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Abstract
In this paper, we study theCauchy problem for a generalizedBoussinesq-type equation
in R

n . We establish a dispersive estimate for the linear group associated with the
generalized Boussinesq-type equation. As applications, the global existence, decay
and scattering of solutions are established for small initial data.
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1 Introduction

In this paper, we study the following Cauchy problem of the sixth-order generalized
Boussinesq-type equation in R

n , describing the surface waves in shallow waters [1, 2]

utt − �u + �2u − �utt − �3u = � f (u), (1.1)

u(x, 0) = u0(x), ut (x, 0) = u1(x), (1.2)

where the nonlinear term has the form f (u) = O(|u|p), p > 1.
Boussinesq’s theory was the first to give a satisfactory, scientific explanation of

the phenomenon of solitary waves discovered by Scott Russell [23]. The classical
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Boussinesq equation can be written

utt − uxx + αuxxxx = (u2)xx , (1.3)

where α ∈ R depends on the depth of fluid and the characteristic speed of long
waves. Actually, the classical Boussinesq equation is a dispersive equation for α > 0.
The dispersion comes from the term uxxxx . By taking advantage of the dispersion,
the well-posedness and scattering of solutions to the Cauchy problem of (1.3) and
its generalized versions were established in [5, 7, 11, 13]. For other results on local
existence, finite time blowup, stability and instability of solitary waves and so on, see
[3, 4, 6, 12, 24, 32] and references therein. Also, the equation (1.3) with the damped
term −∂t xxu was studied by many researchers, see [14, 25] and so on.

Following the work of the Boussinesq equation (1.3), various of Boussinesq-type
equations have been carried out to describe different physical process. For example,
Makhankov [16] modified (1.3) to describe ion-sound waves in plasma as follows

utt − uxx − uxxtt = (u2)xx . (1.4)

Samsonov, Sokurinskaya [21] modified (1.3) and (1.4) to describe the nonlinear waves
propagation in waveguide with the possibility of energy exchange through lateral
surfaces of the waveguide as follows

utt − uxx + uxxxx − uxxtt = (u2)xx . (1.5)

Furthermore, Schneider and Wayne [22] modified (1.5) to model the water wave
problem with surface tension as below

utt − uxx + uxxxx − uxxtt + uxxxxtt = (u2)xx . (1.6)

For the Boussinesq-type equations (1.4)–(1.6) and their generalized versions, all are
dispersive equations. The dispersions were regarded as the basic tool for the existence
and scattering, see [15, 27, 30]. The local existence and finite time blowupwere studied
by [9, 31, 33]. For the equations (1.4)–(1.6) with the damped term −utxx , there are
also many results, see [10, 18, 19, 29] and so on.

For the equation (1.1), it is also a Boussinesq-type equation and dispersive equation.
But as far aswe know, there are few results.Up to now, there are only some results about
the equation (1.1)with the damped term−�ut . For example, the initial boundary value
problem was investigated in [34], and they obtained the existence of strong solutions
and the long time asymptotic. Later, [26, 28] considered the Cauchy problem, and
they established the global existence and asymptotic behavior for small initial data.
These results all depended on deeply the important role of the dissipation term −�ut .
Inspired by the studies of Boussinesq-type equations (1.3)–(1.6), it is nature to ask
whether we can use the dispersion in (1.1) to obtain some fundamental mathematical
results without the dissipation term −�ut .

Let’s observe the dispersion in (1.1). By the method of the Green function, we can
transform the Cauchy problem (1.1)–(1.2) into an integral equation. Considering the
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Cauchy problem

{
∂t tG − �G + �2G − �Gtt − �3G = 0,
G(x, 0) = 0, ∂tG(x, 0) = δ.

(1.7)

By the Fourier transform in (1.7), one has

{
∂t t Ĝ + |ξ |2Ĝ + |ξ |4Ĝ + |ξ |2Ĝtt + |ξ |6Ĝ = 0,
Ĝ(ξ, 0) = 0, ∂t Ĝ(ξ, 0) = 1.

(1.8)

The characteristic equation of (1.8) is

τ 2 + |ξ |2 + |ξ |4 + |ξ |2τ 2 + |ξ |6 = 0,

which implies

τ = ±i p(|ξ |),

where

p(|ξ |) = |ξ |
√
1 + |ξ |2 + |ξ |4

1 + |ξ |2 .

Thus, one can solve the Cauchy problem (1.8)

Ĝ(ξ, t) = sin(tp(|ξ |))
p(|ξ |) , ∂t Ĝ(ξ, t) = cos(tp(|ξ |)).

The Duhamel principle implies that the solution of (1.1)–(1.2) is represented by

u(t) = ∂tG(t) ∗ u0 + G(t) ∗ u1 +
∫ t

0

�

1 − �
G(t − τ) ∗ f (u)(τ )dτ, (1.9)

where ∂tG(t) and G(t) are defined as

∂tG(t) = F−1 cos(tp(|ξ |)), G(t) = F−1 sin(tp(|ξ |))
p(|ξ |) ,

and F−1 is the inverse Fourier transform. From the expression of the Green function
G, the equation (1.1) exhibits a dispersion phenomenonwhich is due to the presence of
terms�u,�2u,�3u. This is closely related to the dispersive estimate for the operator
eitp(|∇|) defined by the Fourier integral

eitp(|∇|) f = F−1eitp(|ξ |) f̂ =
∫
Rn

ei(xξ+tp(|ξ |)) f̂ dξ. (1.10)
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In order to describe the main results in this paper, we introduce some notations
and spaces. The dual number of r (1 � r � ∞) is denoted by r ′, i.e., 1

r + 1
r ′ = 1.

