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Abstract

In this paper, we consider a class of evolution equations driven by finite-dimensional
y-Holder rough paths, where y € (1/3, 1/2]. We prove the global-in-time solutions
of rough evolution equations (REEs) in a sutiable space, also obtain that the solutions
generate random dynamical systems. Meanwhile, we derive the existence of local
unstable manifolds for such equations by a properly discretized Lyapunov—Perron
method.

Keywords Rough evolution equations - Random dynamical system - Unstable
manifolds - Lyapunov—Perron method
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1 Introduction

Invariant manifolds are one of the cornerstones of nonlinear dynamical systems and
have been widely studied in deterministic systems. However, in practical applications,
nonlinear dynamical systems are always affected by noises. Invariant manifolds have

Communicated by See Keong Lee.

This work is supported in part by a NSFC Grant No. 12171084 and the Fundamental Research Funds for
the Central Universities No. RF1028623037.

B Hongjun Gao
hjgao@seu.edu.cn

Hongyan Ma

moka.yan@foxmail.com

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
School of Mathematics and statistics, Yili Normal University, Yining 835000, China

3 School of Mathematics, Southeast University, Nanjing 211189, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-023-01547-6&domain=pdf

159 Page2of 36 H. Ma, H. Gao

been widely studied for stochastic ordinary differential equations(SDEs) (see [1, 4, 5])
and stochastic partial differential equations (SPDEs) (see Chen et al. [6, 8, 9, 14]). One
of the key difficulties in studying invariant manifolds of a stochastic partial differential
equation is to prove that it generates a random dynamical system. As we all known
that a large class of partial differential equations with stationary random coefficients
and Itd stochastic ordinary differential equations generate random dynamical systems
(see Arnold [1]). Nevertheless, for stochastic partial differential equations driven by
the standard Brownian motion, it is unknown that how to obtain random dynamical
systems. The reasons are: (i) the stochastic integral is only defined almost surely where
the exceptional set may depend on the initial state; (i) Kolmogorov’s theorem is only
true for finite dimensional random fields. However, there are some results for additive
and linear multiplicative noise (see [8—10]).

A way to obtain a random dynamical system for a stochastic differential equation is
that this equation is driven by y-Holder continuous paths. In this sense, there are two
techniques of defining the stochastic integral that are in pathwise sense. For y > 1/2,
these integrals are consistent with the well-known Young integral (see Young [26]
and Zihle [27]). One of the techniques is to define the integral based on fractional
derivatives. There are already some investigations which have proven that the (path-
wise) solutions driven by fractional Brownian motion with y > 1/2 generate random
dynamic systems, obtained that the existence of random attractors and invariant mani-
folds that describe the longtime behaviors of the solutions (see Chen et al. [7], Gao et al.
[12], Garrido-Atienza et al. [13, 14]). For 1/3 < y < 1/2, Garrido-Atienza et al. [15]
have obtained random dynamical systems for stochastic evolution equations driven by
multiplicative fractional Brownian motion; Another one is to interpret integral in the
rough path sense. Rough path theory (see [11, 16, 17, 23]) is close to deterministic
analytical methods, Bailleul [2] analyzed flows driven by rough paths and Bailleul et
al. [3] studied random dynamical systems for rough differential equations. Kuehn and
Neamtu [24] have proven the existence and regularity of local center manifolds for
rough differential equations by means of a suitably discretized Lyapunov—Perron-type
method. Gubinelli and Tindel [18] generalised theory of rough paths to solve not only
SDE:s but also SPDEs: evolution equations driven by the infinite dimensional Gaussian
process. Gerasimovi¢s and Hairer [16] have developed a pathwise local solution theory
for a class semilinear SPDEs with multiplicative noise driven by a finite dimensional
Wiener process. Hesse and Neamtu [19, 20] have investigated local, global mild solu-
tions and random dynamical systems for rough partial differential equations. Recently,
Hesse and Neamtu [21] have obtained global-in-time solutions and random dynami-
cal systems for semilinear parabolic rough partial differential equations. Furthermore,
based on the structure of solution in [21], Neamfu and Kuehn [22] have derived the
center manifolds for rough partial differential equations.

However, so far, there are little works relate to unstable manifolds of rough evolution
equations. Therefore, in this paper, based on [6, 14, 16, 21, 22] and [24], we are going
to study random dynamical systems and local unstable manifolds for (2.2). In order to
overcome the obstacle that how to obtain random dynamical systems of SPDEs with
nonlinear multiplicative noises, similar to [21] and [24], we choose a proper space
that is different from [16] and [22], give a simpler proof of the local solutions for
rough evolution equations than [16] and obtain the global solutions, also, we obtain
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random dynamical systems by using the rough integral developed in [16] and rough
path cocycle of [3]. Meanwhile, we obtain the contraction properties of the Lyapunov—
Perron operator by using rough path estimates. Moreover, by using properly discretized
Lyapunov—Perron method, we derive the existence of local unstable manifolds for
rough evolution equations.

This paper is structured as follows. In Sect. 2 we provide background on mildly
controlled rough paths and study the global solutions of rough evolution equations.
Section 3 is devoted to dynamics of rough evolution equations. In Sect. 4 we derive the
existence of local unstable manifolds which are based on a discrete-time Lyapunov—
Perron method. Since we work with pathwise integral, so, at each step, it is necessary
to control the norms of the random input on a fixed time-interval. By deriving suitable
estimates of the mildly controlled rough integrals, the unstable manifolds is obtained by
employing arandom dynamical systems approach. The results obtained for the discrete
Lyapunov—Perron map can then be extended to the time-continuous one (further details
please refer to [14, 24]).

