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Abstract
Sparse tensors play fundamental roles in hypergraph data, sensor node network data
and remote sensing data. In this paper, we establish new H -eigenvalue inclusion sets
for sparse tensors by their majorization matrix’s digraph and representation matrix’s
digraph. Numerical examples are proposed to verify that our conclusions are more
accurate and less computations than existing results. As applications, we provide
some checkable sufficient conditions for the positive definiteness of even-order sparse
tensors, and propose lower and upper bounds of H -spectral radius of nonnegative
sparse tensors.

Keywords Sparse tensors · H -eigenvalue inclusion sets · Positive definiteness ·
H -spectral radius

Mathematics Subject Classification 15A18 · 15A42 · 15A69

1 Introduction

LetC(R) be the set of complex (real) numbers andCn(Rn) be the set of n-dimensional
complex (real) vectors. An m-order n-dimensional tensor A = (ai1i2···im ) is a multi-
way array with entries

ai1i2···im ∈ C, ik ∈ N = {1, 2, . . . , n}, k = 1, 2, . . . ,m.
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Tensor A is called nonnegative (positive) if ai1i2...im ≥ 0 (ai1i2...im > 0).
Tensor is a higher-order extension of matrix, and hence many definitions and asso-

ciated properties for matrix, such as eigenvalue theory, can be extended to higher order
tensor by investigating its multilinear algebra analysis [12, 18].

Definition 1.1 Let A be an m-order n-dimensional tensor. Then (λ, x) is called an
eigenpair of tensor A if

Axm−1 = λx [m−1], (1)

where (Axm−1)i = ∑

i2,...,im∈N
aii2...im xi2 . . . xim and x [m−1] = (xm−1

1 , xm−1
2 , . . . ,

xm−1
n )�. Further, (λ, x) is called an H -eigenpair if they are both real.

Due to their numerous applications in fields such as higher-order Markov chains
[14], medical resonance imaging [1, 18, 19], Hypergraph [2, 16] and positive definite-
ness of multivariate forms in automatical control [15, 18, 20, 23], tensor eigenvalue
problems have attracted a great deal of critical attention. For example, we can use
the smallest H -eigenvalue to ascertain whether a multivariate form is positive definite
[15]. However, it is NP-hard to locate all H -eigenvalues or the smallest H -eigenvalue
[6, 18]. To check the positive definiteness, researchers created a set that contained all
H -eigenvalues [4, 8, 9, 24, 25, 28, 29]. Recently, sparse tensor eigenvalue problems,
which the number of non-zero elements is far less than the number of zero elements,
have recently been crucial in data problems, such as hypergraph data, sensor node net-
work data and remote sensing data [2, 21, 26, 27]. Unfortunately, the computing effort
is large if we use the aforementioned methods to build the H -eigenvalue inclusion set
for sparse tensor eigenvalue problems with high-dimensional variables. Therefore, the
sparsity of tensors encourages us to develop new H -eigenvalue inclusion sets. Very
recently, Liu et al. [13] established bounds for the spectral radius of a nonnegative
sparse tensor by its majorization matrix’s digraph. There are two intriguing issues
that come up: can we use the aforementioned method for generic sparse tensors? can
newmatrix’s digraph be introduced to characterize H -eigenvalues of both generic and
nonnegative sparse tensors?

Motivated and inspired by the above works, we explore the relations between gen-
eral sparse tensors and their majorization matrix’s digraph and representation matrix’s
digraph introduced by [5, 7, 16]. By drawing on the information of �G(|A|)(i) and
�|Å|(i)ofmajorizationmatrix’s digraph and representationmatrix’s digraph,we estab-
lish tight H -eigenvalue inclusion sets with reduced calculations, which enhances the
results [8, 9]. Based on new H -eigenvalue inclusion sets, we propose several sufficient
conditions to identify positive definiteness of even-order real supersymmetric sparse
tensors. Finally, we estimate sharp lower and upper bounds for H -spectral radius of
nonnegative sparse tensors with simple computations.

The remainder of the paper is organized as follows. In Sect. 2, important definitions
andpreliminary results are recalled. In Sect. 3,we establish the improved H -eigenvalue
inclusion sets and show that they have their own advantages by Examples 3.1 and 3.2.
In Sect. 4, we check the positive definiteness of even-order real supersymmetric sparse
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tensors and estimate the bounds for H -spectral radius of nonnegative sparse tensors
using these H -eigenvalue inclusion sets.

2 Preliminaries

In this section, we introduce some definitions and related properties of the tensor
analysis.

Definition 2.1 [3, 18] Let A be an m-order n-dimensional tensor.

(i) Tensor A is called reducible if there exists a nonempty proper index subset
I ⊂ {1, 2, . . . , n} such that

ai1i2...im = 0, ∀i1 ∈ I , i2, . . . , im /∈ I .

If A is not reducible, then it is called irreducible.
(ii) Tensor A is called supersymmetric if its entries are invariant under any permu-

tation of their indices.
(iii) Let σ(A) be the set of all H -eigenvalues of A. Then, H -spectral radius ρ(A) is

denoted by

ρ(A) = max{|λ| : λ ∈ σ(A)}.

As we know, H -spectral radius ρ(A) coincides with the maximum eigenvalue of
nonnegative tensors.

In what follows, we introduce the relations between directed graph and matrices
(tensors).

The directed graph of a nonnegative matrix A = (ai j ) has as vertices the indices
{1, · · · , n}, and there is an arc from vertex i to vertex j if ai j �= 0. Matrix A is
irreducible, if and only if one can get from any vertex to any other vertex (perhaps in
several steps) and is called a strongly connected graph [16].

Definition 2.2 [5, 7, 16] Let A be an m-order n-dimensional nonnegative tensor.

