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Abstract
In this paper, we study the stochastic periodic behavior of a chemostat model with
periodic nutrient input. We first prove the existence of global unique positive solution
with any initial value for stochastic non-autonomous periodic chemostat system. After
that, the sufficient conditions are established for the existence of nontrivial positive
T−periodic solution. Moreover, we also analyze the conditions for extinction expo-
nentially of microorganism, and we find that there exists a unique boundary periodic
solution for stochastic chemostat model, which is globally attractive. At the same time,
in the end of this paper, we also give some numerical simulations to illustrate our main
conclusions.

Keywords Stochastic chemostat model · Periodic nutrient input · Periodic solution ·
Extinction exponentially · Globally attractive

Mathematics Subject Classification 37A50 · 60H10 · 92-10

1 Introduction

The chemostat is mainly used for continuous culture of microorganisms. The basic
design and theory of continuous culture were originally described independently by
[1, 2]. Chemostat consists of three parts, namely, nutrient vessel, culture vessel and
collection vessel. In industry, chemostats can be used to simulate the decomposi-
tion of biological wastes, or evolve water with microorganisms, etc. In [3–9], many
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authors have analyzed various deterministic chemostat models and introduced many
mathematical methods for analyzing chemostat models.

In chemostat, a single microbial growth model was first proposed by [1]. Moreover,
in [3], Smith and Waltman described a deterministic chemostat model with Monod-
type functional response function, as follows:

{
S′(t) = (S0 − S(t))D − mS(t)x(t)

δ(a+S(t)) ,

x ′(t) = −Dx(t) + mS(t)x(t)
a+S(t) ,

(1.1)

where all parameters are positive constants, and S(t), x(t) stand for the concentrations
of the nutrient and microorganism at time t respectively; S0 represents the input
concentration of the nutrient; D is the common washout rate; δ is a yield constant
reflecting the conversion of nutrient to organism. mS(t)

a+S(t) denotes the Monod growth
functional response, where m > 0 is called the maximal growth rate and a > 0 is the
Michaelis-Menten ( or half-saturation ) constant [1].

In model (1.1), if the nutrient supply is periodic, that is to say, we replace S0 with
S0 + be(t), where e(t) denotes the fluctuation of nutrient input and it is a continuous
and T−periodic function (e(t + T ) = e(t)) with be∗ = b(mint∈[0,T ] e(t)) > −S0

and
∫ T
0 e(t)dt = 0, which is to simulate seasons or day/night cycles in a chemostat

environment; b is the amplitude of nutrient supply. Thus, we obtain a deterministic
chemostat model with periodic nutrient input, as follows:

{
S′(t) = (S0 + be(t) − S(t))D − mS(t)x(t)

δ(a+S(t)) ,

x ′(t) = −Dx(t) + mS(t)x(t)
a+S(t) .

(1.2)

Model (1.2) is first established and studied by [10]. Furthermore, in [11, 12], a model
of two species consuming a single, limited, periodically added resource is discussed,
and coexistence of two species due to seasonal variation is indicated by numerical
studies; in [13], the author considered a model of the competition of n species for a
single essential periodically fluctuating nutrient. For two species systems the following
very general result is proven: all solutions of a T−periodic, dissipative, competitive
system are either T−periodic or approach a T−periodic solution.

However, the system (1.2) will inevitably be disturbed by some random environ-
mental factors. In the process of continuous cultivation of microorganisms, even if the
experimental conditions can be well controlled, we can not ignore the interference of
external environment and human factors on the continuous cultivation of microorgan-
isms. Therefore, it is of great practical significance to consider the stochastic chemostat
model. In recent years, various stochastic chemostat models have been introduced
and studied by many authors, see [14–24]. For example, in [14], Sun et.al studied
a stochastic two-species Monod-type competition chemostat model which is subject
to environment noises. Such noises are described by independent standard Brownian
motions. In [15], the authors studied a stochastic differential equation (SDE) version
of the chemostat model with white noise on the positive parameterm (maximal growth
rate). In [16], a variant of the deterministic single-substrate chemostat model is stud-
ied, and modeled the influence of random fluctuations by setting up and analyzing a
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stochastic differential equation (SDE). In [17], the authors considered the problem of
a single-species stochastic chemostat model in which the maximal growth rate is influ-
enced by the white noise in environment. In [18], a stochastic chemostat model with an
inhibitor is considered. In [19, 20], Sun and Zhang considered the asymptotic behav-
ior of a stochastic delayed chemostat model with nutrient storage and nonmonotone
uptake function respectively.

Generally, there are many ways to establish stochastic chemostat models by
introducing stochastic environmental variation described byBrownianmotion in deter-
ministic chemostat model. In [25], Xu and Yuan replaced the washout rate D by
D + α Ḃ(t), where B(t) is Brownian motion and α ≥ 0 is the intensity of noise. In
[17], they tackled the problem of stochastic with maximum growth rate m disturbed
by noise. In [19], the authors assumed that stochastic perturbations are the white noise
type which are directly proportional to S(t) and x(t). In general, the noise intensity is
a positive constant in many the existing literatures, however, the stochastic chemostat
model with periodic disturbance is seldom studied. Therefore, in this paper, we will
consider a stochastic chemostat model with periodic nutrient input and periodic inter-
ference, meanwhile, we also consider the natural death of microorganism. We assume
that stochastic perturbations are the white noise type which are directly proportional to
S(t) and x(t) in system. Thus, the stochastic chemostat model with periodic nutrient
input and periodic interference can be expressed as follows:

{
dS(t) = [(S0 + be(t) − S(t))D − mS(t)x(t)

δ(a+S(t)) ]dt + σ1(t)S(t)dB1(t),

dx(t) = [−D1x(t) + mS(t)x(t)
a+S(t) ]dt + σ2(t)x(t)dB2(t),

(1.3)

where D1 = D+κ , κ is the natural death rate of microorganism x , Bi (t)(i = 1, 2) are
mutually independent standard Brownian motion defined on a complete probability
space (�,F ,P) with a filtration {Ft }t≥0 satisfying the usual conditions (i.e., it is
increasing and right continuous while F0 contains all P-null sets ), σi (t)(i = 1, 2)
denote the intensity of the white noise with σi (t) > 0(i = 1, 2) for any t > 0, and it
is a continuous and T−periodic function with σi (t + T ) = σi (t)(i = 1, 2).

At present, some works have been discussed on stochastic periodic chemostat
model, see [26–28], in [26], a stochastic chemostat model with periodic washout rate
is proposed and the sufficient conditions are established for the existence of stochas-
tic nontrivial positive periodic solution for the chemostat system. [27] addressed a
stochastic chemostat model with periodic dilution rate and general class of response
functions, derived the sufficient criteria for the existence of the stochastic nontriv-
ial positive periodic solution. In [28], Zhao and Yuan formulated a single-species
stochastic chemostat model with periodic coefficients due to seasonal fluctuation.

Thus, this paper is organized as follows. In Sect. 2, some preliminaries are given.
In Sect. 3, we will prove the existence and uniqueness of global positive solutions of
the system (1.3) for any initial value. In Sect. 4, we obtain the sufficient conditions
for the existence of the stochastic nontrivial positive T−periodic solution. Sufficient
conditions for the extinction of microorganism are given in Sect. 5. In Sect. 6, we
find that there is a globally attractive boundary periodic solution for system (1.3). In
Sects. 7 and 8, some numerical simulations and conclusions are given.
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2 Preliminary

In this section, we will introduce some preliminaries and notations, which will be
needed later.

