problem of 2D nonhomogeneous magneto-
micropolar equations with density-dependent viscosity in smooth bounded domains.
When the initial density can contain vacuum states, we prove that there is a unique
global strong solution for the system under the assumption that initial velocity is suit-
ably small. In particular, the initial data can be arbitrarily large except the gradient of
velocity. Finally, we obtain the exponential decay rates of strong solutions by using
the energy method.

Keywords Magneto-micropolar equations · Global well-posedness · Exponential
decay · Vacuum
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1 Introduction

In the paper, we first introduce the following standard 3D nonhomogeneous incom-
pressible magneto-micropolar equations
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − div((μ(ρ) + κ)∇u) + ∇P = 2κ∇ × w + b · ∇b,

(ρw)t + div(ρu ⊗ w) + 4κw − γ�w − λ∇divw = 2κ∇ × u,

bt + ν�b + u · ∇b − b · ∇u = 0,

divu = divb = 0,

(1.1)

where ρ, u, w, b and P are the density, velocity field, micro-rotational, magnetic field
and pressure of the fluid, respectively. The positive constant γ and λ are the angular
viscosities and κ is the micro-rotation viscosity, while ν > 0 is the magnetic diffusive
coefficient. The kinematic viscosity μ(ρ) satisfies the following hypothesis

μ(·) ∈ C1[0,∞), and 0 < μ ≤ μ(φ) ≤ μ̄ < ∞, f or ∀φ ∈ [0,∞). (1.2)

where μ and μ̄ are some positive constant. In the special case when

{
ρ = ρ(x1, x2, t), u = (u1(x1, x2, t), u2(x1, x2, t), 0),

b = (b1(x1, x2, t), b2(x1, x2, t), 0), w = (0, 0, w(x1, x2, t)),
(1.3)

the 3D micropolar equations reduce to the 2D micropolar equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρt + u · ∇ρ = 0,

ρut + ρu · ∇u − div((μ(ρ) + κ)∇u) + ∇P = −2κ∇⊥w + b · ∇b,

ρwt + ρu · ∇w + 4κw − γ�w = 2κ∇⊥ · u,

bt + ν�b + u · ∇b − b · ∇u = 0,

divu = divb = 0.

(1.4)

Here u = (u1, u2) is a vector with the corresponding scalar vorticity, and w is a scalar
function in what follows,

∇⊥ · u = ∂1u2 − ∂2u1, ∇⊥w = (−∂2w, ∂1w). (1.5)

Let 	 ∈ R
2 be a bounded smooth domain, and we consider the initial boundary

value problem of (1.4) with the initial condition and the Dirichlet boundary condition:

{
(ρ, ρu, ρw, b)(x, 0) = (ρ0, ρ0u0, ρ0w0, b0)(x), x ∈ 	,

(u, w, b)(x, t) = (0, 0, 0), x ∈ ∂	, t > 0.
(1.6)

The system (1.1) describes the motion of electrically conducting micropolar fluids
in the presence of a magnetic field. The magneto-micropolar fluid model was first
proposed by Ahmadi–Shahinpoor [1] in the 1970s, which extends the valid domain
of MHD equations and accounts for microrotation effect. There are some literatures
focusedon themathematical theory of the incompressible viscousmagneto-micropolar
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system, in particular, studying well-posedness of solutions to the magneto-micropolar
fluid equations, also refer to [2] for relevant background. However, if the initial den-
sity includes the vacuum state, it has a few results to the existence of solutions for
this system [3–5]. When the fluid is homogeneous (i.e. ρ = const), the local exis-
tence and uniqueness of strong solutions were firstly established by Rojas-Medar
[6] with using the Galerkin method. Yamazaki [7] studied the global regularity of
the two-dimensional magneto-micropolar fluid system, and they showed that with
zero angular viscosity the solution triple remains smooth for all time. Next, Shang–
Zhao [8] proved the global regularity of classical solutions to 2D magneto-micropolar
fluid equations with only micro-rotational velocity dissipation andmagnetic diffusion.
Recently, appealing to a refined pure energymethod, Tan-Wu-Zhou [9] investigated the
global existence and decay estimate of solutions tomagneto-micropolar fluid equations
by assuming that the H3-norm of the initial data is small, but the higher order deriva-
tives can be arbitrary large. Lin and Xiang [10] considered the global well-posedness
for the 2D incompressible magneto-micropolar fluid system with partial viscosity. Yet
for the density-dependent viscosity and the initial density allowing vacuum states, it
seems to need solve much more difficult problems to the system (1.1).

When the system do not consider the magnetic field (i.e. b = 0), the system
(1.1) reduces to the nonhomogeneous micropolar fluid equations. Eringen [11] first
introduced the micropolar fluids, which accounts for micro-rotation effects andmicro-
rotation in a fluid motion system, and can be viewed as non-Newtonian fluids with
nonsymmetric stress tensor. When the connected open set 	 ∈ R

3 replaces the whole
space R

3, and the solution vanishes on ∂	 × [0, T ], Galdi–Rionero [12] showed
existence and uniqueness of weak solutions to the initial boundary value problem
for the micropolar system. Dong–Zhang [13] and Liu–Wang [14] proved the global
regularity of smooth solutions to the 2D micropolar fluid with the micro-rotation
viscosity γ = 0. Zhang–Zhu [15] studied the global strong and classical solution for
the 3D micropolar equations with vacuum, which assumed ‖ρ0‖L∞ or ‖√ρ0u0‖2L2 +
‖√ρ0w0‖2L2 is small enough.Recently, Song [16] concerned the globalwell-posedness
for the 3D compressible micropolar system in the critical Besov space, and proposed
the linear system for the compressible micropolar equations could be decomposed into
a compressible Navier–Stokes equation and an incompressible micropolar system.
However, if the influence of magnetic field on the motion is considered, it will also
bring some difficulties on a priori estimates of the system (1.1).

For the incompressible magneto-micropolar fluid model, many scholars has been
attracted by its research significance in physics and mathematics. When the initial
density allowing vacuum states and the density-dependent viscosity, Zhang–Zhu [5]
established the global strong solutions for the 3D nonhomogeneous incompressible
magneto-micropolar equations under the condition that the initial energy is small
enough. It is worth noting that these results are valid under the following compatibility
conditions

{
− (μ1 + ξ)�u0 + ∇P0 − 2ξcurlw0 − b0 · ∇b0 = √

ρ0g1,

− μ2�w0 − (μ2 + λ)∇divw0 + 4ξw0 − 2ξcurlu0 = √
ρ0g2,

(1.7)
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for some (∇P0, g1, g2) ∈ L2. Meanwhile, they also obtain the algebraic decay rates
of the solutions provided that the initial energy is small enough. Later on, Zhong [17]
extended this result to the entire two-dimensional space, and showed the local existence
of strong solutions to 2D nonhomogeneous magneto-micropolar fluid with vacuum as
far field density. Then, he established the global existence and exponential decay of
strong solutions of nonhomogeneous magneto-micropolar fluid equations with large
initial data and vacuum in paper [18]. Recently, With the help of weighted function
and the duality principle of BMO space and Hardy space, Zhong [19] investigated the
global well-posedness to nonhomogeneous magneto-micropolar fluid equations with
zero density at infinity in R

2. Furthermore, for the homogeneous Dirichlet boundary
conditions of the velocity and micro-rotational velocity and Navier-slip boundary
condition of the magnetic field, he proved the initial boundary value problem of 3D
nonhomogeneous magneto-micropolar fluid equations in [20]. The above results are
all the density-independent viscosity. It will bring much more difficulties to estimate
the L∞(0, T ; L2)-norm for the gradients of velocity because of the density-dependent
viscosity. However, the paper [5] proved the global regularity of this system (1.1) in
3D space and only obtained the algebraic decay rate. It is worth noting that they require
must be satisfied some small energy conditions. As a result of the standard Sobolev
embedding theorem, a prior estimate for the 3D case cannot be applied to the 2D case.
The purpose of this paper is to establish the global well-posedness of solutions for
(1.4)–(1.6) with vacuum in smooth bounded domains. Especially, there is no need
other small initial energy but only need the initial velocity is suitably small, and we
also yielded the exponential decay rate of strong solutions.