(i) A nonnegative matrix Å = (ai j )n×n is called the majorization associated to
tensor A, if the (i, j)-th element of Å is defined to be ai j ··· j for any i, j ∈ N .

(ii) A nonnegative matrix G(A) = (ai j )n×n is called the representation associated to
the tensorA, if the (i, j)-th element of G(A) is defined to be

∑

j∈{i2 ,··· ,im }
aii2···im .

(iii) We associate with Å digraphs as �Å =
(
V (Å), E(Å)

)
, where V (Å) =

{1, · · · , n} is the vertex set of �Å, and E(Å) = {ei j : ei j = ai j ... j �= 0, i �= j}
is the arc set of �Å, i.e., ei j is the directed edge of �Å.

(iv) We associate with G(A) digraphs as �G(A) = (V (G(A)), E(G(A))) , where
V (G(A)) = {1, · · · , n} is the vertex set of �G(A), and E(G(A)) = {gi j : gi j =∑

j∈{i2 ,··· ,im }
aii2···im �= 0, i �= j} the arc set of �G(A)), i.e., gi j is the directed edge

of �G(A).
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(v) Tensor A is called weakly irreducible if G(A) is irreducible.

From Theorem 2.3 of [16], if Å is irreducible, thenA is irreducible. Further, ifA is
irreducible, thenA is weakly irreducible in [7].WhenA is a general tensor, we use |A|
to denote the nonnegative tensor composed ofA. In this paper, |Å| and G(|A|) denote
the majorization matrix and the representation matrix of general tensors, respectively.

We end this section with important results of [8, 9, 25]. Given an m-order n-
dimensional tensor A = (ai1i2···im ), denote

�i = {(i2, · · · , im) : i j = i f or some j ∈ {2, · · · ,m}, where i, i2, · · · , im ∈ N },
�i = {(i2, · · · , im) : i j �= i f or any {2, · · · ,m}, where i, i2, · · · , im ∈ N },

ri (A) =
∑

i2,...,im∈N
δi i2 ...im =0

|aii2...im |, r�i
i (A) =

∑

(i2,··· ,im )∈�i
δi i2 ...im =0

|aii2···im |,

r�i
i (A) =

∑

(i2,··· ,im )∈�i

|aii2···im |, ri (A) = r�i
i (A) + r�i

i (A),

where

δi1i2...im =
{
1, i f i1 = i2 = · · · = im,

0, otherwise.

Lemma 2.1 Let A be an m-order n-dimensional tensor. Then,

(I) (Theorem 6 of [18])

σ(A) ⊆ ϒ(A) =
⋃

i∈N
ϒi (A),

where ϒi (A) = {z ∈ R : |z − ai ...i | ≤ ri (A)}.
(II) (Theorem 2.1 of [8])

σ(A) ⊆ K(A) =
⋃

i, j∈N ,i �= j

Ki, j (A),

where Ki, j (A) = {z ∈ R : (|z − ai ...i | − r j
i (A))|z − a j ... j | ≤ |ai j ... j |r j (A)} and

r j
i (A) = ri (A) − |ai j ··· j |.

(III) (Theorem 2.1 of [9])

σ(A) ⊆ 	(A) =
⋃

i, j∈N ,i �= j

	i, j (A),

where 	i, j (A) = {z ∈ R : (|z − ai ···i | − r�i
i (A))|z − a j ··· j | ≤ r�i

i (A) r j (A)}.
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3 H-eigenvalue Inclusion Sets of Sparse Tensors

In this section, we establish two tight H -eigenvalue inclusion sets of a sparse tensor
by its majorization matrix’s digraph and representation matrix’s digraph, which can
reduce calculations and improve H -eigenvalue inclusion sets in [8, 11].

Theorem 3.1 LetA be an m-order n-dimensional tensor with �G(|A|)(i) = {i : ∃ j ∈
N such that gi j ∈ E(G(|A|))} �= ∅. Then,

σ(A) ⊆ 	̃(A) =
⋃

gi j∈E(G(|A|))
	i, j (A),

where 	i, j (A) =
{
z ∈ R :

(
|z − ai ···i | − r�i

i (A)
)

|z − a j ··· j | ≤ r�i
i (A)r j (A)

}
.

Proof Let (λ, x) be an H -eigenpair of A, i.e.

(λ − ai ···i )xm−1
i =

∑

δi i2 ···im=0

aii2···im xi2 · · · xim . (2)

Without loss of generality, we assume

|xt1 | ≥ |xt2 | ≥ · · · ≥ |xtn | ≥ 0.

Since�G(|A|)(t1) �= ∅,we set |xts | = max{|xti | : ∑

(i2,··· ,im )∈�t1

| at1i2···im |�= 0, i ∈ N },
which means gt1ts ∈ E(G(|A|)). In view of the t1-th equation of (2), we deduce

|(λ − at1···t1)xm−1
t1 | = | ∑

(i2,··· ,im )∈�t1
δt1 i2 ···im=0

at1i2···im xi2 · · · xim + ∑

(i2,··· ,im )∈�t1

at1i2···im xi2 · · · xim |

≤ ∑

(i2,··· ,im )∈�t1
δt1 i2 ···im=0

|at1i2···im ||xi2 | · · · |xim | + ∑

(i2,··· ,im )∈�t1

|at1i2···im ||xi2 | · · · |xim |

≤ r
�t1
t1 (A)|xt1 |m−1 + r

�t1
t1 (A)|xts |m−1,

equivalently,

(
|λ − atl ···tl | − r

�t1
t1 (A)

)
|xt1 |m−1 ≤ r

�t1
t1 (A)|xts |m−1. (3)

We now break up the argument into two cases.

Case 1: |xts | = 0. Then, |λ − atl ···tl | − r
�t1
t1 (A) ≤ 0 and it is obvious that λ ∈

	t1,ts (A) ⊆ 	̃(A).