2 Rough evolution equations

Throughout this paper, let T > 0, we consider a separable Hilbert space H and
A is a generator of analytic Cp-semigroup {S; : + > 0} on the interpolation space
(Hy = Dom(—A)*; @ € R). We will use the following fact that for all « > S,
y €0, 1] and u € Hg, one has

ISiuling, < CotP Nullzg,.  ISu—ulpg, , < Cpt’llullzg, Q2.1

uniformly over ¢ € (0, T']. For an introduction to semigroup theory, one can refer to
[25].

Notation: We denote Hg = LR, Hy) (Hng = LRI QRY, Ha)) as the space
of continuously linear operators from R?(R¢ ® R?) to H,. For some fixed «, 8 € R
and k£ € N, we denote Céjy ﬁ(H, ‘H") as the space of k-order continuously Fréchet-
differentiable functions g : Hy — Hg 48 for any 6 > o, n € N with bounded

derivatives D! g.foralli =1, ---, k. Furthermore, we denote Cy, g (H, H) as the space

of continuous functions f : Hg — Hgyp forany 6 > «.C, ([0, T]; V) as the space of

continuous functions from A, to V where A, := {(t1, -, t,) : T > t; > --- > t, > 0}

for n > 1 and, for notational simplicity, denote C([0, T']; V) = Ci([0,T]; V). C

stands for a universal constant which may vary from line to line, the dependence of

this constant C = C... ... on certain parameters will be explicitly stated in subscripts.
In this article, we will consider rough evolution equations

dyy = (Ayy + f(yu)) du + g(yu)dw,,u € [0, T,

2.2
yo=%&€H, 2

where we assume:

o f €C_2,0(H,H) is global Lipschitz continuous,
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e g¢€ Cizy,o(Hs H<) and such that ||g(0)||Hg = Co for 0 > =2y,
e wis a y-Holder rough path with y € (%, %] that will be defined as below.

The mild solution of (2.2) can be given by

t t
=S+ /0 Suuf )t + /0 Stug (r)dW, 23)

where the last integral is rough integral, which is pathwise, will be defined below. From
now on, for notational simplicity, we denote S;s := S;—s for0 < s <t < T. In this
section, we will prove the global in time solution of (2.2) and its truncated equation, this
is essential for one to consider the invariant manifolds for rough evolution equation.

First of all, we review some concepts and results on rough path theory, for more
details, please refer to [11] and [16]. Given a Banach space V endowed with the norm
I llv, forh € C([0, T1; V), p € C2([0, TT; V), let

(Sht,s = ht - hs, apt,u,x = Pt,s — Ptau — Pu,s-
Sht s = hy — Sishy, 3Ptus = Pt.s — Ptou — StuPu,s-

Notice that V is one of the spaces in which the action of the semigroup S makes sense.
Then, for 0 < y < 1 we set

I8k 511y 18k 51lv
lhlyy = T Ml = sup R
s,ef0,7] 1t — sl s,ef0,7] 1t — sl
”pt,s”V
|P|y,V = Ssup

s,eef0,7] 1t = s[7
Consequently, one can define the spaces as below:

CY([0,T1; V) = {h € C(I0, T]; V) : ],y < oo},
CY(0,T1; V) = {p € C2(10, TL; V) : Iply,v < oo},
CY([0,T1; V) = (h € C([0, T1; V) : |Ihll,.v < o).

Remark 2.1 Since the semigroup S is not Holder continuous at 7 = 0, hence, from
now on, we will choose & operator and cr type Holder spaces for our evolution setting
to overcome this obstacle.

In addition, we endow C([0,T]; V) with the supremum norm |ifeoyv =
supg<,<r |IA:|lv. For notational simplicity, in the cases of V. = H,, HZ or Hng,
we will denote |h|y = |hly o, 2lly.v = Ally.as 1hlloo,v = 17]lcc.a-

Definition 2.1 For y € (%, %], we define the space of y-Hélder rough paths(over R?)
as those pairs w = (w, w?) € C¥ ([0, T]; RY) x C3¥ ([0, T]; RY ® RY) satistying the
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Chen’s relation, i.e. fors <u <t € [0, T]

2 2 2
Wy s — wt,u — Wy s = awu,s ® Bwt,u-

This space is denoted as € ([0, T']; Rd). For two rough paths w = (w, w?), W =
(w, 11)2) e ¢V (0, T]; Rd), we define the rough metric g, as:

- - 2 -2
oy(W, W) = [w — wly, + |[w” — w[zy.

Definition 2.2 Let w € €7 ([0, T]; RY), for some y € (%, %], we call (y,y) €
Cr ([0, T); Hy) x Cr ([0, T, Hg) a mildly controlled rough path, if the remainder
term R” is defined by

R} =byis — Sisyidwys, for s <tel0,T], 24)

which belongs to ng ([0, T1; Hy), then we call y’ mildly Gubinelli derivative of y
and denote (y, y') € @;Vw ([0, T1; Hy).

Notice that, when one replaces H, by Hg, the above definition is also true. Mean-
while, a seminorm on this space is defined as

ly, y/||w,2y,a = ||y/||y,a + |Ry|2y,a-

The norm of @éyw ([0, T1; Hy) is defined as

1y, Yl gz = Iyollng + 130l + 173 llw 2y 0

Remark 2.2 [22] have used controlled rough path given in [21] which is different from
the one we use. Here we incorporate semigroup into the definition of controlled rough
path as in [16].

According to (2.4), one can easily derive that

”y”y,a = |Ry|2y,aTV + ”y/”oo,otlwh/ <+ |w|y)(||y(/)||’}-{g + 1y, y/”w,Zy,aTy)-

(2.5)
Furthermore, given a mildly controlled rough path, one can define the rough integral
as below:

Theorem 2.1 Let T > 0 and w € €7 ([0, T1; RY) for some y € (%, %]. Let (y,y') €

@ﬁfw([o, Tl, Hg). Furthermore, P stands for a partition of [0, T]. Then the integral
defined as

t
/Smyudwu = dim Y Su S+ ywg.) 2.6)
s PI=0 L er
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exists as an element of (fy([O, T1; Hy) and satisfies that for every 0 < B < 3y we
have

Moreover, the map

!
/ StuYudWy — StsysSwy s — stY§w,2,s
s

Hasp 2.7)
SR layalwly + 1Y Ily.alw?loy)lt — s 7P

3 y) = (2,7) = </0 S Yud Wy, y)

is continuous from gﬁfw([o, TI; Hg) to @gfw([o, T1; Hy). Here the underlying con-
stant depends on v, d and T and can be chosen uniformly over T € (0, 1].