Now, we go back to (1.1). Before stating the main results, we first explain the
notations and conventions used throughout this paper. For 1 ≤ r ≤ ∞ and k ≥ 0, the
standard Lebesgue and Sobolve spaces are defined as Lr = Lr (	),Wk,r = Wk,r (	),
and Hk(	) = Wk,2(	), r = 2. The space H1

0,σ represent the closure in H1 of the

space C∞
0,σ � { f ∈ C∞

0 (	)|div f = 0}.
The following is our main result of the paper:

Theorem 1.1 Let q ∈ (2,∞) be a fixed constant, assume that the initial data
(ρ0, u0, w0, b0) satisfy

0 ≤ ρ0 ∈ W 1,q , u0 ∈ H1
0,σ , w0 ∈ H1

0 , b0 ∈ H1
0,σ . (1.8)

Then there exist some small positive constant ε0 depending only on q, κ , ν, 	, μ,

μ̄ � sup
[0,ρ̄]

μ(ρ), ρ̄, ‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 , such that if

‖∇u0‖2L2 ≤ ε0, (1.9)

there is a unique strong solution (ρ, u, w, b, P) satisfying that for any 0 < τ < T <

∞ and 2 < r < min{q, 3},
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ ρ ∈ C
(
[0, T ];W 1,q

)
,∇μ(ρ) ∈ C

([0, T ]; Lq) ,

∇u ∈ L∞ (
0, T ; L2

)
∩ L∞ (

τ, T ; H1
)

∩ L2
(
τ, T ;W 1,r

)
,

∇w ∈ L∞ (
0, T ; L2

)
∩ L∞ (

τ, T ; H1
)

∩ L2
(
τ, T ; H2

)
,

∇b ∈ L∞ (
0, T ; L2

)
∩ L∞ (

0, T ; H1
)

∩ L2
(
0, T ;W 1,r

)
,

P ∈ L∞(0, T ; L2) ∩ L∞ (
τ, T ; H1

)
∩ L2

(
τ, T ;W 1,r

)
,

t
√

ρut , t
√

ρwt , tbt ∈ L∞ (
0, T ; L2

)
,

t∇ut , t∇wt , t∇bt ∈ L2
(
0, T ; L2

)
,

e
σ t
2 ∇u, e

σ t
2 ∇w, e

σ t
2 ∇b, e

σ t
2
√

ρut , e
σ t
2
√

ρwt , e
σ t
2 �b ∈ L2

(
0, T ; L2

)
,

(1.10)

where σ � min{ μ

Cp ρ̄
, κ
Cp ρ̄

, ν
Cp ρ̄

} with Cp being the constant of Poincaré’s inequality.
Moreover, there exists some positive constant C depending only on 	, q, κ , ν, μ, μ̄,
ρ̄, ‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 such that for all t ≥ 1,

{ ‖∇u(·, t)‖H1 + ‖∇w(·, t)‖H1 + ‖∇b(·, t)‖H1 + ‖∇P(·, t)‖L2 ≤ Ce−σ t ,

‖√ρut (·, t)‖2L2 + ‖√ρwt (·, t)‖2L2 + ‖bt (·, t)‖2L2 ≤ Ce−σ t .
(1.11)

Remark 1.1 For the Theorem 1.1, it holds for any function μ(ρ) satisfying (1.2) and
for arbitrarily large initial density, which can contain vacuum condition. The initial
data is no need satisfy any compatibility conditions [21]

−div((μ(ρ0) + κ)∇u0) + ∇P0 = ρ
1
2
0 g,

for some (P0, g) ∈ H1 × L2.

Remark 1.2 It should be noted that we improved the results of [5], we consider the
density-dependent viscosity and the initial data can be arbitrarily large except ‖∇u0‖2L2

((1.9)). Finally, we also obtain time-independent estimates and exponential decay rates
for the solutions.

Now we simply present the main idea of the proof and give the main difficulty
in this paper. The local existence and uniqueness of strong solutions to the systems
(1.4)–(1.6) follow from the paper [17] (see Lemma 2.1). We need to deduce some
global a priori estimates on strong solution to (1.4)–(1.6) in proper higher regularity,
and then extend the local solution to the global solution. Due to we consider the initial
density can contain vacuum states and even have compact support, in particular, the
viscosity coefficient is also affected by the density. Hence it not only increases the
difficulty of estimating the the L∞(0, T ; L2(	))-norm of ‖∇u‖2

L2 , but also solves
the strong coupling between u · ∇u, u · ∇b and b · ∇u. Firstly, the key ingredient
here is to get the time-independent L1(0, T ; L∞(	))-norm of ∇u. we derive that
the bound on L2(0, T ; L2(	))-norm of e

σ t
2 ∇u by applying the upper bounds on the
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density (3.3) and the Poincaré inequality. And then the most important thing is to
estimate L∞(0, T ; L2(	))-norm of ∇u by the Lemma 2.3 and (3.1). Next, we will
obtain a key estimate (3.28) by multiplying (1.4)4 by b|b|2 and Gronwall’s inequality,
which is used to deal with the strong coupling between b · ∇u. In addition, we need to
define a function ζ(t) � min{1, t} to get the estimates on L∞(0, T ; L2(	))-norm of

t
1
2
√

ρut and L∞(ζ(T ), T ; L2(	))-normof e
1
2 σ t√ρut , which avoids the singularity of

‖√ρut‖2L2 at t = 0.Because of the coupling betweenmagnetic field and the gradient of

velocity andmagnetic field, it is important to obtain the estimates on H2(	)-normofw
and L2(	)-normof bt by using the standard L2(	)-estimates of the elliptic system, the
Eq. (1.4)4 and Sobolev’s inequality, which is used to control the L∞(ζ(T ), T ; L2(	))-

norm of e
1
2 σ t√ρwt and L∞(ζ(T ), T ; L2(	))-norm of e

1
2 σ t bt , further in order to get

the L1(0, T ; L∞(	))-norm of ∇u. Finally, with a priori estimates stated above, we
are in a position to prove Proposition 3.1. Meanwhile, it can bound the estimation of
the time derivatives for the solutions (ρ, u, w, b, P) to extend the local solution to all
time, and thus claims the proof of Theorem 1.1.

The rest of this paper is organized as follows: we introduce some elementary facts
and inequalities in Sect. 2. The Sect. 3 is devoted to a priori estimates. Finally, we will
give the proof of Theorem 1.1 in Sect. 4.

2 Preliminaries

We will recall some known facts and elementary inequalities which will be used
frequently later. The following local existence of strong solutions whose proof is
similar to [17].

Lemma 2.1 Assume that (ρ0, u0, w0, b0) satisfies (1.8). Then there exist a small time
T > 0 and a unique strong solution (ρ, u, w, b, P) to the problem (1.4)–(1.6) in
	 × (0, T ) satisfies (1.10)–(1.11).