123



164 Page 6 of 22 G. Wang, X. Feng

Case 2: |xts | > 0. It follows from (2) and i = ts that

|(λ − ats ···ts )xm−1
ts | = | ∑

δts i2 ···im=0

ats i2···im xi2 · · · xim |
≤ ∑

δts i2 ···im=0

|ats i2···im ||xi2 | · · · |xim |
≤ rts (A)|xt1 |m−1.

(4)

Multiplying inequalities (3) and (4) gives

(
|λ − atl ···tl | − r

�t1
t1 (A)

)
|λ − ats ···ts ||xt1 |m−1|xts |m−1 ≤ r

�t1
t1 (A)rts (A)|xt1 |m−1|xts |m−1.

From |xt1 |m−1|xts |m−1 > 0, it holds that

(
|λ − atl ···tl | − r

�t1
t1 (A)

)
|λ − ats ···ts | ≤ r

�t1
t1 (A)rts (A),

which implies λ ∈ 	t1,ts (A) ⊆ 	̃(A). �
Corollary 3.1 Let A be an m-order n-dimensional tensor. Then,

σ(A) ⊆ ˜̃	(A) =
⋃

gi j∈E(G(|A|))⋃
j−i=1,1−n

	i, j (A),

where 	i, j (A) is defined in Theorem 3.1.

Proof When �G(|A|)(i) �= ∅, by Theorem 3.1, the results hold. We only prove
�G(|A|)(i) = ∅. For any ε > 0, set

|A(ε)| = |A| + �(ε) and �(ε) = (θi1···im ),

where

θi1···im =
{

θi j ··· j = ε, i f j − i = 1, 1 − n,

0, otherwise.

Thus, �G(|A(ε)|)(i) �= ∅. Following the similar arguments to the proof of Theorem
3.1, we have

σ(A(ε)) ⊆ 	̃(A(ε)),

Letting ε → 0, we obtain

σ(A) ⊆ ˜̃	(A).

�
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Remark 3.1 Compared with Theorem 2.1 of [9], the result of Corollary 3.1 has minor
computations and tight H -eigenvalue inclusion sets, i.e., ˜̃	(A) ⊆ 	(A). Indeed,
�G(|A|)(i) �= ∅ is a condition easy to verify and meet.

Now, we arrive at the following H -eigenvalue inclusion sets for sparse tensors by
their majorization matrix’s digraph.

Theorem 3.2 Let A be an m-order n-dimensional tensor with �|Å|(i) = {i : ∃ j ∈
N such that ei j ∈ E(|Å|)} �= ∅. Then,

σ(A) ⊆ (A) =
⋃

ei j∈E(|Å|)
i, j (A),

where i, j (A) =
{
z ∈ R :

(
|z − ai ···i | − r

′
i (A)

)
|z − a j ··· j | ≤ r̃i (A)r j (A)

}
,

r̃i (A) = ∑

δi2 ···im=1
δi i2 ···im=0

|aii2···im | and r ′
i (A) = ri (A) − r̃i (A).

Proof Let (λ, x) be an H -eigenpair of A. Without loss of generality, we assume that
|xt1 | ≥ |xt2 | ≥ · · · ≥ |xtn |. Since �|Å|(i) �= ∅, there exists j �= t1 with at1 j ··· j �= 0.
Assume

at1tl ···tl = 0, l = 2, 3, · · · , s − 1, at1ts ···ts �= 0 (2 ≤ s ≤ n),

which implies et1ts ∈ E(|Å|). Recalling the t1-th equation of (2), we have

|(λ − at1···t1)xm−1
t1 | = | ∑

δt1 i2 ···im=0

at1i2···im xi2 · · · xim |
≤ ∑

δi2 ···im=0

|at1i2···im ||xi2 | · · · |xim | + ∑

δi2 ···im=1
δt1 i2 ···im=0

|at1i2···im ||xi2 | · · · |xim |

≤ r
′
t1(A)|xt1 |m−1 + r̃t1(A)|xts |m−1,

equivalently,

(
|λ − at1···t1 | − r

′
t1(A)

)
|xt1 |m−1 ≤ r̃t1(A)|xts |m−1. (5)

Next, we break up the argument into two cases.
Case 1: xts = 0. Then, |(λ − at1···t1)| − r

′
t1(A) ≤ 0. Clearly, λ ∈ t1,ts (A).

Case 2: xts �= 0. It follows from (2) and i = ts that

|(λ − ats ···ts )xm−1
ts | = | ∑

δts i2 ···im=0

ats i2···im xi2 · · · xim |
≤ ∑

δts i2 ···im=0

|ats i2···im ||xi2 | · · · |xim |
≤ rts (A)|xt1 |m−1.

(6)
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Multiplying inequalities (5) and (6) gives

(
|λ − at1···t1 | − r

′
t1(A)

)
|λ − ats ···ts ||xt1 |m−1|xts |m−1 ≤ r̃t1(A)rts (A)|xt1 |m−1|xts |m−1.

From |xt1 |m−1|xts |m−1 > 0, it holds that

(
|λ − at1···t1 | − r

′
t1(A)

)
|λ − ats ···ts | ≤ r̃t1(A)rts (A),

which implies λ ∈ t1,ts (A) ⊆ (A). �
Following the similar arguments to the proof of Corollary 3.1, we obtain the desired

conclusions.

Corollary 3.2 Let A be an m-order n-dimensional tensor. Then,

σ(A) ⊆ ̂ (A) =
⋃

ei j∈E(|Å|)⋃
j−i=1,1−n

i, j (A).

Compared with Theorem 2.1 of [8], the result of Corollary 3.2 requires minor
calculations but has accurate results. Detailed investigation is given in Corollary 3.3.

Lemma 3.1 (Lemma 2.2 of [9])

(i) Let a, b, c ≥ 0 and d > 0. If a
b+c+d ≤ 1, then

a − (b + c)

d
≤ a − b

c + d
≤ a

b + c + d
.

