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Abstract
In this paper, we consider a class of evolution equations driven by finite-dimensional
γ -Hölder rough paths, where γ ∈ (1/3, 1/2]. We prove the global-in-time solutions
of rough evolution equations (REEs) in a sutiable space, also obtain that the solutions
generate random dynamical systems. Meanwhile, we derive the existence of local
unstable manifolds for such equations by a properly discretized Lyapunov–Perron
method.

Keywords Rough evolution equations · Random dynamical system · Unstable
manifolds · Lyapunov–Perron method

Mathematics Subject Classification 60H15 · 60H05 · 37H10 · 37D10

1 Introduction

Invariant manifolds are one of the cornerstones of nonlinear dynamical systems and
have been widely studied in deterministic systems. However, in practical applications,
nonlinear dynamical systems are always affected by noises. Invariant manifolds have
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been widely studied for stochastic ordinary differential equations(SDEs) (see [1, 4, 5])
and stochastic partial differential equations (SPDEs) (see Chen et al. [6, 8, 9, 14]). One
of the key difficulties in studying invariant manifolds of a stochastic partial differential
equation is to prove that it generates a random dynamical system. As we all known
that a large class of partial differential equations with stationary random coefficients
and Itô stochastic ordinary differential equations generate random dynamical systems
(see Arnold [1]). Nevertheless, for stochastic partial differential equations driven by
the standard Brownian motion, it is unknown that how to obtain random dynamical
systems. The reasons are: (i) the stochastic integral is only defined almost surely where
the exceptional set may depend on the initial state; (ii) Kolmogorov’s theorem is only
true for finite dimensional random fields. However, there are some results for additive
and linear multiplicative noise (see [8–10]).

A way to obtain a random dynamical system for a stochastic differential equation is
that this equation is driven by γ -Hölder continuous paths. In this sense, there are two
techniques of defining the stochastic integral that are in pathwise sense. For γ > 1/2,
these integrals are consistent with the well-known Young integral (see Young [26]
and Zähle [27]). One of the techniques is to define the integral based on fractional
derivatives. There are already some investigations which have proven that the (path-
wise) solutions driven by fractional Brownian motion with γ > 1/2 generate random
dynamic systems, obtained that the existence of random attractors and invariant mani-
folds that describe the longtime behaviors of the solutions (seeChen et al. [7], Gao et al.
[12], Garrido-Atienza et al. [13, 14]). For 1/3 < γ < 1/2, Garrido-Atienza et al. [15]
have obtained random dynamical systems for stochastic evolution equations driven by
multiplicative fractional Brownian motion; Another one is to interpret integral in the
rough path sense. Rough path theory (see [11, 16, 17, 23]) is close to deterministic
analytical methods, Bailleul [2] analyzed flows driven by rough paths and Bailleul et
al. [3] studied random dynamical systems for rough differential equations. Kuehn and
Neamţu [24] have proven the existence and regularity of local center manifolds for
rough differential equations by means of a suitably discretized Lyapunov–Perron-type
method. Gubinelli and Tindel [18] generalised theory of rough paths to solve not only
SDEs but also SPDEs: evolution equations driven by the infinite dimensional Gaussian
process. Gerasimovičs andHairer [16] have developed a pathwise local solution theory
for a class semilinear SPDEs with multiplicative noise driven by a finite dimensional
Wiener process. Hesse and Neamţu [19, 20] have investigated local, global mild solu-
tions and random dynamical systems for rough partial differential equations. Recently,
Hesse and Neamţu [21] have obtained global-in-time solutions and random dynami-
cal systems for semilinear parabolic rough partial differential equations. Furthermore,
based on the structure of solution in [21], Neamţu and Kuehn [22] have derived the
center manifolds for rough partial differential equations.

However, so far, there are littleworks relate to unstablemanifolds of rough evolution
equations. Therefore, in this paper, based on [6, 14, 16, 21, 22] and [24], we are going
to study random dynamical systems and local unstable manifolds for (2.2). In order to
overcome the obstacle that how to obtain random dynamical systems of SPDEs with
nonlinear multiplicative noises, similar to [21] and [24], we choose a proper space
that is different from [16] and [22], give a simpler proof of the local solutions for
rough evolution equations than [16] and obtain the global solutions, also, we obtain
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random dynamical systems by using the rough integral developed in [16] and rough
path cocycle of [3]. Meanwhile, we obtain the contraction properties of the Lyapunov–
Perron operator by using rough path estimates.Moreover, by using properly discretized
Lyapunov–Perron method, we derive the existence of local unstable manifolds for
rough evolution equations.

This paper is structured as follows. In Sect. 2 we provide background on mildly
controlled rough paths and study the global solutions of rough evolution equations.
Section3 is devoted to dynamics of rough evolution equations. In Sect. 4 we derive the
existence of local unstable manifolds which are based on a discrete-time Lyapunov–
Perron method. Since we work with pathwise integral, so, at each step, it is necessary
to control the norms of the random input on a fixed time-interval. By deriving suitable
estimates of themildly controlled rough integrals, the unstablemanifolds is obtainedby
employing a randomdynamical systems approach. The results obtained for the discrete
Lyapunov–Perronmap can then be extended to the time-continuous one (further details
please refer to [14, 24]).

2 Rough evolution equations

Throughout this paper, let T > 0, we consider a separable Hilbert space H and
A is a generator of analytic C0-semigroup {St : t ≥ 0} on the interpolation space
(Hα = Dom(−A)α;α ∈ R). We will use the following fact that for all α ≥ β,
γ ∈ [0, 1] and u ∈ Hβ , one has

‖Stu‖Hα
≤ Cβ t

β−α‖u‖Hβ
, ‖Stu − u‖Hβ−γ

≤ Cγ t
γ ‖u‖Hβ

(2.1)

uniformly over t ∈ (0, T ]. For an introduction to semigroup theory, one can refer to
[25].

Notation:We denoteHd
α := L(Rd ,Hα)

(
Hd×d

α := L(Rd ⊗ R
d ,Hα)

)
as the space

of continuously linear operators from R
d(Rd ⊗ R

d) to Hα . For some fixed α, β ∈ R

and k ∈ N, we denote Ckα,β(H,Hn) as the space of k-order continuously Fréchet-
differentiable functions g : Hθ → Hn

θ+β for any θ ≥ α, n ∈ N with bounded

derivatives Dig, for all i = 1, · · ·, k. Furthermore, we denote Cα,β(H,H) as the space
of continuous functions f : Hθ → Hθ+β for any θ ≥ α. Cn([0, T ]; V ) as the space of
continuous functions from�n to V where�n := {(t1, ···, tn) : T ≥ t1 ≥ ··· ≥ tn ≥ 0}
for n ≥ 1 and, for notational simplicity, denote C([0, T ]; V ) = C1([0, T ]; V ). C
stands for a universal constant which may vary from line to line, the dependence of
this constant C = C·,·,··· on certain parameters will be explicitly stated in subscripts.

In this article, we will consider rough evolution equations

{
dyu = (Ayu + f (yu)) du + g(yu)dwu, u ∈ [0, T ],
y0 = ξ ∈ H,

(2.2)

where we assume:

• f ∈ C−2γ,0(H,H) is global Lipschitz continuous,
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• g ∈ C3−2γ,0(H,Hd) and such that ‖g(0)‖Hd
θ

= C0 for θ ≥ −2γ ,

• w is a γ -Hölder rough path with γ ∈ ( 13 ,
1
2 ] that will be defined as below.

The mild solution of (2.2) can be given by

yt = Stξ +
∫ t

0
Stu f (yu)du +

∫ t

0
Stug(yu)dwu, (2.3)

where the last integral is rough integral, which is pathwise, will be defined below. From
now on, for notational simplicity, we denote Sts := St−s for 0 ≤ s < t ≤ T . In this
section,wewill prove the global in time solution of (2.2) and its truncated equation, this
is essential for one to consider the invariant manifolds for rough evolution equation.

First of all, we review some concepts and results on rough path theory, for more
details, please refer to [11] and [16]. Given a Banach space V endowed with the norm
‖ · ‖V , for h ∈ C([0, T ]; V ), p ∈ C2([0, T ]; V ), let

δht,s = ht − hs, δ pt,u,s = pt,s − pt,u − pu,s .

δ̂ht,s = ht − Stshs, δ̂ pt,u,s = pt,s − pt,u − Stu pu,s .

Notice that V is one of the spaces in which the action of the semigroup S makes sense.
Then, for 0 < γ < 1 we set

|h|γ,V = sup
s,t∈[0,T ]

‖δht,s‖V
|t − s|γ , ‖h‖γ,V = sup

s,t∈[0,T ]
‖δ̂ht,s‖V
|t − s|γ ,

|p|γ,V = sup
s,t∈[0,T ]

‖pt,s‖V
|t − s|γ .

Consequently, one can define the spaces as below:

Cγ ([0, T ]; V ) = {h ∈ C([0, T ]; V ) : |h|γ,V < ∞},
Cγ
2 ([0, T ]; V ) = {p ∈ C2([0, T ]; V ) : |p|γ,V < ∞},

Ĉγ ([0, T ]; V ) = {h ∈ C([0, T ]; V ) : ‖h‖γ,V < ∞}.

Remark 2.1 Since the semigroup S is not Hölder continuous at t = 0, hence, from
now on, we will choose δ̂ operator and Ĉγ type Hölder spaces for our evolution setting
to overcome this obstacle.

In addition, we endow C([0, T ]; V ) with the supremum norm ‖h‖∞,V =
sup0≤t≤T ‖ht‖V . For notational simplicity, in the cases of V = Hα , Hd

α or Hd×d
α ,

we will denote |h|V = |h|γ,α , ‖h‖γ,V = ‖h‖γ,α , ‖h‖∞,V = ‖h‖∞,α .

Definition 2.1 For γ ∈ ( 13 ,
1
2 ], we define the space of γ -Hölder rough paths(over Rd )

as those pairs w = (w,w2) ∈ Cγ ([0, T ];Rd) × C2γ2 ([0, T ];Rd ⊗ R
d) satisfying the
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Chen’s relation, i.e. for s ≤ u ≤ t ∈ [0, T ]

w2
t,s − w2

t,u − w2
u,s = δwu,s ⊗ δwt,u .

This space is denoted as C γ ([0, T ];Rd). For two rough paths w = (w,w2), w̃ =
(w̃, w̃2) ∈ C γ ([0, T ];Rd), we define the rough metric 	γ as:

	γ (w, w̃) = |w − w̃|γ + |w2 − w̃2|2γ .

Definition 2.2 Let w ∈ C γ ([0, T ];Rd), for some γ ∈ ( 13 ,
1
2 ], we call (y, y′) ∈

Ĉγ ([0, T ];Hα) × Ĉγ
([0, T ];Hd

α

)
a mildly controlled rough path, if the remainder

term Ry is defined by

Ry
t,s = δ̂yt,s − Sts y

′
sδwt,s, for s ≤ t ∈ [0, T ], (2.4)

which belongs to C2γ2 ([0, T ];Hα), then we call y′ mildly Gubinelli derivative of y

and denote (y, y′) ∈ D
2γ
S,w ([0, T ];Hα).

Notice that, when one replacesHα byHd
α , the above definition is also true. Mean-

while, a seminorm on this space is defined as

‖y, y′‖w,2γ,α = ‖y′‖γ,α + |Ry |2γ,α.

The norm of D2γ
S,w ([0, T ];Hα) is defined as

‖y, y′‖
D2γ

S,w

= ‖y0‖Hα
+ ‖y′

0‖Hd
α

+ ‖y, y′‖w,2γ,α.

Remark 2.2 [22] have used controlled rough path given in [21] which is different from
the one we use. Here we incorporate semigroup into the definition of controlled rough
path as in [16].

According to (2.4), one can easily derive that

‖y‖γ,α ≤ |Ry |2γ,αT
γ + ‖y′‖∞,α|w|γ ≤ (1 + |w|γ )(‖y′

0‖Hd
α

+ ‖y, y′‖w,2γ,αT
γ ).

(2.5)
Furthermore, given a mildly controlled rough path, one can define the rough integral
as below:

Theorem 2.1 Let T > 0 and w ∈ C γ ([0, T ];Rd) for some γ ∈ ( 13 ,
1
2 ]. Let (y, y′) ∈

D
2γ
S,w([0, T ];Hd

α). Furthermore, P stands for a partition of [0, T ]. Then the integral
defined as ∫ t

s
Stu yudwu := lim

|P |→0

∑

[u,v]∈P
Stu(yuδwv,u + y′

uw
2
v,u) (2.6)
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exists as an element of Ĉγ ([0, T ];Hα) and satisfies that for every 0 ≤ β < 3γ we
have ∥∥∥∥

∫ t

s
Stu yudwu − Sts ysδwt,s − Sts y

′
sw

2
t,s

∥∥∥∥
Hα+β

� (|Ry |2γ,α|w|γ + ‖y′‖γ,α|w2|2γ )|t − s|3γ−β.