First, we define some notations. If f (t) is an integrable function on [0,∞), then
we define 〈 f 〉t = 1

t

∫ t
0 f (s)ds for any t > 0; if f (t) is a bounded function on [0,∞),

we can define f ∗ = supt∈[0,∞) f (t), f∗ = inf t∈[0,∞) f (t).
Next, we will give some preliminaries about periodic Markov process (see [29] for

details).

Definition 2.1 ([29], Chapter 3) A stochastic process X(t, ω) with values in R
l ,

defined for t ≥ 0 on a probability space (�,F ,P), is called a Markov process if
for all A ∈ B (where B is the Borel σ−algebra), 0 ≤ s < t ,

P{X(t, ω) ∈ A|Ns} = P{X(t, ω) ∈ A|X(s, ω)}, a.s.,

where ω is a sample point in space �, and Ns is the σ−algebra of events generated
by all events of the form

{X(u, ω) ∈ A} (u ≤ s, A ∈ B).

Remark 2.1 ([29]) It can be proved that there exists a function P(s, x, t, A), defined
for 0 ≤ s ≤ t , x ∈ R

l , A ∈ B, which is B−measurable in x for every fixed s, t, A,

and which constitutes a measure as a function of the set A, satisfying the condition

P{X(t, ω) ∈ A|X(s, ω)} = P{s, X(s, ω), t, A} a.s.

One can also prove that for all x , except possibly those from a set B such that
P{X(s, ω) ∈ B} = 0, the Chapman-Kolmogorov equation holds:

P{s, x, t, A} =
∫
Rl

P(s, x, u, dy)P(u, y, t, A).

The function P{s, x, t, A} is called the transition probability function of the Markov
process.

Definition 2.2 ([29]) A stochastic process X(t) (−∞ < t < +∞) is said to be
periodic with period T if for every finite sequence of numbers t1, t2, ..., tn , the joint
distribution of random variables X(t1 + h), ..., X(tn + h) is independent of h, where
h = kT (k = ±1,±2, ...).

Remark 2.2 In [29], Khasminskii shows that a Markov process X(t) is T−periodic
if only if its transition probability function is T−periodic and the function
P(0, X(0, ω), t, A) := P0(t, A) = P{X(t) ∈ A|X(0, ω)} satisfies the equation

P0(s, A) =
∫
Rl

P0(s, dx)P(s, x, s + T , A) ≡ P0(s + T , A),
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for every A ∈ B. We consider the following equation

X(t) = X(t0) +
∫ t

t0
b(s, X(s))ds +

k∑
r=1

∫ t

t0
σr (s, X(s))dBr (s), (2.1)

where the vector b(s, x), σ1(s, x), ..., σk(s, x)(s ∈ [t0, T ], x ∈ R
l) are continuous

functions of (s, x), such that for some constant C the following conditions hold:

|b(s, x) − b(s, y)| +
k∑

r=1

|σr (s, x) − σr (s, y)| ≤ C |x − y|, (2.2)

and

|b(s, x)| +
k∑

r=1

|σr (s, x)| ≤ C(1 + |x |), (2.3)

Let U be a given open set, and E = I × R
l . Let C2 denote the family of functions

on E which are twice continuously differentiable with respect to x1, x2, ..., xl and
continuously differentiable with respect to t.

Lemma 2.1 Suppose that the coefficient of (2.1) is T−periodic in t and satisfies the
conditions (2.2) and (2.3) in every cylinder I ×U and suppose further that there exists
a function V (t, x) ∈ C2 in E which is T−periodic in t , and satisfies the following
conditions

inf|x |>H
V (t, x) → ∞ as H → ∞ (2.4)

and

LV (t, x) ≤ −1 outside some compact set, (2.5)

where the operator L is given by

l = ∂

∂t
+

l∑
i=1

bi (t, x)
∂

∂xi
+ 1

2

l∑
i, j=1

ai j (t, x)
∂2

∂xi∂x j
,

where

ai j =
k∑

r=1

σ i
r (t, x)σ

j
r (t, x).

Then there exists a solution of (2.1) which is a T−periodic Markov process.
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Remark 2.3 The proof of Lemma 2.1 can be found in [29], Chapter 3, Page 80, and
condition (2.5) is a weaker condition which replace the condition (3.52) of Theorems
3.7 and 3.8 in [29]. According to the proof of Lemma2.1,we can see that the conditions
(2.2) and (2.3) is only used to guarantee the existence and uniqueness of the solution
of (2.1). Thus, it is crucial to prove the existence and uniqueness of the global positive
solution of the stochastic chemostat model (1.3) for any given initial value, which is
helpful to prove the existence of the nontrivial positive periodic solution of system
(1.3). So in the next section, we will prove that the system (1.3) has a global unique
positive solution for any given initial value.

3 Existence and Uniqueness of the Global Positive Solution for any
Given Initial Value

In this section, we will use Lyapunov function method to prove that the solution of the
stochastic chemostat model (1.3) is global, unique and positive for any given initial
value.

Theorem 3.1 For any initial value (S(0), x(0)) ∈ R
2+, system (1.3) has a unique

positive solution (S(t), x(t)) on t ≥ 0, and the solution will remain in R
2+ with

probability one, namely, (S(t), x(t)) ∈ R
2+ for all t ≥ 0 almost surely (a.s).

Proof Since the coefficients of stochastic system (1.3) satisfy the local Lipschitz con-
dition, then system (1.3) has a unique local solution (S(t), x(t)) on t ∈ [0, τe), where
τe is the explosion time [30]. To show this solution is global, we only need to show
that τe = ∞ a.s. To this end, let k0 ≥ 1 be sufficiently large such that S(0) and x(0)
all lie within the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time

τk = inf

{
t ∈ [0, τe) : S(t) /∈

(
1

k
, k

)
or x(t) /∈

(
1

k
, k

)}
,

where throughout this paper, we set inf ∅ = ∞ (as usual ∅ is the empty set). Clearly
τk is increasing when k → ∞. Set τ∞ = limk→∞ τk , whence τ∞ ≤ τe a.s. If we can
verify τ∞ = ∞ a.s., then τe = ∞ and (S(t), x(t)) ∈ R

2+ a.s. for all t ≥ 0. That is to
say, to complete the proof we need to show that τ∞ = ∞ a.s. If this assertion is not
true then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε,

there exists an integer k1 ≥ k0 such that for all k ≥ k1,

P{τk ≤ T } ≥ ε. (3.1)

Define a C2−function V : R2+ → R+ by

V (S, x) = δ

(
S + μ − μ ln

S

μ

)
+ x + 1 − ln x,
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whereμ is a positive constant to be determined later. The nonnegativity of this function
can be obtained from

u + 1 − ln u > 0, u > 0.

Applying Itô formula to V (S, x), we have

dV (S, x) = LV (S, x)dt + δσ1(t)(S − μ)dB1(t) + σ2(t)(x − 1)dB2(t),

where

LV (S, x) = δ
(
1 − μ

S

) [
(S0 + be(t) − S)D − mSx

δ(a+S)

] + (
1 − 1

x

) [
mSx
a+S − D1x

]
+ 1

2δμσ 2
1 (t) + 1

2σ
2
2 (t)

≤ δDS0 + δbDe∗ + μDδ + D1 + 1
2δμ(σ ∗

1 )2 + 1
2 (σ

∗
2 )2 + (mμ

a − D1
)
x .

