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Abstract
In this paper, we establish some application of L1-estimates for the Riesz potentials
of order α in some Lorentz spaces. We use this estimate to improve certain Olsen-type
inequalities in Lorentz spaces. In addition, some endpoint vector-valued inequalities
for the Riesz potentials in Lebesgue spaces are obtained.
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1 Introduction

Let f measurable function on R
n, n ≥ 1, and 0 < α < n. The fractional integral

operator or Riesz potential of f of order α is defined as

Iα f (x) = 1

γ (α)

∫
Rn

f (y)

|x − y|n−α
dy, x ∈ R

n
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with γ (α) := πn/22α�(α
2 )

�( n−α
2 )

. Especially for n > 2 and α = 2, solution of Poisson

equation �u = f for f ∈ C∞
c is u = −I2 f . One of the most important results

related to Iα is theHardy–Littlewood–Sobolev theorem; namely, the fractional integral

operator Iα is bounded form L p(Rn) (1 < p < n
α
) to Lq(Rn) if and only if

1

q
= 1

p
−α

n
.

However, the operator Iα is unbounded form L1(Rn) to L
n

n−α (Rn). One of the direct
consequences of the Hardy–Littlewood–Sobolev theorem is the Sobolev embedding
theorem, namely the inclusion of the Sobolev spaces W 1,p(Rn) to Lq(Rn) for 1 <

p < n and 1
q = 1

p − 1
n . This inclusion was later improved so that it applies for p = 1

and q = n

n − 1
. See [1–4] for future studies about fractional integral operators in

Lebesgue spaces.
In 1960, Stein andWeiss [5] constructed a subset of the Lebesgue space which was

later named the Hardy space H p(Rn) and succeeded in showing the boundedness of

Iα of H p(Rn) to L
np

n−α p (Rn) for 1 ≤ p < n/α. There are some equivalent definitions
for H p. For this paper, we use the definition

H p(Rn) = { f ∈ L p(Rn) : R f = ∇ I1 f ∈ L p(Rn,Rn)}.

Note that R f = ∇ I1 f can be written as (1 − n)(R1 f , . . . , Rn f ) with

R j f (x) = 1

γ (α)
p.v.

∫
Rn

x j − y j
|x − y|n+1 f (y)dy, j = 1, . . . , n.

For 1 < p < ∞, H p = L p, but for p = 1, H1 is strictly contained in L1. Here is Stein
and Weiss result about the boundedness of fractional integral operators in H p(Rn).

Theorem 1.1 Let 0 < α < n and 1 ≤ p < n/α. There exists C = C(α, n, p) > 0
such that

‖Iα f ‖Lnp/(n−α p)(Rn) ≤ C(‖ f ‖L p(Rn) + ‖R f ‖L p(Rn ,Rn))

for all f ∈ H p(Rn).

From now on, we abbreviate A ≤ CB by A � B.
In 2017, Schikora et al. [6] prove the special case for Theorem 1.1; namely,

‖Iα f ‖Ln/(n−α)(Rn) � ‖R f ‖L1(Rn ,Rn) (1.1)

hold for all f ∈ C∞
c (Rn) such that R f ∈ L1(Rn,Rn). Two years later, Spector [7]

improve inequalities (1.1) to Lorentz spaces. To state this result, we need to recall the
definition of Lorentz spaces. The Lorentz space L p,q(Rn) is defined to be the set of
all measurable functions f such that
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‖ f ‖L p,q (Rn) := p
1
q

(∫ ∞

0

[
t |{x ∈ R

n : | f (x)| > t}| 1p
]q dt

t

) 1
q

< ∞

with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. Now, we ready to state an improvement of (1.1). In
[7], Spector proves the following theorem.

Theorem 1.2 [7] Let n ≥ 2 and 0 < α < n. Then

‖Iα f ‖Ln/(n−α),1(Rn) � ‖R f ‖L1(Rn ,Rn)

for all f ∈ C∞
c (Rn) such that R f ∈ L1(Rn,Rn).