The notation f ∈ g(|∇|)X means g−1(|∇|) f ∈ X for a function space X ,
where |∇| is defined by ˆ(|∇| f )(ξ) = |ξ | f̂ (ξ). Lq = Lq(Rn) and Ws,q(Rn) =
(1 − �)− s

2 Lq(Rn)(1 � q � ∞, s ∈ R) denote Lebesgue spaces and inhomoge-
neous Sobolev spaces, respectively. In particular, Hs = Ws,2. Ḃs

r ,q and Bs
r ,q

(1 � r , q � ∞, s ∈ R) represent the homogeneous and inhomogeneous Besov spaces,
respectively.

The first result in this paper is to obtain the dispersive estimate (1.10). The strategy
is described.We can use the stationary phase estimate to get the desired decay estimate
in R. Because the symbol p(|ξ |) of the operator is a radial function, we can use the
Fourier transform of a radial function to reduce the problem to one-dimensional case
in R

n(n � 2). This way to deal with dispersive estimates has been applied by many
mathematicians [8, 15, 30] an so on.

Theorem 1.1 If 2 � r � ∞, then we have for f ∈ �−(1− 2
r ) Ḃ

n
r
r ′,1 ∩ Ḃ

n
r ′
r ′,1 that

‖eitp(|∇|) f ‖L∞ � (1 + |t |)− n
2 (1− 2

r )‖ f ‖
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1

,

where � is a operator defined by

�g = F−1
(
p′(|ξ |)

|ξ |
)− n−1

2

(p′′|ξ |))− 1
2 ĝ.

By making use of the above dispersive estimate, we obtain the estimates in L∞
space of linear part and nonlinear part associated with the equation (1.1), respectively,
which we apply to study the existence and decay of global small amplitude solutions
to the Cauchy problem (1.1)–(1.2) by themethod of the contractive mapping principle.

Theorem 1.2 Suppose when n = 1 and 2 < r < 4 or when n � 2 and 2 < r < ∞,
s > n

r ′ and

p � s, p >
2

r ′ + max

{
1,

1
n
2 (1 − 2

r )

}
,

there exists small δ > 0 such that

‖u0‖
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1∩Hs

+ ‖u1‖
p(|∇|)

(
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1∩Hs

) � δ.

Then, the Cauchy problem (1.1)–(1.2) possesses a unique solution u(x, t) ∈ C(R; Hs)

with a positive number ρ depending on p, δ, r such that

sup
t∈R

(1 + |t |) n
2 (1− 2

r )‖u‖L∞ + sup
t∈R

‖u‖Hs � ρ.
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With the help of the representation of solutions (1.9) and the decay of solutions in
Theorem 1.2, we can construct the scattering of solutions.

Theorem 1.3 Let u(x, t) be the solution to the Cauchy problem (1.1)–(1.2) in Theorem
1.2. Then, there exists the unique solution u± of the linear equation corresponding to
(1.1), i.e., f = 0, with initial data

û±
0 = û0 +

∫ ±∞

0
sin(τ p(ξ))

|ξ |2
p(|ξ |)(1 + |ξ |2) f̂ (ξ, τ )dτ,

û±
1 = û1 −

∫ ±∞

0
cos(τ p(ξ))

|ξ |2
1 + |ξ |2 f̂ (ξ, τ )dτ,

such that

‖u(t) − u±(t)‖Hs = O(|t |−θ(p−1)+1), t → ±∞,

where s, θ, p are the same in Theorem 1.2.

The paper is organized as follows. We obtain the dispersive estimate in Sect. 2 and
establish the existence and decay of global solutions in Sect. 3. Section4 is to construct
the scattering of solutions obtained in Sect. 3.

Throughout this paper, we denote by R, Z the set of real numbers and integer
numbers, respectively. Positive constants C vary from line to line. A � B denote
A � CB, and A ∼ B means that A � B and B � A hold at the same time.

2 The Dispersive Estimate

In this section, we aim to prove the dispersive estimate. Firstly, let us recall the classical
lemmas about the stationary phase estimate and Bessel function.

Lemma 2.1 (Stationary phase estimate, see [17, 20])

(i) Suppose φ is a real-valued function and smooth in (a, b), satisfying |φ(k)(x)| � 1
for all x ∈ (a, b). Then,

∣∣∣∣
∫ b

a
eiλφ(x)dx

∣∣∣∣ � Ckλ
− 1

k

holds when k � 2 or k = 1 and φ′(x) is monotonic.
(ii) Let h(x) be a smooth function in (a, b), then under the assumptions on φ in (i),

we have

∣∣∣∣
∫ b

a
eiλφ(x)h(x)dx

∣∣∣∣ � Ckλ
− 1

k (‖h‖L∞ + ‖h′‖L1).

Lemma 2.2 (Properties of the Bessel function, see [17, 20])
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The Bessel function Bm(r)(0 < r < ∞,m > − 1
2 ) is

Bm(r) = rm

2m(m + 1
2 )π

1
2

∫ 1

−1
eirt (1 − t2)m− 1

2 dt,

which has the properties

(i) Bm(r) � Crm and d
dr (r

−mBm(r)) = −r−mBm+1(r).

(ii) r− n−2
2 Bn−2

2
(r) = CnRe(eir h(r)), where h(r) is a smooth function satisfying

|∂kr h(r)| � Ck(1 + r)−
n−1
2 −k, k � 0.

Then, we recall the Littlewood–Paley decomposition. Suppose ψ :Rn → [0, 1] be
a smooth radial cutoff function

ψ(ξ) =
⎧⎨
⎩
1, |ξ | � 1,
smooth, 1 < |ξ | < 2,
0, |ξ | � 2.

Set

η(N−1ξ) = ψ(N−1ξ) − ψ(2N−1ξ), (N ∈ 2Z),

then the Littlewood–Paley operator PN can be defined by

PN g = F−1
(

η

(
ξ

N

)
ĝ

)
.