(ii) Let a, b, c ≥ 0 and d > 0. If a
b+c+d ≥ 1, then

a − (b + c)

d
≥ a − b

c + d
≥ a

b + c + d
.

Corollary 3.3 Let A be an m-order n-dimensional tensor with n ≥ 2. Then,

̂ (A) ⊆ K(A).

Proof Let z ∈ ̂ (A). Then there exist p, q ∈ N with p �= q such that z ∈ p,q(A),
i.e.

(
|z − aq···q | − r

′
q(A)

)
|z − ap···p| ≤ r̃q(A)rp(A). (7)

We now break up the argument into two cases.
Case 1: r̃q(A)rp(A) = 0, it holds that r̃q(A) = 0 or rp(A) = 0.
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When r̃q(A) = 0, we have |aqp···p| = 0 and r pq (A) = r
′
q(A),

(|z − aq···q | − r pq (A)
) |z − ap···p| = (|z − aq···q | − r

′
q(A))|z − ap···p|

≤ r̃q(A)rp(A) = |aqp···p|rp(A),

which implies that z ∈ Kq,p(A). Consequently, ̂ (A) ⊆ K(A).

When rp(A) = 0, one has r pq (A) ≥ r
′
q(A) and

(|z − aq···q | − r pq (A)
) |z − ap···p| ≤ (|z − aq···q | − r

′
q(A))|z − ap···p|

≤ r̃q(A)rp(A) = 0 = |aqp···p|rp(A),

which leads to z ∈ Kq,p(A). Certainly, ̂ (A) ⊆ K(A).

Case 2: r̃q(A)rp(A) > 0, dividing both sides by r̃q(A)rp(A) on (7), one has

(|z − aq···q | − r
′
q(A))

r̃q(A)

|z − ap···p|
rp(A)

≤ 1, (8)

which implies

(|z − aq···q | − r
′
q(A))

r̃q(A)
≤ 1 (9)

or

|z − ap···p|
rp(A)

≤ 1. (10)

Let a = |z − aq···q |, b = r
′
q(A), c =

n∑

i2 ···im=1
δqi2 ···im=0

aqi2···im − |aqp···p| and d = |aqp···p|.

If (9) holds with d = |aqp···p| > 0, it follows from Lemma 3.1 and (8) that

|z − aq···q | − r pq (A)

|aqp···p|
|z − ap···p|
rp(A)

≤ |z − aq···q | − r
′
q(A)

r̃q(A)

|z − ap···p|
rp(A)

≤ 1,

equivalently,

(|z − aq···q | − r pq (A))|z − ap···p| ≤ |aqp···p|rp(A).

This implies ̂ (A) ⊆ K(A).

If (9) holds with d = |aqp···p| = 0, we obtain

|z − aq···q | − r pq (A) ≤ 0 = |aqp···p|.
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Hence,

(|z − aq···q | − r pq (A))|z − ap···p| ≤ 0 = |aqp···p|rp(A),

which shows ̂ (A) ⊆ K(A).

Otherwise, (10) holds. We only prove ̂ (A) ⊆ K(A) under the case that

(|z − aq···q | − r
′
q(A))

r̃q(A)
> 1. (11)

Owing to r̃i (A) = ri (A) − r
′
i (A), from (11), we deduce

|z − aq···q |
rq(A)

> 1.

If d = |apq···q | > 0, from Lemma 3.1 and (8), we have

(|z − ap···p| − rqp(A))

|apq···q |
|z − aq···q |
rq(A)

≤ (|z − aq···q | − r
′
q(A))

r̃q(A)

|z − ap···p|
rp(A)

≤ 1,

equivalently,

(|z − ap···p| − rqp(A))|z − aq···q | ≤ |apq···q |rq(A).

This implies ̂ (A) ⊆ K(A).

If d = |apq···q | = 0, from Lemma 3.1 and (8), it holds that

|z − ap···p| − rqp(A) ≤ 0 = |apq···q |.

Hence,

(|z − ap···p| − rqp(A))|z − aq···q | ≤ 0 = |apq···q |rq(A).

Consequently, ̂ (A) ⊆ K(A).

Based on the above two cases, we obtain the desired results. �
To illustrate the validity of Theorems 3.1 and 3.2, we employ a running example.

Example 3.1 Let A be a 3-order 4-dimensional tensor defined as follows:

ai jk =

⎧
⎪⎪⎨

⎪⎪⎩

a111 = 1; a112 = 3; a121 = −1; a122 = 2;
a222 = 2; a232 = −1; a233 = 1;
a333 = 2; a334 = −3; a343 = 1; a344 = −1;
a411 = 1; a414 = −1; a421 = 2; a424 = 1; a444 = 3.
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Table 1 Inclusion sets for Theorem 2.1 of [8]

K1,2(A) = [−3.702, 6.000] K1,3(A) = [−5.000, 7.000] K1,4(A) = [−5.000, 7.000]
K2,1(A) = [0.000, 4.000] K2,3(A) = [−0.791, 4.791] K2,4(A) = [0.000, 4.000]
K3,1(A) = [−3.000, 7.000] K3,2(A) = [−3.000, 7.000] K3,4(A) = [−2.854, 7.193]
K4,1(A) = [−2.646, 7.873] K4,2(A) = [−2.000, 8.000] K4,3(A) = [−2.000, 8.000]

Table 2 Inclusion sets for Theorem 3.1

	1,2(A) = [−3.702, 6.000] 	2,3(A) = [−0.791, 4.791] 	3,4(A) = [−2.854, 7.193]
	4,1(A) = [−3.243, 7.690] 	4,2(A) = [−1.000, 6.372]

Recalling Definition 2.2, we obtain

G(|A|) =

⎛

⎜
⎜
⎝

5 6 0 0
0 3 2 0
0 0 6 5
4 3 0 5

⎞

⎟
⎟
⎠ and |Å| =

⎛

⎜
⎜
⎝

1 2 0 0
0 2 1 0
0 0 2 1
1 0 0 3

⎞

⎟
⎟
⎠ .