In our case, one needs to consider a suitable class of nonlinearities integrands,
according to Lemma 3.14 of [16], we consider mildly controlled rough paths compose
with regular functions as follows, since the proof is identical to the one of Lemma 3.7
of [16], we omit it here.

Lemma2.1 Let g € ngO(H, HD, T > 0and (y,y) € @ﬁfw([o, T1; Hy), for some

w e €7(0,T1;RY), y € (1/3,1/2]. Moreover, suppose y € Cn([0, T1: Hav2y),
n €[0,1]and y' € L*([0, T]; H§+2V). Define (z;,z;) = (g(y1), Dg(y1)y;), then,

(z.7) € .@é}/w([(), T1; HY) and satisfies the bound

llz, Z/”w,Zy,ot
< Cor(1+ wly) A+ 150ll3a + 1Y, Yl 2y.0)

T+ 1Yol Hy,n, + IIyéllng + Iyllp.ar2y + 1Y loo,at2y + 11, Y llw,2y.a)-
2.8)

The constant Cy 7 depends on g and the bounds of its derivatives, meanwhile, it
depends on time T, but can be chosen uniformly over T € (0, 1].

According to Lemma 2.1, the composition with regular functions requires higher
spatial regularity conditions for mildly controlled rough path. Hence, in our evolution
setting, in order to obtain the global in time solutions of (2.2) in a suitable space, as
in [16], we need the following space:

3P0, T1): Ha) =257, (10, T1: Ha) 0 (CT(0, T Hagp) x L0, T1 HE ),

where 8 € Rand n € [0, 1]. Let (y, y) € .@;3/11’)'3’"([0, T1); Hy), the seminorm of this
space is defined as:

lly, y/”w,Zy,,B,n = ”y”n,oz+ﬂ + ||y/||oo,a+ﬁ + ly, y/||w,2y,a~

The norm of this space is defined as below:

1y, Yl grpn = 130lrtary + 150lleg + 13 Inarp + 15 Nocatp + 17: ¥l 2.0
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Moreover, we will denote C0 = C for n =0.
Furthermore, from Lemma 2.1, we know that composition with regular functions

maps 92’/ 27, M0, T1; Hy) to @;3;’)27/’0([0, T1; ’Hg), for n € [0, 1]. For notational
s1mp11c1ty, we denote

D20, T): Ha) = 2577 "(10. T) Hao2y). 0 < <y,

. 2 .
the seminorm and norm of Dy, ([0, T; H,) are respectively denoted as |-, -1, 2,2y.n
and |-, '”DZV‘”'

w

Remark 2.3 Notice that, in [16], for notational simplicity, the authors have denoted
Dy (0. T Ho) = 237777 ([0, T]: Ha—2,) and considered the solution in
Dﬁ,’/([o, T1; H) which is differ from our case. In our situation, in order to facili-
tate the study of the global in time solution of (2.2), we will choose to consider (2.2)

in the space D2/""([0, T]; H) which is bigger than the space D2 ([0, T; H) of [16].

Lemma2.2 Let T > 0, g € Cizy,o(H7 HD), (v,y) € Dﬁ,”([o, T1; H), for some
we Y0, T]; Rd) with y € (%, %]. We have

(/O S.ugu)dwy, g(y)> € Diy,n([o’ T, H)

and

|[ suso oo = Crar U0ty + g0 €D 1 rrn (29)

where the constant Cy, 4. 7 depends on y, d and T and can be chosen uniformly over
T € (0, 1].

Proof According to (2.1) and (2.7) we obtain that

R Jo S-ug(yu)dwy
1,8

t
/ Stugyu)dw, — Stsg(ys)(swt s — Sts (g()’s)) wt s
s

H-_2y H_2y

81 (g ) w7 I3,
S (IRE Ly, 2y lwly + 1O Il -2y lw?lay ) 1t = 51

l 2 o2y
+11(g(ys)) IIHgécyzlw 2y It — 577,
then we have

[ RhSusaiw| Y ol + [y, (€0 g, 2

‘2)/,—2)/
+w?2y 1(g(1)) loo, 2y -
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Similarly, we have

t
/ Sug(y)dw,
K H

=

t
/ Sue8 ()dWu — Sysg(3)81rs — Sps (8 (ye)) W,
s H

1185 g 58w sl + 11515 (8 (7)) w7l
S (1REOlay.—2y lwly + 1O lly—2y w2l ) It = 517

g llpga lwly 1t = 517 + 11(g () | pgaxa [w? |y It — 5177,

then

< T (lwly 4+ [w?2)llg(), (€O lw.2y.—2y
7,0

”/0 S.ug(Yu)dWwy
+T7 M llooolwly + T2 7721 lloo.0lw? 2y -
From (2.5) one has
gy, —2y = (I + ley)(ll(g(yo))/IIHgég + T8, @) llw,2y,~2y)-

Consequently, from above estimates we have

S.ug(yu)dw ,g(y)'
H/o e DY

S+ wly + |w2|zy)|\<g(yo>>/||Hd§d + 77 w22, 180 lly,—2y
-2y

2.10
F1EWlloo,0 + T “Mwly g llss,0 + T2 7Mw?l2y 18(1)) o0 (2.10)
+ 1800 pga |+l + w22 TY 183, (€)) w2y, 2y
—zy
+ (wly + w2, T Mg (€0 llw 29,2y -
Finally, using (2.10), we easily obtain the desired result. O

Lemma2.3 Let T > 0, g € C3,, ((H. H%), (v.y') and (v,v') € D" ([0, T); H),
for some w € €7 ([0, T1; RY) and there exists M > 0 such that lwly, |w2|2,,,
Iy, y’I|D§]M and ||v, U/”Dﬁ,%” < M, then the following estimate holds true

lg(y) — ), (g(y) — g(v))/”@?/ly,o < Cugr (L4 wlhy)?lly — v, (v — U)/”Diy’”' (2.11)

The constant Cyy g, 1 depends on M, g and the bounds of its derivatives. At the same
time, it depends on time T, but can be chosen uniformly over T € (0, 1].