Furthermore, we define the operator P̃N by

P̃N g = F−1
{(

η(
2ξ

N
) + η(

ξ

N
) + η(

ξ

2N
)

)
ĝ

}
,

and then,

P̃N PN = PN P̃N = PN .

From now on, we always set

�(|ξ |) =
(
p′(|ξ |)

|ξ |
)− n−1

2

(p′′|ξ |))− 1
2 .
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In order to prove Theorem 1.1, the embedding Ḃ0∞,1 ↪→ L∞ implies that it is enough
to prove

‖eitp(|∇|) f ‖Ḃ0∞,1
� (1 + |t |)− n

2 (1− 2
r )‖ f ‖

�−(1− 2
r ) Ḃ

n
r
r ′,1∩Ḃ

n
r ′
r ′,1

, (2.1)

Equivalently,

‖eitp(|∇|)PN f ‖L∞

� (1 + |t |)− n
2 (1− 2

r )
(
�1− 2

r (N )N
n
r ‖P̃N f ‖Lr ′ + N

n
r ′ ‖P̃N f ‖Lr ′

)
. (2.2)

Since

eitp(|∇|)PN f = eitp(|∇|)PN P̃N f =
∫
Rn

ei(xξ+tw(ξ))η(
ξ

N
)̂̃PN f dξ, (2.3)

by the Hölder and Hausdorff–Young inequalities, we have for any 2 � r � ∞ that

‖eitp(|∇|)PN f ‖L∞ � ‖η(
ξ

N
)‖Lr ′ ‖̂̃PN f (ξ)‖Lr � N

n
r ′ ‖P̃N f ‖Lr ′ . (2.4)

Thus, it follows from (2.2) and (2.4) that we only need to prove that when |t | � 1,

‖eitp(|∇|)PN f ‖L∞ � |t |− n
2 (1− 2

r )�1− 2
r (N )N

n
r ‖P̃N f ‖Lr ′ . (2.5)

In order to prove the inequality (2.5), because the proof of the case of n = 1 is
rather easier than that of the case of n � 2, we divided our proof into the following
two lemmas.

Lemma 2.3 When n = 1 and 2 � r � ∞ and |t | � 1, then

‖eitp(|∇|)PN f ‖L∞ � |t |− 1
2 (1− 2

r )�1− 2
r (N )N

1
r ‖P̃N f ‖Lr ′ .

Proof By (2.3), the Hölder and Hausdorff–Young inequalities, we have

‖eitp(|∇|)PN f ‖L∞ =
∥∥∥∥
∫
R

ei(xξ+tp(ξ))η(
ξ

N
)̂̃PN f dξ

∥∥∥∥
L∞

�
∥∥∥∥
∫
R

ei(xξ+tp(ξ))η(
ξ

N
)dξ

∥∥∥∥
L∞

‖̂̃PN f ‖L∞

�
∥∥∥∥
∫
R

ei(xξ+tp(ξ))η(
ξ

N
)ξ

∥∥∥∥
L∞

‖P̃N f ‖L1 . (2.6)

Next, we need to deal with the estimate of one-dimensional oscillatory integral

∥∥∥∥
∫
R

ei(xξ+tp(ξ))η(
ξ

N
)dξ

∥∥∥∥
L∞

.
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Let

�(ξ) = xξ + tp(|ξ |),

then

� ′′(ξ) = tp′′(|ξ |) > 0.

We have by Lemma 2.1 (i) that

sup
x∈R

∣∣∣∣
∫
R

eitp(|ξ |)η(
ξ

N
)dξ

∣∣∣∣ � |t |− 1
2 |p′′(N )|− 1

2 � |t |− 1
2 �(N ), (2.7)

where we have used the fact |p′′(|ξ |)| � Cp′′(N ) for any |ξ | ∈ ( N2 , 2N ). By (2.6) and
(2.7), we have

‖eitp(|∇|)PN f ‖L∞ � |t |− 1
2 �(N )‖P̃N f ‖L1 . (2.8)

Setting r ′ = 2 in (2.4), we have

‖eitp(|∇|)PN f ‖L∞ � N
1
2 ‖P̃N f ‖L2 . (2.9)

Interpolating (2.8) with (2.9) implies

‖eitp(|∇|)PN f ‖L∞ � |t |− 1
2 (1− 2

r )�1− 2
r (N )N

1
r ‖P̃N f ‖Lr ′ .

Thus, we complete the proof of Lemma 2.3. ��

Lemma 2.4 When n � 2 and 2 � r � ∞ and |t | � 1, then

‖eitp(|∇|)PN f ‖L∞ � |t |− n
2 (1− 2

r )�1− 2
r (N )N

n
r ‖P̃N f ‖Lr ′ .

Proof A similar estimate with (2.6) shows that

‖eitp(|∇|)PN f ‖L∞ �
∥∥∥∥
∫
Rn

ei(xξ+tp(|ξ |))η(
ξ

N
)ξ

∥∥∥∥
L∞

‖P̃N f ‖L1 . (2.10)

Thus, it is necessary to obtain the estimate of themultidimensional oscillatory integral

∥∥∥∥
∫
Rn

ei(xξ+tp(|ξ |))η
(

ξ

N

)
dξ

∥∥∥∥
L∞

.
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By changing the variable ξ → Nξ and the scaling invariance of ‖ · ‖L∞ , we get

∥∥∥∥
∫
Rn

ei(xξ+tp(|ξ |))η(
ξ

N
)dξ

∥∥∥∥
L∞

= Nn
∥∥∥∥
∫
Rn

ei(Nxξ+tp(|Nξ |))η(|ξ |)dξ
∥∥∥∥
L∞

= Nn
∥∥∥∥
∫
Rn

ei(xξ+tp(|Nξ |))η(|ξ |)dξ
∥∥∥∥
L∞

.

where supp η(ξ) ⊂ {ξ : 1
2 � |ξ | � 2}. Furthermore, the Fourier transform of a radial

function (see [20]) gives

Nn
∫
Rn

ei(xξ+tp(|Nξ |))η(|ξ |)dξ = Nn
∫ ∞

0
eitp(Nr)η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)dr .