By virtue of Theorem 6 of [18], one has

−5.000 ≤ λ ≤ 8.000.

From Theorem 2.1 of [8], we obtain Table 1 and

−5.000 ≤ λ ≤ 8.000.

From Theorem 2.1 of [9], following the similar computations of Ki, j (A), we cal-
culate 12 times 	i, j (A) with i �= j ∈ {1, 2, 3, 4} and obtain

−4.531 ≤ λ ≤ 7.690.

From representation matrix G(|A|), for any i ∈ {1, 2, 3, 4}, we verify �G(|A|)(i) �=
∅. In view of Theorem 3.1, we only compute Table 2 and

−3.702 ≤ λ ≤ 7.690.

By majorization matrix |Å|, for any i ∈ {1, 2, 3, 4}, we observe �|Å|(i) �= ∅. It
follows from Theorem 3.2 that

and

−3.702 ≤ λ ≤ 7.873.

123



164 Page 12 of 22 G. Wang, X. Feng

Table 3 Inclusion sets for Theorem 3.2

1,2(A) = [−3.702, 6.000] 2,3(A) = [−0.791, 4.791]
3,4(A) = [−2.854, 7.193] 4,1(A) = [−2.646, 7.873]

Table 4 Inclusion sets for Theorem 3.1

	1,2(A) = [−2.275, 6.000] 	1,3(A) = [−2.000, 4.000] 	1,4(A) = [−2.606, 5.464]
	2,1(A) = [−2.000, 6.275] 	2,3(A) = [−1.000, 5.372] 	3,1(A) = [−1.562, 3.562]
	3,4(A) = [−1.236, 4.000] 	4,1(A) = [−2.372, 5.702] 	4,2(A) = [−1.702, 6.372]

Table 5 Inclusion sets for Theorem 3.2

1,2(A) = [−2.464, 5.828] 2,3(A) = [−1.000, 5.828]
3,4(A) = [−1.236, 4.000] 4,1(A) = [−2.236, 5.828]

Tight bounds and simple computations are advantages of the H -eigenvalue inclu-
sion sets given by Theorems 3.1 and 3.2 over Theorems 2.1 of [8] and Theorem 2.1 of
[9]. The conclusions of Theorems 3.1 and 3.2 generally have their own benefits. The
conclusion of Theorem 3.1 in Example 3.1 is more precise than Theorem 3.2. The
following example implies the converse results.

Example 3.2 Let A be an 3-order 4-dimensional tensor defined as follows:

ai jk =

⎧
⎪⎪⎨

⎪⎪⎩

a111 = 1; a121 = −1; a122 = 2; a134 = −1;
a212 = −1; a213 = 1; a222 = 3; a233 = 1;
a331 = −1; a333 = 1; a344 = 1;
a411 = 1; a412 = −1; a414 = 2; a444 = 2.

We can obtain

G(|A|) =

⎛

⎜
⎜
⎝

2 3 1 1
2 4 3 0
1 0 2 1
4 1 0 4

⎞

⎟
⎟
⎠ and |Å| =

⎛

⎜
⎜
⎝

1 2 0 0
0 3 2 0
0 0 1 1
1 0 0 2

⎞

⎟
⎟
⎠ .

From representation matrix G(|A|), for any i ∈ {1, 2, 3, 4}, we know �G(|A|)(i) �= ∅.

In view of Theorem 3.1, we compute Table 4 and

−2.606 ≤ λ ≤ 6.372.

By majorization matrix |Å|, for any i ∈ {1, 2, 3, 4}, we observe �|Å|(i) �= ∅. It
follows from Theorem 3.2 that
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and

−2.464 ≤ λ ≤ 5.828.

4 Applications

4.1 Testing Positive Definiteness of Even-Order Real Supersymmetric Sparse
Tensors

This subsection focuses on proving that an even-order real supersymmetric sparse
tensor is positive definite based on the principle that A is positive definite if and
only if all of its H -eigenvalues are positive [19]. In order to achieve this, we provide
the following adequate conditions for the positive definiteness of sparse tensors via
H -eigenvalue inclusion sets in Sect. 3.

Theorem 4.1 Let A be an even m-order n-dimensional supersymmetric tensor with
�G(|A|)(i) �= ∅. If all (i, j) ∈ {(k, l) : gkl ∈ E(G(|A|)), l �= k} and ai ···i > 0, i ∈ N
such that

(
ai ···i − r�i

i (A)
)
a j ··· j > r�i

i (A)r j (A),

then A is positive definite.

Proof Let λ be an H -eigenvalue of A. Suppose on the contrary that λ ≤ 0. It follows
from Theorem 3.1 that there is a gi0 j0 ∈ E(G(|A|)) such that λ ∈ �i0, j0(A), that is,

(
|λ − ai0···i0 | − r

�i0
i0

(A)
)

|λ − a j0··· j0 | ≤ r
�i0
i0

(A)r j0(A).

From ai ···i > 0 and a j ··· j > 0, we have

(
|λ − ai0···i0 | − r

�i0
i0

(A)
)

|λ − a j0··· j0 |

≥
(
ai0···i0 − r

�i0
i0

(A)
)
a j0··· j0 > r

�i0
i0

(A)r j0(A) ≥ 0.

This is a contradiction. Hence, λ > 0 and A is positive definite. �
Corollary 4.1 Let A be an even m-order n-dimensional supersymmetric tensor. If all
(i, j) ∈ {(k, l) : gkl ∈ E(G(|A|))⋃

l − k = 1 or 1 − n, l �= k} and ai ···i > 0, i ∈ N
such that

(
ai ···i − r�i

i (A)
)
a j ··· j > r�i

i (A)r j (A),

then A is positive definite.