Lemma 2.2 (See [22]) (Gagliardo–Nirenberg) Let v belongs to Lq(	), and its deriva-
tives of order m, ∇mv, belong to Lr (	), 1 ≤ s, r ≤ ∞. Then for the derivatives ∇ jv,
0 ≤ j < m, we have

‖∇ jv‖Ls (	) ≤ C̃‖∇mv‖α
Lr (	)‖v‖1−α

Ls (	), (2.1)

where

1
s = j

n + α
( 1
r − m

n

) + (1 − α) 1
s ,

for all a in the interval

j
m ≤ α ≤ 1,

and the constant C̃ depends only on n, m, j , s, r , α.

Next, we need the following regularity on the Stokes equations to derive the estimates
of the derivatives of the solutions, whose proof can be found in [23].
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Lemma 2.3 Assume that ρ ∈ W 1,q , q ∈ (2,∞), 0 ≤ ρ ≤ ρ̄ and μ(ρ) satisfies
(1.2) on [0, ρ̄]. Let (u, P) ∈ H1

1,σ × L2 be the unique weak solution to the following
boundary value problem

−div(μ(ρ)∇u) + ∇P = F, divu = 0 in 	,

∫

Pdx = 0. (2.2)

Then we have the following regularity results:
(i) If F ∈ L2, then (u, P) ∈ H2 × H1 and

‖u‖H2 ≤ C‖F‖L2(1 + ‖∇μ (ρ)‖Lq )
q

q−2 ,

‖P‖H1 ≤ C‖F‖L2(1 + ‖∇μ (ρ)‖Lq )
2q−2
q−2 . (2.3)

(i i) If F ∈ Lr for some r ∈ (2, q), then (u, P) ∈ W 2,r × W 1,r and

‖u‖W 2,r ≤ C‖F‖Lr (1 + ‖∇μ (ρ)‖Lq )
qr

2(q−r) ,

‖P‖W 1,r ≤ C‖F‖Lr (1 + ‖∇μ (ρ)‖Lq )
1+ qr

2(q−r) . (2.4)

Here the constant C depends on 	, q, r , μ, μ̄.

3 A Priori Estimates

In this section, we first let T > 0 be a fixed time and (ρ, u, w, b, P) be the smooth
solution to (1.4)–(1.6) on 	 × (0, T ] with smooth initial data (ρ0, u0, w0) satisfying
(1.8). Because of the Lemma 2.1, we will establish some necessary a priori bounds
for strong solutions (ρ, u, w, b, P) to the initial boundary value problem (1.4)–(1.6)
to extend the local strong solution. Firstly, we assume that the following a priori
hypothesis holds:

Proposition 3.1 There exists a small positive constant ε0 depending only on 	, q, κ ,
ν, μ, μ̄, ρ̄, ‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 such that if (ρ, u, w, b, P) is a smooth
solution of (1.4)–(1.6) on 	 × (0, T ] satisfying

sup
t∈[0,T ]

‖∇μ(ρ)‖Lq ≤ 2M, sup
t∈[0,T ]

eσ t‖∇u‖2L2 ≤ 4‖∇u0‖2L2 , (3.1)

and the following estimate holds:

sup
t∈[0,T ]

‖∇μ(ρ)‖Lq ≤ M, sup
t∈[0,T ]

eσ t‖∇u‖2L2 ≤ 2‖∇u0‖2L2 , (3.2)

provided that ‖∇u0‖2L2 ≤ ε0.

We begin with the following boundedness of density and elementary estimates.
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Lemma 3.1 It holds that

0 ≤ ρ(x, t) ≤ sup
t∈[0,T ]

‖ρ‖L∞ = ρ̄, (3.3)

sup
t∈[0,T ]

(
‖√ρu‖2L2 + ‖√ρw‖2L2 + ‖b‖2L2

)

+
∫ T

0

(
μ‖∇u‖2L2 + γ ‖∇w‖2L2 + ν‖∇b‖2L2

)
dt

≤
(
‖√ρ0u0‖2L2 + ‖√ρ0w0‖2L2 + ‖b0‖2L2

)
, (3.4)

sup
t∈[0,T ]

eσ t
(
‖√ρu‖2L2 + ‖√ρw‖2L2 + ‖b‖2L2

)

+
∫ T

0
eσ t

(
μ‖∇u‖2L2 + γ ‖∇w‖2L2 + ν‖∇b‖2L2

)
dt

≤
(
‖√ρ0u0‖2L2 + ‖√ρ0w0‖2L2 + ‖b0‖2L2

)
, (3.5)

whereσ := min{ μ

Cp ρ̄
,

γ
Cp ρ̄

, ν
Cp ρ̄

}}withCp being the constant of Poincaré’s inequality.

Proof It follows from the transport equation (1.4)1 to get the (3.3) (see Lious [17]).
Next, we prove the (3.4), adding (1.4)2×u to (1.4)2×w and integrating by parts leads
to

1

2

d

dt

(
‖√ρu‖2L2 + ‖√ρw‖2L2

)
+

(
μ + κ

)
‖∇u‖2L2 + γ ‖∇w‖2L2 + 4κ‖w‖2L2

≤ 4κ
∫

w∇⊥ · udx ≤ 4κ‖w‖2L2 + κ‖∇u‖2L2 , (3.6)

which gives

d

dt

(
‖√ρu‖2L2 + ‖√ρw‖2L2

)
+ 2

(
μ‖∇u‖2L2 + γ ‖∇w‖2L2

)
≤ 0. (3.7)

Multiplying (1.4)4 by b and integration by parts over 	, we derive that

1

2

d

dt
‖b‖2L2 + ν‖∇b‖2L2 = 0, (3.8)

this combining with (3.7) and integrating the inequality in t gives (3.4). It follows
from the Poincaré’s inequality and (3.3) that

‖√ρu‖2L2 ≤ ‖ρ‖L∞‖u‖2L2 ≤ Cpρ̄

μ
(μ‖∇u‖2L2) ≤ σ−1(μ‖∇u‖2L2),

‖√ρw‖2L2 ≤ ‖ρ‖L∞‖w‖2L2 ≤ Cpρ̄

γ
(γ ‖∇w‖2L2) ≤ σ−1(γ ‖∇w‖2L2),

‖b‖2L2 ≤ Cp

ν
(ν‖∇b‖2L2) ≤ σ−1(ν‖∇b‖2L2), (3.9)
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where σ � min{ μ

Cp ρ̄
,

γ
Cp ρ̄

, ν
Cp

} with Cp being the constant of Poincaré’s inequality.
Form (3.9), (3.9) and (3.7) yields that

d

dt

(
‖√ρu‖2L2 + ‖√ρw‖2L2 + ‖b‖2L2

)
+ σ‖√ρu‖2L2 + σ‖√ρw‖2L2 + σ‖b‖2L2

+ μ‖∇u‖2L2 + γ ‖∇w‖2L2 + ν‖∇b‖2L2 ≤ 0, (3.10)

then this multiplies by eσ t we have

d

dt
[eσ t

(
‖√ρu‖2L2 + ‖√ρw‖2L2 + ‖b‖2L2

)
]

+ eσ t
(
μ‖∇u‖2L2 + γ ‖∇w‖2L2 + ν‖∇b‖2L2

)
≤ 0. (3.11)

Integrating the above inequality in t leads to (3.6) and completes the Proof of Lemma
3.1.