We can choose μ = aD1
m , such that (mμ

a − D1)x = 0, then we can obtain

LV (S, x) ≤ δDS0 + δbDe∗ + μDδ + D1 + 1
2δμ(σ ∗

1 )2 + 1
2 (σ

∗
2 )2 := M,

where M is a positive constant. Thus we have

dV (S, x) ≤ Mdt + δσ1(t)(S − μ)dB1(t) + σ2(t)(x − 1)dB2(t). (3.2)

Integrating both sides of (3.2) from 0 to τk ∧ T and taking the expectations, we can
obtain

EV (S(τk ∧ T ), x(τk ∧ T )) ≤ V (S(0), x(0)) + ME(τk ∧ T ).

Consequently

EV (S(τk ∧ T ), x(τk ∧ T )) ≤ V (S(0), x(0)) + MT . (3.3)

Set �k = {τk ≤ T } for k ≥ k1 and in view of (3.1), we get P(�k) ≥ ε. Notice that
for every ω ∈ �k , it exists that S(τk, ω) or x(τk, ω) equals either k or 1

k . Thereby,
V (S(τk, ω), x(τk, ω)) is no less than either

min{δ
(
k + μ − μ ln

k

μ

)
, (k + 1 − ln k)}

or

min

{
δ

(
1

k
+ μ + μ ln kμ

)
,

(
1

k
+ 1 + ln k

)}
.
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That is

V (S(τk, ω), x(τk, ω)) ≥ min{δ(k + μ − μ ln k
μ
), (k + 1 − ln k)}

∧min{δ( 1k + μ + μ ln kμ), ( 1k + 1 + ln k)}
:= H(k).

It follows from (3.3) that

V (S(0), x(0)) + KT ≥ E
(
I�k (ω)V (S(τk, ω), x(τk, ω))

)
≥ P (�k(ω))

H(k) ≥ εH(k),

where I�k represents the indicator function of �k . Letting k → ∞, then

∞ > V (S(0), x(0)) + KT = ∞,

which leads to the contradiction. Thus we must have τ∞ = ∞. Therefore, it implies
S(t) and x(t) will not explode in a finite time with probability one. This completes
the proof. ��

4 Existence of the Nontrivial Positive T−Periodic Solution

In Sect. 3, we have proved that there exists a global unique positive solution for system
(1.3) for any given initial value. In this section, we will prove the existence and
uniqueness of the positive periodic solution.

Theorem 4.1 Let λ = mS0

a+S0
− D1 − 〈R0〉T , if there exists a positive constant c1

satisfying

c1 >
ma

D(S0)2
,

such that λ > 0, then stochastic system (1.3) has a nontrivial positive T−periodic
solution, where

R0(t) = c1Dbe(t) + c1S0

2
σ 2
1 (t) + 1

2
σ 2
2 (t).

Proof From Theorem 3.1, we know that for any initial value (S(0), x(0)) ∈ R
2+,

stochastic periodic system (1.3) has a unique positive solution (S(t), x(t)) on t ≥ 0,
and the solution will remain in R

2+ with probability one. It is very easy to verify that
the coefficients of system (1.3) satisfy the conditions of Lemma 2.1. According to
Lemma 2.1, we need to find a C2−function V (t, S, x) and a closed setU ∈ R

2+, such
that the (2.4) and (2.5) hold. Define a C2−function V (t, S, x) : [0,+∞)×R

2+ → R:
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V (t, S, x) = 1
θ+1 (δS + x)θ+1 + M[c1(S − S0 − S0 ln S

S0
)

−c2(δS + x) − ln x + ω(t)] − ln S
:= V1 + MV2 + V3,

where V1 = 1
θ+1 (δS+ x)θ+1, V2 = c1(S− S0− S0 ln S

S0
)−c2(δS+ x)− ln x+ω(t),

V3 = − ln S, c2 = ma
δD(a+S0)2

, and θ ∈ (0, 1) satisfies

D − θ

2
(σ ∗

1 )2 > 0,

and

D1 − θ

2
(σ ∗

2 )2 > 0.

Meanwhile ω(t) satisfies

ω̇(t) = 〈R0〉T − R0(t)

where

R0(t) = c1Dbe(t) + c1S0

2
σ 2
1 (t) + 1

2
σ 2
2 (t).

It is obvious that ω(t) is T−periodic, that’s because R0(t) is T−periodic. M is a
positive constant big enough such that

f ∗ − Mλ ≤ −2,

where the function f will be determined later. By Itô formula, we have

LV1 = (δS + x)θ
(
δD(S0 + be(t) − S) − D1x

)
+ θ

2 (δS + x)θ−1(δ2σ 2
1 (t)S2 + σ 2

2 (t)x2)

≤ (δDS0 + δDbe∗)(δS + x)θ − δDS(δS + x)θ − D1x(δS + x)θ

+ θ
2 (δS + x)θ−1(δ2S2σ 2

1 (t) + σ 2
2 (t)x2)

≤ 2θ (δDS0 + δDbe∗)(δS)θ + 2θ (δDS0 + δDbe∗)xθ − D(δS)θ+1 − D1x
θ+1

+ θ
2σ 2

1 (t)(δS)θ+1 + θ
2σ 2

2 (t)xθ+1

≤ 2θ δθ+1D(S0 + be∗)Sθ + 2θ δD(S0 + be∗)xθ −
(
Dδθ+1 − θ

2 (σ∗
1 )2δθ+1

)
Sθ+1

−
(
D1 − θ

2 (σ∗
2 )2

)
xθ+1,

L(S − S0 − S0 ln S
S0

) =
(
1 − S0

S

)
[(S0 + be(t) − S)D − mSx

δ(a+S)
] + 1

2 S
0σ 2

1 (t)

= − D(S−S0)2
S + Dbe(t)

(
1 − S

S0

)
− m(S−S0)x

δ(a+S)
+ 1

2 S
0σ 2

1 (t)

≤ − D(S−S0)2
S + Dbe(t) + mS0

δa x + 1
2 S

0σ 2
1 (t),
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L(δS + x) = δD(S0 + be(t) − S) − D1x,

L(− ln x) = − 1
x [−D1x + mSx

a+S ] + 1
2σ 2

2 (t)

= D1 − mS
a+S + 1

2σ 2
2 (t).

Thus,

LV2 ≤ − c1D(S−S0)2
S + c1Dbe(t) + c1mS0

δa x + 1
2 c1S

0σ 2
1 (t) + c2δD(S − S0) − c2δDbe(t)

+c2D1x + D1 − mS
a+S + 1

2σ 2
2 (t) + ω̇(t)

≤ F(S) +
(
c1mS0

δa + c2D1

)
x −

(
mS0

a+S0
− D1 − 〈R0〉T

)
,

where

F(S) = mS0

a + S0
− mS

a + S
+ c2δD(S − S0) − c1D(S − S0)2

S
.

By calculation, we can get

F ′(S) = − ma

(a + S)2
+ c2δD − c1D

(
1 − (S0)2

S2

)
,

and

F ′′(S) = 2ma

(a + S)3
− 2c1D(S0)2

1

S3
.

It is obviously that

F ′(S0) = 0, F ′′(S0) ≤ 1

(S0)3
[2ma − 2c1D(S0)2] < 0.

Therefore, we have

F(S) ≤ F(S0) = 0.