Thus, we have

∥∥∥∥
∫
Rn

ei(xξ+tp(|ξ |))η(
ξ

N
)dξ

∥∥∥∥
L∞

= Nn
∥∥∥∥
∫ ∞

0
eitp(Nr)η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)dr
∥∥∥∥
L∞

. (2.11)

Setting

JN (t, x) = Nn
∫ ∞

0
eitp(Nr)η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)dr ,

we go to estimate the term ‖JN (t, x)‖L∞ . Some simple calculations give

p(r) = r

√
r4 + r2 + 1

1 + r2
,

p′(r) = 2r6 + 4r4 + 2r2 + 1

(1 + r2)
3
2 (r4 + r2 + 1)

1
2

,

p′′(r) = r3(2r8 + 8r6 + 18r4 + 19r2 + 10)

(1 + r2)
5
2 (r4 + r2 + 1)

3
2

.

If |x | � 2, let

Dr g := 1

i t Np′(Nr)

d

dr
g, (D∗

r )g := − 1

i t N

d

dr

(
1

p′(Nr)
g

)
,

then

Dr (e
itp(Nr)) = eitp(Nr).
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Integrating by parts for any q ∈ Z
+ implies

JN (t, x) = Nn
∫ ∞

0
eitp(Nr)η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)dr

= Nn
∫ ∞

0
Dq
r (eitp(Nr))η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)dr

= Nn
∫ ∞

0
eitp(Nr)(D∗

r )
q(η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |))dr . (2.12)

By the chain rule of derivative, one has

(D∗
r )

q(η(r)rn−1(r |x |)− n−2
2 Bn−2

2
(r |x |))

= 1

(−i t N )q

q∑
k=0

Ck,q Fq∂
q−k
r (η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)),

where

Fq =
∑

q1,...,qk∈�
q
k

q∏
j=1

∂
m j
r (

1

p′(Nr)
),

and

�
q
k = {m1, ...,mq ∈ Z

+ : 0 � m1 � m2 � ... � mq ,m1 + m2 + ... + mq = k}.

For any m � 0, r ∈ [ 12 , 2], we have

|∂mr (
1

p′(Nr)
)| �

{
1, N < 1,
N−1, N � 1.

(2.13)

By (i) in Lemma 2.2, we have for |x | � 2 and m � 0,

|∂mr (η(r)rn−1(r |x |)− n−2
2 Bn−2

2
(r |x |))| � 1. (2.14)

It follows from (2.12)–(2.14) that

|JN (t, x)| �
{ |t |−q Nn−q , N < 1,

|t |−q Nn−2q , N � 1.
(2.15)
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If |x | > 2, (iii) in Lemma 2.2 implies that

JN (t, x) = Nn
∫ ∞

0
eitp(Nr)η(r)rn−1(r |x |)− n−2

2 Bn−2
2

(r |x |)dr

= Nn
∫ ∞

0
eitp(Nr)η(r)rn−1(eir |x |h(r |x |) + e−ir |x |h(r |x |))dr

= JN1(t, x) + JN2(t, x), (2.16)

where

JN1(t, x) = Nn
∫ ∞

0
eit(p(Nr)+ r |x |

t )η(r)rn−1h(r |x |)dr ,

JN2(t, x) = Nn
∫ ∞

0
eit(p(Nr)− r |x |

t )η(r)rn−1h(r |x |)dr .

We focus on the case of t > 0. For JN1(t, x), we set

�1(r) = p(Nr) + r |x |
t

, �′
1(r) = Np′(Nr) + |x |

t
> 0.

From (iii) in Lemma 2.2, we obtain for |x | � 2 and m � 0,

|∂mr (η(r)rn−1h(r |x |))| � |x |− n−1
2 � 1. (2.17)

With the help of stationary phase estimate as the case of |x | < 2, it follows from (2.13)
and (2.17) that for any q � 0,

|JN1(t, x)| �
{ |t |−q Nn−q , N < 1,

|t |−q Nn−2q , N � 1.
(2.18)

For JN2(t, x), we set

�2(r) = p(Nr) − r |x |
t

, � ′
2(r) = Np′(Nr) − |x |

t
, � ′′

2 (r) = N 2 p′′(Nr),

which imply that there exists one critical point

|x |
t

= Np′(Nr).

When

|x |
t

> 100 sup
r∈[ 12 ,2]

Np′(Nr) or
|x |
t

<
1

100
inf

r∈[ 12 ,2]
Np′(Nr),
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then

� ′
2(r) �= 0, ∀r ∈

[
1

2
, 2

]
.

Similar to the estimate of JN1(t, x), we have

|JN2(t, x)| �
{ |t |−q Nn−q , N < 1,

|t |−q Nn−2q , N � 1.
(2.19)

When

1

100
inf

r∈[ 12 ,2]
Np′(Nr) �

|x |
t

� 100 sup
r∈[ 12 ,2]

Np′(Nr),

then

|x | ∼ t Np′(Nr). (2.20)

By (ii) in Lemma 2.1, we have that

JN2(t, x) = Nn
∫ ∞

0
eit�2(r)η(r)rn−1h(r |x |)dr

� Nn(|t N 2 p′′(Nr)|)− 1
2 F(x), (2.21)

where

F(x) = sup
r∈[ 12 ,2]

|η(r)rn−1h(r |x |)| +
∫ ∞

0
|∂r (η(r)rn−1h(r |x |)|dr .

Let us estimate the function F(x). By (iii) in Lemma 2.2, we have

|F(x)| � |x |− n−1
2 .