Proof Following the proof of Theorem 4.1, we obtain the desired conclusions. �
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Theorem 4.2 Let A be an even m-order n-dimensional supersymmetric tensor with
�|Å|(i) �= ∅. If all (i, j) ∈ {(k, l) : ekl ∈ E(|Å|)}, l �= k} and ai ···i > 0, i ∈ N such
that

(
ai ···i − r

′
i (A)

)
a j ··· j > r̃i (A)r j (A),

then A is positive definite.

Proof Let λ be an H -eigenvalue of A. Suppose on the contrary that λ ≤ 0. It follows
from Theorem 3.2 that there is a ei0 j0 ∈ E(|Å|) such that λ ∈ i0, j0(A), that is

(
|λ − ai0···i0 | − r

′
i0(A)

)
|λ − a j0··· j0 | ≤ r̃i0(A)r j0(A).

Since ai ···i > 0 and a j ··· j > 0, it holds that

(
|λ − ai0···i0 | − r

′
i0 (A)

)
|λ − a j0··· j0 | ≥

(
ai0···i0 − r

′
i0 (A)

)
a j0··· j0 > r̃i0 (A)r j0 (A) ≥ 0.

which a contradiction arises. Therefore, λ > 0 and A is positive definite. �
In virtue of Theorem 4.2 and Corollary 3.2, we can get the following conclusions.

Corollary 4.2 Let A be an even m-order n-dimensional supersymmetric tensor. If all
(i, j) ∈ {(k, l) : ekl ∈ E(|Å|)⋃

l − k = 1 or 1 − n, l �= k} and ai ···i > 0, i ∈ N
such that

(
ai ···i − r

′
i (A)

)
a j ··· j > r̃i (A)r j (A),

then A is positive definite.

The following example shows that our results can exactly judge the positive defi-
niteness of an even-order real supersymmetric sparse tensor.

Example 4.1 Let A be a 4-order 4-dimensional symmetric tensor defined as follows:

ai jkl =

⎧
⎪⎪⎨

⎪⎪⎩

a1111 = 3; a2222 = 3; a3333 = 1; a4444 = 7;
a1222 = a2221 = a2212 = a2122 = − 1

2 ; a3444 = a4443 = a4434 = a4344 = 1;
a1331 = a3311 = a3113 = a1133 = 1

4 ;
ai jkl = 0, otherwise,

We get the minimum H -eigenvalues is 1.000. Hence, A is positive definite. We
verify

G(|A|) =

⎛

⎜
⎜
⎝

4 1
2

1
2 0

3
2

9
2 0 0

1
2 0 3

2 1
0 0 3 10

⎞

⎟
⎟
⎠ and ˚|A| =

⎛

⎜
⎜
⎝

3 1
2 0 0

0 3 0 0
0 0 1 1
0 0 0 7

⎞

⎟
⎟
⎠ .
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Table 6 Numerical results of Theorem 4.1
(
ai ···i − r

�i
i (A)

)
a j ··· j r

�i
i (A)r j (A)

i=1,j=2 7.500 0.750

i=1,j=3 2.500 0.750

i=2,j=1 4.500 0.000

i=3,j=1 1.500 1.000

i=3,j=4 3.500 3.000

i=4,j=3 4.000 0.000

Table 7 Numerical results of Corollary 4.2
(
ai ···i − r

′
i (A)

)
a j ··· j r̃i (A)r j (A)

i=1,j=2 7.500 0.750

i=2,j=3 1.500 0.000

i=3,j=4 3.500 3.000

i=4,j=1 4.000 0.000

According to the Theorem 4.1, we compute Table 6 and

(
ai ···i − r�i

i (A)
)
a j ··· j > r�i

i (A)r j (A), ∀(i, j) ∈ {(k, l) : gkl ∈ E(G(|A|)), l �= k},

which shows that A is positive definite.
In view of Corollary 4.2, we compute Table 7 and

(
ai ···i − r

′
i (A)

)
a j ··· j > r̃i (A)r j (A),∀(i, j)

∈
{
(k, l) : ekl ∈ E(|Å|)

⋃
l − k = 1 or 1 − n, l �= k

}
.

Therefore, A is positive definite.
However, from Theorem 4.1 of [9], we obtain

(a3333 − r�3
3 (A))a2222 = 1.500 = 1.500 = r�3

3 (A)r2(A),

which implies that Theorem 4.1 of [9] cannot identify the positiveness of A.

Unfortunately, from Theorem 4.2 of [8], we obtain

(a3333 − r13 (A)) = −1.500 < 0.000 = |a3111|r1(A),

(a3333 − r23 (A)) = −1.500 < 0.000 = |a3222|r2(A),

which implies that Theorem 4.2 of [8] are not suitable to test the positiveness of A.
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4.2 Bounds for H-spectral radius of nonnegative sparse tensors

We give bounds of the H -spectral radius a nonnegative sparse tensor via H -eigenvalue
inclusion theorems in Sect. 3. We start this subsection with some fundamental results
of nonnegative tensors.

Lemma 4.1 (Lemma 3.2 of [8]) Let A be a nonnegative tensor with order m and
dimension n ≥ 2. Then,

ρ(A) ≥ max
i∈N ai ...i .

Lemma 4.2 (Theorem 4.1 of [5]) Let A be an m-order n-dimensional weakly irre-
ducible nonnegative tensor. Then there exists a unique x such that (ρ(A), x) is a
positive eigenpair.