(2.7)

Moreover, the map

(y, y′) → (z, z′) :=
(∫ ·

0
S·u yudwu, y

)

is continuous from D
2γ
S,w([0, T ];Hd

α) to D
2γ
S,w([0, T ];Hα). Here the underlying con-

stant depends on γ , d and T and can be chosen uniformly over T ∈ (0, 1].
In our case, one needs to consider a suitable class of nonlinearities integrands,

according to Lemma 3.14 of [16], we consider mildly controlled rough paths compose
with regular functions as follows, since the proof is identical to the one of Lemma 3.7
of [16], we omit it here.

Lemma 2.1 Let g ∈ C2α,0(H,Hd), T > 0 and (y, y′) ∈ D
2γ
S,w([0, T ];Hα), for some

w ∈ C γ ([0, T ];Rd), γ ∈ (1/3, 1/2]. Moreover, suppose y ∈ Ĉη([0, T ];Hα+2γ ),
η ∈ [0, 1] and y′ ∈ L∞([0, T ];Hd

α+2γ ). Define (zt , z′t ) = (g(yt ), Dg(yt )y′
t ), then,

(z, z′) ∈ D
2γ
S,w([0, T ];Hd

α) and satisfies the bound

‖z, z′‖w,2γ,α

≤ Cg,T (1 + |w|γ )2(1 + ‖y′
0‖Hd

α
+ ‖y, y′‖w,2γ,α)

· (1 + ‖y0‖Hα+2γ + ‖y′
0‖Hd

α
+ ‖y‖η,α+2γ + ‖y ′ ‖∞,α+2γ + ‖y, y ′ ‖w,2γ,α).

(2.8)
The constant Cg,T depends on g and the bounds of its derivatives, meanwhile, it
depends on time T , but can be chosen uniformly over T ∈ (0, 1].

According to Lemma 2.1, the composition with regular functions requires higher
spatial regularity conditions for mildly controlled rough path. Hence, in our evolution
setting, in order to obtain the global in time solutions of (2.2) in a suitable space, as
in [16], we need the following space:

D
2γ,β,η

S,w ([0, T ]);Hα)=D
2γ
S,w([0, T ];Hα) ∩ (Ĉη([0, T ];Hα+β) × L∞([0, T ];Hd

α+β)
)
,

where β ∈ R and η ∈ [0, 1]. Let (y, y′) ∈ D
2γ,β,η

S,w ([0, T ]);Hα), the seminorm of this
space is defined as:

‖y, y′‖w,2γ,β,η = ‖y‖η,α+β + ‖y′‖∞,α+β + ‖y, y′‖w,2γ,α.

The norm of this space is defined as below:

‖y, y′‖
D2γ,β,η

S,w

= ‖y0‖Hα+β
+ ‖y′

0‖Hd
α

+ ‖y‖η,α+β + ‖y′‖∞,α+β + ‖y, y′‖w,2γ,α.
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Moreover, we will denote Ĉ0 = C for η = 0.
Furthermore, from Lemma 2.1, we know that composition with regular functions

maps D
2γ,2γ,η

S,w ([0, T ];Hα) to D
2γ,2γ,0
S,w ([0, T ];Hd

α), for η ∈ [0, 1]. For notational
simplicity, we denote

D2γ,η
w ([0, T ];Hα) := D

2γ,2γ,η

S,w ([0, T ];Hα−2γ ), 0 ≤ η < γ,

the seminormandnormofD2γ,η
w ([0, T ];Hα) are respectively denoted as‖·, ·‖w,2γ,2γ,η

and ‖·, ·‖D2γ,η
w

.

Remark 2.3 Notice that, in [16], for notational simplicity, the authors have denoted
D2γ

w ([0, T ];Hα) := D
2γ,2γ,γ

S,w ([0, T ];Hα−2γ ) and considered the solution in

D2γ
w ([0, T ];H) which is differ from our case. In our situation, in order to facili-

tate the study of the global in time solution of (2.2), we will choose to consider (2.2)
in the space D2γ,η

w ([0, T ];H) which is bigger than the space D2γ
w ([0, T ];H) of [16].

Lemma 2.2 Let T > 0, g ∈ C3−2γ,0(H,Hd), (y, y′) ∈ D2γ,η
w ([0, T ];H), for some

w ∈ C γ ([0, T ];Rd) with γ ∈ ( 13 ,
1
2 ]. We have

(∫ ·

0
S·ug(yu)dwu, g(y)

)
∈ D2γ,η

w ([0, T ];H)

and
∥∥∥
∥

∫ ·
0
S·ug(yu)dwu , g(y)

∥∥∥
∥D2γ,η

w

≤ Cγ,d,T (1 + |w|γ + |w2|2γ )‖g(y), (g(y))′‖
D

2γ,2γ,0
S,w

, (2.9)

where the constant Cγ,d,T depends on γ , d and T and can be chosen uniformly over
T ∈ (0, 1].
Proof According to (2.1) and (2.7) we obtain that

∥∥∥∥R
∫ ·
0 S·ug(yu)dwu

t,s

∥∥∥∥
H−2γ

≤
∥∥∥∥

∫ t

s
Stug(yu)dwu − Stsg(ys)δwt,s − Sts(g(ys))

′w2
t,s

∥∥∥∥
H−2γ

+‖Sts(g(ys))′w2
t,s‖H−2γ

�
(
|Rg(y)|2γ,−2γ |w|γ + ‖(g(y))′‖γ,−2γ |w2|2γ

)
|t − s|3γ

+‖(g(ys))′‖Hd×d
−2γ

|w2|2γ |t − s|2γ ,

then we have

∥∥
∥R

∫ ·
0 S·ug(yu)dwu

∥∥
∥
2γ,−2γ

� T γ (|w|γ + |w2|2γ )‖g(y), (g(y))′‖w,2γ,−2γ

+|w2|2γ ‖(g(y))′‖∞,−2γ .
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Similarly, we have

∥∥∥∥

∫ t

s
Stug(yu)dwu

∥∥∥∥
H

≤
∥∥∥
∥

∫ t

s
Stug(yu)dwu − Stsg(ys)δwt,s − Sts(g(ys))

′w2
t,s

∥∥∥
∥
H

+‖Stsg(ys)δwt,s‖H + ‖Sts(g(ys))′w2
t,s‖H

�
(
|Rg(y)|2γ,−2γ |w|γ + ‖(g(y))′‖γ,−2γ |w2|2γ

)
|t − s|γ

+‖g(ys)‖Hd |w|γ |t − s|γ + ‖(g(ys))′‖Hd×d |w2|2γ |t − s|2γ ,

then
∥∥∥∥

∫ ·

0
S·ug(yu)dwu

∥∥∥∥
η,0

≤ T γ−η(|w|γ + |w2|2γ )‖g(y), (g(y))′‖w,2γ,−2γ

+T γ−η‖g(y)‖∞,0|w|γ + T 2γ−η‖(g(y))′‖∞,0|w2|2γ .

From (2.5) one has

‖g(y)‖γ,−2γ ≤ (1 + |w|γ )
(‖(g(y0))′‖Hd×d

−2γ
+ T γ ‖g(y), (g(y))′‖w,2γ,−2γ

)
.

Consequently, from above estimates we have
∥∥∥
∥

∫ ·
0
S·ug(yu)dwu , g(y)

∥∥∥
∥D2γ,η

w

� (1 + |w|γ + |w2|2γ )‖(g(y0))′‖Hd×d
−2γ

+ T γ |w2|2γ ‖(g(y))′‖γ,−2γ

+ ‖g(y)‖∞,0 + T γ−η|w|γ ‖g(y)‖∞,0 + T 2γ−η|w2|2γ ‖(g(y))′‖∞,0

+ ‖g(y0)‖Hd−2γ
+ (1 + |w|γ + |w2|2γ )T γ ‖g(y), (g(y))′‖w,2γ,−2γ

+ (|w|γ + |w2|2γ )T γ−η‖g(y), (g(y))′‖w,2γ,−2γ .

(2.10)

Finally, using (2.10), we easily obtain the desired result. ��
Lemma 2.3 Let T > 0, g ∈ C3−2γ,0(H,Hd), (y, y′) and (v, v′) ∈ D2γ,η

w ([0, T ];H),

for some w ∈ C γ ([0, T ];Rd) and there exists M > 0 such that |w|γ , |w2|2γ ,
‖y, y′‖D2γ,η

w
and ‖v, v′‖D2γ,η

w
≤ M, then the following estimate holds true

‖g(y) − g(v), (g(y) − g(v))′‖
D

2γ,2γ,0
S,w

≤ CM,g,T (1 + |w|γ )2‖y − v, (y − v)′‖D2γ,η
w

. (2.11)

The constant CM,g,T depends on M, g and the bounds of its derivatives. At the same
time, it depends on time T , but can be chosen uniformly over T ∈ (0, 1].
Proof Firstly, we give an inequality which will be used throughout the proof: for
g ∈ C3−2γ,0(H,Hd), x1, x2, x3, x4 ∈ Hθ , θ ≥ −2γ , the following bound holds

‖g(x1) − g(x2) − g(x3) + g(x4)‖Hd
θ
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≤ Cg
(‖x1 − x2 − x3 + x4‖Hθ

+ (‖x1 − x3‖Hθ
+ ‖x2 − x4‖Hθ

)‖x3 − x4‖Hθ

)
. (2.12)

Due to

‖g(yt ) − g(vt ) − Sts(g(ys) − g(vs))‖Hd−2γ

≤ ‖g(yt ) − g(vt ) − (g(ys) − g(vs))‖Hd−2γ
+ ‖(Sts − I )(g(ys) − g(vs))‖Hd−2γ

≤ ‖g(yt ) − g(vt ) − (g(ys) − g(vs))‖Hd−2γ
+ ‖(g(ys) − g(vs))‖Hd |t − s|2γ ,

so, we have

‖g(y) − g(v)‖γ,−2γ ≤ |g(y) − g(v)|γ,−2γ + T γ ‖g(y) − g(v)‖∞,0.

Similarly, we have

|g(y) − g(v)|γ,−2γ ≤ ‖g(y) − g(v)‖γ,−2γ + T γ ‖g(y) − g(v)‖∞,0.

Using (2.5) and (2.12), we derive that

|g(y) − g(v)|γ,−2γ ≤ Cg
(|y − v|γ,−2γ + (|y|γ,−2γ + |v|γ,−2γ )‖y − v‖∞,−2γ

)

≤ Cg
(‖y − v‖γ,−2γ + T γ ‖y − v‖∞,0

)

+Cg
(‖y‖γ,−2γ + T γ ‖y‖∞,0 + ‖v‖γ,−2γ

+T γ ‖v‖∞,0
)‖y − v‖∞,−2γ

≤ Cg
(‖y − v‖γ,−2γ + T γ ‖y − v‖∞,0

)

+Cg(1 + |w|γ )
(‖y′

0‖Hd−2γ
+ T γ ‖y0‖H

+T γ+η‖y‖η,0 + T γ ‖y, y′‖w,2γ,−2γ

+‖v′
0‖Hd−2γ

+ T γ ‖v0‖H + T γ+η‖v‖η,0

+T γ ‖v, v′‖w,2γ,−2γ
)‖y − v‖∞,−2γ

≤ Cg,T ,M (1+|w|γ )
(‖y−v‖γ,−2γ +‖y−v‖∞,−2γ +T γ ‖y−v‖∞,0

)
,

therefore

‖g(y) − g(v)‖γ,−2γ ≤ Cg,T ,M (1 + |w|γ )
(‖y − v‖γ,−2γ

+‖y − v‖∞,−2γ + T γ ‖y − v‖∞,0
)
.