Inserting the above estimate into (2.21) and then using (2.20), we have

JN2(t, x) � Nn(|t N 2 p′′(Nr)|)− 1
2 |x |− n−1

2

� |t |− 1
2 Nn(N 2 p′′(Nr))−

1
2 (N |t |p′(Nr))−

n−1
2

� |t |− n
2

(
p′(N )

N

)− n−1
2

(p′′(N ))−
1
2

= |t |− n
2 �(N ).
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It follows from

�(N ) =
(
p′(N )

N

)− n−1
2

(p′′(N ))−
1
2 ∼

{
N

n
2−2, N < 1,
1, N � 1,

(2.22)

and (2.11), (2.15), (2.18), (2.19) with q = n
2 that

sup
x∈Rn

|JN2(t, x)| � |t |− n
2 �(N ). (2.23)

It follows from (2.10), (2.11) and (2.23) that

‖eitp(|∇|)PN f ‖L∞ � |t |− n
2 �(N )‖P̃N f ‖L1 . (2.24)

Setting r ′ = 2 in (2.4), we have

‖eitp(|∇|)PN f ‖L∞ � N
n
2 ‖P̃N f ‖L2 . (2.25)

Interpolating (2.24) with (2.25) implies

‖eitp(|∇|)PN f ‖L∞ � |t |− n
2 (1− 2

r )�1− 2
r (N )N

n
r ‖P̃N f ‖Lr ′ .

Thus, we complete the proof of Lemma 2.4. ��

The proof of Theorem 1.1: It follows from Lemmas 2.3 and 2.4 that the inequality (2.5)
actually holds. By (2.4) and (2.5), we deduce that the inequality (2.2) is valid, which
results in the inequality (2.1) holds. Thanks to the embedding Ḃ0∞,1 ↪→ L∞, the result
of Theorem 1.1 is proved.

In fact, the dispersive estimate in Theorem 1.1 is very useful to estimate the linear
part ‖(∂tG ∗ u0,G(t) ∗ u1)‖L∞ , but it is not enough to estimate the nonlinear part∥∥∥∫ t

0
�

1−�
G(t − τ) ∗ f (u)dτ

∥∥∥
L∞ , becausewedonot have the embedding Lr ′

↪→ Ḃ0
r ′,1.

In order to overcome the difficulty, we go to refine the dispersive estimate in Theorem
1.1 by using the Besov space Ḃ0

r ′,2 instead of the Besov space Ḃ0
r ′,1. Let us introduce

the operators

{
�α,β = �α(1 + �2)

β−α
2 ,

�̂ = |ξ |.

It was known in [5] and [15] for any ε > 0 that

�−1−ε,ε Ḃ
0∞,2 ↪→ L∞. (2.26)
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Corollary 2.5 If2 � r � ∞and supposew(|∇|) is a L p(1 � p � ∞)boundedoperator,

then we have for f ∈ (w(|∇|)�)−(1− 2
r ) Ḃ

n
r
r ′,2 ∩ Ḃ

n
r ′
r ′,2 that

‖eitp(|∇|)w(∇) f ‖L∞ �

⎧⎪⎨
⎪⎩

‖�−ε,ε f ‖
Ḃ

n
r ′
r ′,2

, t ∈ R,

|t |− n
2 (1− 2

r )‖�−ε,ε f ‖
(w(|∇|)�)−(1− 2

r ) Ḃ
n
r
r ′,2

, |t | � 1.

Proof Since w(|∇|) is a L∞ bounded operator, we have

‖eitp(|∇|)w(∇) f ‖L∞ � ‖eitp(|∇|) f ‖L∞ .

By (2.4), we have for any ε > 0

‖eitp(|∇|)PN f ‖L∞ � N
n
r ′ �ε,−ε(N )‖P̃N�−ε,ε(N ) f ‖Lr ′ ,

which implies that

‖eitp(|∇|)PN�−ε,ε(N ) f ‖L∞ � N
n
r ′ ‖P̃N�−ε,ε(N ) f ‖Lr ′ . (2.27)

Taking the l2 norm in (2.27) and using the embedding (2.26) give that

‖eitp(|∇|) f ‖L∞ � ‖eitp(|∇|)�−ε,ε f ‖Ḃ0∞,2
� ‖�−ε,ε f ‖

Ḃ
n
r ′
r ′,2

. (2.28)

When |t | � 1, by (2.8)–(2.9) and (2.24)–(2.25), we have

‖eitp(|∇|)PNw(|∇|) f ‖L∞ � |t |− n
2 �(N )w(N )‖P̃N f ‖L1 ,

and

‖eitp(|∇|)PNw(|∇|) f ‖L∞ � ‖eitp(|∇|)PN f ‖L∞ � N
n
2 ‖P̃N f ‖L2 ,

which deduce that

‖eitp(|∇|)PNw(|∇|) f ‖L∞

� |t |− n
2 (1− 2

r )(�w)1−
2
r (N )N

n
r �ε,−ε(N )‖P̃N�−ε,ε(N ) f ‖Lr ′ ,

that is equivalent to

‖eitp(|∇|)PN�−ε,ε(N )w(|∇|) f ‖L∞

� |t |− n
2 (1− 2

r )(�w)1−
2
r (N )N

n
r ‖P̃N�−ε,ε(N ) f ‖Lr ′ . (2.29)
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Taking the l2 norm in (2.29) and using the embedding (2.26) give that

‖eitp(|∇|)w(|∇|) f ‖L∞ � ‖eitp(|∇|)�−ε,εw(|∇|) f ‖Ḃ0∞,2

� |t |− n
2 (1− 2

r )‖�−ε,ε f ‖
(w(|∇|)�)−(1− 2

r ) Ḃ
n
r
r ′,2

. (2.30)

It follows from (2.28) and (2.30) that the result of Corollary 2.5 holds. ��

3 Existence and Decay of Solutions

In this section, we go to establish the global existence and decay of solutions to the
Cauchy problem (1.1)–(1.2). In the sequel, we always set

γ = n

2

(
1 − 2

r

)
.