Proof Firstly, we give an inequality which will be used throughout the proof: for
ge€Cy (M, HY), x1, x2, %3, x4 € Hp, & = =2y, the following bound holds

llgCx1) — g(x2) — g(x3) + g(x4)ll9ya
0
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< Cg(llxr = x2 — x3 + x4l + (lxr = %3094, + w2 = xall3g,)llx3 — x4llp¢, ). (2.12)

Due to

8 (ye) = g(we) = S5 (8(ys) — g Ws)llpge
= lg(v) — 8w — (8(ys) = 8Ws)llyga, + (S5 = 1(g(ys) — 8w llpqe

< llgy) — g(vr) — (g(ys) — 8(Us))||HiZV + 11(g(ys) — W) llggalt — 51?7,
so, we have

lg() — gy, -2y = 18(¥) — gWly,—2y + TV I8(¥) — 8(V)loo,0-

Similarly, we have

18 — gWly.—2y = I8 — Wy, —2y + TV 1I8(¥) — 8V lloo,0-

Using (2.5) and (2.12), we derive that

le) — gW)ly,—2y < Ce(ly = vly,2y + (¥ly~2p + [Vly,~2) 1y = Vlloo,~2y)
< Ce(lly = vlly,—2y + T”lly = vlico,0)
FCs(I¥lly,—2y + TV I¥lloc,0 + llvlly, 2y
FT7 [[vllo0,0) 1y = vllo, 2y
< Ce(lly = vlly,—2y + T [ly = vlico,0)
+Ce(1 + ley)(llyélngzy + T7 [lyolln

TV ll0 + T 1y, Y w2y, -2y
Hvollya, + T voll + T vlly0

+T7||v, U,||w,2)/.72y)”y - U”oo,72y
< Cor.m+Hwl) (ly=vlly,—2y H1y=vlloo,~2y +T7 [y =]l .0).

therefore

lg() —gW)lly.~2y < Cor.m (4wl (Ily = vlly,—2y
+y = vllco,~2y + T" 1y = vllc.0)-

Similarly, we can obtain that

IA

|Dg(y)y" — Dg(v)v'l, 2y
+11Dg(y)y" — Dg(W)v'[loo,0T7,
IDg(y)y" — Dg()v'ly,—2y < IDgM(Y — vy 2y
+1(Dg(y) — Dg()V'|y, 2y
I+11.

IDg(y)y" — Dy()v'|l;,—2y
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I < IDEW oo, £ 2, @R H o) 1Y = V'ly.~2y
FIDEWy, £(H_, @R H_p ) 1Y = Vlloc,~2y
< Co(ly' = V'l 22y + ¥y =2y 1Y = V'llo0,~2y)
< Com(L+ w1y = Vlly, 2y + 1Y = V'lloo.—2y

+T7 1y = v']l00,0)
meanwhile, we have

11

I\

Com.m(L+Twh)(Ily = vy —2p + 1y = vlloc,~2y + TV lly = vlic.0)
DM = ¥)lo.0 + 1(Dg(y) = DgW)V .0

Cely = v"lloo,0 + 1y = vlloo,0l1Vll0o,0)

Com (1Y =" lloo,0 + 11y = vllco.0)

IDg(y)y — Dg)'llc,0

IN TN IA

and

Iy = vllos.0 S Ty = vl + lIyo = volla,
according to above estimates, we obtain
IDg(»)y" = Dg)'lly,—2y < Comr(L+ [wly)lly — v, (v = 0) 'l p2ra-
Since

RS = g(v) — 8(y) — D) Stsyi8wr s + Dg(ys) S5 yidwr s — Dg(ys)yLdwy
+Dg()’s))’;8wt,s - Stng()’s))’;Swt,s + g(vs) — Sis8(ys)
=g(y) — g(v) — Dg(ys)dyrs + Dg ()R] s + Dg(ys)(Sis — D ysdwy
—(Sis = DD (ys)ygdwy s — (Sis = g (ys)
=g() — 8(ys) — Dg(y)8yrs + Dg(ys) R} s + Dg(ys)(Sis — D y;dwy
—(Sts — DDG(ys)yidwy s — (Sis — Dg(ys) + Dg(ys)(Sis — Dy,

hence, we have

REY) — REW = g(y) — g() — Dg(y)dyr.s — ((vr) — g(vs) — Dg(vs)dur.s)
+ Dg(ys)R] s — Dg(vs)Ry
— (Sts — D(g(ys) — g(vs))
+ Dg(ys)(Sts — Dyydws,s — Dg(ug)(Ses — Dvgdwy s
— (Sts — 1)(Dg(ys))’§5wt,s - Dg(vs)véswl,s)
+ Dg(ys)(Sts — Dys — Dg(vs)(Sts — Dvs
=i+ii+iii+iv+v+vi.