Thus, we have

LV2 ≤ −λ +
(
c1mS0

δa + c2D1

)
x,

where

λ = mS0

a + S0
− D1 − 〈R0〉T .
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LV3 = − D
S (S0 + be(t) − S) + mx

δ(a+S)
+ 1

2σ
2
1 (t)

= − DS0
S + D − Db

S e(t) + mx
δ(a+S)

+ 1
2σ

2
1 (t)

≤ − DS0
S + D − Db

S e∗ + mx
δa + 1

2 (σ
∗
1 )2

= − DS0+Dbe∗
S + D + mx

δa + 1
2 (σ

∗
1 )2,

Therefore, we can obtain

LV = LV1 + MLV2 + LV3
≤ 2θ δθ+1D(S0 + be∗)Sθ + 2θ δD(S0 + be∗)xθ − (Dδθ+1 − θ

2 (σ ∗
1 )2δθ+1)Sθ+1

−(D1 − θ
2 (σ ∗

2 )2)xθ+1 − Mλ + M
(
c1mS0

δa + c2D1

)
x − DS0+Dbe∗

S + D + 1
2 (σ ∗

1 )2 + mx
δa

= f (S) + g(x),

where

f (S) = 2θ δθ+1D(S0 + be∗)Sθ − (Dδθ+1 − θ

2
(σ ∗

1 )2δθ+1)Sθ+1

−DS0 + Dbe∗
S

+ D + 1

2
(σ ∗

1 )2,

g(x) = 2θ δD(S0 + be∗)xθ − (D1 − θ

2
(σ ∗

2 )2)xθ+1

−Mλ + M

(
c1mS0

δa
+ c2D1

)
x + mx

δa
.

It is noteworthy that g(x) has upper bounds g∗ when S → +∞ or S → 0+, and f (x)
also has upper bounds f ∗ when x → +∞ or x → 0+. Thus, we can observe that

f (S) + g∗ → −∞, as S → +∞,

f ∗ + g(x) → −∞, as x → +∞,

f (S) + g∗ → −∞, as S → 0+,

f ∗ + g(x) → f ∗ − Mλ ≤ −1, as x → 0+,

This shows that we can take ε small enough, and let U = [ε, 1
ε
] × [ε, 1

ε
]. We can

obtain that

LV ≤ −1, (S, x) ∈ R
2+ \U .

This completes the proof. ��

Remark 4.1 From Theorem 4.1, we can see that the model (1.3) has a nontrivial
T−periodic solution, that is to say, under the condition of Theorem 4.1, the microor-
ganism x can survive in chemostat.
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5 Extinction of Microorganism

In this section, we will study the conditions for the extinction of microorganism x .
Before we give the main theorem, we first give the following two important lemmas,
which is very helpful for the proof of the main theorem.

Lemma 5.1 Let (S(t), x(t)) be the solution of system (1.3) with any initial value
(S(0), x(0)) ∈ R

2+. Then we have

lim
t→∞

δS(t) + x(t)

t
= 0 a.s.

Moreover

lim
t→∞

S(t)

t
= 0, lim

t→∞
x(t)

t
= 0 a.s.

Proof Let u(t) = δS(t) + x(t). Define a C2−function

W (u) = (1 + u)α,

where α is a positive constant to be determined later, and it satisfies 1 < α <
2D

(σ ∗
1 )2∨(σ ∗

2 )2
+ 1. Then, we have

dW (u) = LW (u)dt + α(1 + u)α−1(δσ1(t)SdB1(t) + σ2(t)xdB2(t)),

where

LW (u) = α(1 + u)α−1[δD(S0 + be(t) − S) − D1x]
+α(α−1)

2 (1 + u)α−2[σ 2
1 (t)(δS)2 + σ 2

2 (t)x2]
= α(1 + u)α−2{(1 + u)[δD(S0 + be(t) − S) − D1x]

+α−1
2 [σ 2

1 (t)(δS)2 + σ 2
2 (t)x2]}

≤ α(1 + u)α−2{(1 + u)[δD(S0 + be∗) − Du] + α−1
2 [(σ ∗

1 )2 ∨ (σ ∗
2 )2]u2}

= α(1 + u)α−2{−[D − α−1
2 ((σ ∗

1 )2 ∨ (σ ∗
2 )2)]u2

+[δD(S0 + be∗) − D]u + δD(S0 + be∗)}.

Since 1 < α < 2D
(σ ∗

1 )2∨(σ ∗
2 )2

+ 1, we get

D − α − 1

2
((σ ∗

1 )2 ∨ (σ ∗
2 )2) := A > 0,

and

δD(S0 + be∗) := B.
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Then, we have

LW (u) ≤ α(1 + u)α−2{−Au2 + (B − D)u + B}, (5.1)

and

dW (u) ≤ α(1 + u)α−2[−Au2 + (B − D)u + B]dt
+α(1 + u)α−1[δσ1(t)SdB1(t) + σ2(t)xdB2(t)]. (5.2)

For 0 < k < αA, we have

d[ektW (u)] = L(ektW (u))dt + ektα(1 + u)α−1[δσ1(t)SdB1(t) + σ2(t)xdB2(t)],

where

L(ektW (u)) = kektW (u) + ekt LW (u)

≤ kekt (1 + u)α + ektα(1 + u)α−2[−Au2 + (B − D)u + B]
= ekt (1 + u)α−2{k(1 + u)2 + α[−Au2 + (B − D)u + B]}
= ekt (1 + u)α−2{−(αA − k)u2 + [α(B − D) + 2k]u + Bα + k}
≤ ekt H ,

where

H := sup
u∈R2+

(1 + u)α−2{−(αA − k)u2 + [α(B − D) + 2k]u + Bα + k}.

Therefore,

E[ektW (u(t))] = W (u(0)) + E
∫ t
0 L(eksW (u(s)))ds

≤ (1 + u(0))α + ekt H
k − H

k .

Consequently,

lim
t→∞ supE[(1 + u(t))α] ≤ H

k
:= H0, a.s.,

which together with the continuity of u(t) implies that there exists a constant M > 0
such that

E(1 + u(t))α ≤ M, t ≥ 0. (5.3)

Note that (5.2), for sufficiently small δ > 0, k = 1, 2, ..., we have

E[ sup
kδ≤t≤(k+1)δ

(1 + u(t))α] ≤ E[(1 + u(kδ))α] + H1 + H2 ≤ M + H1 + H2,
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where

H1 = E[supkδ≤t≤(k+1)δ | ∫ t
kδ α(1 + u(s))α−2(−Au2(s) + (B − D)u(s) + B)ds|]

≤ C1E[supkδ≤t≤(k+1)δ | ∫ t
kδ(1 + u(s))αds|]

≤ C1E[∫ (k+1)δ
kδ (1 + u(s))αds]

≤ C1δE[supkδ≤t≤(k+1)δ(1 + u(t))α],

and

H2 = E[supkδ≤t≤(k+1)δ | ∫ t
kδ α(1 + u(s))α−1(σ1(s)δS(s)dB1(s) + σ2(s)x(s)dB2(s))|]

≤ C2E[∫ (k+1)δ
kδ α2(1 + u(s))2(α−1)

(
(σ ∗

1 )2δ2S2(s) + (σ ∗
2 )2x2(s)

)
ds] 12

≤ C2α[(σ ∗
1 )2 ∨ (σ ∗

2 )2] 12 δ 1
2E[supkδ≤t≤(k+1)δ(1 + u(t))2α] 12

≤ C2α[(σ ∗
1 )2 ∨ (σ ∗

2 )2] 12 δ 1
2E[supkδ≤t≤(k+1)δ(1 + u(t))α].

where in the above inequality, we have used the Burkholder-Davis-Gundy inequality
[30]. Thus, we have

E[ sup
kδ≤t≤(k+1)δ

(1 + u(t))α] ≤ E[(1 + u(kδ))α]

+[C1δ + C2α((σ ∗
1 )2 ∨ (σ ∗

2 )2)
1
2 δ

1
2 ]E[ sup

kδ≤t≤(k+1)δ
(1 + u(t))α].