3.1 The Estimate of Linear Part

In this subsection,we aim to establish the L∞ and L2 estimates of linear part associated
with the Cauchy problem (1.1)–(1.2).

Lemma 3.1 If 2 � r � ∞ and

u0 ∈ �−(1− 2
r ) Ḃ

n
r
r ′,1 ∩ Ḃ

n
r ′
r ′,1,

u1 ∈ p(|∇|)
(

�−(1− 2
r ) Ḃ

n
r
r ′,1 ∩ Ḃ

n
r ′
r ′,1

)
,

then

‖(∂tG ∗ u0,G(t) ∗ u1)‖L∞

� (1 + |t |)−γ

⎛
⎝‖u0‖

�−(1− 2
r ) Ḃ

n
r
r ′,1∩Ḃ

n
r ′
r ′,1

+ ‖u1‖
p(|∇|)

(
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1

)
⎞
⎠ .

Proof We first focus on the estimate of ‖∂tG ∗ u0‖L∞ .

‖∂tG ∗ u0‖L∞ =
∥∥∥∥
∫
Rn

eixξ cos(p(ξ)t)û0dξ

∥∥∥∥
L∞

=
∥∥∥∥∥
∫
Rn

eixξ
eitp(ξ) + e−i tp(ξ)

2
û0dξ

∥∥∥∥∥
L∞

∼
∥∥∥∥
∫
Rn

ei(xξ+tp(ξ))û0dξ

∥∥∥∥
L∞

=
∥∥∥eitp(|∇|)u0

∥∥∥
L∞ . (3.1)
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Theorem 1.1 and (3.1) deduce that

‖∂tG ∗ u0‖L∞ � (1 + |t |)−γ ‖u0‖
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1

. (3.2)

Then, we go to estimate ‖G(t) ∗ u1‖L∞ .

‖G(t) ∗ u1‖L∞ =
∥∥∥∥
∫
Rn

eixξ
sin(p(ξ)t)

p(ξ)
û1dξ

∥∥∥∥
L∞

=
∥∥∥∥∥
∫
Rn

eixξ
eitp(ξ) − e−i tp(ξ)

2i p(ξ)
û1dξ

∥∥∥∥∥
L∞

∼
∥∥∥∥
∫
Rn

ei(xξ+tp(ξ)) 1

p(ξ)
û1dξ

∥∥∥∥
L∞

= ‖eitp(|∇|) 1

p(|∇|)u1‖L∞ . (3.3)

It follows from Theorem 1.1 and (3.3) that

‖G(t) ∗ u1‖L∞ � (1 + |t |)−γ ‖u1‖
p(|∇|)

(
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1

). (3.4)

Concluding (3.2) and (3.4) implies Lemma 3.1 holds. ��
Lemma 3.2 If s ∈ R and u0 ∈ Hs, u1 ∈ p(|∇|)Hs, then

‖(∂tG ∗ u0,G(t) ∗ u1)‖Hs � ‖u0‖Hs + ‖u1‖p(|∇|)Hs .

Proof By the Plancherel theorem, we have

‖∂tG ∗ u0‖Hs = ‖(1 − �)
s
2 ∂tG ∗ u0‖L2 = ‖(1 + |ξ |2) s

2 cos(i tp(|ξ |))û0‖L2

= ‖(1 + |ξ |2) s
2 û0‖L2 = ‖u0‖Hs .

Similarly, we also obtain

‖G(t) ∗ u1‖Hs = ‖u1‖p(|∇|)Hs .

Concluding the above two equations, we complete the proof of Lemma 3.2. ��

3.2 The Estimate of Nonlinear Part

In this subsection, we aim to establish the L∞ and L2 estimates of nonlinear part asso-
ciated with the Cauchy problem (1.1)–(1.2). Firstly, we recall the chain of fractional
derivation.

123



Dispersive Estimates and Asymptotic Behavior... Page 17 of 24 174

Lemma 3.3 ([5, 10, 27]) Suppose s with 0 � s � p, then

‖∇s f (u)‖Lr � ‖u‖p−1
L(p−1)r1

‖∇su‖Lr2 ,

for r1 ∈ (1,∞], r2 ∈ (1,∞), 1/r1 + 1/r2 = 1. Furthermore,

‖ f (u)‖Hs � ‖u‖p−1
L∞ ‖u‖Hs .

‖ f (u) − f (v)‖L2 � (‖u‖p−1
L∞ + ‖v‖p−1

L∞ )‖u − v‖L2 .

Then with the help of Lemma 3.3, we have

Lemma 3.4 Suppose when n = 1 and 2 � r < 4 or when n � 2 and 2 � r < ∞, then
we have for s > n

r ′ that

∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f dτ

∥∥∥∥
L∞

�
∫ t

0
(1 + |t − τ |)−γ ‖u‖p− 2

r ′
L∞ ‖u‖

2
r ′
Hsdτ.

Proof Due to (3.3), we have

∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f dτ

∥∥∥∥
L∞

=
∥∥∥∥
∫ t

0
ei(t−τ)p(|∇|) �

p(|∇|)(1 − �)
f dτ

∥∥∥∥
L∞

�
∫ t

0

∥∥∥∥ei(t−τ)p(|∇|) �

p(|∇|)(1 − �)
f

∥∥∥∥
L∞

dτ.

Let us compute the pseudo-differential operator

�

p(|∇|)(1 − �)
= −|∇|2

1 + |∇|2 ·
√
1 + |∇|2

|∇|√1 + |∇|2 + |∇|4
= −|∇|√

1 + |∇|2√1 + |∇|2 + |∇|4 .

Denote w(|∇|) by

ω(|∇|) = |∇|√
1 + |∇|2√1 + |∇|2 + |∇|4 .