(2.13)
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For i, applying (44) of [24], we have
1ol ) )
IIiHngy =< Hfo /0 Coler(yr —ve) + (r = tr9)(ys — vs)ldTdrdyes @ dyrslly_,,

1 1
+1l /0‘ [0 Cg[rrzv, + (r — tr¥)vgldrdr (8y1,5 ® 8y1,5 — Svp,5 ® Suy,5) I+ s,

< Celly = vlloo, 2y I8y1,s + (Sis = Dysliyy_,
+ Cllvlloo,~2y (18315 + (Sts = Dysllr_y, + 1vrs + (Sis = Dusliz_y,)
80 = Vs + Sis = DO = Vsl _y,
< Celly = vlloo,~2y (I¥lly,—2p 1t = s1” + ¥llos,0lt — 51%)?
+ Cyllvllos,—2y (19 lly.—25 1t = 51 + [¥llos,0lt = s12Y + vy, —2y It — 517
+ vllos,0lt = s127) - (ly = vlly,—2y It = 517 + Iy = vlloo,0lt — s12).
For ii, we have
liillya = IDg(y)R} s — Dg(y)RY s + Dg(y)RYy — DWs)RY (Il
=2y -2y
Yy _ pv Y v
< IDgGRY, = RElpga, -+ 1(Dg(s) = DR sllpga

< C4IRY — RV|ay, 2yt — 51 + Cglly — vlloo,—2y IR |2y, —2y It — 1%
For iii, we easily have
<C _ 2y
lliii IIngy < Cglly = vlloc,0lt — 7.
For iv, we have
livpga, < 1(Dg(3s) = Dg(ws))(Ses = 1>y;awt,snﬁizy

+ 1D (v5)(Sts — D (g — v)8wr sl 3ya
—2y

< Cylly = vlloo,—2y 1 llow,0lwly It = 517 + Clly’ = v'llog 0lwly It — |2
For v and vi, similar to i v, we obtain
/ 1 3
IIUIIngy < Comlwly Iy = vllso,0 + Iy = V'llec,0) |t = 577,
. 2
[|vi IIngy < ComUly = vlloo,0 + Iy = vlloo,—2) |t — s
Consequently, we easily obtain

|RED) — RSy, 0y < Coup,r (L4 [wl) 2y — v, (v = 0) p2ren-

Finally, according to previous estimates and the norm of ¥ 2” 2 O([O T]; H), our
result can be easily derived. O

By substituting (2.11) into (2.9), we easily obtain the following result.
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Lemma24 Let T > 0, g € C2) o(H. H9), (v.y') and (v.v') € D"([0, T]: H),
forsomew € €7 ([0, T1; Rd) and there exists M > O such that |w|, |w2|, Iy, y/”DZy,n

and ||v, v’||DzM < M, then, there exists a constant C such that
w

H /O ' Suu(g) — gw))dWu, g(3) — g(v)

D" (2.14)
!
< Com,m (14 [wly + W 2) (L + [wly)*lly = v, (0 = v) L 2y
w

The constant Cy g, 7 depends on M, g and the bounds of its derivatives, at the same
time, it depends on time T, but is consistent with time T € (0, 1].

However, in Diy’”([O, T1; 'H), we also need to estimate the terms containing the
initial condition and the drift of rough evolution equation (2.2). Hence, we will focus
on this in the following Lemma 2.5.

Lemma25 Let T > 0, & € H, f € C_3,,0(H,H) be global Lipschitz continuous,
and (y,y') € D%}”"([O, T1; 'H), we have that the mildly Gubinelli derivative

(SE +/' S,uf(yu)du> =0, (2.15)
0

also have the estimate

HSE + fo. Suf (Yu)du, OHDZV‘” = CrrUEN+I1F D lloo,—2y + I1f (D)loo,0)-

’ (2.16)
Moreover, for two mildly controlled rough paths (y, y') and (v, v') with yy = & and

vo = &, we have

s -5+ [ 5.000 - f@no|
0 D" (2.17)

<Cyr(lE —EI+1FO) = fF®lloo,—2y + I1F ) = F @) lloo.0)-

Proof Let0 < T < 1. Since

1€ — S15Ss€ll_s, =0,
1€ — SisSy€ll = O,
1S0& l17¢ < 1€l

hence we have

(5.8) =0,
|RS'S|2y,—2y =0,
I5:€, Oll p2rn = ClIEI (2.18)
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Meanwhile, due to

t s
H/(; Stu f (Yu)du — Slx‘/o Ssu f u)du

t
< [ 170l du
D)2 (= 5),

0
H /0 Sou f u)du

thus we have

; ’
( / Smf<yu>du> 0,

0
H/ S f(yu)du
0

H_2y

t
/ Suuf (vu)dd

H o,

=0,
H_2y

t
/ Suuf (vu)dud

N

t
N < / ILf G lirdu < (& = ILf (M loo,0,

IA

ILf Wllos 0l — 517,

1,0

A

|RIoSulGodiy < | F () lloo—2y (£ — 5)' 727,

H /O S f (), 0 < Cy (T2 [ fFDllooray + T 7F D) lloo.0)-

Dw%ﬂ

(2.19)

Finally, (2.16) is proved, consequently, (2.17) can be easily obtained. O
In Diy’” ([0, TT; H), because of above preliminary results, similar to Theorem 4.1

of [16] one can then easily derive a local solution for (2.2) by a fixed-point argument,

ie.:

Theorem2.2 Let T > 0, given £ € H and w = (w, w?) € €7 ([0, T1; RY) with
y € (%, %]. Then there exists 0 < Ty < T such that the rough evolution equation (2.2)
has a unique local solution represented by a mildly controlled rough path (y,y') €
Dy ([0, Tol: H) with y' = g(y), forall 0 <t < Ty

t

t
= SE+ /O Suuf ) + fo Srug ()W (2.20)
Proof Let0 < T <1,

t t
My, Y = (Sté +/0 Stu f (Yu)du +/0 Stug()’u)dwuyg()’t)>-
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It is easy to obtain that if (yo, ) = (£, g(&)), then the same is true for M(y, y’).
Thus we can regard Mt as a mapping on the complete metric space:

{(r,y) € D0, T H) : yo = £, v = g(6)}.