We can choose δ > 0 such that C1δ + C2α[(σ ∗
1 )2 ∨ (σ ∗

2 )2] 12 δ 1
2 ≤ 1

2 , then we have

E[ sup
kδ≤t≤(k+1)δ

(1 + u(t))α] ≤ 2E[(1 + u(kδ))α] ≤ 2M .

Let ε > 0 be arbitrary. By Chebyshev’s inequality, we have

P{ sup
kδ≤t≤(k+1)δ

(1 + u(t))α > (kδ)1+ε} ≤ E[supkδ≤t≤(k+1)δ(1 + u(t))α]
(kδ)1+ε

≤ 2M

(kδ)1+ε
, k = 1, 2, ...

According to the Borel-Cantelli lemma [30], for almost all ω ∈ �, we can see that

sup
kδ≤t≤(k+1)δ

(1 + u(t))α ≤ (kδ)1+ε (5.4)

holds for all but finitelymany k. Hence, there exists a k0(ω), for almost allω ∈ �, when
k ≥ k0, (5.4) holds. Therefore, for almost all ω ∈ �, if k ≥ k0 and kδ ≤ t ≤ (k + 1)δ,
we can obtain

ln(1 + u(t))α

ln t
≤ (1 + ε) ln kδ

ln kδ
= 1 + ε.
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Thus,

lim sup
t→∞

ln(1 + u(t))α

ln t
≤ 1 + ε a.s..

Letting ε → 0, yields

lim sup
t→∞

ln(1 + u(t))α

ln t
≤ 1 a.s..

For 1 < α < 2D
(σ ∗

1 )2∨(σ ∗
2 )2

+ 1, we have D > α−1
2 [(σ ∗

1 )2 ∨ (σ ∗
2 )2], so

lim sup
t→∞

ln u(t)

ln t
≤ lim sup

t→∞
ln(1 + u(t))

ln t
≤ 1

α
a.s..

That is to say, for any small 0 < ξ < 1 − 1
α
, there exists a constant T = T (ω) and a

set �ξ such that P(�ξ ) ≥ 1 − ξ and for any t ≥ T , ω ∈ �ξ , we have

ln u(t) ≤
(
1

α
+ ξ

)
ln t

and so

lim sup
t→∞

u(t)

t
≤ lim sup

t→∞
t
1
α
+ξ

t
= lim sup

t→∞
t
1
α
+ξ−1 = 0,

which together with the positive of the solution implies

lim
t→∞

u(t)

t
= lim

t→∞
δS(t) + x(t)

t
= 0 a.s. (5.5)

Together with the positive of the solution and (5.5), we have

lim
t→∞

S(t)

t
= 0, lim

t→∞
x(t)

t
= 0 a.s..

This completes the proof. ��

Lemma 5.2 Assume 2D > (σ ∗
1 )2 ∨ (σ ∗

2 )2. Let (S(t), x(t)) be the solution of system
(1.3) with any initial value (S(0), x(0)) ∈ R

2+, then

lim
t→∞

∫ t
0 S(s)dB1(s)

t
= 0, lim

t→∞

∫ t
0 x(s)dB2(s)

t
= 0.
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Proof Let M(t) = ∫ t
0 S(s)dB1(s), N (t) = ∫ t

0 x(s)dB2(s) and 2 < α < 2D
(σ ∗

1 )2∨(σ ∗
2 )2

+
1. By Burkholder-Davis-Gundy inequality [30] and (5.3), we have

E[sup0≤s≤t |M(s)|α] ≤ CαE[∫ t
0 S2(r)dr ] α

2

≤ Cαt
α
2 E[sup0≤r≤t S

2(r)] α
2

= Cα

δα t
α
2 E[sup0≤r≤t δ

αSα(r)]
≤ 2M Cα

δα t
α
2 .

Let εM be an arbitrary positive constant, then according to Doob’s martingale inequal-
ity [30], we have

P{ω : supkδ≤t≤(k+1)δ |M(t)|α > (kδ)1+εM+ α
2 } ≤ E[supkδ≤t≤(k+1)δ |M(t)|α]

(kδ)1+εM+ α
2

≤ 2M Cα
δα

((k+1)δ)
α
2

(kδ)1+εM+ α
2

≤ 21+
α
2 M Cα

δα

(kδ)1+εM
(k = 1, 2, ...).

So by Borel-Cantelli lemma [30], for almost all ω ∈ �, we can obtain that

sup
kδ≤t≤(k+1)δ

|M(t)|α ≤ (kδ)1+εM+ α
2 (5.6)

holds for all but finitely many k. Thus, there exists a positive kM0(ω), for almost all
ω ∈ �, whenever k ≥ kM0 , (5.6) holds. Therefore, for almost all ω ∈ �, if k ≥ kM0

and kδ ≤ t ≤ (k + 1)δ, we have

ln |M(t)|α
ln t

≤ (1 + εM + α
2 ) ln(kδ)

ln(kδ)
= 1 + εM + α

2
.

Therefore,

lim sup
t→∞

ln |M(t)|
ln t

≤ 1 + εM + α
2

α
.

Letting εM → 0, we have

lim sup
t→∞

ln |M(t)|
ln t

≤ 1 + α
2

α
= 1

2
+ 1

α
.

Then, for any small 0 < η < 1
2 − 1

α
, there exist a constant T̄ = T̄ (ω) > 0 and a set

�η, such that P(�η) ≥ 1 − η and for t ≥ T̄ , ω ∈ �η, we have

ln |M(t)| ≤ (
1

2
+ 1

α
+ η) ln t,
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and so

lim sup
t→∞

M(t)

t
≤ lim sup

t→∞
t
1
2+ 1

α
+η

t
= 0.

Together with lim inf t→∞ |M(t)|
t ≥ 0, then

lim
t→∞

|M(t)|
t

= 0 a.s..

Therefore

lim
t→∞

M(t)

t
= 0 a.s..

Similarly, we can obtain

lim
t→∞

N (t)

t
= 0 a.s..

This finishes the proof. ��
Lemma 5.3 (The strong law of large number for local martingale [31]) Let M =
{Mt }t≥0 be a real-valued continuous local martingale vanishing at t = 0. Then

lim
t→∞〈M, M〉t = ∞ a.s. ⇒ lim

t→∞
Mt

〈M, M〉t = 0 a.s.

and also

lim sup
t→∞

〈M, M〉t
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

Theorem 5.1 Let (S(t), x(t)) be the solution of stochastic periodic system (1.3) with
the initial value (S(0), x(0)) ∈ R

2+. Assume the following conditions hold

2D > (σ ∗
1 )2 ∨ (σ ∗

2 )2

and

R = m(S0 + b〈e〉T )

aD1
> 1,

then the microorganism x will be extinct with probability one, that is to say,

lim
t→+∞ x(t) = 0 a.s.
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Moreover, we have

S0 + be∗ ≤ lim
t→+∞〈S〉t = S0 + b〈e〉T ≤ S0 + be∗ a.s..