Similarly, we can obtain that

‖Dg(y)y′ − Dy(v)v′‖γ,−2γ ≤ |Dg(y)y′ − Dg(v)v′|γ,−2γ

+‖Dg(y)y′ − Dg(v)v′‖∞,0T
γ ,

|Dg(y)y′ − Dg(v)v′|γ,−2γ ≤ |Dg(y)(y′ − v′)|γ,−2γ

+|(Dg(y) − Dg(v))v′|γ,−2γ

:= I + I I .
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I ≤ ‖Dg(y)‖∞,L(H−2γ ⊗Rd ,H−2γ )|y′ − v′|γ,−2γ

+|Dg(y)|γ,L(H−2γ ⊗Rd ,H−2γ )‖y′ − v′‖∞,−2γ

≤ Cg(|y′ − v′|γ,−2γ + |y|γ,−2γ ‖y′ − v′‖∞,−2γ )

≤ Cg,M (1 + |w|γ )(‖y′ − v′‖γ,−2γ + ‖y′ − v′‖∞,−2γ

+T γ ‖y′ − v′‖∞,0),

meanwhile, we have

I I ≤ Cg,M,T (1 + |w|γ )
(‖y − v‖γ,−2γ + ‖y − v‖∞,−2γ + T γ ‖y − v‖∞,0

)
,

‖Dg(y)y′ − Dg(v)v′‖∞,0 ≤ ‖Dg(y)(y′ − v′)‖∞,0 + ‖(Dg(y) − Dg(v))v′‖∞,0

≤ Cg(‖y′ − v′‖∞,0 + ‖y − v‖∞,0‖v′‖∞,0)

≤ Cg,M (‖y′ − v′‖∞,0 + ‖y − v‖∞,0)

and

‖y − v‖∞,0 � T η‖y − v‖η,0 + ‖y0 − v0‖H,

according to above estimates, we obtain

‖Dg(y)y′ − Dg(v)v′‖γ,−2γ ≤ Cg,M,T (1 + |w|γ )‖y − v, (y − v)′‖D2γ,η
w

.

Since

Rg(y)
t,s = g(yt ) − g(ys) − Dg(ys)Sts y

′
sδwt,s + Dg(ys)Sts y

′
sδwt,s − Dg(ys)y

′
sδwt,s

+Dg(ys)y
′
sδwt,s − Sts Dg(ys)y

′
sδwt,s + g(ys) − Stsg(ys)

= g(yt ) − g(ys) − Dg(ys)δ̂yt,s + Dg(ys)R
y
t,s + Dg(ys)(Sts − I )y′

sδwt,s

−(Sts − I )Dg(ys)y
′
sδwt,s − (Sts − I )g(ys)

= g(yt ) − g(ys) − Dg(ys)δyt,s + Dg(ys)R
y
t,s + Dg(ys)(Sts − I )y′

sδwt,s

−(Sts − I )Dg(ys)y
′
sδwt,s − (Sts − I )g(ys) + Dg(ys)(Sts − I )ys,

hence, we have

Rg(y)
t,s − Rg(v)

t,s = g(yt ) − g(ys ) − Dg(ys )δyt,s − (
g(vt ) − g(vs ) − Dg(vs )δvt,s

)

+ Dg(ys )R
y
t,s − Dg(vs )R

v
t,s

− (Sts − I )(g(ys ) − g(vs ))

+ Dg(ys )(Sts − I )y′
sδwt,s − Dg(vs )(Sts − I )v′

sδwt,s

− (Sts − I )
(
Dg(ys )y

′
sδwt,s − Dg(vs )v

′
sδwt,s

)

+ Dg(ys )(Sts − I )ys − Dg(vs )(Sts − I )vs

= i + i i + i i i + iv + v + vi .

(2.13)
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For i , applying (44) of [24], we have

‖i‖Hd−2γ
≤ ‖

∫ 1

0

∫ 1

0
Cg[τr2(yt − vt ) + (r − τr2)(ys − vs )]dτdrδyt,s ⊗ δyt,s‖H−2γ

+ ‖
∫ 1

0

∫ 1

0
Cg[τr2vt + (r − τr2)vs ]dτdr

(
δyt,s ⊗ δyt,s − δvt,s ⊗ δvt,s

) ‖H−2γ

≤ Cg‖y − v‖∞,−2γ ‖δ̂yt,s + (Sts − I )ys‖2H−2γ

+ Cg‖v‖∞,−2γ
(‖δ̂yt,s + (Sts − I )ys‖H−2γ + ‖δ̂vt,s + (Sts − I )vs‖H−2γ

)

· ‖δ̂(y − v)t,s + (Sts − I )(y − v)s‖H−2γ

≤ Cg‖y − v‖∞,−2γ (‖y‖γ,−2γ |t − s|γ + ‖y‖∞,0|t − s|2γ )2

+ Cg‖v‖∞,−2γ
(‖y‖γ,−2γ |t − s|γ + ‖y‖∞,0|t − s|2γ + ‖v‖γ,−2γ |t − s|γ

+ ‖v‖∞,0|t − s|2γ ) · (‖y − v‖γ,−2γ |t − s|γ + ‖y − v‖∞,0|t − s|2γ ).

For i i , we have

‖i i‖Hd−2γ
= ‖Dg(ys )R

y
t,s − Dg(ys )R

v
t,s + Dg(ys )R

v
t,s − Dg(vs )R

v
t,s‖Hd−2γ

≤ ‖Dg(ys )(R
y
t,s − Rv

t,s )‖Hd−2γ
+ ‖(Dg(ys ) − Dg(vs ))R

v
t,s‖Hd−2γ

≤ Cg |Ry − Rv |2γ,−2γ |t − s|2γ + Cg‖y − v‖∞,−2γ |Rv |2γ,−2γ |t − s|2γ .

For i i i , we easily have

‖i i i‖Hd−2γ
≤ Cg‖y − v‖∞,0|t − s|2γ .

For iv, we have

‖iv‖Hd−2γ
≤ ‖(Dg(ys ) − Dg(vs ))(Sts − I )y′

sδwt,s‖Hd−2γ

+ ‖Dg(vs )(Sts − I )(y′
s − v′

s )δwt,s‖Hd−2γ

≤ Cg‖y − v‖∞,−2γ ‖y′‖∞,0|w|γ |t − s|2γ + Cg‖y′ − v′‖∞,0|w|γ |t − s|2γ .

For v and vi , similar to iv, we obtain

‖v‖Hd−2γ
≤ Cg,M |w|γ (‖y − v‖∞,0 + ‖y′ − v′‖∞,0)|t − s|3γ ,

‖vi‖Hd−2γ
≤ Cg,M (‖y − v‖∞,0 + ‖y − v‖∞,−2γ )|t − s|2γ .

Consequently, we easily obtain

|Rg(y) − Rg(v)|2γ,−2γ ≤ Cg,M,T (1 + |w|γ )2‖y − v, (y − v)′‖D2γ,η
w

.

Finally, according to previous estimates and the norm of D2γ,2γ,0
S,w ([0, T ];H), our

result can be easily derived. ��
By substituting (2.11) into (2.9), we easily obtain the following result.
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Lemma 2.4 Let T > 0, g ∈ C3−2γ,0(H,Hd), (y, y′) and (v, v′) ∈ D2γ,η
w ([0, T ];H),

for somew ∈ C γ ([0, T ];Rd) and there exists M > 0 such that |w|, |w2|, ‖y, y′‖D2γ,η
w

and ‖v, v′‖D2γ,η
w

≤ M, then, there exists a constant C such that

∥∥∥
∥

∫ ·
0
S·u(g(yu) − g(vu))dwu , g(y) − g(v)

∥∥∥
∥D2γ,η

w

≤ Cg,M,T (1 + |w|γ + |w2|2γ )(1 + |w|γ )2‖y − v, (y − v)
′ ‖D2γ,η

w
.

(2.14)

The constant CM,g,T depends on M, g and the bounds of its derivatives, at the same
time, it depends on time T , but is consistent with time T ∈ (0, 1].

However, in D2γ,η
w ([0, T ];H), we also need to estimate the terms containing the

initial condition and the drift of rough evolution equation (2.2). Hence, we will focus
on this in the following Lemma 2.5.

Lemma 2.5 Let T > 0, ξ ∈ H, f ∈ C−2γ,0(H,H) be global Lipschitz continuous,

and (y, y′) ∈ D2γ,η
w ([0, T ];H), we have that the mildly Gubinelli derivative

(
S·ξ +

∫ ·

0
S·u f (yu)du

)′
= 0, (2.15)

also have the estimate
∥∥
∥∥S·ξ +

∫ ·

0
S·u f (yu)du, 0

∥∥
∥∥
D2γ,η

w

≤ Cγ,T (‖ξ‖ + ‖ f (y)‖∞,−2γ + ‖ f (y)‖∞,0).

(2.16)
Moreover, for two mildly controlled rough paths (y, y′) and (v, v′) with y0 = ξ and
v0 = ξ̃ , we have

∥∥∥∥S·(ξ − ξ̃ ) +
∫ ·

0
S·u( f (yu) − f (vu))du, 0

∥∥∥∥
D2γ,η

w

≤ Cγ,T
(‖ξ − ξ̃‖ + ‖ f (y) − f (v)‖∞,−2γ + ‖ f (y) − f (v)‖∞,0

)
.

(2.17)

Proof Let 0 < T ≤ 1. Since

‖Stξ − Sts Ssξ‖H−2γ = 0,

‖Stξ − Sts Ssξ‖H = 0,

‖S0ξ‖H � ‖ξ‖H,

hence we have

(S·ξ)′ = 0,

|RS·ξ |2γ,−2γ = 0,

‖S·ξ, 0‖D2γ,η
w

≤ C‖ξ‖. (2.18)
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Meanwhile, due to

∥∥∥∥

∫ t

0
Stu f (yu)du − Sts

∫ s

0
Ssu f (yu)du

∥∥∥∥
H−2γ

=
∥∥∥∥

∫ t

s
Stu f (yu)du

∥∥∥∥
H−2γ

≤
∫ t

s
‖ f (yu)‖H−2γ du

= ‖ f (y)‖∞,−2γ (t − s),
∥∥
∥∥

∫ 0

0
S0u f (yu)du

∥∥
∥∥
H−2γ

= 0,

∥∥
∥∥

∫ t

s
Stu f (yu)du

∥∥
∥∥
H

≤
∫ t

s
‖ f (yu)‖Hdu ≤ (t − s)‖ f (y)‖∞,0,

thus we have

(∫ t

0
Stu f (yu)du

)′
= 0,

∥
∥∥∥

∫ ·

0
S·u f (yu)du

∥
∥∥∥

η,0
≤ ‖ f (y)‖∞,0|t − s|1−η,

|R
∫ ·
0 S·u f (yu)du |2γ,−2γ ≤ ‖ f (y)‖∞,−2γ (t − s)1−2γ ,

∥∥∥∥

∫ ·

0
S·u f (yu)du, 0

∥∥∥∥
D2γ,η

w

≤ Cγ (T 1−2γ ‖ f (y)‖∞,−2γ + T 1−η‖ f (y)‖∞,0).

(2.19)

Finally, (2.16) is proved, consequently, (2.17) can be easily obtained. ��
In D2γ,η

w ([0, T ];H), because of above preliminary results, similar to Theorem 4.1
of [16] one can then easily derive a local solution for (2.2) by a fixed-point argument,
i.e.:

Theorem 2.2 Let T > 0, given ξ ∈ H and w = (w,w2) ∈ C γ ([0, T ];Rd) with
γ ∈ ( 13 ,

1
2 ]. Then there exists 0 < T0 ≤ T such that the rough evolution equation (2.2)

has a unique local solution represented by a mildly controlled rough path (y, y′) ∈
D2γ,η

w ([0, T0];H) with y′ = g(y), for all 0 ≤ t ≤ T0

yt = Stξ +
∫ t

0
Stu f (yu)du +

∫ t

0
Stug(yu)dwu . (2.20)

Proof Let 0 < T ≤ 1,

M(y, y′)t =
(
St ξ +

∫ t

0
Stu f (yu)du +

∫ t

0
Stug(yu)dwu , g(yt )

)
.
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It is easy to obtain that if (y0, y′
0) = (ξ, g(ξ)), then the same is true for M(y, y′).

Thus we can regard MT as a mapping on the complete metric space:
{
(y, y′) ∈ D2γ,η

w ([0, T ];H) : y0 = ξ, y′
0 = g(ξ)

}
.

Meanwhile, since

‖S·ξ + S·g(ξ)δw·,0, S·g(ξ)‖w,2γ,−2γ = 0,

hence we easily have that this is also true for the closed ball BT (w, r) centred at
t → (

St ξ + St g(ξ)δwt,0, St g(ξ)
) ∈ D2γ,η

w ([0, T ];H), i.e.

BT (w, r) = {(y, y′) ∈ D2γ,η
w ([0, T ];H) : y0 = ξ, y′

0 = g(ξ), ‖y − (S·ξ + S·g(ξ)δw·,0)‖η,0

+ ‖y′ − S·g(ξ)‖∞,0 + ‖y − (S·ξ + S·g(ξ)δw·,0), y′ − S·g(ξ)‖w,2γ,−2γ ≤ r}.

Since, by triangle inequality, for (y, y′) ∈ BT (w, r) we have

‖S·ξ + S·g(ξ)δw·,0, S·g(ξ)‖w,2γ,2γ,η ≤ ‖g(ξ)‖Hd + T γ−η‖g(ξ)‖Hd |w|γ ,

‖y, y′‖w,2γ,2γ,η ≤ r + ‖g(ξ)‖Hd + ‖g(ξ)‖Hd |w|γ .