Lemma 3.2 Let (ρ, u, w, b, P) be a smooth solution to (1.4)–(1.6) satisfying (3.1).
Then there exists some positive constant C depending only on 	, q, κ , ν, μ, μ̄, ρ̄,
‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 such that

sup
t∈[0,T ]

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2

)
+

∫ T

0

(
‖√ρut‖2L2 + ‖√ρwt‖2L2

+‖�b‖2L2 + ‖|b||∇b|‖2L2

)
dt ≤ C‖∇u0‖2L2 , (3.12)

sup
t∈[0,T ]

eσ t
(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2

)
+

∫ T

0
eσ t

(
‖√ρut‖2L2 + ‖√ρwt‖2L2

+‖�b‖2L2 + ‖|b||∇b|‖2L2

)
dt ≤ C‖∇u0‖2L2 . (3.13)

Proof We can get the following equation from (1.4)1

μ(ρ)t + u · ∇μ(ρ) = 0. (3.14)

Next, multiplying (1.4)2 and (1.4)3 by ut and wt respectively and integrating by parts,
we have

1

2

d

dt

∫ (
(μ(ρ) + κ) |∇u|2 + γ |∇w|2 + 4κw2

)
dx +

∫

ρ|ut |2dx +
∫

ρ|wt |2dx

= −
∫

ρu · ∇u · utdx −
∫

ρu · ∇w · wt dx − 1

2

∫

u · ∇μ(ρ)|∇u|2dx

− 2κ
∫

∇⊥wutdx + 2κ
∫

∇⊥ · uwt dx +
∫

b · ∇utdx �
6∑

i=1

Ii . (3.15)
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Now, we will estimate each term on the right hand of (3.15) as following. Firstly,
Applying to the Hölder’s, Sobolev’s and Gagliardo–Nirenberg inequality along with
(3.1) that

|I1| + |I2| ≤ |
∫

ρu · ∇u · utdx | + |
∫

ρu · ∇w · wt dx |

≤ C ρ̄
1
2 ‖u‖L∞(‖√ρut‖L2‖∇u‖L2 + ‖√ρwt‖L2‖∇w‖L2)

≤ C ρ̄
1
2 ‖u‖

1
2
L2‖∇2u‖

1
2
L2(‖√ρut‖L2‖∇u‖L2 + ‖√ρwt‖L2‖∇w‖L2)

≤ 1

2
(‖√ρut‖2L2 + ‖√ρwt‖2L2) + C(‖∇u‖3L2 + ‖∇w‖2L2)‖∇u‖H1 . (3.16)

According to Hölder’s inequality and (3.1), we have

|I3| ≤ 1

2
|
∫

u · μ(ρ)|∇u|2dx |
≤ C‖∇μ(ρ)‖Lq‖u‖

L
2q
q−2

‖∇u‖2L4

≤ C‖∇u‖2L2‖∇u‖H1 . (3.17)

Using integration by parts, we get

I4 + I5 = −2κ
∫

∇⊥wutdx + 2κ
∫

∇⊥ · uwt dx

= 2κ
∫

∇⊥ · utwdx + 2κ
∫

∇⊥ · uwt dx

= 2κ
d

dt

∫

∇⊥ · uwdx . (3.18)

It follows from integration by parts, Sobolev’s inequality, (1.4)4 and (1.4)5 together
with b|∂	=0 that

I6 = − d

dt

∫

b · ∇u · bdx +
∫

bt · ∇u · bdx +
∫

b · ∇u · btdx

= − d

dt

∫

b · ∇u · bdx +
∫

(ν�b − u · ∇b + b · ∇u) · ∇u · bdx

+
∫

b · ∇u · (ν�b − u · ∇b + b · ∇u)dx

≤ − d

dt

∫

b · ∇u · bdx + 2ν
∫

|∇u||b||�b|dx + 2
∫

|b|2|∇u|2dx

+ 2
∫

|u||∇u||b||∇b|dx

≤ − d

dt

∫

b · ∇u · bdx + ν

4
‖�b‖2L2 + C‖b‖6L6 + C‖∇u‖3L3
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+ C‖u‖L∞‖∇b‖L2‖|b||∇u|‖L2

≤ − d

dt

∫

b · ∇u · bdx + ν

4
‖�b‖2L2 + C‖b‖2L2‖∇b‖4L2 + C‖∇u‖2L2‖∇2‖L2

+ C‖u‖
1
2
L4‖∇u‖

1
2
L4‖b‖L4‖∇b‖L2‖∇u‖L4

≤ − d

dt

∫

b · ∇u · bdx + ν

4
‖�b‖2L2 + C‖b‖2L2‖∇b‖4L2 + C‖∇u‖2L2‖∇2‖L2

+ C‖b‖L4‖∇b‖L2‖∇u‖L2‖∇u‖H1 . (3.19)

Therefore, substituting (3.16)–(3.19) into (3.15), we have

1

2

d

dt

∫ (
(μ(ρ) + κ) |∇u|2 + γ |∇w|2 + 4κw2 − ∇⊥ · uw + b · ∇u · b

)
dx

+ ‖√ρut‖2L2 + ‖√ρwt‖2L2

≤ 1

2
(‖√ρut‖2L2 + ‖√ρwt‖2L2) + C(‖∇u‖3L2 + ‖∇w‖2L2)‖∇u‖H1

+ ν

4
‖�b‖2L2 + C‖b‖2L2‖∇b‖4L2 + C‖b‖L4‖∇b‖L2‖∇u‖L2‖∇u‖H1 . (3.20)

Multiplying (1.4)4 by �b and integrating the resulting equality over 	 along with
Hölder’s and Gagliardo-Nirenberg inequalities that

d

dt
‖∇b‖2L2 + 2ν‖�b‖2L2

≤
∫

|∇u||∇b|2dx +
∫

|∇u||b||�b|dx

≤ C‖∇u‖2L2‖∇2u‖L2 + C(1 + ‖b‖2L2)‖∇b‖4L2 + ν

4
‖�b‖2L2 , (3.21)

which combining with (3.20), we can directly yield that

A′(t) + ‖√ρut‖2L2 + ‖√ρwt‖2L2 + ν‖�b‖2L2

≤ C(‖∇u‖3L2 + ‖∇w‖2L2)‖∇u‖H1 + C‖∇b‖4L2

+ C‖b‖L4‖∇b‖L2‖∇u‖L2‖∇u‖H1 , (3.22)

where

A(t) �
∫

((μ(ρ) + κ)|∇u|2 + γ |∇w|2 + |∇b|2 + 4κw2 − ∇⊥ · uw + b · ∇u · b)dx,
(3.23)

and satisfies

μ

2
‖∇u‖2L2 + γ ‖∇w‖2L2 + ‖∇b‖2L2 − C1‖b‖4L4
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≤ A(t) ≤ C‖∇u‖2L2 + C‖∇w‖2L2 + C‖∇b‖2L2 . (3.24)

According to Lemma 2.3 with F = ρut −ρu · ∇u−2κ∇⊥w +b · ∇b and combining
with (3.1) and (3.3), we obtain

‖u‖H2 + ‖P‖H1

≤ C(‖ρut‖L2 + ‖ρu · ∇u‖L2 + C‖∇w‖L2 + C‖b · ∇b‖L2)(1 + ‖∇μ (ρ)‖Lq )
q

q−2

≤ C ρ̄
1
2 ‖√ρut‖L2 + C ρ̄‖∇u‖L2‖∇u‖

1
2
L2‖∇2u‖

1
2
L2 + C‖∇w‖L2 + C‖|b||∇b|‖L2

≤ C‖√ρut‖L2 + C‖∇u‖L2‖∇u‖2L2 + 1

2
‖u‖H2 + C‖∇w‖L2 + C‖|b||∇b|‖L2 ,

(3.25)

which directly yields that

‖u‖H2 + ‖P‖H1 ≤ C‖√ρut‖L2 + C‖∇u‖L2‖∇u‖2L2 + C‖∇w‖L2 + C‖|b||∇b|‖L2 .