Theorem 4.3 LetA be anm-order n-dimensional nonnegative tensor with�G(A)(i) �=
∅ and n ≥ 2. Then

min
gi j∈E(G(A))

⋃
j−i=1,1−n

�i, j (A) ≤ ρ(A) ≤ max
gi j∈E(G(A))

�i, j (A),

where

�i, j (A) = 1

2

{

ai ···i + a j ··· j + r�i
i (A) +

√
(
ai ···i − a j ··· j + r�i

i (A)
)2 + 4ri�i (A)r j (A)

}

.

Proof Let ρ(A) be H -spectral radius of A. Since A is nonnegative, then ρ(A) is an
H -eigenvalue of A with ρ(A) ∈ 	̃(A) from Theorem 3.1, that is,

ρ(A) ∈
⋃

gi j∈E(G(A))

	i, j (A). (12)

(i) We show ρ(A) ≤ max
gi j∈E(G(A))

�i, j (A).

Referring to i = t1, j = ts of (12), one has

(
|ρ(A) − at1···t1 | − r

�t1
t1 (A)

)
|ρ(A) − ats ···ts | ≤ r

�t1
t1 (A)rts (A).

This together with ρ(A) ≥ ai ···i yields

(
ρ(A) − at1···t1 − r

�t1
t1 (A)

)
(ρ(A) − ats ···ts ) ≤ r

�t1
t1 (A)rts (A),

equivalently,

ρ(A)2 −
(
at1···t1 + ats ···ts + r

�t1
t1 (A)

)
ρ(A) + ats ···ts

(
at1···t1 + r

�t1
t1 (A)

)
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− r
�t1
t1 (A)rts (A) ≤ 0.

Solving for ρ(A) gives

ρ(A) ≤ 1

2

{
at1···t1 + ats ···ts + r

�t1
t1 (A)

+
√

(
at1···t1 − ats ···ts + r

�t1
t1 (A)

)2 + 4rt1
�t1 (A)rts (A)

}

,

which implies

ρ(A) ≤ �t1,ts (A) ≤ max
gi j∈E(G(A))

�i, j (A).

(ii) We prove min
gi j∈E(G(A))

⋃
j−i=1,1−n

�i, j (A) ≤ ρ(A).

Let x = (x1, x2, · · · , xn)� be an H -eigenvector of A corresponding to ρ(A).

We break up the argument into two cases.
Case 1: G(A) is irreducible. Then, A is weakly irreducible. Therefore, x =
(x1, x2, · · · , xn)� is a positive vector from Lemma 4.2. Suppose

0 < xtn ≤ xtr = min{xt j :
∑

(i2,··· ,im )∈�tn

atni2···im �= 0, j ∈ N }.

In view of the tn-th equation of (2), we deduce

(ρ(A) − atn ···tn )xm−1
tn = ∑

(i2,··· ,im )∈�tn
δtn i2 ···im=0

atni2···im xi2 · · · xim + ∑

(i2,··· ,im )∈�tn

atn i2···im xi2 · · · xim

≥ ∑

(i2,··· ,im )∈�tn
δtn i2 ···im=0

atni2···im xm−1
tn + ∑

(i2,··· ,im )∈�tn

atn i2···im xm−1
tr

= r
�tn
tn (A)xm−1

tn + r
�tn
tn (A)xm−1

tr ,

equivalently,

(
ρ(A) − atn ···tn − r

�tn
tn (A)

)
xm−1
tn ≥ r

�tn
tn (A)xm−1

tr ≥ 0. (13)

Referring to tr -th equation of (2), we have

(ρ(A) − atr ···tr )xm−1
tr =

∑

δtr i2 ···im=0

atr i2···im xi2 · · · xim ≥ rtr (A)xm−1
tn ≥ 0.

(14)

Multiplying (13) and (14) yields

(
ρ(A) − atn ···tn − r

�tn
tn (A)

)
(ρ(A) − atr ···tr )xm−1

tn xm−1
tr ≥ r

�tn
tn (A)rtr (A)xm−1

tn xm−1
tr .
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By virtue of xtr ≥ xtn > 0, we obtain

(
ρ(A) − atn ···tn − r

�tn
tn (A)

)
(ρ(A) − atr ···tr ) ≥ r

�tn
tn (A)rtr (A).

Solving for ρ(A) gives

ρ(A) ≥ 1

2

{
atn ···tn + atr ···tr + r

�tn
tn (A)

+
√

(
atn ···tn − atr ···tr + r

�tn
tn (A)

)2 + 4rtn
�tn (A)rtr (A)

}

,

which shows

ρ(A) ≥ �tn ,tr (A) ≥ min
gi j∈E(G(A))

�i, j (A).

Case 2: G(A) is reducible. For any ε > 0, set

A(ε) = A + �(ε) and �(ε) = (θi1···im ),

where

θi1···im =
{

θi j ··· j = ε, i f j − i = 1, 1 − n,

0, otherwise.

Thus,A(ε) is irreducible. Following the similar proof of Case 1 in Theorem 4.3,
we have

min
gi j∈E(G(A))

�i, j (A(ε)) ≤ ρ(A(ε)).

Letting ε → 0, we obtain

min
gi j∈E(G(A))

⋃
j−i=1,1−n

�i, j (A) ≤ ρ(A).

Combining Cases 1 and 2, we obtain the desired results.

�
When the condition �G(A)(i) �= ∅ is replaced by weak irreducibility of A, we

obtain accurate conclusion.

Corollary 4.3 Let A be an m-order n-dimensional weakly irreducible nonnegative
tensor. Then,

min
gi j∈E(G(A))

�i, j (A) ≤ ρ(A) ≤ max
gi j∈E(G(A))

�i, j (A).
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When the condition �G(A)(i) �= ∅ is omitted, we obtain general results.

Corollary 4.4 Let A be an m-order n-dimensional nonnegative tensor. Then,

min
gi j∈E(G(A))

⋃
j−i=1,1−n

�i, j (A) ≤ ρ(A) ≤ max
gi j∈E(G(A))

⋃
j−i=1,1−n

�i, j (A).