Then, one obtains

‖M(y) − (S·ξ + S·g(ξ)δw·,0), g(y) − S·g(ξ)‖w,2γ,2γ,η

≤ ‖M(y), g(y)‖w,2γ,2γ,η + ‖S·ξ + S·g(ξ)δw·,0, S·g(ξ)‖w,2γ,2γ,η

≤ T 1−2γ (‖ f (y)‖∞,−2γ + ‖ f (y)‖∞,0) + T γ−η‖g(y)‖∞,0|w|γ + ‖g(y)‖∞,0

+ T γ−η(|w|γ + |w2|2γ )‖g(y), (g(y))′‖w,2γ,−2γ

+ (1 + |w|γ + |w2|2γ )‖(g(y0))′‖Hd×d
−2γ

+ T 2γ−η‖(g(y))′‖∞,0|w2|2γ + T γ (1 + |w|γ + |w2|2γ )‖g(y), (g(y))′‖w,2γ,−2γ

+ T γ |w2|2γ ‖(g(y))′‖γ,−2γ + ‖g(ξ)‖Hd + T γ−η‖g(ξ)‖Hd |w|γ ,

since g ∈ C3−2γ,0(H,Hd) and ‖g(0)‖Hd
θ
for θ ≥ −2γ , by mean value theorem we

easily obtain ‖g(y)‖Hd
θ

≤ 1 + ‖y‖Hθ
, consequently, according to (2.8) and above

estimates we easily have

‖M(y) − (S·ξ + S·g(ξ)δw·,0), g(y) − S·g(ξ)‖w,2γ,2γ,η

≤ CL f ,g,	(w,0) + T γ−ηCg,	(w,0),‖ξ‖,‖y,y′‖w,2γ,2γ,η
.

Let r = 2CL f ,g,	(w,0), then for ∀(y, y′) ∈ BT (w, r), we have

‖M(y) − (S·ξ + S·g(ξ)δw·,0), g(y) − S·g(ξ)‖w,2γ,2γ,η ≤ r

2
+ T γ−ηCg,	(w,0),‖ξ‖,r .

By letting T = T1 to be sufficient small such that

T γ−η
1 Cg,	(w,0),‖ξ‖,r <

r

2
,
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then one otains

M(BT1(w, r)) ⊆ BT1(w, r).

For the sake of proving contractivity ofMT , one can use steps that are similar to the
previous steps to show

‖M(y) − M(v), g(y) − g(v)‖w,2γ,2γ,η ≤ T η∧(γ−η)
2 Cg,ρ(w,0),‖ξ‖,r‖y − v, y′ − v′‖w,2γ,2γ,η.

This ensures contractivity when T2 is sufficient small. Let T0 = min{T1, T2}, by the
Banach fixed point theorem, one has that there is a unique (y, y′) ∈ BT0(w, r) satisfies
M(y) = y, i.e. a solution of REE (2.2) on the small time interval [0, T0]. ��
Remark 2.4 Our proof of Theorem 2.2 is simpler than the one of Theorem 4.1 in
[16]. This is also the key that we choose to study (2.2) in the space D2γ,η

w ([0, T ];H).
Here, we directly view MT as mapping from the space D2γ,η

w ([0, T ];H) into itself,
however, in [16], the technique is to take ε ∈ (1/3, γ ] and view MT as map from
D

2γ,2γ,ε

S,w ([0, T ];H2ε−2γ ), rather than D
2γ,2γ,γ

S,w ([0, T ];H).

2.1 Global in time solution of rough evolution equation

As we all known, the global in time solution is the key that allows one to consider
the longtime behaviour of rough evolution equation (2.2), so in this subsection we
will focus on this issue. Similar to [20] and [21], we will derive the following result
which is fundamental importance for the discussion of global in time solution for (2.2).
According to (2.8), (2.10), (2.18) and (2.19), we obtain that:

Corollary 2.1 Let (y, g(y)) ∈ D2γ,η
w ([0, T ];H) with 0 < T ≤ 1 be the solution of

(2.2) with the initial condition y0 = ξ ∈ H. Then one has the following estimate

‖y, g(y)‖D2γ,η
w

� 1 + ‖ξ‖ + T γ−η‖y, g(y)‖D2γ,η
w

. (2.21)

Proof Since (y, g(y)) is the solution of (2.2) we have

‖y, g(y)‖D2γ,η
w

≤ ‖S·ξ, 0‖D2γ,η
w

+
∥∥
∥∥

∫ ·
0
S·u f (yu)du, 0

∥∥
∥∥D2γ,η

w

+
∥
∥∥∥

∫ ·
0
S·ug(yu)dwu , g(y)

∥
∥∥∥D2γ,η

w

.

According to (2.10), (2.18) and (2.19), we obtain

‖y, g(y)‖D2γ,η
w

� ‖ξ‖ + T 1−2γ (‖ f (y)‖∞,−2γ + ‖ f (y)‖∞,0) + ‖g(y0)‖Hd−2γ
+ ‖(g(y0))′‖Hd×d

−2γ

+ ‖g(y)‖∞,0 + T 2γ−η‖(g(y))′‖∞,0 + T γ−η‖g(y), (g(y))′‖w,2γ,−2γ .
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Meanwhile, from (2.8) we have

‖g(y), (g(y))′‖w,2γ,−2γ � 1 + ‖y, g(y)‖D2γ,η
w

.

Combining ‖g(y)‖Hd
θ

≤ 1 + ‖y‖Hθ
and the bounds of its derivatives with previous

estimates, we obtain

‖y, g(y)‖D2γ,η
w

� 1 + ‖ξ‖ + T 1−2γ (1 + ‖y‖∞,−2γ + ‖y‖∞,0)

+ T 2γ−η‖(g(y))′‖∞,0 + T γ−η‖g(y), (g(y))′‖w,2γ,−2γ

� 1 + ‖ξ‖ + T 2γ−η(1 + ‖y‖∞,−2γ + ‖y‖∞,0 + ‖g(y)‖∞,0)

+ T γ−η‖y, g(y)‖D2γ,η
w

� 1 + ‖ξ‖ + T γ−η‖y, g(y)‖D2γ,η
w

.

Finally we obtain the desired result. ��
Applying a concatenation discussion of [20] and [21], according to (2.21) we obtain

an a-priori bound for the solution of (2.2). The technique of proof is identical to the
one of [20] Lemma 5.8, we omit here.

Lemma 2.6 Let T > 0, (y, g(y)) ∈ D2γ,η
w ([0, T ];H) be the solution of (2.2), where

the initial condition y0 = ξ ∈ H with ‖ξ‖ ≤ ρ. Let r̃ = 1 ∨ ρ, then there exists
constant M such that

‖y‖∞,0,[0,T ] ≤ Mr̃eMT .

Lemma 2.6 ensures that the solution of (2.2) does not explode in any finite time,
therefore, in D2γ,η

w ([0, T ];H), according to above preliminary results, based on The-
orem 2.2, we have the following result that the local solution of (2.2) can be extended
to global one by a standard concatenation discussion, the details of proof one can refer
to [20] Theorem 5.10 and [21] Theorem 3.9, we omit here.

Theorem 2.3 Let T > 0, given ξ ∈ H and w = (w,w2) ∈ C γ ([0, T ];Rd). The
rough evolution equation (2.2) has a unique global solution represented by a mildly
controlled rough path (y, y′) ∈ D2γ,η

w ([0, T ];H) given by

(y, y′) =
(
S·ξ +

∫ ·

0
S·u f (yu)du +

∫ ·

0
S·ug(yu)dwu, g(y)

)
. (2.22)

Remark 2.5 We emphasis the fact that the solution of (2.2) is global in time. Rough
paths and rough drivers are usually defined on compact intervals, according to [3] and
[21], we sayw = (w,w2) ∈ C γ (R;Rd) is a γ -Hölder rough path ifw|I ∈ C γ (I ;Rd)

for every compact interval I ⊆ R containing 0. Hence, in our setting, we have that
(y, y′) ∈ D2γ,η

w ([0,∞);H) if (y, y′) ∈ D2γ,η
w ([0, T ];H) for every T > 0. Therefore,

we set Cg|[0,∞) = max
I⊆[0,∞)

Cg|I , 	(w, 0)|[0,∞) = max
I⊆[0,∞)

	(w, 0)|I , according to
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Theorem 2.2, letting r = 2CL f ,g,	(w,0)|[0,∞), and previous deliberations we have that
r keeps invariant in concatenation arguments and one can obtain a unique solution of
(2.2) in D2γ,η

w ([0,∞);H).

2.2 Truncated rough evolution equation

We will prove a global unstable manifold for a modified equation of (2.2) by using
cut-off function over a random neighborhood in the following Sect. 4. Hence we will
construct a local unstable manifold depended on the size of perturbations and the
spectral gap of the linear part of (2.2). In order to consider the existence of local
invariant manifolds by using Lyapunov–Perron method, in this subsection, we modify
these nonlinear f and g by applying appropriate cut-off technique to make their
Lipschitz constants small enough. Since in contrast to the classical cut-off techniques
(as in [6, 8, 9] and so on), in our case, similar to [22] and [24], we truncate the norm
of mildly controlled rough path (y, y′). Due to the technical reasons of Lyapunov–
Perron method, which we will use in Sect. 4, we fix the time interval as [0, 1] in this
subsection.

Meanwhile, we assume the following restrictions on the drift and diffusion coeffi-
cients:

• f ∈ C1−2γ,0(H,H) is global Lipschitz continuous with f (0) = Df (0) = 0;
• g ∈ C3−2γ,0(H,Hd) with g(0) = Dg(0) = D2g(0) = 0,

so one easily obtains that (y = 0, y′ = 0) is a stationary solution of (2.2).
Let χ : D2γ,η

w ([0, 1];H) → D2γ,η
w ([0, 1];H) be a Lipschitz continuous cut-off

function:

χ(y) :=
⎧
⎨

⎩
y, ‖y, y′‖D2γ,η

w
≤ 1

2
,

0, ‖y, y′‖D2γ,η
w

≥ 1.

As examples in subsection 2.1 of [24], we can take ϕ : R+ → [0, 1] is a C3
b Lipschitz

cut-off function, then χ(y) can be constructed as

χ(y) = yϕ(‖y, y′‖D2γ,η
w

).

In the following, we assume that χ is constructed by ϕ. According to Definition 2.2,
one has

χ ′(y) = y′ϕ(‖y, y′‖D2γ,η
w

),

this construction indicates that

(χ(y), χ ′(y)) :=
⎧
⎨

⎩
(y, y′), ‖y, y′‖D2γ,η

w
≤ 1

2
,

0, ‖y, y′‖D2γ,η
w

≥ 1.
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For a positive number R, we define

χR(y) = Rχ(y/R),

this means that

χR(y) :=
⎧
⎨

⎩
y, ‖y, y′‖D2γ,η

w
≤ R

2
,

0, ‖y, y′‖D2γ,η
w

≥ R,

then

(χR(y), χ ′
R(y)) :=

{
(y, y′), ‖y, y′‖D2γ,η

w
≤ R

2 ,

0, ‖y, y′‖D2γ,η
w

≥ R.

For a mildly controlled rough path (y, y′) ∈ D2γ,η
w ([0, 1];H), we introduce the oper-

ators

fR(yt ) := f ◦ χR(yt ), gR(yt ) := g ◦ χR(yt ).

Based on Lemma 2.1, we obtain the mildly Gubinelli derivative of gR(y):

(gR(y))′ = Dg(χR(y))χ ′
R(y) = Dg(yϕ(‖y, y′‖D2γ,η

w
/R))y′ϕ(‖y, y′‖D2γ,η

w
/R).

It is directly obtained that if ‖y, y′‖D2γ,η
w

≤ R/2, we have that fR(y) = f (y) and
gR(y) = g(y).

Next, we will discuss the Lipschitz continuity of fR and gR , and the Lipschitz
constants are supposed to be strictly increasing in R.

Lemma 2.7 Let (y, y′) and (v, v′) ∈ D2γ,η
w ([0, 1];H), then there exists a constant

C = C f ,χ,|w|γ such that

‖ fR(y) − fR(v)‖∞,0 + ‖ fR(y) − fR(v)‖∞,−2γ ≤ CR‖y − v, y′ − v′‖D2γ,η
w

.

(2.23)

Proof We easily have

sup
t∈[0,1]

‖ fR(yt ) − fR(vt )‖H−2γ = sup
t∈[0,1]

‖ f (χR(yt )) − f (χR(vt ))‖H−2γ .