Thus, we have

∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f dτ

∥∥∥∥
L∞

�
∫ t

0

∥∥∥ei(t−τ)p(|∇|)w(|∇|) f
∥∥∥
L∞ dτ. (3.5)
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Since w(|∇|) is a −2-order pseudo-differential operator, it is a L p(1 � p � ∞)

bounded operator. By Corollary 2.5, we have

∥∥∥ei(t−τ)p(|∇|)w(|∇|) f
∥∥∥
L∞ � ‖�−ε,ε f ‖

Ḃ
n
r ′
r ′,2

. (3.6)

When |t | � 1, by Corollary 2.5, we have

∥∥∥ei(t−τ)p(|∇|)w(|∇|) f
∥∥∥
L∞ � |t − τ |−γ ‖�−ε,ε f ‖

(w(|∇|)�)
−

(
1− 2

r

)
Ḃ

n
r
r ′,2

. (3.7)

Now, we analyze the norm ‖�−ε,ε f ‖
(w(|∇|)�)−(1− 2

r ) Ḃ
n
r
r ′,2

. Due to

w(N ) = N

(1 + N 2)
1
2

· 1

(N 4 + N 2 + 1)
1
2

∼
{

N , N < 1,
N−2, N � 1,

(3.8)

and

�−ε,ε(N ) = N−ε(1 + N 2ε) ∼
{
N−ε, N < 1,
N ε, N � 1,

(3.9)

it follows from (2.22) and (3.8)–(3.9) that

�1− 2
r (N )w1− 2

r (N )�−ε,ε(N ) ∼
{

N
n
2− n

r −(1− 2
r )−ε, N < 1,

N−2(1− 2
r )+ε � N ε, N � 1.

(3.10)

By (3.9), we can get for s > n
r ′ and ε > 0 small enough that

‖�−ε,ε f ‖
Ḃ

n
r ′
r ′,2

� ‖ f ‖
Ḃ

n
r ′ −ε

r ′,2
+ ‖ f ‖

Ḃ
n
r ′ +ε

r ′,2
� ‖ f ‖Bs

r ′,2 . (3.11)

By (3.10), we have

∥∥∥�1− 2
r w(1− 2

r )(|∇|)�−ε,ε f
∥∥∥
Ḃ

n
r
r ′,2

� ‖ f ‖
Ḃ

n
2 −(1− 2

r )−ε

r ′,2
+ ‖ f ‖

Ḃ
n
r +ε

r ′,2
. (3.12)

By some computations, we have

{
s > max

{ 2
r − 1

2 ,
1
r ′

} = 1
r ′ , n = 1, 2 � r < 4,

s > max
{ n
2 − (1 − 2

r ),
n
r ′

} = n
r ′ , n � 2, 2 � r < ∞,

which combining with (3.12) shows that

∥∥∥�1− 2
r w(1− 2

r )(|∇|)�−ε,ε f
∥∥∥
Ḃ

n
r
r ′,2

� ‖ f ‖Bs
r ′,2 . (3.13)
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By the embedding Ws,r ′
↪→ Bs

r ′,2(1 < r � 2) and Lemma 3.3, we obtain

‖ f ‖Bs
r ′,2 � ‖ f ‖Ws,r ′ � ‖u‖p−1

L
2(p−1)r
r−2

‖u‖Hs .

The interpolation of Lebesgue spaces implies that

‖u‖p−1

L
2(p−1)r
r−2

� ‖u‖p− 2
r ′

L∞ ‖u‖
2
r ′ −1
Hs .

By the above inequalities, one has

‖ f ‖Bs
r ′,2 � ‖u‖p− 2

r ′
L∞ ‖u‖

2
r ′
Hs . (3.14)

Thus, it follows from (3.5)–(3.7) and (3.11)–(3.14) that

∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f (τ )dτ

∥∥∥∥
L∞

�
∫ t

0
(1 + |t − τ |)−γ ‖u‖p− 2

r ′
L∞ ‖u‖

2
r ′
Hsdτ.

We complete the proof of Lemma 3.4. ��

Lemma 3.5 It holds that for s ∈ R,

∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f (τ )dτ

∥∥∥∥
Hs

�
∫ t

0
‖u‖p−1

L∞ ‖u‖Hsdτ.

Proof By (3.5), we know that

∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f (τ )dτ

∥∥∥∥
Hs

�
∫ t

0

∥∥∥ei(t−τ)p(|∇|)(1 − �)
s
2 w(|∇|) f

∥∥∥
L2

dτ.

By the fact w(|∇|) is a L p(1 � p � ∞) bounded operator, we have

∥∥∥ei(t−τ)p(|∇|)(1 − �)
s
2 w(|∇|) f

∥∥∥
L2

�
∥∥∥(1 − �)

s
2 f

∥∥∥
L2

.

By Lemma 3.3, we obtain

∥∥∥(1 − �)
s
2 f (u)

∥∥∥
L2

� ‖u‖p−1
L∞ ‖u‖Hs .

Concluding the above inequalities completes the proof of Lemma 3.5 ��
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3.3 Existence and Decay of Global Small Amplitude Solutions

In this subsection, we establish the existence and decay of global small amplitude
solutions. Let us introduce a metric space

χ s,θ
ρ = {u ∈ L∞(R; L∞) ∩ L∞(R; Hs)| sup

t∈R
(1 + |t |)γ ‖u‖L∞ + sup

t∈R
‖u‖Hs � ρ}

with the metric defined by

d(u, v) = ‖u − v‖L∞(R;L2).

By the standard way, the metric space (χ s,θ
ρ , d) is a complete metric space, see [5].

Then in order to prove Theorem 1.2, we recall a primary lemma.