Proof From model (1.3), we have

δ(S(t)−S(0))
t = δDS0 + δDb〈e〉t − δD〈S〉t − 1

t
∫ t
0

mS(s)x(s)
a+S(s) ds + 1

t
∫ t
0 δσ1(s)S(s)dB1(s),

x(t)−x(0)
t = 1

t
∫ t
0

mS(s)x(s)
a+S(s) ds − D1〈x〉t + 1

t
∫ t
0 σ2(s)x(s)dB2(s).

Then

δ(S(t)−S(0))
t + x(t)−x(0)

t = δDS0 + δDb〈e〉t − δD〈S〉t − D1〈x〉t
+ 1

t

∫ t
0 σ1(s)S(s)dB1(s) + 1

t

∫ t
0 σ2(s)x(s)dB2(s).

It is easy to obtain

〈S〉t = S0 + b〈e〉t − D1

δD
〈x〉t + Q(t),

where

Q(t) = 1

δD

1

t

∫ t

0
σ1(s)S(s)dB1(s) + 1

δD

1

t

∫ t

0
σ2(s)x(s)dB2(s) − 1

D

S(t) − S(0)

t

− 1

δD

x(t) − x(0)

t
.

According to Lemmas 5.1, 5.2 and 5.3, we know that

lim
t→∞ Q(t) = 0 a.s. (5.7)

From the second equation of system (1.3), we can obtain by Itô formula

d ln x(t) =
(

mS

a + S
− D1 − 1

2
σ 2
2 (t)

)
dt + σ2(t)dB2(t). (5.8)

Integrating (5.8) from 0 to t and dividing t on both sides, we obtain

ln x(t)−ln x(0)
t = 1

t

∫ t
0

mS
a+S ds − D1 − 1

2
1
t

∫ t
0 σ 2

2 (s)ds + 1
t

∫ t
0 σ2(s)dB2(s)

≤ 1
t

∫ t
0

mS
a ds − D1 + 1

t

∫ t
0 σ2(s)dB2(s)

= m
a 〈S〉t − D1 + 1

t

∫ t
0 σ2(s)dB2(s).

Therefore,

ln x(t)
t ≤ mS0

a + mb〈e〉t
a − mD1〈x〉t

δaD + mQ(t)
a − D1 + 1

t

∫ t
0 σ2(s)dB2(s) + ln x(0)

t

≤ mS0
a + mb〈e〉t

a + mQ(t)
a − D1 + 1

t

∫ t
0 σ2(s)dB2(s) + ln x(0)

t .
(5.9)
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Taking the limit superior of both sides of (5.9) and using Lemma 4.2 and (5.7), we
can get

lim supt→∞
ln x(t)

t ≤ mS0
a + mb〈e〉t

a − D1

= D1

(
m(S0+b〈e〉T )

aD1
− 1

)
:= D1(R − 1),

(5.10)

where R = m(S0+b〈e〉T )
aD1

, obviously, when R > 1, lim supt→∞
ln x(t)

t < 0, that is to
say, limt→∞ x(t) = 0 a.s. Thus,

lim
t→+∞〈S〉t = S0 + b〈e〉T .

Naturally, we have

S0 + be∗ ≤ lim
t→+∞〈S〉t = S0 + b〈e〉T ≤ S0 + be∗.

This completes the proof. ��

6 Existence and Global Attraction of the Boundary Periodic Solution

In this section, wewill give the existence and global attraction of the boundary periodic
solution of stochastic system (1.3). First, we give two Lemmas as follows.

Lemma 6.1 Consider the following stochastic differential equation

dY (t) = D(S0 + be(t) − Y (t))dt + σ1(t)Y (t)dB1(t) (6.1)

with initial value Y (0) = S(0), where e(t) and σ1(t) are T−periodic functions defined
on [0,∞). Then (6.1) has a positive periodic solution Yp(t), which is globally attrac-
tive, i.e. attracts all other positive solutions of (6.1).

Proof The proof is similar to Theorem 4.1, we need to find a C2−function V (t,Y ) as
follows:

V (t,Y ) = Y − 1 − ln Y + ν(t),

where ν(t) is a T−periodic functions defined on [0,∞) and satisfies

ν̇(t) = 〈Dbe(t) + 1

2
σ 2
1 (t)〉T − Dbe(t) − 1

2
σ 2
1 (t), ν1(0) = 0.
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By Itô formula, we have

LV (t,Y ) = (1 − 1
Y )[D(S0 + be(t) − Y )] + 1

2σ
2
1 (t) + ν̇(t)

= DS0 + Dbe(t) − DY − DS0
Y − Dbe(t)

Y + D + 1
2σ

2
1 (t) + ν̇(t)

≤ DS0 − DY − DS0
Y + D + 〈Dbe(t) + 1

2σ
2
1 (t)〉T

:= ϕ(Y ).

It is obvious that ϕ(Y ) → −∞ when Y → 0+ or Y → +∞. Thus, we can take ε > 0
small enough and letU = [ε, 1

ε
], and we have LV (t,Y ) < −1,Y ∈ R\U . Then (6.1)

has a positive T−periodic solution Yp(t). Next, we will prove that Yp(t) is globally
attractive. Because Yp(t) is the solution of (6.1), then we can get

d(Y (t) − Yp(t)) = −D(Y (t) − Yp(t))dt + σ1(t)(Y (t) − Yp(t))dB1(t).

Therefore,

Y (t) − Yp(t) = (Y (0) − Yp(0))e
− ∫ t

0 (D+ 1
2 σ 2

1 (s))ds+M̃(t),

where

M̃(t) =
∫ t

0
σ1(s)dB1(s)

and M̃(t) is a local martingale whose quadratic variation is

〈M̃(t), M̃(t)〉 =
∫ t

0
σ 2
1 (s)ds ≤ (σ ∗

1 )2t .

According to the strong law of large number for local martingales (Lemma 5.3), we
have

lim
t→+∞

M̃(t)

t
= 0 a.s. (6.2)

Thus,

ln |Y (t) − Yp(t)| = ln |Y (0) − Yp(0)| −
∫ t

0
(D + 1

2
σ 2
1 (s))ds + M̃(t). (6.3)

Consequently,

ln |Y (t) − Yp(t)|
t

= ln |Y (0) − Yp(0)|
t

− 1

t

∫ t

0
(D + 1

2
σ 2
1 (s))ds + M̃(t)

t
. (6.4)
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Take limits in (6.4) and together with (6.3), we can get

lim
t→∞

ln |Y (t) − Yp(t)|
t

= −〈D + 1

2
σ 2
1 (s)〉T < 0.

This implies that Y (t)−Yp(t) → 0 a.s., so the T−periodic solution Yp(t) is globally
attractive. This completes the proof. ��
Lemma 6.2 Let Y (t) be the solution of (6.1) with the initial value Y (0) ∈ R+. If
2D > (σ ∗

1 )2, then

lim
t→∞

Y (t)

t
= 0, lim

t→∞
1

t

∫ t

0
σ1(s)Y (s)dB1(s) = 0.