Firstly, since f ∈ C1−2γ,0(H,H) is global Lipschitz continuous and Df (0) = 0, thus
we have

‖ f (χR(yt )) − f (χR(vt ))‖H−2γ

≤
∫ 1

0
‖Df (rχR(yt ) + (1 − r)χR(vt ))‖L(H−2γ ,H−2γ )dr‖χR(yt ) − χR(vt )‖H−2γ
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≤ C f max
{‖χR(yt )‖H−2γ , ‖χR(vt )‖H−2γ

}‖χR(yt ) − χR(vt )‖H−2γ .

Secondly, due to

‖y‖∞,−2γ ≤ ‖y0‖H−2γ + ‖y‖γ,−2γ ≤ ‖y0‖H + ‖y‖γ,−2γ

and
‖y‖γ,−2γ ≤ (1 + |w|γ )

(‖y′
0‖Hd−2γ

+ ‖y, y′‖w,2γ,−2γ
)

≤ (1 + |w|γ )‖y, y′‖D2γ,η
w

,

hence we obtain

‖y‖∞,−2γ ≤ ‖y0‖H + (1 + |w|γ )
(‖y′

0‖Hd−2γ
+ ‖y, y′‖w,2γ,−2γ

)

≤ (1 + |w|γ )
(‖y0‖H + ‖y′

0‖Hd−2γ
+ ‖y, y′‖w,2γ,−2γ

)

≤ (1 + |w|γ )‖y, y′‖D2γ,η
w

.

In addition,

‖χR(y)‖∞,−2γ = ‖yϕ(‖y, y′‖D2γ,η
w

/R)‖∞,−2γ = ‖y‖∞,−2γ ϕ(‖y, y′‖D2γ,η
w

/R)

≤ C(1 + |w|γ )‖y, y′‖D2γ,η
w

≤ C|w|γ R,

(2.24)
and ϕ : R+ → [0, 1] is C3

b , then we have

‖χR(yt ) − χR(vt )‖H−2γ = ‖ytϕ(‖y, y′‖D2γ,η
w

/R) − vtϕ(‖v, v′‖D2γ,η
w

/R)‖H−2γ

≤ ‖(yt − vt )ϕ(‖y, y′‖D2γ,η
w

/R)‖H−2γ

+ ‖vt
(
ϕ(‖y, y′‖D2γ,η

w
/R) − ϕ(‖v, v′‖D2γ,η

w
/R)

)‖H−2γ

≤ ‖y − v‖∞,−2γ

+ ‖v‖∞,−2γ ‖Dϕ‖∞(‖y, y′‖D2γ,η
w

/R − ‖v, v′‖D2γ,η
w

/R)

≤ Cχ,|w|γ ‖y − v, (y − v)′‖D2γ,η
w

.

Consequently, we have

‖ f (χR(y)) − f (χR(v))‖∞,−2γ ≤ Cχ,|w|γ , f R‖y − v, (y − v)′‖D2γ,η
w

.

Similarly, we have

‖ f (χR(y)) − f (χR(v))‖∞,0 ≤ Cχ, f R‖y − v, (y − v)′‖D2γ,η
w

.

Finally, according to above estimates, we easily obtain the desired result. ��
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Lemma 2.8 Let (y, y′) and (v, v′) ∈ D2γ,η
w ([0, 1];H), then there exists a constant

C = C[g, χ, |w|γ ] such that

‖gR(y) − gR(v), (gR(y) − gR(v))′‖
D2γ,2γ,0

S,w

≤ C(R)‖y − v, (y − v)′‖D2γ,η
w

.

(2.25)

Proof In the beginning, we give the inequality below which will be used in the fol-
lowing process of proof. Let g ∈ C3−2γ,0(H,Hd), x1, x2, x3, x4 ∈ Hθ , θ ≥ −2γ , the
estimate as below holds true

‖g(x1) − g(x2) − g(x3) + g(x4)‖Hd
θ

≤ Cg max
{‖x1‖Hθ

, ‖x2‖Hθ

}‖x1 − x2 − x3 + x4‖Hθ

+Cg
(‖x1 − x3‖Hθ

+ ‖x2 − x4‖Hθ

)‖x3 − x4‖Hθ
. (2.26)

The key of this lemma is to estimate terms of ‖g(χR(y)) − g(χR(v))‖γ,−2γ ,
‖(g(χR(y))−g(χR(v)))′‖γ,−2γ and |Rg(χR(y)) − Rg(χR(v))|2γ,−2γ . Based on the con-
struction of χR(y), we easily have the following estimates

R
χR (y)
t,s = δ̂χR(y)t,s − Stsχ

′
R(y)sδwt,s

= δ̂yt,sϕ(‖y, y′‖D2γ,η
w

/R) − Sts y
′
sϕ(‖y, y′‖D2γ,η

w
/R)δwt,s

= Ry
t,sϕ(‖y, y′‖D2γ,η

w
/R),

‖χR(y)‖γ,−2γ ≤ ‖yϕ(‖y, y′‖D2γ,η
w

/R)‖γ,−2γ ≤ ϕ(‖y, y′‖D2γ,η
w

/R)‖y‖γ,−2γ

≤ (1 + |w|γ )‖y, y′‖D2γ,η
w

≤ C|w|γ R,

‖χR(y)‖∞,0 = ‖yϕ(‖y, y′‖D2γ,η
w

/R)‖∞,0 = ϕ(‖y, y′‖D2γ,η
w

/R)‖y‖∞,0

≤ ‖y‖∞,0 ≤ ‖y, y′‖D2γ,η
w

≤ R,

|χR(y) − χR(v)|γ,−2γ ≤ ϕ(‖y, y′‖D2γ,η
w

/R)|y − v|γ,−2γ

+‖v‖γ,−2γ ‖Dϕ‖∞(‖y, y′‖D2γ,η
w

/R − ‖v, v′‖D2γ,η
w

/R)

≤ C|w|γ ,χ‖y − v, (y − v)′‖D2γ,η
w

,

|χ ′
R(y) − χ ′

R(v)|γ,−2γ = |y′ϕ(‖y, y′‖D2γ,η
w

/R) − v′ϕ(‖v, v′‖D2γ,η
w

/R)|γ,−2γ

≤ ϕ(‖y, y′‖D2γ,η
w

/R)|y′ − v′|γ,−2γ

+‖v′‖γ,−2γ ‖Dϕ‖∞(‖y, y′‖D2γ,η
w

/R − ‖v, v′‖D2γ,η
w

/R)

≤ C|w|γ ,χ‖y − v, (y − v)′‖D2γ,η
w

,

|RχR (y) − RχR (v)|2γ,−2γ = |Ryϕ(‖y, y′‖D2γ,η
w

/R) − Rvϕ(‖v, v′‖D2γ,η
w

/R)|2γ,−2γ

≤ ϕ(‖y, y′‖D2γ,η
w

/R)|Ry − Rv |2γ,−2γ

+|Rv |2γ,−2γ ‖Dϕ‖∞(‖y, y′‖D2γ,η
w

/R − ‖v, v′‖D2γ,η
w

/R)

≤ C|w|γ ,χ‖y − v, (y − v)′‖D2γ,η
w

.
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Firstly, applying above estimates and (2.24), we have

‖g(χR(y)) − g(χR(v))‖γ,−2γ ≤ |g(χR(y)) − g(χR(v))|γ,−2γ + ‖g(χR(y)) − g(χR(v))‖∞,0,

|g(χR(y)) − g(χR(v))|γ,−2γ

≤ Cg max{‖χR(y)‖∞,−2γ , ‖χR(v)‖∞,−2γ }|χR(y) − χR(v)|γ,−2γ

+Cg
(|χR(y)|γ,−2γ + |χR(v)|γ,−2γ

) ‖χR(y) − χR(v)‖∞,−2γ

≤ Cg,|w|γ ,χ R
(‖χR(y) − χR(v)‖γ,−2γ + ‖χR(y) − χR(v)‖∞,0

)

+Cg
(‖χR(y)‖γ,−2γ + ‖χR(y)‖∞,0 + ‖χR(v)‖γ,−2γ + ‖χR(v)‖∞,0

)‖χR(y) − χR(v)‖∞,−2γ

≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η
w

and

‖g(χR(y)) − g(χR(v))‖∞,0 ≤ Cg max{‖χR(y)‖∞,0, ‖χR(v)‖∞,0}‖χR(y) − χR(v)‖∞,0

≤ Cg,χ R‖χR(y) − χR(v)‖∞,0,

hence, based on above estimates we obtain

‖g(χR(y)) − g(χR(v))‖γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η
w

.

Secondly, since

‖Dg(χR(y))χ ′
R(y) − Dg(χR(v))χ ′

R(v)‖γ,−2γ ≤ |Dg(χR(y))χ ′
R(y) − Dg(χR(v))χ ′

R(v)|γ,−2γ

+ ‖Dg(χR(y))χ ′
R(y) − Dg(χR(v))χ ′

R(v)‖∞,0,

|Dg(χR(y))χ ′
R(y) − Dg(χR(v))χ ′

R(v)|γ,−2γ

≤ |Dg(χR(y))(χ ′
R(y) − χ ′

R(v))|γ,−2γ + |(Dg(χR(y)) − Dg(χR(v))
)
χ ′
R(v)|γ,−2γ

≤ ‖Dg(χR(y))‖∞,L(H−2γ ⊗Rd ,H−2γ )|(χ ′
R(y) − χ ′

R(v))|γ,−2γ

+ ‖Dg(χR(y))‖
γ,L(H−2γ ⊗Rd ,H−2γ )

|(χ ′
R(y) − χ ′

R(v))|∞,−2γ

+ |Dg(χR(y)) − Dg(χR(v))|
γ,L(H−2γ ⊗Rd ,H−2γ )

‖χ ′
R(v)‖∞,−2γ

+ |Dg(χR(y)) − Dg(χR(v))|∞,L(H−2γ ⊗Rd ,H−2γ )‖χ ′
R(v)‖γ,−2γ

≤ Cg
(‖χR(y)‖∞,−2γ |χ ′

R(y) − χ ′
R(v)|γ,−2γ + |χR(y)|γ,−2γ ‖χ ′

R(y) − χ ′
R(v)‖∞,−2γ

)

+ Cg
(‖χ ′

R(v)‖∞,−2γ |χR(y) − χR(v)|γ,−2γ + |χ ′
R(v)|γ,−2γ ‖χR(y) − χR(v)‖∞,−2γ

)

≤ Cg,|w|γ ,χ R
(‖χ ′

R(y) − χ ′
R(v)‖γ,−2γ + ‖χ ′

R(y) − χ ′
R(v)‖∞,0 + ‖χ ′

R(y) − χ ′
R(v)‖∞,−2γ

)

+ Cg,χ R
(‖χR(y) − χR(v)‖γ,−2γ + ‖χR(y) − χR(v)‖∞,0 + ‖χR(y) − χR(v)‖∞,−2γ

)

and

‖Dg(χR(y))χ ′
R(y) − Dg(χR(v))χ ′

R(v)‖∞,0 ≤ ‖Dg(χR(y))(χ ′
R(y) − χ ′

R(v))‖∞,0

+ ‖(Dg(χR(y)) − Dg(χR(v)))χ ′
R(v)‖∞,0

≤ Cg
(‖χR(y)‖∞,0‖χ ′

R(y) − χ ′
R(v)‖∞,0

+ ‖χR(y) − χR(v))‖∞,0‖χ ′
R(v)‖∞,0

)

≤ Cg,|w|γ ,χ R
(‖χ ′

R(y) − χ ′
R(v)‖∞,0

+ ‖χR(y) − χR(v))‖∞,0
)
.

Using above estimates we easily obtain

‖Dg(χR(y))χ ′
R(y) − Dg(χR(v))χ ′

R(v)‖γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η
w

.
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For the remainder term of g(χR(y)) − g(χR(v)), using (2.13) we have

Rg(χR(y))
t,s − Rg(χR(v))

t,s

= g(χR(yt )) − g(χR(ys)) − Dg(χR(ys))δχR(y)t,s − (g(χR(vt )) − g(χR(vs))

−Dg(χR(vs))δχR(v)t,s) + Dg(χR(y))s R
χR(y)
t,s − Dg(χR(v))s R

χR(v)
t,s

−(Sts − I )(g(χR(ys)) − g(χR(vs)))

+Dg(χR(ys))(Sts − I )χ ′
R(y)sδwt,s − (Dg(χR(vs))(Sts − I )χ ′

R(v)sδwt,s)

−(Sts − I )(Dg(χR(ys))χ
′
R(y)sδwt,s − Dg(χR(v)s)χ

′
R(v)sδwt,s)

+Dg(χR(ys))(Sts − I )χR(y)s − Dg(χR(vs))(Sts − I )χR(v)s

= i + i i + i i i + iv + v + vi .