(3.26)

Next, multiplying (1.4)4 by b|b|2 and integrating the resulting equality over 	 and
together with Gagliardo–Nirenberg inequalities, we derive

1

4

d

dt
‖b‖4L4 + ν‖|b||∇b|‖2L2 + ν

2
‖∇|b|2‖2L2

≤ C‖∇u‖L2‖|b|2‖2L4

≤ C‖∇u‖L2‖|b|2‖L2‖∇|b|2‖L2

≤ ν

4
‖∇|b|2‖2L2 + C‖∇u‖2L2‖b‖4L4

≤ ν

4
‖∇|b|2‖2L2 + C‖∇u‖4L2 + C‖∇b‖4L2 , (3.27)

this together with Gronwall’s inequality and (3.4) implies

sup
t∈[0,T ]

‖b‖4L4 +
∫ T

0
‖|b||∇b|‖2L2dt ≤ C . (3.28)

Putting (3.26) into (3.22) and along with the above inequality, Young’s inequality and
(3.1), we show that

A′(t) + 1

2
‖√ρut‖2L2 + ‖√ρwt‖2L2 + ν‖�b‖2L2

≤ C‖∇u‖6L2 + C‖∇w‖4L2 + C‖∇b‖4L2 + C‖∇w‖2L2‖∇u‖3L2

+ C‖∇b‖L2‖∇u‖L2‖∇u‖3L2

≤ C‖∇u‖6L2 + C‖∇w‖4L2 + C‖∇b‖4L2 + ε‖|b||∇b|‖L2 . (3.29)
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Then, adding (3.27) multiplied by 4(C1 + 1) to (3.29) and choosing ε suitably small,
it follows from (3.1)

d

dt
(A(t) + 4(C1 + 1)‖b‖4L4) + ‖√ρut‖2L2 + ‖√ρwt‖2L2 + ν‖�b‖2L2 + ‖|b||∇b|‖L2

≤ C‖∇u‖6L2 + C‖∇w‖4L2 + C‖∇b‖4L2

≤ C(‖∇u‖4L2 + ‖∇w‖2L2 + ‖∇b‖2L2)(A(t) + 4(C1 + 1)‖b‖4L4). (3.30)

By (3.1) and (3.4), noting that

∫ T

0
‖∇u‖4L2dt ≤ 1

e0·σ
sup

t∈[0,T ]
eσ t‖∇u‖2L2

∫ T

0
‖∇u‖2L2dt ≤ C‖∇u0‖2L2 . (3.31)

Hence, integrating (3.30) over [0, T] and together with Gönwall’s inequality and (3.4)
leads to (3.12). Then, multiplying (3.21) by eσ t and combining with (3.24) and (3.12)
yields

d

dt
eσ t (A(t) + 4(C1 + 1)‖b‖4L4) + eσ t (‖√ρut‖2L2

+ ‖√ρwt‖2L2 + ν‖�b‖2L2 + ‖|b||∇b|‖L2)

≤ Ceσ t (A(t) + 4(C1 + 1)‖b‖4L4)(‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2) + σeσ t A(t)

+ 4σeσ t (C1 + 1)‖b‖4L4 , (3.32)

which applying to the Gönwall’s inequality, we can deduce (3.13) from (3.1), (3.5)
and (3.12). It finishes the proof of Lemma 3.2. �

Lemma 3.3 Let (ρ, u, w, b, P) be a smooth solution to (1.4)–(1.6) satisfying (3.1).
Then there exists some positive constant C depending only on 	, q, κ , ν, μ, μ̄, ρ̄,
‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 such that

sup
t∈[0,T ]

t(‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖bt‖2L2) +
∫ ζ(T )

0
t(‖∇ut‖2L2

+ ‖∇wt‖2L2 + ‖∇bt‖2L2)dt ≤ C‖∇u0‖2L2 , (3.33)

sup
t∈[ζ(T ),T ]

eσ t (‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖bt‖L2) +
∫ T

ζ(T )

eσ t (‖∇ut‖2L2

+ ‖∇wt‖2L2 + ‖∇bt‖2L2)dt ≤ C‖∇u0‖2L2 . (3.34)

Here, ζ(T ) is defined by ζ(t) � min{1, t}.
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Proof Differentiating (1.4)2 and (1.4)3 with respect to t respectively yields that

ρutt + ρu · ∇ut − div((μ(ρ) + κ)∇ut ) + ∇Pt + div(μ(ρ)t∇u)

= (u · ∇ρ)(ut + u · ∇u) − ρut · ∇u − 2κ∇⊥wt + bt · ∇b + b · ∇bt , (3.35)

ρwt t + ρu · ∇wt + 4κwt − γ�wt = (u · ∇ρ)(wt + u · ∇w) − ρut · ∇w

+ 2κ∇⊥ · ut . (3.36)

Next, multiplying (3.35) by ut and (3.36) by wt , together with integration by parts
and (1.4)1, we get

1

2

d

dt

∫

(ρ|ut |2 + ρ|wt |2)dx +
∫

((μ(ρ) + κ)|∇ut |2 + γ |∇wt |2 + 4κw2
t )dx

= −
∫

((u · ∇ρ)(ut + u · ∇u) + ρut · ∇u) · utdx

−
∫

((u · ∇ρ)(wt + u · ∇w) + ρut · ∇w)wt dx

− 2κ
∫

(∇⊥wt · ut + ∇⊥ · utwt )dx +
∫

u · ∇μ(ρ)∇u · ∇utdx

+
∫

bt · ∇b · utdx +
∫

b · ∇bt · utdx �
6∑

i=1

Ji . (3.37)

It follows from integration by parts, Hölder’s, Gagliardo–Nirenberg and Sobolev’s
inequality together with (3.1) and (3.12) that

J1 ≤
∫

(ρ|u|(|u||ut ||∇2u| + |u||∇ut ||∇u| + |ut ||∇u|2 + |ut ||∇ut |) + ρ|ut |2|∇u|)dx
≤ ρ̄‖u‖2L6‖ut‖L6‖∇2u‖L2 + ρ̄‖u‖2L6‖∇u‖L6‖∇ut‖L2

+ ρ̄‖ut‖L6‖u‖L6‖∇u‖L2‖∇u‖L6

+ 2ρ̄
1
2 ‖u‖L6‖√ρut‖L3‖∇ut‖L2 + ‖√ρut‖2L4‖∇u‖L2

≤ C ρ̄‖∇ut‖L2‖∇u‖2L2‖u‖H2 + C ρ̄
1
2 ‖∇u‖L2‖√ρut‖

1
2
L2‖√ρut‖

1
2
L6‖∇ut‖L2

+ C‖∇u‖L2‖√ρut‖
1
2
L2‖√ρut‖

3
2
L6

≤ C ρ̄‖∇ut‖L2‖∇u‖2L2‖u‖H2 + C ρ̄
3
4 ‖∇u‖L2‖√ρut‖

1
2
L2‖∇ut‖

3
2
L2

≤ μ

8
‖∇ut‖2L2 + C‖u‖2H2 + C‖√ρut‖2L2 . (3.38)