Based on Theorem 3.2, we can establish the conclusions.

Theorem 4.4 LetA be an m-order n-dimensional nonnegative tensor with �Å(i) �= ∅
and n ≥ 2. Then,

min
ei j∈E(Å)

⋃
j−i=1,1−n

κi, j (A) ≤ ρ(A) ≤ max
ei j∈E(Å)

κi, j (A),

where

κi, j (A) = 1

2

{

ai ···i + a j ··· j + r
′
i (A) +

√
(ai ···i − a j ··· j + r

′
i (A))2 + 4̃ri (A)r j (A)

}

.

Remark 4.1 Compared with Theorem 2.1 of [13], the results of Theorem 4.4 is sharp
under the condition�Å(i) �= ∅.ComparedwithCorollary 4 of [13] under irreducibility
of A, we deduce the following resluts with weak irreducibility of A

min
ei j∈E(Å)

κi, j (A) ≤ ρ(A) ≤ max
ei j∈E(Å)

κi, j (A).

Corollary 4.5 Let A be an m-order n-dimensional nonnegative tensor. Then,

min
ei j∈E(Å)

⋃
j−i=1,1−n

κi, j (A) ≤ ρ(A) ≤ max
ei j∈E(Å)

⋃
j−i=1,1−n

κi, j (A).

In what follows, we test the efficiency of the obtained results.

Example 4.2 LetA be a 3-order 4-dimensional nonnegative tensor defined as follows:

ai jk =

⎧
⎪⎪⎨

⎪⎪⎩

a111 = 1; a112 = 1; a122 = 2; a123 = 1; a133 = 2;
a222 = 3; a232 = 1; a233 = 1; a243 = 1;
a333 = 2; a334 = 1; a343 = 1; a344 = 4;
a421 = 6; a422 = 1; a424 = 1; a444 = 1.

We compute ρ(A) = 7.112 and identify

G(A) =

⎛

⎜
⎜
⎝

2 4 3 0
0 4 3 1
0 0 4 6
6 8 0 2

⎞

⎟
⎟
⎠ and Å =

⎛

⎜
⎜
⎝

1 2 2 0
0 3 1 0
0 0 2 4
0 1 0 1

⎞

⎟
⎟
⎠ .
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Table 8 Bounds for Theorem 3.3 of [10]

�1,2(A) = 6.646 �1,3(A) = 7.275 �1,4(A) = 7.000

�2,1(A) = 6.000 �2,3(A) = 6.372 �2,4(A) = 6.000

�3,1(A) = 8.000 �3,2(A) = 8.000 �3,4(A) = 8.352

�4,1(A) = 9.000 �4,2(A) = 8.541 �4,3(A) = 9.000

Table 9 Bounds for Theorem 2.1 of [13]

κ1,2(A) = 6.464 κ1,3(A) = 7.424 κ2,3(A) = 6.372

κ3,4(A) = 8.352 κ4,1(A) = 8.772 κ4,2(A) = 8.541

Table 10 Bounds of Corollary 4.3

�1,2(A) = 6.405 �1,3(A) = 7.477 �2,3(A) = 6.606 �2,4(A) = 6.772

�3,4(A) = 8.352 �4,1(A) = 8.000 �4,2(A) = 7.109

By Lemma 5.2 of [25], one has

6 ≤ ρ(A) ≤ 9.

From Theorem 3.3 of [10], Table 8 holds
and

min
i, j∈{1,2,3,4},i �= j

�i, j (A) = 6 ≤ ρ(A) ≤ 9 = max
i, j∈{1,2,3,4},i �= j

�i, j (A).

From Theorem 5 of [11], following the similar computations of �i, j (A), we obtain

min
i, j∈{1,2,3,4},i �= j

�i, j (A) = 6.275 ≤ ρ(A) ≤ 8.481 = max
i, j∈{1,2,3,4},i �= j

�i, j (A).

We observe Å is reducible. It follows from Theorem 2.1 of [13] that
i.e.,

min
ei j∈E(Å)

⋃
j−i=1,1−n

κi, j (A) = 6.372 ≤ ρ(A) ≤ 8.772 = max
ei j∈E(Å)

⋃
j−i=1,1−n

κi, j (A).

From representation matrix G(A), we know that A is weakly irreducible. Based on
Corollary 4.3, we obtain Table 10 and

min
gi j∈E(G(A))

�i, j (A) = 6.405 ≤ ρ(A) ≤ 8.352 = max
gi j∈E(G(A))

�i, j (A).

By majorization matrix Å, for any i ∈ {1, 2, 3, 4}, we observe �Å(i) �= ∅. Recalling
Theorem 4.4, we calculate Table 11 and
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Table 11 Bounds of Theorem 4.4

κ1,2(A) = 6.464 κ1,3(A) = 7.424 κ2,3(A) = 6.372

κ3,4(A) = 8.352 κ4,1(A) = 8.772 κ4,2(A) = 8.541

min
ei j∈E(Å)

⋃
j−i=1,1−n

κi, j (A) = 6.372 ≤ ρ(A) ≤ 8.541 = max
ei j∈E(Å)

κi, j (A).

It is easy to see that the bounds in Corollary 4.3 and Theorem 4.4 are sharper than
those of Lemma 5.2 in [25], Theorem 3.3 in [10], Theorem 5 in [11] and Theorem 2.1
of [13].

5 Conclusion

In this paper, we established the improved H -eigenvalue inclusion sets of a sparse ten-
sor by its majorization matrix’s digraph and representation matrix’s digraph, which
have advantages of tight bounds and minor computations. Meanwhile, two suffi-
cient conditions were proposed to check positive definiteness of an even-order real
supersymmetric sparse tensor. Further studies can be considered to develop certain
algorithms for solving image restoration from sparse tensor data based on improved
H -eigenvalue inclusion sets.
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