Moreover,

lim
t→∞

1

t

∫ t

0
Y (s)ds = S0 + b〈e(t)〉T ,

that is

S0 + be∗ ≤ lim
t→∞

1

t

∫ t

0
Y (s)ds ≤ S0 + be∗.

Proof Define a C2−function V (Y (t)) = (1 + Y (t))β , where β is a positive constant
and satisfies 1 < β < 2D

(σ ∗
1 )2

+ 1. Thus, we have

dV (Y (t)) = LV (Y (t))dY (t) + β(1 + Y (t))β−1σ1(t)Y (t)dB1(t),

where

LV (Y (t)) = β(1 + Y (t))β−1D(S0 + be(t) − Y (t)) + β(β−1)
2 (1 + Y (t))β−2σ 2

1 (t)Y 2(t)

= β(1 + Y (t))β−2
[
(1 + Y (t))D(S0 + be(t) − Y (t)) + β−1

2 σ 2
1 (t)Y 2(t)

]
≤ β(1 + Y (t))β−2

[
−

(
D − β−1

2 (σ∗
1 )2

)
Y 2(t)

+(D(S0 + be∗) − D)Y (t) + D(S0 + be∗)
]

:= β(1 + Y (t))β−2[− ÂY 2(t) + (B̂ − D)Y (t) + B̂],

where

Â = D − β − 1

2
(σ ∗

1 )2

and

B̂ = D(S0 + be∗).
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The following part of the proof is similar to Lemmas 5.1 and 5.2, so we omit it, and
we can get

lim
t→∞

Y (t)

t
= 0, lim

t→∞
1

t

∫ t

0
σ1(s)Y (s)dB1(s) = 0.

For (6.1), we have

Y (t) − Y (0)

t
= DS0 + Db〈e(t)〉t − D〈Y (t)〉t + 1

t

∫ t

0
σ1(s)Y (s)dB1(s).

Therefore,

0 = limt→∞ Y (t)
t

= limt→∞ Y (0)
t + DS0 + Db limt→∞ 1

t

∫ t
0 e(s)ds

−D limt→∞ 1
t

∫ t
0 Y (s)ds + limt→∞ 1

t

∫ t
0 σ1(s)Y (s)dB1(s)

= DS0 + Db limt→∞ 1
t

∫ t
0 e(s)ds − D limt→∞ 1

t

∫ t
0 Y (s)ds

= DS0 + Db〈e(t)〉T − D limt→∞ 1
t

∫ t
0 Y (s)ds.

Thus,

lim
t→∞

1

t

∫ t

0
Y (s)ds = S0 + b〈e(t)〉T .

Obviously, we can obtain that

S0 + be∗ ≤ lim
t→∞

1

t

∫ t

0
Y (s)ds ≤ S0 + be∗.

��
Theorem 6.1 If 2D > (σ ∗

1 )2 and mη
a+η

− 〈D1 + 1
2σ

2
2 (t)〉T < 0 hold, then (Yp(t), 0) is

the boundary periodic solution of system (1.3), which is globally attractive, where

η = S0 + be∗.

Proof FromTheorem 3.1, we know that the solution of the stochastic chemostat model
(1.3) is global, unique and positive. Then, we have

dS(t) =
[
(S0 + be(t) − S(t))D − m

δ
S(t)x(t)
a+S(t)

]
dt + σ1(t)S(t)dB1(t)

≤ (S0 + be(t) − S(t))Ddt + σ1(t)S(t)dB1(t).

By the comparison theorem for stochastic differential equation, we have

S(t) ≤ Y (t), t ∈ [0,+∞) a.s..
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Thus,

lim sup
t→∞

1

t

∫ t

0
S(s)ds ≤ lim sup

t→∞
1

t

∫ t

0
Y (s)ds ≤ S0 + be∗ := η.

We note that φ(S(t)) = mS(t)
a+S(t) is a concave function, so

1

t

∫ t

0
φ(S(s))ds ≤ φ

(
1

t

∫ t

0
S(s)ds

)
.

Let V (x(t)) = ln x(t), and using Itô formula, we can obtain

ln x(t) − ln x(0) =
∫ t

0

mS(s)

a + S(s)
ds −

∫ t

0
(D1 + 1

2
σ 2
2 (s))ds +

∫ t

0
σ2(s)dB2(s).

That is to say

ln x(t)
t = ln x(0)

t + 1
t

∫ t
0

mS(s)
a+S(s)ds − 1

t

∫ t
0 (D1 + 1

2σ
2
2 (s))ds + 1

t

∫ t
0 σ2(s)dB2(s).

(6.5)

Taking limits in (6.5), we have

lim supt→∞
ln x(t)

t ≤ lim supt→∞ φ
(
1
t

∫ t
0 S(s)ds

)
− 〈D1 + 1

2σ
2
2 (t)〉T

≤ φ
(
lim supt→∞ 1

t

∫ t
0 Y (s)ds

)
− 〈D1 + 1

2σ
2
2 (t)〉T

≤ mη
a+η

− 〈D1 + 1
2σ

2
2 (t)〉T .

(6.6)

Thus, when mη
a+η

− 〈D1 + 1
2σ

2
2 (t)〉T < 0, we have limt→∞ x(t) = 0 a.s.. That is to

say, for any small τ > 0, there exists a positive constant t0 and a set �τ ∈ � such that
P(�τ ) > 1 − τ and x(t) < τ for any t > t0 and ω ∈ �τ . From the first equation of
system (1.3), we can get that for any t > t0 and ω ∈ �τ

dS(t) =
[
D(S0 + be(t) − S(t)) − mS(t)x(t)

δ(a+S(t))

]
dt + σ1(t)S(t)dB1(t)

≥ [
D(S0 + be(t) − S(t)) − mτ

δ

]
dt + σ1(t)S(t)dB1(t)

(6.7)

Let Ỹ (t) be the solution of the equation

dỸ (t) =
[
D(S0 + be(t) − Ỹ (t)) − mτ

δ

]
dt + σ1(t)Ỹ (t)dB1(t)

with initial value Ỹ (0) = S(0). According to the stochastic comparison theorem of
stochastic differential equation, we can get that for almost all ω ∈ �τ and t > t0,

Ỹ (t) ≤ S(t) ≤ Y (t).
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When τ → 0, we have

lim
t→∞ |Ỹ (t) − Y (t)| = 0 a.s.,

where Y (t) is the solution of (6.1) with initial value Y (0) = S(0). Then we can get

lim
t→∞ |S(t) − Y (t)| = 0 a.s.,

According to the global attraction of Yp(t), we have

lim
t→∞ |S(t) − Yp(t)| = 0 a.s..

Therefore, the boundary periodic solution (Yp(t), 0) of system (1.3) is globally attrac-
tive. ��

7 Numerical Simulations and Conclusions

In order to verify the correctness of the theoretical results obtained in this paper, we
will give the numerical simulations of stochastic chemostat model (1.3) with periodic
nutrient input and periodic interference and its corresponding deterministic chemostat
model (1.2).

By the Milstein’s higher order method [33], we can get the discretized equations
of model (1.3) as follows:

⎧⎪⎪⎨
⎪⎪⎩

Si+1 = Si +
(
(S0 + be(i�t) − Si )D − mSi xi

δ(a+Si )

)
�t + Si

(
σ1(i�t)ξi

√
�t + σ 2

1 (i�t)
2 (ξ2i − 1)�t

)
,

xi+1 = xi +
(
−D1xi + mSi xi

a+Si

)
�t + xi

(
σ2(i�t)ηi

√
�t + σ 2

2 (i�t)
2 (η2i − 1)�t

)
.