Similarly, we can directly yield that

J2 ≤ C
∫

(ρ|u|(|u||wt ||∇2w| + |u||∇wt ||∇w| + |wt ||∇u||∇w|
+ 2|wt ||∇wt |) + ρ|ut ||wt ||∇w|)dx
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≤ ρ̄‖u‖2L6‖wt‖L6‖∇2w‖L2 + ρ̄‖u‖2L6‖∇w‖L6‖∇wt‖L2

+ ρ̄‖u‖L6‖∇u‖L2‖∇w‖L6‖wt‖L6

+ 2ρ̄
1
2 ‖u‖L6‖√ρwt‖L3‖∇wt‖L2 + ρ̄

1
2 ‖√ρwt‖L3‖ut‖L6‖∇w‖L2

≤ C ρ̄‖∇wt‖L2‖∇u‖2L2‖w‖H2 + C ρ̄
1
2 ‖∇u‖L2‖√ρwt‖

1
2
L2‖√ρwt‖

1
2
L6‖∇wt‖L2

+ C ρ̄
1
2 ‖∇ut‖L2‖√ρwt‖

1
2
L2‖√ρwt‖

1
2
L6‖∇w‖L2

≤ C ρ̄‖∇wt‖L2‖∇u‖2L2‖w‖H2 + C ρ̄
1
2 ‖∇u‖L2‖√ρwt‖

1
2
L2‖∇wt‖

3
2
L2

+ C ρ̄
1
2 ‖∇ut‖L2‖√ρwt‖

1
2
L2‖∇wt‖

1
2
L2‖∇w‖L2

≤ μ

8
‖∇ut‖2L2 + γ

2
‖∇wt‖2L2 + C(‖√ρwt‖2L2 + ‖w‖2H2). (3.39)

It deduces from the integration by parts and Cauchy-Schwarz inequality that

I3 = 4κ
∫

∇⊥ · utwt dx ≤ 4κ‖wt‖2L2 + κ‖∇ut‖2L2 . (3.40)

With the help of (3.1) and Sobolev’s inequality, we get

J4 ≤ C‖u‖
L

4q
q−2

‖∇μ(ρ)‖Lq‖∇u‖
L

4q
q−2

‖∇ut‖L2

≤ C‖∇u‖L2‖∇u‖H1‖∇ut‖L2

≤ μ

8
‖∇ut‖2L2 + C‖u‖2H2 . (3.41)

By Sobolev’s inequality and (3.28), we have

J5 + J6 ≤ ‖bt‖L4‖∇ut‖L2‖b‖L4 ≤ C‖bt‖
1
2
L2‖∇bt‖

1
2
L2‖∇ut‖L2

≤ μ

8
‖∇ut‖2L2 + C(ε)‖bt‖2L2 + ε‖∇bt‖2L2 . (3.42)

Substituting (3.38) and (3.42) into (3.37), it shows

d

dt
(‖√ρut‖2L2 + ‖√ρwt‖2L2) + μ‖∇ut‖2L2 + γ ‖∇wt‖2L2

≤ C(‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖u‖2H2 + ‖w‖2H2) + C(ε)‖bt‖2L2 + ε‖∇bt‖2L2 .

(3.43)

Multiplying (1.4)3 by w and integrating by parts yield

4κ‖w‖2L2 + γ ‖∇w‖2L2 ≤ ‖ − ρwt − ρu · ∇w − 2κ∇⊥ · u‖L2‖w‖L2

≤ κ‖w‖2L2 + C(‖ρwt‖2L2 + ‖ρu · ∇w‖2L2 + ‖∇u‖2L2),

(3.44)
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which implies that

‖w‖H1 ≤ C(‖ρwt‖L2 + ‖ρu · ∇w‖L2 + ‖∇u‖L2). (3.45)

According to the standard L2-estimates of the elliptic system (see [24]) and together
with (3.1), (3.3), (3.18) and (3.45), we obtain

‖w‖H2 = ‖w‖H1 + ‖∇2w‖L2

≤ ‖w‖H1 + C‖ρwt − ρu · ∇w − 4κw − 2κ∇⊥ · u‖L2

≤ C(‖ρwt‖L2 + ‖ρu · ∇w‖L2 + ‖∇u‖L2)

≤ C ρ̄
1
2 ‖√ρwt‖L2 + C ρ̄‖u‖L6‖∇w‖L3 + C‖∇u‖L2

≤ C‖√ρwt‖L2 + C ρ̄‖∇u‖L2‖∇w‖
1
2
L2‖∇2w‖

1
2
L2 + C‖∇u‖L2

≤ C‖√ρwt‖L2 + 1

2
‖w‖H2 + C‖∇u‖2L2‖∇w‖L2 + C‖∇u‖L2 , (3.46)

which gives

‖w‖H2 ≤ C‖√ρwt‖L2 + C‖∇w‖L2 + C‖∇u‖L2 . (3.47)

Combining with (1.4)4, (3.12), Gagliardo-Nirenberg and Sobolev’s inequality leads
to

‖bt‖2L2 ≤ C‖�b‖2L2 + C‖u‖2L∞‖∇b‖2L2 + C‖b‖2L4‖∇u‖2L4

≤ C‖�b‖2L2 + C‖u‖L4‖∇u‖L4‖∇b‖L2 + C‖∇b‖2L2‖∇u‖L2‖∇u‖H1

≤ C‖�b‖2L2 + ‖∇u‖L2‖∇u‖
1
2
L2‖∇u‖

1
2
H1‖∇b‖L2 + C‖∇b‖2L2‖∇u‖L2‖∇u‖H1

≤ C‖�b‖2L2 + C‖∇u‖2H1 + C‖∇u‖2L2 + C‖∇b‖2L2 . (3.48)

Then, we deduce from (3.22), (3.26), (3.47) and (3.27) that

d

dt
(‖√ρut‖2L2 + ‖√ρwt‖2L2) + μ‖∇ut‖2L2 + γ ‖∇wt‖2L2

≤ C(‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖�b‖2L2 + ‖|b||∇b|‖2L2)

+ C(‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2) + ε‖∇bt‖2L2 . (3.49)

Differentiating (1.4)4 with respect to t, we get

btt − ν�bt + ut · ∇b + u · ∇bt + bt · ∇u + b · ∇ut = 0, (3.50)

which multiplying by bt and along with integration by parts, Sobolev’s inequality and
(3.12), we have
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1

2

d

dt
‖bt‖2L2 + ν‖∇bt‖2L2 ≤ C(‖|ut ||b|‖L2 + ‖|u|bt‖L2)‖∇bt‖L2

≤ C(‖ut‖L4‖b‖L4 + ‖u‖L4‖bt‖L4)‖∇bt‖L2

≤ C(‖∇ut‖L2‖∇b‖L2 + ‖∇u‖L2‖bt‖
1
2
L2‖∇bt‖

1
2
L2)‖∇bt‖L2

≤ ν

2
‖∇bt‖2L2 + C2‖∇ut‖2L2 + C‖bt‖2L2 , (3.51)

where C2 is a positive constant. Next, adding (3.49)× 2C2
μ

to (3.51) and choosing

ε = ν
4C2

, it yields

d

dt

2C2

μ
(‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖bt‖2L2) + C2‖∇ut‖2L2 + γ ‖∇wt‖2L2 + ν

2
‖∇bt‖2L2

≤ C(‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖�b‖2L2 + ‖|b||∇b|‖2L2)

+ C(‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2). (3.52)