For Lorentz spaces, we have inclusion L p ⊂ L p,1. In the other words, Theorem 1.2
is the improvement of the inequality (1.1).

As an application of Theorem 1.2, we investigate some endpoint case of Olsen-
type inequalities. To formulate these inequalities, let us recall the definition of Morrey
spaces. For 1 ≤ p < ∞ and 0 ≤ λ ≤ n, the (classical) Morrey space L p

λ = L p
λ (Rn)

is defined to be the space of all functions f ∈ L p
loc(R

n) for which

‖ f ‖L p
λ (Rn) = sup

B(a,r)

(
1

rλ

∫
B(a,r)

| f (y)|pdy
)1/p

< ∞,

where B(a, r) denotes the (open) ball centered at a ∈ R with radius r > 0. Suppose
1 < p < n

α
, 0 ≤ λ < n − α p, Olsen proved the following results (see [8, Theorem

2])

‖g · Iα f ‖L p
λ (Rn) � ‖g‖

L(n−λ)/α
λ (Rn)

‖ f ‖L p
λ (Rn).

In particular, for λ = 0, we have

‖g · Iα f ‖L p(Rn) � ‖g‖
L

n
α (Rn)

‖ f ‖L p(Rn). (1.2)

This inequality and Theorem 1.2 motivate us to find out what happen if p = 1. Before
we state themain result of this paper, wewill recall the definition of fractionalmaximal
operators. Suppose 0 < α < n and f is locally integrable, define

Mα( f )(x) = sup
r>0

1

rn−α

∫
|y|<r

| f (x − y)|dy.

Note that if α = 0, the definition above becomes Hardy–Littlewood maximal
operators. Here is the main result of this paper.

Theorem 1.3

1. Suppose that g ∈ L
n
α
,∞(Rn) and f ∈ C∞

c (Rn) such that R f ∈ L1(Rn,Rn). Then

‖g · Iα f ‖L1(Rn) � ‖g‖
L

n
α ,∞(Rn)

.‖R f ‖L1(Rn ,Rn). (1.3)
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2. Suppose that g ∈ L
n
α
,∞(Rn) and f ∈ C∞

c (Rn) such that R(| f |) ∈ L1(Rn,Rn).
Then

‖g · Mα f ‖L1(Rn) � ‖g‖
L

n
α ,∞(Rn)

.‖R(| f |)‖L1(Rn ,Rn). (1.4)

Remark 1.4

1. We can replace L1 in the left-hand side of inequality (1.3) and (1.4) by L1, n
n−α .

This statement can be proved using Theorem 1.2 and inclusion in Lorentz spaces.
2. The term in left-hand side can be seen as integral Iα f with weight g. In particular,

if g(x) = |x |−α , then g ∈ L
n
α
,∞(Rn) and g /∈ L

n
α (Rn). Therefore, (1.3) can be

viewed as an extension of (1.2). We will give the proof of Theorem 1.3 in Sect. 2.
(see [9] for the classical results on the boundedness of fractional integral operators
on weighted Lebesgue spaces).

3. The characterization of f ∈ C∞
c (Rn) such that R(| f |) ∈ L1(Rn,Rn) is given

as follows. From our observation, f should not be a nonnegative function and
| f | /∈ C∞

c (Rn). To prove this, let u = | f | ∈ C∞
c (Rn) and assume that Ru ∈

L1(Rn,Rn). Then, u satisfies the assumption of Theorem 1.2. However, there is a
function u0 ∈ C∞

c (Rn) and that u0 is nonnegative, such that Ru0 /∈ L1(Rn,Rn).