For i , using (44) of [24] twice, we have

‖i‖Hd−2γ

≤ ‖
∫ 1

0

∫ 1

0
Cg[τr2(χR(yt ) − χR(vt ) + (r − τr2)(χR(ys)

−χR(vs))]dτdrδχR(y)t,s ⊗ δχR(y)t,s‖H−2γ

+‖
∫ 1

0

∫ 1

0
Cg[τr2χR(vt ) + (r − τr2)χR(vs)]dτdr

(
δχR(y)t,s ⊗ δχR(y)t,s

−δχR(v)t,s ⊗ δχR(v)t,s
)‖H−2γ

≤ Cg‖χR(y) − χR(v)‖∞,−2γ ‖δ̂χR(y)t,s + (Sts − I )χR(ys)‖2H−2γ

+Cg‖χR(v)‖∞,−2γ
(‖δ̂χR(y)t,s + (Sts − I )χR(ys)‖H−2γ

+‖δ̂χR(v)t,s + (Sts − I )χR(vs)‖H−2γ

)

·‖δ̂(χR(y) − χR(v))t,s + (Sts − I )(χR(y) − χR(v))s‖H−2γ

≤ Cg‖χR(y) − χR(v)‖∞,−2γ
(‖χR(y)‖γ,−2γ |t − s|γ + ‖χR(y)‖∞,0|t − s|2γ )2

+Cg‖χR(v)‖∞,−2γ
(‖χR(y)‖γ,−2γ |t − s|γ + ‖χR(y)‖∞,0|t − s|2γ

+‖χR(v)‖γ,−2γ |t − s|γ
+‖χR(v)‖∞,0|t − s|2γ ) · (‖χR(y) − χR(v)‖γ,−2γ |t − s|γ
+‖χR(y) − χR(v)‖∞,0|t − s|2γ )

,

hence,
‖i‖2γ,−2γ ≤ Cg,|w|γ ,χ R

2‖y − v, (y − v)′‖D2γ,η
w

.
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For i i ,

‖i i‖Hd−2γ
= ‖Dg(χR(ys ))R

χR (y)
t,s − Dg(χR(ys ))R

χR (v)
t,s + Dg(χR(ys ))R

χR (v)
t,s

− Dg(χR(vs ))R
χR (v)
t,s ‖Hd−2γ

≤ ‖Dg(χR(ys ))(R
χR (y)
t,s − R

χR (v)
t,s )‖Hd−2γ

+ ‖(Dg(χR(ys )) − Dg(χR(vs ))R
χR (v)
t,s ‖Hd−2γ

≤ Cg‖χR(y)‖∞,−2γ |RχR (y) − RχR (v)|2γ,−2γ |t − s|2γ
+ Cg‖χR(y) − χR(v)‖∞,−2γ |RχR (v)|2γ,−2γ |t − s|2γ ,

hence,
‖i i‖2γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η

w
.

For i i i , we easily have

‖i i i‖Hd−2γ
≤ ‖Dg(χR(ys ))(χR(ys ) − χR(vs ))‖Hd |t − s|2γ

≤ Cg‖χR(y)‖∞,0‖χR(y) − χR(v)‖∞,0|t − s|2γ
≤ Cg,|w|γ ,χ R‖χR(y) − χR(v)‖∞,0|t − s|2γ ,

hence,
‖i i i‖2γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η

w
.

For iv, we have

‖iv‖Hd−2γ
≤ ‖(Dg(χR(ys )) − Dg(χR(vs )))(Sts − I )χ ′

R(y)sδwt,s‖Hd−2γ

+ ‖Dg(χR(vs ))(Sts − I )(χ ′
R(y)s − χ ′

R(v)s )δwt,s‖Hd−2γ

≤ Cg‖χR(y) − χR(v)‖∞,−2γ ‖χ ′
R(y)‖∞,0|w|γ |t − s|3γ

+ Cg‖χR(y)‖∞,−2γ ‖χ ′
R(y) − χ ′

R(v)‖∞,0|w|γ |t − s|3γ
≤ Cg,|w|γ ,χ R‖χR(y) − χR(v)‖∞,−2γ |w|γ |t − s|3γ

+ Cg,|w|γ ,χ R‖χ ′
R(y) − χ ′

R(v)‖∞,0|w|γ |t − s|3γ ,

hence,
‖iv‖2γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η

w
.

For v, we have

‖v‖Hd−2γ
≤ ‖(Sts − I )(Dg(χR(ys )) − Dg(χR(vs )))χ

′
R(y)sδwt,s‖Hd−2γ

+ ‖(Sts − I )Dg(χR(vs ))(χ
′
R(y)s − χ ′

R(v)s )δwt,s‖Hd−2γ

≤ Cg‖χR(y) − χR(v)‖∞,0‖χ ′
R(y)‖∞,0|w|γ |t − s|3γ

+ Cg‖χR(y)‖∞,0‖χ ′
R(y) − χ ′

R(v)‖∞,0|w|γ |t − s|3γ
≤ Cg,χ R‖χR(y) − χR(v)‖∞,0|w|γ |t − s|3γ

+ Cg,χ R‖χ ′
R(y) − χ ′

R(v)‖∞,0|w|γ |t − s|3γ ,

hence,
‖v‖2γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η

w
.
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For vi , we have

‖vi‖Hd−2γ
≤ ‖(Dg(χR(ys )) − Dg(χR(vs )))(Sts − I )χR(y)s‖Hd−2γ

+ ‖Dg(χR(vs ))(Sts − I )(χR(y)s − χR(v)s )‖Hd−2γ

≤ Cg‖χR(y) − χR(v)‖∞,−2γ ‖χR(y)‖∞,0|t − s|2γ
+ Cg‖χR(y)‖∞,−2γ ‖χR(y) − χR(v)‖∞,0|t − s|2γ

≤ Cg,χ R‖χR(y) − χR(v)‖∞,−2γ |t − s|2γ
+ Cg,|w|γ ,χ R‖χ ′

R(y) − χ ′
R(v)‖∞,0|t − s|2γ ,

hence,
‖vi‖2γ,−2γ ≤ Cg,|w|γ ,χ R‖y − v, (y − v)′‖D2γ,η

w
.

Consequently, according to above estimates, we obtain

|Rg(χR (y)) − Rg(χR (v))|2γ,−2γ ≤ Cg,|w|γ ,χ (R + R2)‖y − v, (y − v)′‖D2γ,η
w

≤ Cg,|w|γ ,χ (R)‖y − v, (y − v)′‖D2γ,η
w

.

Finally, one can easily obtain (2.25). ��
According to above lemmas, we will derive that the modified equation of (2.2)

obtained by replacing f and g with fR and gR has a unique solution. To this end, for
(y, y′) ∈ D2γ,η

w ([0, 1];H) and t ∈ [0, 1], we introduce

TR(w, y, y′)[t] :=
∫ t

0
Stu fR(yu)du +

∫ t

0
StugR(yu)dwu, (2.27)

with mildly Gubinelli derivative TR(w, y, y′)′ = gR(y). Because of the estimates
derived in the previous lemmas, we easily have the following result.

Remark 2.6 For the convenience of argument for the fixed point of Lyapunov–Perron
operator in the following Sect. 4, here we define operator TR with no initial value.

Theorem 2.4 The following estimate holds true
∥
∥∥
∥

∫ ·
0
S·u( fR(yu) − fR(vu))du +

∫ ·
0
S·u(gR(yu) − gR(vu))dwu , gR(y) − gR(v)

∥
∥∥
∥D2γ,η

w

≤ (C f ,χ,|w|γ R + Cg,χ,|w|γ C(R)(1 + |w|γ + |w2|2γ )(1 + |w|γ )2)‖y − v, (y − v)′‖D2γ,η
w

.

(2.28)
Furthermore, the mapping TR : D2γ,η

w ([0, 1];H) → D2γ,η
w ([0, 1];H) has a fixed-

point.

Return to our consideration, in order to reduce the Lipschitz constants of f and g
by using χR , the next goal is to characterize R as required. As already seen we have
to choose R as small as possible. Since in our discussions, it is always required that
R ≤ 1 and C(R) is strictly increasing in R. As is often encountered in the theory of
stochastic dynamical systems [24], since all the estimates depend on the random input,
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it is meaningful to employ a cut-off technique for a random variable, i.e. R = R(w).
Such an argument will also be used here as follows.

We fix K > 0 and regard to (2.28), set R̃(w) be the unique solution of

C f ,χ,|w|γ R̃(w) + Cg,χ,|w|γ
(
R̃(w)

)
(1 + |w|γ + |w2|2γ )(1 + |w|γ )2 = K (2.29)

and set
R(w) := min{R̃(w), 1}. (2.30)

This means that if R(w) = 1, we apply the cut-off procedure for ‖y, y′‖D2γ,η
w

≤ 1/2

or else if R(w) < 1 for ‖y, y′‖D2γ,η
w

≤ R(w)/2.
In the following sections, we work with a modified equation of (2.2), where the

drift and diffusion coefficients f and g are replaced by fR(w) and gR(w). For notational
simplicity, the w-dependence of R will be omitted whenever there is no confusion.

According to (2.29), we have

Lemma 2.9 Let (y, y′) and (v, v′) ∈ D2γ,η
w ([0, 1];H), we have

∥∥TR(w, y, y′) − TR(w, v, v′),
(
TR(w, y, y′) − TR(w, v, v′)

)′∥∥
D2γ,η

w

≤ K
∥∥y − v, (y − v)′

∥∥
D2γ,η

w
.

(2.31)

3 Random dynamical system

In this section we will analyze the dynamics of REEs (2.2). Firstly we recall some
basic concepts and results on the random dynamical systems theory [1, 3], which allow
us to study invariant manifolds for (2.2).

Definition 3.1 Let (�,F ,P) be a probability space and θ : R × � → � be a family
of P-preserving transformations (i.e., θtP = P for t ∈ R) with following properties:

• the mapping (t, ω) �→ θtω is (B(R) ⊗F ,F)-measurable, where B(·) denotes the
Borel sigma-algebra;

• θ0 = I�;
• θt+s = θt ◦ θs for all t, s ∈ R.

Then the quadruple (�,F ,P, (θt )t∈R) is called a metric dynamical system.

In our evolution setting, the construction ofmetric dynamical systemdepends on the
construction of shift map �. According to [24] we know that shifts act quite naturally
on rough paths. For a γ -Hölder rough path w = (w,w2) and t, τ ∈ R, let us define
the time-shift �τw = (θτw, θ̃τw

2) by

θτwt := wt+τ − wτ ,

θ̃τw
2
t,s := w2

t+τ,s+τ .

Note that δ(θτw)t,s = wt+τ − ws+τ . Furthermore, the shift leaves the path space
invariant:
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Lemma 3.1 [24] Let T1, T2, τ ∈ R, and w = (w,w2) be a γ -Hölder rough path on
[T1, T2] for γ ∈ ( 13 ,

1
2 ]. Then the time-shift �τw = (θτw, θ̃τw

2) is also an γ -Hölder
rough path on [T1 − τ, T2 − τ ].

According to [3], we consider the follwing concept:

Definition 3.2 [3] Let (�,F ,P, (θt )t∈R) be a metric dynamical system. We call w =
(w,w2) a rough path cocycle if the identity

wt+s,s(ω) = wt,0(θsω)

holds true for every ω ∈ �, s ∈ R and t > 0.

The previous definitions imply that one can use a space of paths as a probability
space �. As example 3.5 in [24], fractional Brownian motion BH = (BH ,BH) repre-
sents a rough path cocycle, by the same construction of path-space (�BH ,FBH ,PBH )

of fractional Brownian motion(for further details see [3]), we have the abstract defi-
nition of metric dynamical systems for our problem modelling the underlying rough
driving process. Now we also need to define the dynamical system structure of the
solution operators of our rough evolution equations (2.2). Meanwhile, we recall the
classical definition of random dynamical system [1].

Definition 3.3 A random dynamical system ϕ on H over a metric dynamical system
(�,F ,P, (θt )t∈R) is a measurable mapping

ϕ : [0,∞) × � × H → H, (t, ω, x) �→ ϕ(t, ω, x),

such that:

• ϕ(0, ω, ·) = IH for all ω ∈ �;
• ϕ(t + τ, ω, x) = ϕ(t, θτω, ϕ(τ, ω, x)), for all x ∈ H, t, τ ∈ [0,∞), ω ∈ �;
• ϕ(t, ω, ·) : H → H is continuous for all t ∈ [0,∞) and all ω ∈ �.

Now one can hope that the solution operators of (2.2) generate random dynam-
ical systems. As for all we know, the rough integral given in (2.6) is pathwise, no
exceptional sets occur. For completeness, we give a proof of this fact, see [24].