Meanwhile, since

1S.& + S.g&)ow. 0, S.gE)lw,2y,—2y =0,
hence we easily have that this is also true for the closed ball Br(w, r) centred at

1= (SiE + Sig(&)dwy 0. Stg(§)) € D" (0, T1: H), e

Br(w,r) ={(y,y") € D10, T1: H) : yo = &, v = (&), lly — (5. + 5.2E)6w.0) 1.0
1Y = 8.8E)loo0 + Iy — (5.5 + S.g()dw.0), ¥ — S-8E) w2y, —2y < 7).

Since, by triangle inequality, for (y, y’) € Br(w, r) we have

5.6 + S.8()dw. .0, S.8(E) w22,y < N18E) Ipga + TV g (E) ll3galwly,
19, Y lw2y200 <7+ 18E) g + g E) llgalwly -

Then, one obtains

M) — (S.& + S.g(E)8w.0), §(») — S.8E) w22y
< M), 8D lw2y,29.0 + 156 + S.g(E)Sw. 0, S-gE)llw,2y,2.1
ST D looray + 1 FDllso0) + T7 g llov0lwly + 18 lloc.0

+ T (wly + 1w ) 18, (€(0)) llw, 2y, -2y
+ (A fwly + 1021 00)) gy
+ T2 (g llos,0lw?lay + TV (14 [wly + [w?2,) 18, (€(0)) w2y, -2y
+ T [w? 2y 1)) Iy =2y + 18E) g + TV g E)lpgalwly,
since g € Ci2y,O(H’ H?) and ||g(0)||Hg for 6 > —2y, by mean value theorem we

easily obtain || g(y)||Hg < 1+ |lyllw,, consequently, according to (2.8) and above
estimates we easily have

M) = (S.& + S.8(§)dw.0), 8(¥) = S-8E)lw,2y,2yn

Yy—n
= CLyg.0w.0) T 17 Co 0001811y, . 2y.20.1°

Letr = 2CL; g.o(w.0), then for V(y, y') € Br(w, r), we have

-
IM(y) — (S.& 4+ S.g()dw.0), g(y) — S.gE) w2929, < 3 +T77"Cq o(w,0),IE].r-

By letting T = T to be sufficient small such that

r

Y—n
Ty Coow0)lglr < 5
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then one otains
M(BTl (lU, r)) - BT] (wr r)‘

For the sake of proving contractivity of M, one can use steps that are similar to the
previous steps to show

IM) = M), g0 = g2y 270 =TI P Cq piw0y ey = v ¥ = 0l 2y.27 -

This ensures contractivity when 7> is sufficient small. Let 7o = min{77, 7>}, by the
Banach fixed point theorem, one has that there is a unique (y, y') € By, (w, r) satisfies
M(y) = y, i.e. a solution of REE (2.2) on the small time interval [0, Tp]. O

Remark 2.4 Our proof of Theorem 2.2 is simpler than the one of Theorem 4.1 in
[16]. This is also the key that we choose to study (2.2) in the space Dg}”"([O, T, H).
Here, we directly view M7 as mapping from the space Di”([o, T1; 'H) into itself,
however, in [16], the technique is to take ¢ € (1/3, y] and view M7 as map from
2572 ([0, T); Hae—2y), rather than 237,27 ([0, T1; H).

2.1 Global in time solution of rough evolution equation

As we all known, the global in time solution is the key that allows one to consider
the longtime behaviour of rough evolution equation (2.2), so in this subsection we
will focus on this issue. Similar to [20] and [21], we will derive the following result
which is fundamental importance for the discussion of global in time solution for (2.2).
According to (2.8), (2.10), (2.18) and (2.19), we obtain that:

Corollary 2.1 Let (y, g(v)) € Diy’"([O, T]; H) withO < T < 1 be the solution of
(2.2) with the initial condition yy = & € H. Then one has the following estimate

Iy, g llpzrn S THUEN+ Ty, Dl p2yn- (2.21)

Proof Since (y, g(y)) is the solution of (2.2) we have

s <|1S.&,0 S. du,0
I pn < 1S Ol + | [ S ‘Di,”

+ /S, )W ,g<y>‘ .
H 0 u u u Dﬁ)}/.n

According to (2.10), (2.18) and (2.19), we obtain

Iy, )l p2rn
SHIEN+ T2 (1 f Wlloo, 2y + I1F D lso0) + lg 0l + Il(g(yo))/lng;f

+ 1lgMlloo.o + T (g lloo.0 + T Mg (), (€30 w2y, 2y -
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Meanwhile, from (2.8) we have

18 (8 w2y, ~2y S 1+ 11y. 8 p2ra-

Combining ||g(y)||Hg < 1+ |lyll%, and the bounds of its derivatives with previous
estimates, we obtain

1y, 8Dl pzrn S L€+ T2 (14 1y lloo, 2y + 1V lloc.0)

+ TN Nloo0 + TV 1), (80N llw,2y,—2y
ST+ IEN+ T2 710 + 1y llso,—29 + [V l00,0 + 18 llos,0)
+ 177y, g0l 2y
STHUEN+T7 70y, g0l parn-

Finally we obtain the desired result. O

Applying a concatenation discussion of [20] and [21], according to (2.21) we obtain
an a-priori bound for the solution of (2.2). The technique of proof is identical to the
one of [20] Lemma 5.8, we omit here.

Lemma26 LetT > 0, (y,g(y)) € fo’”([o, T1; H) be the solution of (2.2), where
the initial condition yy = & € H with |&|| < p. Let ¥ = 1 V p, then there exists
constant M such that
I¥lloo,0,00,77 < MFeMT.
Lemma 2.6 ensures that the solution of (2.2) does not explode in any finite time,
therefore, in Diy’" ([0, T]; H), according to above preliminary results, based on The-
orem 2.2, we have the following result that the local solution of (2.2) can be extended

to global one by a standard concatenation discussion, the details of proof one can refer
to [20] Theorem 5.10 and [21] Theorem 3.9, we omit here.