(7.1)

where ξi , ηi (i = 1, 2, ....) are independent N(0, 1)−distributed Gaussian random
variables, and the periodicity of parameters e(t), σ1(t), σ2(t) are represented by sin
functions.

Example 7.1 When the conditions of Theorem 4.1 is satisfied, in order to verify the
existence of nontrivial positive periodic solution for system (1.3), we assume that the
parameters of system (1.3) are taken as follows S0 = 5.0, D = 1, a = 2, b = 1,m =
3, D1 = 1.2, δ = 0.5, σ1(t) = 0.2 + 0.1 sin 4t, σ2(t) = 0.2 + 0.1 sin 4t, e(t) =
2 sin 4t and initial values are S(0) = 0.4, x(0) = 0.1. By calculation, we find that

ma
D(S0)2

= 0.2400, so we can let c1 = 0.25. At this moment, λ = mS0

a+S0
− D1 −

〈R0〉T = 0.8922 > 0.According to Theorem4.1, system (1.3) has a nontrivial positive
T−periodic solution. The numerical simulations are given in Fig. 1. From Fig. 1a and
b, we can find that the solution of the deterministic model (1.2) is periodic, and the
solution of stochastic system (1.3) will oscillate around the solution of deterministic
system (1.2), which means the microorganism x can survive in chemostat. The Fig. 1c
is the two dimensional phase diagram of S(t) and x(t). From Fig. 1c, we can see easily
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Fig. 1 Numerical simulations of the solution of system (1.2) and (1.3). a Sample paths of S(t); b Sample
paths of x(t); c The phase diagram of S and x

that global dynamics of system (1.2) and (1.3). For given initial value, the solution
of deterministic system (1.2) will trend to the periodic orbit after some time, and
the solution of stochastic system (1.3) will fluctuate in a small neighborhood of the
periodic orbit.

Example 7.2 According toTheorem5.1, in order to verify the extinctionofmicroorgan-
ism,we assume that the parameters of system (1.3) are taken as follows S0 = 1.0, D =
4, a = 2, b = 0.5,m = 3, D1 = 4.2, δ = 0.5, σ1(t) = 0.2 + 0.1 sin 4t, σ2(t) =
0.2 + 0.1 sin 4t, e(t) = 2 sin 4t and initial values are S(0) = 0.4, x(0) = 0.1. By

calculation, we find that 2D = 8 > (σ ∗
1 )2 ∨ (σ ∗

2 )2 = 0.09, and R = m(S0+b〈e〉T )
aD1

=
0.3571 < 1. Thus, from Theorem 5.1, we know that limt→+∞ x(t) = 0 a.s., that is
to say, the microorganism x will be extinct with probability one (see Fig. 2b). Mean-
while, we have S0 + be∗ = 0 ≤ limt→+∞〈S〉t = S0 + b〈e〉T ≤ S0 + be∗ = 2 a.s.,
which means the solution S(t) of the deterministic model (1.2) is still periodic, and
the solution S(t) of stochastic system (1.3) will oscillate around the solution S(t) of
deterministic system (1.2), and the amplitude of periodic oscillation is between 0 and
2 almost surely (see Fig. 2a). The Fig. 2c is the two dimensional phase diagram of
S(t) and x(t), from Fig. 2c, we can see more intuitively that the solution of stochastic
system (1.3) and deterministic model (1.2) will eventually tend to S-axis.
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Fig. 2 Numerical simulations of the solution of system (1.2) and (1.3). a Sample paths of S(t); b Sample
paths of x(t); c The phase diagram of S and x

Example 7.3 According to Theorem 6.1, in order to verify the existence and global
attractiveness of boundary periodic solution for system (1.3), we assume that the
parameters of system (1.3) are taken as follows S0 = 3.0, D = 2, a = 2, b = 1,m =
3, D1 = 2.5, δ = 0.5, σ1(t) = 0.2 + 0.1 sin 4t, σ2(t) = 0.2 + 0.1 sin 4t, e(t) =
2 sin 4t and initial values are S(0) = 0.4, x(0) = 0.1. By calculation, we find that
2D = 4 > (σ ∗

1 )2 = 0.09, and mη
a+η

− 〈D1 + 1
2σ

2
2 (t)〉T = −0.3796 < 0. Thus, from

Theorem 6.1, we know that system (1.3) has a boundary periodic solution (Yp(t), 0)
(see Fig. 3). In order to verify that the boundary periodic solution (Yp(t), 0) is glob-
ally attractive, we keep the system parameters unchanged and observe the numerical
simulation of the model (1.2) and (1.3) by choosing different initial values. We chose
two initial values, respectively, they are

S(0) = 10, x(0) = 1

and

S(0) = 2, x(0) = 2.

Under the condition of two different initial values, we get two sample paths of S(t) and
x(t) (see Fig. 4). From Fig. 4, we can see that although the sample paths of S(t) and
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Fig. 3 Numerical simulations of the solution of system (1.2) and (1.3). a Sample paths of S(t); b Sample
paths of x(t); c The phase diagram of S and x

x(t) are different in the initial period of time, after some time, the sample paths of S(t)
and x(t) under different initial values will eventually tend to the same curve, which
shows that the boundary equilibrium point (Yp(t), 0) of the system (1.3) is globally
attractive.

8 Conclusions

In this paper, we mainly consider the stochastic periodic behavior of a chemostat
model with periodic nutrient input and periodic random perturbation. We first prove
the existenceof global uniquepositive solution for stochastic non-autonomousperiodic
chemostat system (Theorem 3.1). Then we prove that system (1.3) has a nontrivial
positive periodic solution under some conditions (Theorem 4.1). Meanwhile, we also
get the existence of boundary periodic solution (Yp(t), 0) of system (1.3) when 2D >

(σ ∗
1 )2 and mη

a+η
− 〈D1 + 1

2σ
2
2 (t)〉T < 0, and we prove (Yp(t), 0) is globally attractive

(Theorem 5.1). Here, we should note that these conditions are sufficient conditions,
not necessary conditions. Finally, we verify the main results by numerical simulation,
and from the simulation results, we can see more intuitively the stochastic periodic
behavior of the solution of system (1.2) and (1.3) under different conditions.
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Fig. 4 Numerical simulations of the solution of system (1.2) and (1.3) under different initial values. a
Sample paths of S(t) under different initial values; b Sample paths of x(t) under different initial values; c
The phase diagram of S and x under different initial values

From the conclusion of this paper, the existence of natural environmental noise
plays a harmful role in the growth of microorganisms. We find that larger noises will
lead to the extinction of microorganisms. However, the constructive role of noise in
nonlinear systems, such as noise induced resonances [34–36], noise enhanced stabil-
ity [37–39], etc., has been extensively investigated theoretically and experimentally
recently. For example, In [40], Zu et al. concluded that small white noise can reduce the
extinction risk of population by analyzing a stochastic toxin-mediated predator–prey
model. Guarcello et al. [41, 42] explored the effect of noise on the ballistic graphene-
based Josephson junctions underGaussian noise and non-Gaussian noise and observed
resonant activation and noise induced stability.

From a long-term perspective, we can also study some multi-species competition
stochastic chemostat models with periodic nutrient input and periodic perturbation,
or consider the influence of color noise on the dynamical behavior of stochastic non-
autonomous microbial culture model.
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