Lemma 3.2 Let w be a rough path cocycle, then the solution operator

t �→ ϕ(t, w, ξ) = yt = Stξ +
∫ t

0
Stu f (yu)du +

∫ t

0
Stug(yu)dwu,

for any t ∈ [0,∞) of the REE (2.2) generates a random dynamical system over the
metric dynamical system (�w,Fw,P, (θt )t∈R).

Proof The proof is analogous to [22] and [24] Lemma 3.7. The difficultly is to check
the cocycle property for the solution operator. Here we just prove the cocycle property.
Firstly, we easily check that if (y, y′) ∈ D2γ,η

w ([T1+τ, T2+τ ];H) then (y·+τ , y′·+τ ) ∈
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D2γ,η
θτ w ([T1, T2];H), here T1, T2 ∈ R with T1 < T2. The γ -Hölder continuity of y·+τ

and y′·+τ is obvious. For the remainder we have

‖Ry·+τ
t,s ‖H−2γ = ‖δ̂yt+τ,s+τ − Sts y

′
s+τ δwt+τ,s+τ‖H−2γ

= ‖δ̂yt+τ,s+τ − S(t+τ)−(s+τ)y
′
s+τ δwt+τ,s+τ‖H−2γ

= ‖Ry
t+τ,s+τ‖H−2γ ≤ |Ry |2γ,−2γ |t − s|2γ .

Next, we will obtain the shift property of rough integral. Let P be a partition of
[τ, t + τ ], then we have

∫ t+τ

τ
St+τ−ug(yu)dwu

= lim|P |→0

∑

[u,v]∈P

(
St+τ−ug(yu)δwv,u + St+τ−u Dg(yu)y′

uw2
v,u

)

= lim
|P ′|→0

∑

[u′,v′]∈P ′

(
St−u′g(yu′+τ )δwv′+τ,u′+τ + St−u′ Dg(yu′+τ )y′

u′+τ
w2

v′+τ,u′+τ

)

= lim
|P ′|→0

∑

[u′,v′]∈P ′

(
St−u′g(yu′+τ )δ(θτ w)v′,u′ + St−u′ Dg(yu′+τ )y′

u′+τ
θ̃τ w2

v′,u′
)

=
∫ t

0
St−u′g(yu′+τ )d�τwu′ ,

where P ′ is a partition of [0, t] given by P ′ := {[s− τ, t − τ ] : [s, t] ∈ P}. The proof
of the cocycle property and mensurability of solution operators is similar to [22] and
[24], here we omit. ��

The next concept of tempered random variables [1] is of fundamental importance
in the study of local random invariant manifolds.

Definition 3.4 A random variable R̃ : � → (0,∞) is called tempered from above,
with respect to a metric dynamical system (�,F ,P, (θt )t∈R), if

lim sup
t→±∞

ln+ R̃(θtω)

|t | = 0, for all ω ∈ �, (3.1)

where ln+ a := max{ln a, 0}. A random variable is called tempered from below if
1/R̃ is tempered from above. A random variable is tempered if and only if is tempered
from above and from below.

The temperedness reflexes the subexponential growth of the mapping t �→ R̃(θtω),
according to [1] Proposition 4.1.3, a sufficient condition for temperedness is

E sup
t∈[0,1]

R̃(θtω) < ∞. (3.2)

Moreover, if the random variable R̃ is tempered from below with t → R̃(θtω) con-
tinuous for all ω ∈ �, then for every ε > 0 there exists a constant C[ε, ω] > 0 such
that

R̃(θtω) ≥ C[ε, ω]e−ε|t |, (3.3)
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for any ω ∈ �.
According to [24] Lemma 3.9 and Lemma 3.10, we can assume that w = (w,w2)

is a rough path cocycle such that the random variables

R1(w) = |w|γ and R2(w
2) = |w2|2γ

are tempered from above. These will be necessary for the proof of the existence for a
local unstable manifold. One needs to ensure that for initial values belonging to a ball
with a sufficiently small tempered from below radius, the corresponding trajectories
remain within such a ball (for further details, refer to [9, 10, 14, 24]). By previous
discussions, we easily obtain the result below:

Lemma 3.3 The random variable R(w) in (2.30) is tempered from below.

4 Local unstable manifolds for REEs

In this section, we will study the existence of local unstable manifolds for (2.2) by the
Lyapunov–Perron method which is similar to the one employed in [14, 22] and [24].
However, here we want to connect the theory of random invariant manifolds for REEs
as in [6, 9, 14, 22] to rough paths theory.

Firstly, as in [14] and [10], we assume that the spectrum σ(A) of linear operator A
only consists of a countable number of eigenvalues, and it splits as

σ(A) = {λk, k ∈ N} = σu
⋃

σs, (4.1)

with both σu and σs nonempty, and

σu ⊂ {z ∈ C : Rez > 0} and σs ⊂ {z ∈ C : Rez < 0},

where C denotes the set of complex numbers and σu = {λk, · · ·λN } for some N > 0.
Denote the corresponding eigenvectors for {λk, k ∈ N} by {e1, · · ·, eN , eN+1, · · ·},
furthermore, assume that the eigenvectors form an orthonormal basis ofH. Thus there
is an invariant orthogonal decompositionH = Hu ⊕Hs with dimHu = N , such that
for the restrictions which are Au = A|Hu , As = A|Hs , one has σu = {z ∈ σ(Au)}
and σs = {z ∈ σ(As)}. Moreover, eAut is a group of linear operators onHu , and there
exist projections πu and π s , such that πu + π s = IH, Au = πu A and As = π s A.
Furthermore,we assume that the projectionsπu andπ s commutewith A. Additionally,
suppose that there are constants 0 < β < α such that

‖et Au x‖ ≤ eαt‖x‖, t ≤ 0, (4.2)

‖et As x‖ ≤ e−βt‖x‖, t ≥ 0. (4.3)

Definition 4.1 If a random set Mu(w), which is invariant respect to random dynam-
ical system ϕ (i.e. ϕ(t, w,Mu(w)) ⊂ Mu(θtw) for t ∈ R and w ∈ �w), can be
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represented as
Mu(w) = {ξ + hu(ξ, w) : ξ ∈ Hu}, (4.4)

where hu(ξ,W ) : Hu → Hs is Lipschitz continuous. Thenwe callMu(w) an unstable
manifold.

Definition 4.2 There exists a random neighborhood U(w) ⊂ Hu of 0, if a ran-
dom set Mu

loc(w), which is invariant respect to random dynamical system ϕ (i.e.
ϕ(t, w,Mu

loc(w)) ⊂ Mu
loc(θtw)for t ∈ R and w ∈ �w), can be represented as

Mu
loc(w) = {ξ + hu(ξ, w) : ξ ∈ U(w)} and 0 ∈ Mu

loc(w), (4.5)

where hu(ξ,W ) : U(w) → Hs is Lipschitz continuous. Then we callMu
loc(w) a local

unstable manifold.

By proving the existence of a global unstable manifold for a modified equation
of (2.2) with cut-off over a random neighborhood of 0, we obtain a local unstable
manifold Mu

loc(W ) for (2.2), namely (4.5) holds true when ξ belongs to a random
ball of Hu with a tempered radius.

Here, we employ the Lyapunov–Perron method which is similar with [22] and
[24]. As well, in our case, the continuous-time Lyapunov–Perron mapping for (2.2) is
presented by (compare with [10] and [24])

J (w, y)[τ ] := Suτ ξu +
∫ τ

0
Suτuπ

u f (yu)du +
∫ τ

0
Suτuπ

ug(yu)dwu

+
∫ τ

−∞
Ssτuπ

s f (yu)du +
∫ τ

−∞
Ssτuπ

sg(yu)dwu

(4.6)

for τ ≤ 0. Thanks to the presence of the rough integral we couldn’t directly deal
with (4.6), we need to track |w|γ and |w2|γ that appear in (2.14) on a finite-time
horizon. Similar to [14] and [22], we derive an appropriate discretized Lyapunov–
Perron mapping and prove that it has a fixed-point in a suitable function space. The
local unstable manifold will be developed for the discrete-time random dynamical
system and will be shown that it holds true for the original continuous-time one, as in
[14].

Analogous to [14, 22] and [24], we only need to deal with rough integral on time-
interval [0, 1]. Let w ∈ �w, t ∈ [0, 1] and i ∈ Z

−, replacing τ by t + i − 1 in (4.6),
we have

J (w, y)[t + i − 1] =Sut+i−1ξ
u

−
i+1∑

k=0

Sut+i−1−k

(∫ 1

0
Su1−uπu f (yu+k−1)du

+
∫ 1

0
Su1−uπug(yu+k−1)d�k−1wu

)

−
∫ 1

t
Sut−uπu f (yu+i−1)du −

∫ 1

t
Sut−uπug(yu+i−1)d�i−1wu
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+
i−1∑

k=−∞
Sst+i−1−k

(∫ 1

0
Ss1−uπ s f (yu+k−1)du

+
∫ 1

0
Ss1−uπ s g(yu+k−1)d�k−1wu

)

+
∫ t

0
Sst−uπ s f (yu+i−1)du +

∫ t

0
Sst−uπ s g(yu+i−1)d�i−1wu , (4.7)

by applying (4.7),wewill give the structure of the discrete Lyapunov–Perronmapping.
for (y, y′) ∈ D2γ,η

w ([0, 1];H), we denote

T s/u(w, y, y′)[·] =
∫ ·

0
Ss/ut−uπ

s/u f (yu)du +
∫ ·

0
Ss/ut−uπ

s/ug(yu)dwu, (4.8)

T̃ u(w, y, y′)[·] =
∫ 1

·
Sut−uπ

u f (yu)du +
∫ 1

·
Sut−uπ

ug(yu)dwu, (4.9)

where
(
T s/u(w, y, y′)[·])′ = (

T̃ u(w, y, y′)[·])′ = g(y·).Meanwhile, in our evolution
setting, we directly deal with solutions of the REEs (2.2). It is an essential problem
that we need to find an appropriate space for the fixed-point argument. For this, similar
to [22] and [24] we introduce the following function space which helps us incorporate
the discretized version of (4.6).

Let δ = α−β
2 > 0, we denote BCδ(D2γ,η

w ) as the space of a sequence of

mildly controlled rough paths y := (
yi−1, (yi−1)′

)
i∈Z− with yi−1

0 = yi−2
1 , where

(
yi−1, (yi−1)′

) ∈ D2γ,η
w ([0, 1];H), if

‖y‖
BCδ(D2γ,η

w )
:= sup

i∈Z−
e−δ(i−1)

∥∥yi−1, (yi−1)′
∥∥
D2γ,η

w ([0,1];H)
< ∞. (4.10)

In the following, for notational simplicity, we denote ỹ[i − 1, t] = ỹi−1
t for t ∈ [0, 1]

and ỹ[τ ] = ỹ[i − 1, t] if τ = t + i − 1.
Next, we modify (2.2) by the cut-off function given in Sect. 2, i.e. we replace f and

g by fR respectively gR . According to (4.7), it is reasonable to introduce the discrete
Lyapunov–Perron transform Jd(w, y, ξ) for a sequence of mildly controlled rough
paths as the pair Jd(w, y, ξ) := (

J 1d (w, y, ξ), J 2d (w, y, ξ)
)
, where y ∈ BCδ(D2γ,η

w )
and ξ ∈ H, the precise structure is given below. The dependence of Jd on the cut-off
parameter R is indicated by the subscript R. For t ∈ [0, 1], w ∈ �w and i ∈ Z

−, we
define

J 1R,d(w, y, ξ)[i − 1, t] = Sut+i−1ξ
u −

i+1∑

k=0

Sut+i−1−k

(∫ 1

0
Su1−uπ

u fR(yk−1
u )du

+
∫ 1

0
Su1−uπ

ugR(yk−1
u )d�k−1wu

)

−
∫ 1

t
Sut−uπ

u fR(yi−1
u )du−

∫ 1

t
Sut−uπ

ugR(yi−1
u )d�i−1wu
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+
i−1∑

k=−∞
Sst+i−1−k

(∫ 1

0
Ss1−uπ

s fR(yk−1
u )du

+
∫ 1

0
Ss1−uπ

s gR(yk−1
u )d�k−1wu

)

+
∫ t

0
Sst−uπ

s fR(yi−1
u )du+

∫ t

0
Sst−uπ

s gR(yi−1
u )d�i−1wu,

(4.11)

Moreover, J 2R,d(w, y, ξ) is denoted as themildlyGubinelli derivative of J 1R,d (w, y, ξ),

i.e. J 2R,d(w, y, ξ)[i − 1, t] := (J 1R,d(w, y, ξ)[i − 1, t])′. Notice that one can easily

obtain ξu = πu J 1R,d(w, y, ξ)[−1, 1] by setting i = 0 and t = 1.