Lemma 3.6 ([5, 10, 27]) For any a, b > 0 and max{a, b} > 1, it holds

∫ t

0
(1 + t − s)−a(1 + s)−bds � C(1 + t)−min{a,b}.

The proof of Theorem 1.2: Consider the mapping M ,

M(u) = ∂tG(t) ∗ u0 + G(t) ∗ u1 +
∫ t

0

�

1 − �
G(t − τ) ∗ f (u)(τ )dτ. (3.15)

Let u ∈ χ s,θ
ρ . By using Lemmas 3.1 and 3.4, we have

‖M(u)‖L∞ � ‖∂t G(t) ∗ u0 + G(t) ∗ u1‖L∞ +
∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f (u)(τ )dτ

∥∥∥∥
L∞

� (1 + |t |)−γ

⎛
⎝‖u0‖

�−(1− 2
r ) Ḃ

n
r
r ′,1∩Ḃ

n
r ′
r ′,1

+ ‖u1‖
p(|∇|)

(
�−(1− 2

r ) Ḃ
n
r
r ′,1∩Ḃ

n
r ′
r ′,1

)
⎞
⎠

+
∫ t

0
(1 + |t − τ |)−γ ‖u‖p−

2
r ′

L∞ ‖u‖
2
r ′
Hs dτ. (3.16)

According to the information of space χ s,θ
ρ , we have from (3.16) that

‖N (u)‖L∞ � (1 + |t |)−γ δ + ρ p
∫ t

0
(1 + |t − τ |)−γ (1 + |τ |)−(p− 2

r ′ )γ dτ. (3.17)

The condition p > 2
r ′ + max{1, 1

γ
} implies that

(p − 2

r ′ )γ > max{γ, 1}. (3.18)
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Combining (3.17) and (3.18) with Lemma 3.6 deduces that for small enough δ and ρ,
it holds

sup
t∈R

(1 + |t |)γ ‖M(u)‖L∞ � δ + ρ p �
ρ

2
. (3.19)

Using Lemmas 3.2 and 3.5 in (3.15) deduces that for small enough δ and ρ,

‖M(u)‖Hs � ‖∂tG(t) ∗ u0 + G(t) ∗ u1‖Hs +
∥∥∥∥
∫ t

0

�

1 − �
G(t − τ) ∗ f (u)(τ )dτ

∥∥∥∥
Hs

� δ +
∫ t

0
‖u‖p−1

L∞ ‖u‖Hsdτ

� δ + ρ p
∫ t

0
(1 + |τ |)−(p−1)γ dτ. (3.20)

The fact 1 < r ′ < 2 and inequality (3.18) imply that

(p − 1)γ >

(
p − 2

r ′

)
γ > max{γ, 1}. (3.21)

By (3.20)–(3.21), we have

‖M(u)‖Hs � δ + ρ p �
ρ

2
. (3.22)

Therefore, the inequalities (3.19) and (3.22) mean that

M : χ s,θ
ρ → χ s,θ

ρ .

For any u, v ∈ χ s,θ
ρ , by Lemma 3.3, we have

‖ f (u) − f (v)‖L2 � (‖u‖p−1
L∞ + ‖v‖p−1

L∞ )‖u − v‖L2 .

Then,

‖M(u) − M(v)‖L2 �
∫ t

0
‖ f (u) − f (v)‖L2dτ

� ρ p−1d(u, v)

∫ t

0
(1 + |τ |)−(p−1)θdτ � ρ p−1d(u, v), (3.23)

which implies that for small enough ρ, M is a contractive mapping in space χ s,θ
ρ .

Therefore, the existence and uniqueness of solution u ∈ χ s,θ
ρ to (1.1)–(1.2) have

been established by the contraction mapping principle. From the standard argument,
we can extend u(t) ∈ L∞(R; Hs) to u(t) ∈ C(R; Hs). Thus, we complete the proof
of Theorem 1.2. ��
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4 Scattering

In this section, we go to establish the scattering of solutions obtained in Sect. 3.

The proof of Theorem 1.3: Let u± solve the Cauchy problem

utt − �u + �2u − �utt − �3u = 0,

u(x, 0) = u±
0 (x), ut (x, 0) = u±

1 (x).

Then, u± can be expressed by

u± = ∂tG(t) ∗ u±
0 + G(t) ∗ u±

1 .

Equivalently,

û± = cos(tp(|ξ |))û±
0 + sin(tp(|ξ |))

p(|ξ |) û±
1 .

By the definition of initial data (u±
0 , u±

1 ) in Theorem 1.3, we have

û± = cos(tp(|ξ |))û0 + sin(tp(|ξ |))
p(|ξ |) û1

+
∫ ±∞

0
(cos(tp(|ξ |)) sin(τ p(|ξ |)) − sin(tp(|ξ |)) cos(τ p(|ξ |))) |ξ |2

p(|ξ |)(1 + |ξ |2) f̂ dτ

= cos(tp(|ξ |))û0 + sin(tp(|ξ |))
p(|ξ |) û1 +

∫ ±∞

0
sin((t − τ)p(|ξ |)) −|ξ |2

p(|ξ |)(1 + |ξ |2) f̂ dτ,

which implies that

u± = ∂tG(t) ∗ u0 + G(t) ∗ u1 +
∫ ±∞

0

�

1 − �
G(t − τ) ∗ f (u)(τ )dτ. (4.1)

By Lemma 3.3, we have

‖ f (u)‖Hs � ‖u‖p−1
L∞ ‖u‖Hs .

By (1.7) and (4.1), one has

‖u(t) − u±(t)‖Hs �
∣∣∣∣
∫ ±∞

t
‖ f (u)‖Hsdτ

∣∣∣∣
� ρ p

∣∣∣∣
∫ ±∞

t
(1 + |τ |)−(p−1)γ dτ

∣∣∣∣
� ρ p|t |−(p−1)γ+1.

which implies the result of Theorem 1.3. ��
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