Theorem2.3 Let T > 0, given € € Hand w = (w, w?) € €7 ([0, T1; RY). The
rough evolution equation (2.2) has a unique global solution represented by a mildly
controlled rough path (y, y') € Diy’n([O, T1; H) given by

(v,y) = (S.é +/0. S f Yu)du + /0 S.ug(yu)dwu,g(y)> . (2.22)

Remark 2.5 We emphasis the fact that the solution of (2.2) is global in time. Rough
paths and rough drivers are usually defined on compact intervals, according to [3] and
[21], wesay w = (w, w?) € €7 (R; R?) is a y-Holder rough pathif w|; € €7 (I; RY)
for every compact interval / C R containing 0. Hence, in our setting, we have that
(y,y) e Diy’"([o, 00); H)if (v, y') € Dﬁf’”([o, T]; 'H) forevery T > 0. Therefore,

we set Cglio,00) = ,hax Celr, 0w, 0)][0,00) = Ié?g’;o)g(w’o)“’ according to
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Theorem 2.2, letting r = 2Cp, 7.8.0w,0) [[0,00)» and previous deliberations we have that
r keeps invariant in concatenation arguments and one can obtain a unique solution of

(2.2) in DX([0, 00); H).

2.2 Truncated rough evolution equation

We will prove a global unstable manifold for a modified equation of (2.2) by using
cut-off function over a random neighborhood in the following Sect.4. Hence we will
construct a local unstable manifold depended on the size of perturbations and the
spectral gap of the linear part of (2.2). In order to consider the existence of local
invariant manifolds by using Lyapunov—Perron method, in this subsection, we modify
these nonlinear f and g by applying appropriate cut-off technique to make their
Lipschitz constants small enough. Since in contrast to the classical cut-off techniques
(as in [6, 8, 9] and so on), in our case, similar to [22] and [24], we truncate the norm
of mildly controlled rough path (y, y"). Due to the technical reasons of Lyapunov—
Perron method, which we will use in Sect. 4, we fix the time interval as [0, 1] in this
subsection.

Meanwhile, we assume the following restrictions on the drift and diffusion coeffi-
cients:

e f € Cl_zy’O(H, ‘H) is global Lipschitz continuous with f(0) = Df(0) = 0;

o g €Cy, o(H, 1Y) with g(0) = Dg(0) = D*g(0) =0
so one easily obtains that (y = 0, y’ = 0) is a stationary solution of (2.2).

Let x : D20, 11; H) — D2([0, 1]; H) be a Lipschitz continuous cut-off

function:
1
2 9
1.

IA

oo Iy Y llsera
x() = Du

v

Ov ”ya y/”DiV-"

As examples in subsection 2.1 of [24], we can take ¢ : R™ — [0, 1]isa CZ’ Lipschitz
cut-off function, then y (y) can be constructed as

x) = yodlly. y'llpzya)-

In the following, we assume that x is constructed by ¢. According to Definition 2.2,
one has

X' = Yodly. yllpza).

this construction indicates that

IA

( ) /)7 ” k) /” Y.n
GO oy =1"" ¥ oy

\
el ST

07 ||y, y/”Din’l jl
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For a positive number R, we define

XR(Y) = Rx(y/R),

this means that

1ys ¥ v < X
Y, v,y 2y =,
xr(Y) == / Du 2
0’ ”yv y ”'DiVVI 2 Rv
then
Gy o < £
(XRWY), Xg()) := Du
KRV Xty 0, 19, ¥ lpzrn > R.

For a mildly controlled rough path (y, y') € D%Uy’n ([0, 11; 'H), we introduce the oper-
ators

SR == foxr(y),  grR() :=go xr().

Based on Lemma 2.1, we obtain the mildly Gubinelli derivative of gr(y):
(gr (") = Dg(xr(Mxr () = Dgyolly. ¥ ll p2ran /RNy @1y, 'l p2yn /R).

It is directly obtained that if |y, y/||D2y,n < R/2, we have that fr(y) = f(y) and

gr(y) = g(y).
Next, we will discuss the Lipschitz continuity of fr and gr, and the Lipschitz
constants are supposed to be strictly increasing in R.

Lemma2.7 Let (y,y') and (v,V) € ngy’"([O, 11; H), then there exists a constant
C = Cy.x.|w|, such that

1fR() = fr@W)lloo.0 + 1 fRGD = fRW)lloo, 2y < CRIly = vy = 'l p2yn
(2.23)

Proof We easily have

sup (| fr () = fRWD NI, = sup [F(Xr(¥)) — FXRW 13y, -
r€[0.1] 1€[0,1]

Firstly, since f € Clzy’O(H, ‘H) is global Lipschitz continuous and D f (0) = 0, thus
we have

1FXRGD) = FOR@D I,

1
= /O IDf(rxr(ye) + (L = XRWD N £H s, H_2) AT IXR ) = XR WD H_,,
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< Crmax {Ixr3)lH_,» IXRWDIH_,, HIXR (DD = xR I3y, -

Secondly, due to

IVlloo,~2y = IyollH_y, + 1IVlly.~2p < llyoll + ¥l —2y

and
Iylly,—2y <+ ley)(llyélngzy + 1y, ¥ llw,2y.~2y)

< (0 [wi)lly, ¥l 2y

hence we obtain

[Ylloo,~2y = lIyollx 4 (1 + ley)(lly(’)llﬁgzy + 11y ¥ llw,2y,~2y)
< (L+ 1wl (Iyoll# + IIY(SIIHgZV + 11y, ¥ llw,2y,~2y)