Now, we will give vector-valued version for Theorems 1.2 and 1.3. In this case,
we assume that 	f ∈ �r such that ‖ 	f ‖�r ∈ C∞

c (Rn) with R(‖ 	f ‖�r ) ∈ L1(Rn,Rn).
Naturally we can just change f in Theorem 1.2 and 1.3 by ‖ 	f ‖�r . But, we have some
better results related to inequalities in Theorem1.2 and 1.3 for vector-valued functions.
Here is the vector version for Theorem 1.2 and 1.3.

Theorem 1.5 Let r ≥ 1 and 0 < α < n then

∥∥∥‖Iα 	f ‖�r

∥∥∥
Ln/(n−α),1(Rn)

�
∥∥∥R(‖ 	f ‖�r )

∥∥∥
L1(Rn ,Rn)

for every 	f with ‖ 	f ‖�r ∈ C∞
c (Rn) such that R(‖ 	f ‖�r ) ∈ L1(Rn,Rn).

Theorem 1.6 Suppose that 0 < α < n and that r ≥ 1 satisfy 1
r + 1

r ′ = 1. Then

∥∥∥	g · Iα 	f
∥∥∥
L1(Rn)

�
∥∥∥‖	g‖

�r
′
∥∥∥
L

n
α ,∞(Rn)

∥∥∥R(‖ 	f ‖�r )

∥∥∥
L1(Rn ,Rn)

for every 	f and 	g with ‖	g‖
�r

′ ∈ L
n
α
,∞(Rn), ‖ 	f ‖�r ∈ C∞

c (Rn) such that R(‖ 	f ‖�r ) ∈
L1(Rn,Rn).

Theorems 1.5 and 1.6 will be proved in Sect. 3. This theorem can be proved using
duality and Theorem 1.3.

2 Olsen-Type Inequalities in Lorentz Spaces

In this section, we provide some theorems that will be very helpful in proving the main
result. First, let us recall the Hölder inequality in Lebesgue spaces.
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Theorem 2.1 Suppose p, p1, p2 ∈ [1,∞] satisfy 1
p = 1

p1
+ 1

p2
. Then

‖ f · g‖L p(Rn) ≤ ‖ f ‖L p1 (Rn).‖g‖L p2 (Rn)

for all f ∈ L p1(Rn) and g ∈ L p2(Rn).

For the Lorentz space, we have the following generalization of Hölder inequality
in Lorentz spaces due to O’Neil [10].

Theorem 2.2 Suppose 0 < p1, p2, p < ∞ and 0 < q1, q2, q ≤ ∞ satisfy 1
p =

1
p1

+ 1
p2

and 1
q = 1

q1
+ 1

q2
. Then

‖ f g‖L p,q (Rn) � ‖ f ‖L p1,q1 (Rn)‖g‖L p2,q2 (Rn)

for all f ∈ L p1,q1(Rn) and g ∈ L p2,q2(Rn).

We are now ready to prove Theorem 1.3 as follows.

Proof of Theorem 1.3 Suppose that f ∈ C∞
c (Rn), with R f ∈ L1(Rn,Rn) and g ∈

L
n
α
,∞(Rn). By Hölder’s inequality in Lorentz spaces, we have

‖g · Iα f ‖L1(Rn) � ‖g‖
L

n
α ,∞(Rn)

‖Iα f ‖
L

n
n−α ,1

(Rn)
.

Apply Theorem 1.2 to the right-hand side, we get

‖g‖
L

n
α ,∞(Rn)

‖Iα f ‖
L

n
n−α ,1

(Rn)
� ‖g‖

L
n
α ,∞(Rn)

‖R f ‖L1(Rn ,Rn).

For the second part, suppose that f ∈ C∞
c (Rn), with R(| f |) ∈ L1(Rn,Rn) and

g ∈ L
n
α
,∞. We already know that

Mα f (x) � Iα(| f |)(x).