Multiplying (3.52) by t and integrating it over [0, T], then together with (3.5) and
(3.13) leads to

sup
t∈[0,T ]

t(‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖bt‖2L2)

+
∫ T

0
t(‖∇ut‖2L2 + ‖∇wt‖2L2 + ‖∇bt‖L2)dt

≤ C sup
t∈[0,T ]

(te−σ t )

∫ T

0
eσ t (‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖�b‖2L2 + ‖|b||∇b|‖2L2)dx

+ C sup
t∈[0,T ]

(te−σ t )

∫ T

0
eσ t (‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2)dt

≤ C‖∇u0‖2L2 . (3.53)

Multiplying (3.52) by eσ t and together with (3.48), we derive

d

dt

2C2

μ
eσ t (‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖bt‖2L2)

+ eσ t (‖∇ut‖2L2 + ‖∇wt‖2L2 + ‖∇bt‖2L2)

≤ Ceσ t (‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖�b‖2L2 + ‖|b||∇b|‖2L2) + σCeσ t‖bt‖2L2

+ Ceσ t (‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2) + σCeσ t (‖√ρut‖2L2 + ‖√ρwt‖2L2)

≤ Ceσ t (‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖�b‖2L2 + ‖|b||∇b|‖2L2)

+ Ceσ t (‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2). (3.54)

Finally, integrating (3.54) by t over [ζ(T ), T ], and it deduces from (3.5) and (3.13) to
lead to (3.34). The proof of Lemma 3.3 is finished.
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Lemma 3.4 Let (ρ, u, w, b, P) be a smooth solution to (1.4)–(1.6) satisfying (3.1).
Then there exists some positive constant C depending only on 	, q, κ , ν, μ, μ̄, ρ̄,
‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 such that

∫ T

0
‖∇u‖L∞dt ≤ C‖∇u0‖2L2 . (3.55)

Proof First, it follows from Lemma 2.2, (3.3), (3.1), Hölder’s, Sobolev’s and
Gagliardo-Nirenberg inequalities that for any r ∈ (2,min(q, 3)),

‖∇u‖L∞ ≤ ‖u‖W 2,r ≤ C(‖ρut‖Lr + ‖ρu · ∇u‖Lr + ‖∇w‖Lr + ‖b · ∇b‖Lr )
× (1 + ‖∇μ (ρ)‖Lq )

qr
2(q−r)

≤ C‖ρut‖L3 + C‖|u||∇u|‖L3 + C‖∇w‖L4 + C‖b‖L∞‖∇b‖L4

≤ C ρ̄
3
4 ‖√ρut‖

1
2
L2‖ut‖

1
2
L6 + C‖u‖L6‖∇u‖L6

+ C‖∇2w‖L2 + C‖b‖
1
2
L4‖∇b‖

1
2
L4

≤ C‖√ρut‖
1
2
L2‖∇ut‖

1
2
L2 + C‖u‖H1 + C‖w‖H1 + C‖∇b‖2L2 + C‖�b‖2L2 ,

(3.56)

which together with (3.26) and (3.47), it shows

‖∇u‖L∞ ≤ C‖√ρut‖
1
2
L2‖∇ut‖

1
2
L2 + C(‖√ρut‖L2 + ‖√ρwt‖L2) + C‖∇b‖2L2

+ C(‖∇u‖L2 + ‖∇w‖L2) + C‖|b||∇b|‖L2 . (3.57)

Hence, it follows from (3.1), (3.4), (3.33) and (3.34), that for t ∈ [0, ζ(T )],
∫ ζ(T )

0
‖∇u‖L∞dt

≤ C(

∫ ζ(T )

0
t−

1
2 ‖√ρut‖

2
3
L2dt)

3
4 (

∫ ζ(T )

0
t
3
2 ‖∇ut‖2L2dt)

1
4

+ C
∫ ζ(T )

0
t−

1
2 (t

1
2 ‖√ρut‖L2 + t

1
2 ‖√ρwt‖L2)dt +

∫ ζ(T )

0
‖∇b‖2L2dt

+ C
∫ ζ(T )

0
(‖∇u‖L2 + ‖∇w‖L2)dt + C

∫ ζ(T )

0
(e

σ t
2 ‖|b||∇b|‖L2)e− σ t

2 dt

≤ C sup
t∈[0,ζ(T )]

(t‖√ρut‖2L2)
1
4 (

∫ ζ(T )

0
t−

1
2 · t− 1

3 dt)
3
4 (

∫ ζ(T )

0
t
3
2 ‖∇ut‖L2)

1
4

+ C
∫ ζ(T )

0
eσ t‖|b||∇b|‖L2dt

∫ ζ(T )

0
e−σ t dt ≤ C‖∇u0‖2L2 . (3.58)
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Similarly, it follows from (3.1), (3.5) and (3.34), that for t ∈ [ζ(T ), T ],
∫ T

ζ(T )

‖∇u‖L∞dt ≤ C‖∇u0‖L2 + C(

∫ T

ζ(T )

e−σ t dt)
1
2 (

∫ T

ζ(T )

eσ t‖∇ut‖2L2dt)
1
2

≤ C‖∇u0‖2L2 , (3.59)

this together with (3.58) yields (3.55). This completes the proof of Lemma 3.4. �

With Lemmas 3.1–3.4 at hand, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. First, it follows from (1.4)1, multiplying (3.14) by
|∇μ(ρ)|q−2∂ jμ(ρ) and integrating the resulting equality by parts, we obtain that

d

dt
‖∇μ(ρ)‖Lq ≤ C‖∇u‖L∞‖∇μ(ρ)‖Lq , (3.60)

which together with Gronwall’s inequality and (3.55) yields

sup
t∈[0,T ]

‖∇μ(ρ)‖Lq ≤ ‖∇μ(ρ0)‖Lq exp{q
∫ T

0
‖∇u‖L∞dt}

≤ ‖∇μ(ρ0)‖Lq exp{C3‖∇u0‖2L2}
≤ 2‖∇μ(ρ0)‖Lq , (3.61)

where ‖∇u0‖2L2 ≤ ε1 � min{1, ln2
C3

}. Next, it deduces from (3.30), (3.5) and (3.12)
gives

sup
t∈[0,T ]

eσ t‖∇u‖2L2

≤ sup
t∈[0,T ]

(‖∇u‖2L2)
2
∫ T

0
eσ t‖∇u‖2L2dt + sup

t∈[0,T ]
‖∇w‖2L2

∫ T

0
eσ t‖∇w‖2L2dt

+ sup
t∈[0,T ]

‖∇b‖2L2

∫ T

0
eσ t‖∇b‖2L2dt

≤ C(‖∇u0‖2L2)
3 ≤ ‖∇u0‖2L2 , (3.62)

where ‖∇u0‖2L2 ≤ ε0 � min{ε1,C− 1
4 }. Thus, we gain the (3.1) from (3.61) and

(3.62). It completes the proof of the Proposition 3.1. �

Lemma 3.5 Let (ρ, u, w, b, P) be a smooth solution to (1.4)–(1.6) satisfying (3.1).
Then there exists some positive constant C depending only on 	, q, κ , ν, μ, μ̄, ρ̄,
‖∇u0‖L2 , ‖∇w0‖L2 and ‖∇b0‖L2 such that
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sup
t∈[0,T ]

‖ρ‖H1∩W 1,q + sup
t∈[0,T ]

t(‖u‖2H2 + ‖P‖2H1 + ‖w‖2H2 + ‖b‖2H2)