In the following, we will prove that (4.11) maps y ∈ BCδ(D2γ,η
w ) into itself and is

a contractive mapping.

Theorem 4.1 In our setting, if K satisfies the gap condition

K

(
eβ+δ(Ce−δ + 1)

1 − e−(β+δ)
+ (e−(α−δ) − 1)(Ce−δ + eα−δ)

1 − eα−δ

)

≤ 1

2
, (4.12)

then, the mapping JR,d : � × BCδ(D2γ,η
w ) → BCδ(D2γ,η

w ) possesses a unique fixed-
point

� ∈ BCδ(D2γ,η
w ). Also, the mapping ξu → �(ξu, w) ∈ BCδ(D2γ,η

w ) is Lipschitz
continuous.

Proof Let y := (yi−1, (yi−1)′)i∈Z− and v := (vi−1, (vi−1)′)i∈Z− ∈ BCδ(D2γ,η
w )with

πu y−1
1 = πuv−1

1 = ξu . Firstly, we give several estimates which is essential for the
proof. According to Lemma 2.5, we easily have

∥∥Su·+i−1ξ
u, 0

∥∥
BCδ(D2γ,η

w )
≤ Ce(α−δ)(i−1)‖ξu, 0‖D2γ,η

w
≤ Ce(α−δ)(i−1)‖ξu‖, (4.13)

the above expression keeps bounded for i ∈ Z
−. Denote

� = T s
R (θk−1w, yk−1, (yk−1)′)[1] − T s

R (θk−1w, vk−1, (vk−1)′)[1],

from (2.14), one has

‖�‖H ≤ ∥
∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w

by (4.13), we have

∥∥Ss·+i−1−k�, (Ss·+i−1−k�)′
∥∥
D2γ,η

w

= ∥∥Ss·+i−1−k�, 0
∥∥
D2γ,η

w
≤ Ce−β(i−1−k)‖�‖H

≤ Ce−β(i−1−k)
∥
∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w
. (4.14)
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Similarly, denote

�̃ = T u
R (θk−1w, yk−1, (yk−1)′)[1] − T u

R (θk−1w, vk−1, (vk−1)′)[1],

we easily have

∥∥Su·+i−1−k�̃, (Su·+i−1−k�̃)′
∥∥
D2γ,η

w
≤ Ceα(i−1−k)

∥∥yk−1 − vk−1, (yk−1 − vk−1)′
∥∥
D2γ,η

w
.

(4.15)

Next, for the stable part of (4.11), due to (2.31), (4.14) and the norm of BCδ(D2γ,η
w ),

we have

i−1∑

k=−∞
e−δ(i−1)

∥∥
∥∥S

s·+i−1−k (T
s
R (θk−1w, yk−1, (yk−1)′)[1] − T s

R (θk−1w, vk−1, (vk−1)′)[1]),

(
Ss·+i−1−k (T

s
R (θk−1w, yk−1, (yk−1)′)[1] − T s

R (θk−1w, vk−1, (vk−1)′)[1])
)′ ∥∥∥∥D2γ,η

w

+e−δ(i−1)
∥∥
∥∥T

s
R (θi−1w, yi−1, (yi−1)′)[·] − T s

R (θi−1w, vi−1, (vi−1)′)[·],
(
T s
R (θi−1w, yi−1, (yi−1)′)[·] − T s

R (θi−1w, vi−1, (vi−1)′)[·]
)′ ∥∥∥∥D2γ,η

w

≤
i−1∑

k=−∞
e−δ(i−1)Ce−β(i−1−k)K

∥
∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w

+e−δ(i−1)K
∥∥yi−1 − vi−1, (yi−1 − vi−1)′

∥∥
D2γ,η

w

≤
i−1∑

k=−∞
e−δ(i−1)Ce−β(i−1−k)eδ(k−1)Ke−δ(k−1)∥∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w

+e−δ(i−1)K
∥∥yi−1 − vi−1, (yi−1 − vi−1)′

∥∥
D2γ,η

w

≤
i−1∑

k=−∞
e−(β+δ)(i−1−k)Ce−δKe−δ(k−1)∥∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w

+e−(β+δ)(i−1−i)e−δ(i−1)K
∥∥yi−1 − vi−1, (yi−1 − vi−1)′

∥∥
D2γ,η

w

≤
i∑

k=−∞
e−(β+δ)(i−1−k)K (Ce−δ + 1)e−δ(k−1)∥∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w

≤ Keβ+δ(Ce−δ + 1)

1 − e−(β+δ)
‖y − v‖

BCδ(D2γ,η
w )

.

Similarly, for the unstable part, according to (2.31), (4.15) and the norm of
BCδ(D2γ,η

w ), we have

i+1∑

k=0

e−δ(i−1)
∥∥∥∥S

u
·+i−1−k

(
T u
R (θk−1w, yk−1, (yk−1)′)[1]−T u

R (θk−1w, vk−1, (vk−1)′)[1]),
(
Su·+i−1−k

(
T u
R (θk−1w, yk−1, (yk−1)′)[1]−T u

R (θk−1w, vk−1, (vk−1)′)[1])
)′ ∥∥

∥∥
D2γ,η

w
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+e−δ(i−1)
∥∥
∥∥T̃

u
R (θi−1w, yi−1, (yi−1)′)[·] − T̃ u

R (θi−1w, vi−1, (vi−1)′)[·],
(
T̃ u
R (θi−1w, yi−1, (yi−1)′)[·] − T̃ u

R (θi−1w, vi−1, (vi−1)′)[·]
)′ ∥∥∥∥

D2γ,η
w

≤
i+1∑

k=0

e−δ(i−1)Ceα(i−1−k)K
∥
∥yk−1 − vk−1, (yk−1 − vk−1)′

∥
∥
D2γ,η

w

+e−δ(i−1)K
∥∥yi−1 − vi−1, (yi−1 − vi−1)′

∥∥
D2γ,η

w

≤
i+1∑

k=0

e−δ(i−1)Ceα(i−1−k)eδ(k−1)Ke−δ(k−1)
∥∥yk−1 − vk−1, (yk−1 − vk−1)′

∥∥
D2γ,η

w

+e−δ(i−1)K
∥∥yi−1 − vi−1, (yi−1 − vi−1)′

∥∥
D2γ,η

w

≤
i+1∑

k=0

e(α−δ)(i−1−k)Ce−δKe−δ(k−1)
∥∥yk−1 − vk−1, (yk−1 − vk−1)′

∥∥
D2γ,η

w

+e(α−δ)(i−1−i)eα−δe−δ(i−1)K
∥∥yi−1 − vi−1, (yi−1 − vi−1)′

∥∥
D2γ,η

w

≤
i∑

k=0

e(α−δ)(i−1−k)K (Ce−δ + eα−δ)e−δ(k−1)
∥∥yk−1 − vk−1, (yk−1 − vk−1)′

∥∥
D2γ,η

w

≤ K (e−(α−δ) − 1)(Ce−δ + eα−δ)

1 − eα−δ
‖y − v‖

BCδ(D2γ,η
w )

.

Combining previous estimates, we obtain that

‖JR,d(w, y, ξ) − JR,d(w, v, ξ)‖
BCδ(D2γ,η

w )
≤ 1

2
‖y − v‖

BCδ(D2γ,η
w )

.

When v ≡ 0, we easily have that JR,d maps BCδ(D2γ,η
w ) into itself. Applying fixed-

point argument, we deduce that JR,d(w, y, ξu) has a unique fixed-point �(ξu, w) ∈
BCδ(D2γ,η

w ) for every ξu ∈ Hu , meanwhile, for ξu1 , ξ
u
2 ∈ Hu , we have

‖�(ξu1 , w) − �(ξu2 , w)‖
BCδ(D2γ,η

w )

= ‖JR,d(w, �(ξu1 , w), ξu1 ) − JR,d(w, �(ξu2 , w), ξu2 )‖
BCδ(D2γ,η

w )

≤ ‖JR,d(w, �(ξu1 , w), ξu1 ) − JR,d(w, �(ξu1 , w), ξu2 )‖
BCδ(D2γ,η

w )

+‖JR,d(w, �(ξu1 , w), ξu2 ) − JR,d(w, �(ξu2 , w), ξu2 )‖
BCδ(D2γ,η

w )

≤ ‖Su·+i−1(ξ
u
1 − ξu2 ), 0‖

BCδ(D2γ,η
w )

+ 1

2
‖�(ξu1 , w) − �(ξu2 , w)‖

BCδ(D2γ,η
w )

≤ Ce(α−δ)‖ξu1 − ξu2 ‖ + 1

2
‖�(ξu1 , w) − �(ξu2 , w)‖

BCδ(D2γ,η
w )

,

which implies that �(ξu, w) is Lipschitz continuous. ��
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At last, as similar discussion have taken place in [14, 22] and [24], we derive a local
unstable manifold for our REEs (2.2). The proof of following results is identical to
the one of [22] and [24], we omit here. In the following we denote BHu (0, ρ(w)) as
a ball inHu , which is centered at 0 and has a random radius ρ(w).

Lemma 4.1 The local unstable manifold of (2.2) is given by the graph of a Lipschitz
function i.e.

Mu
loc(w) = {ξ + hu(ξ, w) : ξ ∈ BHu (0, ρ(w))}, (4.16)

where, ρ(w) is a tempered from below random variable and

hu(ξ, w) := π s�(ξ,w)[−1, 1]|BHu (0,ρ(w)),

that is

hu(ξ, w) =
0∑

k=−∞
Ss−k

∫ 1

0
Ss1−uπ

s f (�(ξ,w)[k − 1, u])du

+
0∑

k=−∞
Ss−k

∫ 1

0
Ss1−uπ

sg(�(ξ,w)[k − 1, u])d�k−1wu .

According to previous analysis, we easily obtain:

Theorem 4.2 The local unstable manifold of (2.2) is given by the graph of a Lipschitz
function i.e.

Mu
loc(w) = {

ξ + hu(ξ, w) : ξ ∈ BHu (0, ρ̂(w)
}
,

where, ρ̂(w) is a tempered frow below random variable and

hu(ξ, w) :=
∫ 0

−∞
Ss−uπ

s f (yu)du +
∫ 0

−∞
Ss−uπ

sg(yu)dwu .

4.1 Example

Consider the 2mth order parabolic partial equation

⎧
⎪⎪⎨

⎪⎪⎩

dy(u, x) = (L2m yu(x) + μyu(x) + f (yu(x))) du + g(yu(x))dwu(x), u ∈ [0, T ],
y(0) = ξ ∈ O,

∂ y

∂ν
(u, x) =0, (u, x) ∈ (0, T ) × ∂O, k = 0, 1, · · ·,m − 1.

where ∂
∂ν

stands for the normal derivative,O is a bounded domain inRd with a smooth
boundary,

−L2m =
∑

|κ|≤2m

aκ(x)Dκ
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is a uniformly elliptic operator with aκ ∈ C∞(Ō) and w is a γ -Hölder continuous
path with 1/3 < γ ≤ 1/2.

We can consider the above equation as (2.2) in the space H = L2(O). Let
A = L2m + μ, Dom(A) = H2m(O) ∩ Hm

0 (O) if 2m > d
2 , thus we have that

H−2γ = H2m−2γ
0 (O) and the requirement about 2m to such that 2m > d

2 + 4γ .
As we all know that A has a compact resolvent and has countably many eigenvalues
λ j of finite multiplicity, that tend to −∞ when j → ∞. In additional, the associated
eigenfunctions {e j } j∈N form an orthogonal basis of H. Set μ > 0 sufficiently large
such that there exists j∗ ∈ N

λ j∗+1 ≤ −β < 0 < α ≤ λ j∗ .

Let Hu = span(e j : λ j ≥ α) and Hs be its orthogonal complement space in H. i.e.
H has an invariant splitting H = Hu ⊕ Hs . Meanwhile, the nonlinear terms f and g
satisfy our assumptions in (2.2).
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20. Hesse, R., Neamţu, A.: Global solutions and random dynamical systems for rough evolution equations.

Discrete Contin. Dyn. Syst. Ser. B 25(7), 2723–2748 (2020)
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24. Neamţu, A., Kuehn, C.: Rough center manifolds. SIAM J. Math. Anal. 53(4), 3912–3957 (2021)
25. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied

Mathematical Sciences, vol. 44. Springer, New York (1983)
26. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67(1),

251–282 (1936)
27. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat.

Fields 111(3), 333–374 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Unstable Manifolds for Rough Evolution Equations
	Abstract
	1 Introduction
	2 Rough evolution equations
	2.1 Global in time solution of rough evolution equation
	2.2 Truncated rough evolution equation

	3 Random dynamical system
	4 Local unstable manifolds for REEs 
	4.1 Example

	Acknowledgements
	References