Combining this inequality with Theorems 1.2 and 2.2, we have

F‖g · Mα( f )‖L1(Rn) � ‖g‖
L

n
α ,∞(Rn)

‖Iα(| f |)‖
L

n
n−α ,1

(Rn)

� ‖g‖
L

n
α ,∞(Rn)

‖R(| f |)‖L1(Rn ,Rn).

This completes the proof. ��

3 Vector-Valued Olsen-Type Inequalities

In this section, we will give the proof of Theorems 1.5 and 1.6.
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3.1 Proof of Theorem 1.5

Let r ≥ 1 and 0 < α < n. First, we will proof the inequality

‖Iα 	f (x)‖�r � Iα(‖ 	f ‖�r )(x).

Actually, this proof is inspired by [11]. By using duality on the left-hand side, we get

‖Iα 	f (x)‖�r = sup
a={a j (x)}∞j=1∈�r

′ :‖a‖
�r

′ =1

∣∣∣∣∣∣
∞∑
j=1

a j (x)Iα f j (x)

∣∣∣∣∣∣

≤ sup
a={a j (x)}∞j=1∈�r

′ :‖a‖
�r

′ =1

∞∑
j=1

|a j (x)Iα f j (x)|

� sup
a={a j (x)}∞j=1∈�r

′ :‖a‖
�r

′ =1

∞∑
j=1

∫
Rn

|a j (x) f j (y)|
|x − y|n−α

dy.

Observe that

k∑
j=1

∫
Rn

|a j (x) f j (y)|
|x − y|n−α

dy =
∫
Rn

k∑
j=1

|a j (x) f j (y)|
|x − y|n−α

dy ≤
∫
Rn

∞∑
j=1

|a j (x) f j (y)|
|x − y|n−α

dy.

To simplify the notation, we write

sup
a(x)={a j (x)}∞j=1∈�r

′ :‖a(x)‖
�r

′ =1

as sup
‖a‖

�r
′ =1

. From the above observation, we have

sup
‖a‖

�r
′ =1

∞∑
j=1

∫
Rn

|a j (x) f j (y)|
|x − y|n−α

dy ≤ sup
‖a‖

�r
′ =1

∫
Rn

∞∑
j=1

|a j (x) f j (y)|
|x − y|n−α

dy

≤
∫
Rn

sup
‖a‖

�r
′ =1

∞∑
j=1

|a j (x) f j (y)|
|x − y|n−α

dy.

Again, by duality

∫
Rn

sup
‖a‖

�r
′ =1

∞∑
j=1

|a j (x) f j (y)|
|x − y|n−α

dy � 1

γ (α)

∫
Rn

‖ 	f (y)‖�r

|x − y|n−α
dy = Iα(‖ 	f ‖�r )(x).

Finally, we have

‖Iα 	f (x)‖�r ≤ Iα(‖ 	f ‖�r )(x). (3.1)
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By Theorem 1.2 and the inequality (3.1), we conclude that

∥∥∥‖Iα 	f (x)‖�r

∥∥∥
Ln/(n−α),1(Rn)

�
∥∥∥R(‖ 	f ‖�r )

∥∥∥
L1(Rn ,Rn)

as desired.

3.2 Proof of Theorem 1.6

We know from Hölder inequality

|	g(x) · Iα 	f (x)| ≤ ‖	g(x)‖
�r

′ ‖Iα 	f (x)‖�r .

From inequality (3.1), we get

|	g(x) · Iα 	f (x)| ≤ ‖	g(x)‖
�r

′ Iα(‖ 	f ‖�r )(x).

Applying Theorem 1.3, we obtain

∥∥∥|	g(·) · Iα 	f (·)|
∥∥∥
L1(Rn)

≤
∥∥∥‖	g(·)‖

�r
′ .Iα(‖ 	f ‖�r )(·)

∥∥∥
L1(Rn)

� ‖‖	g(·)‖
�r

′ ‖
L

n
α ,∞(Rn)

.‖R(‖ 	f ‖�r )‖L1(Rn ,Rn).
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