+
∫ T

0
ζeσ t (‖u‖2H2 + ‖P‖2H1 + ‖w‖2H2 + ‖b‖2H2

+ ‖u‖2W 2,r + ‖P‖2W 1,r + ‖w‖2W 2,r + ‖b‖2W 2,r )dt ≤ C . (3.63)

Proof It is easy to deduce from (3.60) and (3.61) that

‖∇ρ‖L2∩Lq ≤ 2‖∇ρ0‖L2∩Lq . (3.64)

We notice that (1.4)4 combiningwith (3.4), (3.12), Gagliardo-Nirenberg and Sobolev’s
inequality that

‖b‖2H2 ≤ C(‖bt‖2L2 + ‖u · ∇b‖2L2 + ‖b · ∇u‖2L2 + ‖b‖2H1)

≤ C‖bt‖2L2 + C‖u‖2L6‖∇b‖2L3 + C‖b‖2L∞‖∇u‖2L2 + C‖∇b‖2L2

≤ C‖bt‖2L2 + C‖∇u‖2L2‖∇b‖L2‖∇2b‖L2 + C‖b‖L2‖b‖H2‖∇u‖2L2 + C‖∇b‖2L2

≤ C‖bt‖2L2 + C‖∇b‖2L2 + 1

2
‖b‖2H2 , (3.65)

which combining with (3.25) and (3.47) shows

‖u‖2H2 + ‖P‖2H1 + ‖w‖2H2 + ‖b‖2H2

≤ C(‖√ρut‖2L2 + ‖√ρwt‖L2 + ‖bt‖2L2)

+ C(‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2) + C‖|b||∇b|‖2L2

≤ C(‖√ρut‖2L2 + ‖√ρwt‖L2 + ‖bt‖2L2) + C(‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2),

(3.66)

where

‖|b||∇b|‖2L2 ≤ C‖b‖2H2‖∇b‖2L2 ≤ C‖bt‖2L2 + C‖∇b‖2L2 . (3.67)

Then, it follows from (3.5), (3.13), and (3.34) that

sup
t∈[0,T ]

t(‖u‖2H2 + ‖P‖2H1 + ‖w‖2H2 + ‖b‖2H2)

+
∫ T

0
ζeσ t (‖u‖2H2 + ‖P‖2H1 + ‖w‖2H2 + ‖b‖2H2)dt ≤ C . (3.68)

It deduces from Lemma 2.3, Sobolev’s inequality, (3.3), (3.12), (3.13), (3.66) and
(3.68) that for any r ∈ (2, q),

‖u‖2W 2,r + ‖P‖2W 1,r

≤ C
(
‖ρut‖2Lr + ‖ρu · ∇u‖2Lr + ‖∇w‖2Lr + ‖b · ∇b‖2Lr

)
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× (1 + ‖∇μ (ρ)‖Lq )
1+ qr

2(q−r)

≤ C

(

ρ̄2‖ut‖2Lr + ρ̄2‖u‖2
L

qr
q−r

‖∇u‖2Lq + ‖∇2w‖2L2 + ‖b‖2
L

qr
q−r

‖∇b‖2Lq

)

≤ C
(
‖∇ut‖2L2 + ‖∇u‖2L2‖∇2u‖2L2 + ‖∇2w‖2L2 + ‖∇b‖2L2‖∇2b‖2L2

)

≤ C
(
‖∇ut‖2L2 + ‖�b‖2L2

)
+ C

(
‖√ρut‖2L2 + ‖√ρwt‖2L2 + ‖bt‖2L2

)

+ C
(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇b‖2L2

)
+ C‖|b||∇b|‖2L2 . (3.69)

We infer from (1.4)3, regularity theory of elliptic equations, (3.3), (3.12), (3.13), (3.66)
and (3.68) that for any r ∈ (2, q),

‖w‖2W 2,r ≤ C
(
‖ρwt‖2Lr + ‖ρu · ∇w‖2Lr + ‖w‖2Lr + ‖∇u‖2Lr

)

≤ C

(

ρ̄2‖wt‖2Lr + ρ̄2‖u‖2
L

qr
q−r

‖∇w‖2Lq + ‖∇w‖2L2 + ‖∇2w‖2L2

)

≤ C
(
‖∇wt‖2L2 + ‖∇u‖2L2‖∇2w‖2L2 + ‖∇w‖2L2 + ‖∇2w‖2L2

)

≤ C
(
‖∇wt‖2L2 + ‖√ρwt‖L2

)
+ C

(
‖∇u‖2L2 + ‖∇w‖2L2

)
. (3.70)

Similarly, we can obtain from (1.4)4 and Sobolev’s inequality that

‖b‖2W 2,r ≤ C
(
‖bt‖2Lr + ‖u · ∇b‖2Lr + ‖b · ∇u‖2Lr

)

≤ C‖∇bt‖2L2 + ‖u‖2
L

qr
q−r

‖∇b‖2Lq + ‖b‖2
L

qr
q−r

‖∇u‖2Lq )

≤ C
(
‖∇bt‖2L2 + ‖∇u‖2L2‖∇2b‖2L2 + ‖∇b‖2L2‖∇2u‖2L2

)

≤ C(‖∇bt‖2L2 + ‖√ρut‖2L2 + ‖�b‖2L2 + C‖|b||∇b|‖2L2

+ C
(
‖∇u‖2L2 + ‖∇w‖2L2

)
, (3.71)

and this along with (3.69) and (3.70) by (3.5) (3.3), (3.12), (3.13) and (3.68) gives

∫ T

0
ζeσ t

(
‖u‖2W 2,r + ‖P‖2W 1,r + ‖w‖2W 2,r + ‖b‖2W 2,r

)
dt ≤ C . (3.72)

This combines (3.64) and (3.68) by indicates (3.63) and the proof of Lemma 3.5 is
finished. �

4 Proof of Theorem 1.1

With all the a priori estimates obtained in Sect. 3 at hand, we are now in a position to
prove Theorem 1.1.
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By Lemma 2.1, there exists a T∗ > 0 such that the problem (1.4)–(1.6) has a unique
local strong solution (ρ, u, w, b) on 	 × (0, T∗). We plan to extend the local solution
to all time.

Set

T ∗ = sup{ T | (ρ, u, w, b) is a strong solution on × (0, T ]}. (4.1)

First, for any 0 < τ < T∗ < T ≤ T ∗ with T finite, one deduces from (3.12), (3.33)
and (3.63) that for any q > 2,

∇u,∇w,∇b ∈ C([ζ(t), T ]; Lq), (4.2)

where one has used the standard embedding

L∞(ζ(t), T ; H1) ∩ H1(ζ(t), T ; H−1) ↪→ C(ζ(t), T ; Lq) f or any q ∈ (2,∞).

Moreover, it deduces from (3.64), (3.3), (3.12), (3.13) and ( [25], Lemma 2.3) that

ρ ∈ C([0, T ];W 1,q), ρu ∈ C([0, T ]; L2), ρw ∈ C([0, T ]; L2). (4.3)

Finally, if T∗ < ∞, it follows from (4.2), (4.3), (3.4) and (3.12) that

(ρ, u, w, b)(x, T ∗) = lim
t→T ∗(ρ, u, w, b)(x, t)

satisfies the initial condition (1.8) at t = T ∗. Thus, taking (ρ, u, w, b)(x, T ∗) as the
initial data, due to Lemma 2.1, it can extend the strong solutions beyond T ∗. This
contradicts the assumption of T ∗ in (4.1). The proof of Theorem 1.1 is completed.
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