=+ ley)lly,y’llpgy,n.
In addition,

xRN oo, 2y = 1y@ U1y, Yl p2vn/ R)loo, 2y = IV lloo,—2y @Iy, ¥'ll p2vn /R)
Dy Dy

<C(d+ |w|y)||y,y/||Dlzvy,n < C, R,
(2.24)
and ¢ : R™ — [0, 1]is Cg, then we have

IxR G = KRN, = 1500013, ¥ 2/ B) = 010, 0L / B34,
<100 = 00901y, ¥ v/ By,
10 (1, Y iz /R) = @10, 0l parn/ ROl

<y = vlloo.~2y
+ [vlloo, 2y 1D lloo (lly, y/llpiy,n/R — llv, v/IIDng,n/R)

= Cotwly 1y = v (v = o) ll v
Consequently, we have
1f Gr(3) = f (xRN0, 2y = Copifuly s RIY = 02 (v = 0) [l p2vn-
Similarly, we have
1f Gr()) = f(XR@Dlloo.0 = Cop RIY = 0. (v = 0) [l -
Finally, according to above estimates, we easily obtain the desired result. O
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Lemma 2.8 Let (y,y') and (v,V) € Dﬁ,y’"([O, 11; H), then there exists a constant
C =Clg, x, lwly] such that

lgr(y) — gr(v), (gr(Y) — gR(U))/H@gyéyzy,o SCRIy —v. (v =) llpzya
’ (2.25)

Proof In the beginning, we give the inequality below which will be used in the fol-
lowing process of proof. Let g € Cizy,o(H’ H?), x1, x2, x3, x4 € Hp, 6 > =2y, the
estimate as below holds true

ligGxr) — g(x2) — g(x3) + g(xa)llg4a
< Comax {[1x1l134, %2013, JlIx1 — x2 — X3 + xall34,

+Cq(llx1 — x3ll7, + X2 — x4ll7, ) 1x3 — xal74, - (2.26)

The key of this lemma is to estimate terms of [|[g(xgr(¥)) — g(xr(W)ly,—2y,

(g (xR () = 8(XR(W)) |y, —2y and [REXROD — REURWI 5, Based on the con-
struction of xr(y), we easily have the following estimates

RIED) = 5y (rs — Sts X (0)sOwr s
= Sy s0ly, y’HDiy,n/R) — Sisyye(lly, y,||D5}y,r]/R)8wt,x
= R} 01y ¥'llp2y.n /R,
w
xR ly,—2y = 150Uy, ¥ |y2ra/Blly,~2y < 0y I 2y /Bl -2y
w w
< A+ 1wy Yl p2rn < Cul, R,
xR Olloo,0 = 10y, ¥ L y2ra /Blloc,0 = @1y, ¥ L2y /BRI lloc,0
w w
<

< lylloo,o < IIy,y/IIDiy.q <R,
IXRO) = XRW)ly.~2y = @UUIy. Y | 2y /Ry = vy, —2y
w

+lvlly,—2y 1D@loo 1y, ¥'ll 2y /R = 1, V| 290 /R)
Dw Dl“

A

<cC =0, (v =)l 2y
Iw\y,)(Hy y HDwyn

xR ) = xgWy,—2y = 150Uy, Y2y /R) = v'@(Ulv. VIl 290 /Ry, —2y
D"J DU}

IA

oy, Y/HDZ}/.W/R)D’/ - U/‘y,—Zy
w
+||U/||y,—2y I1D@lloo(lly, y/H,D2y,n/R — v, U/”DZVJ]/R)
w w
< C =0, (v =) || 2y,
[wly . x lly (& ) H,Dwy,n

|RXEO) — RIRW |, oy = IR 9y, ¥ Il 2y /R) = RV (110, V'l 2pn /R 2y ~2y
w w

IA

oy, y/“D%)y.n/R”Ry - Rv|2y,—2y

+IR L2y, —2y I1D@lloolly, y/“DZy.n/R — v, U/HDZV,n/R)
w w

/
Clw\y,xH)’ v, (y —v) “D%}y,n-
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Firstly, applying above estimates and (2.24), we have

I8§XR()) — 8(XRWDNly,—2y < 18XR()) — 8(XRWNy,—2y + I8(XR(Y)) — (xR (V)00
[§(XR(Y) — &(XR(WDy,—2y
= Cgmax{llxr (M lloo, -2y IxR W) lloo, -2 HXR(Y) = XR(W)ly,—2y
+Cq (IXR WMy, —2y + xR W]y, —29) IXR ) = XR @) loo, 2y
< Cyfwly x RUIXRG) = XRWly.—2y + IXR() = XR W)l c0.,0)
+Co (IXR WM ly,—2y + IXRW 0,0 + xR @)1y, —2y + xR @) ll00,0) IXRD) = xR W) ll00,~2y
= Cguwl,.xRly—v. (y - v)’HDzwy,n

and

lg(xr () — (xR (W) lloo,0 = Cg max{llxr (M lloo,0: 1 xR W)lloo,0}IXR() — xR (V00,0
< Cg.xRIXR(Y) — XR(W) 0,0

hence, based on above estimates we obtain

lexr () = gXRWD Ny, —2y < Cg,jw]y,x RIly —v. (y — U)/||Di?/.n~

Secondly, since

IDg(xR (xR () — DgxR @) xg Wy, —2y < IDgURONXR(Y) — DEXRW) xR (W)]y,—2y
+ 1Dg(xRON xR () — Dg(XxR W) X g W)ll00,0
IDg(XRONXR(Y) — DEXRW)XR W)y —2y
< IDEUXRMXR D) — xRy, —2 + [(Dg(XR () — Dg(XRW)) xR W]y, —2y
< IDg(xr () HOO,ﬁ(H—Zy@Rd,H_zy) ‘(X;q o - X;Q(U))ly,—Zy
+ ”Dg(XR(y))Hy,[,(')'l,zy@Rd,H,zy) I(X;g(y) - X;Q(U))|oo,—2y
+ D8R = DGR, L3¢y ekt 1_s) Xk oo—2
+1DgUR( = DGRl L1y ek, 1) IXRWy—2
= Cg(”XR(y)Hoo,—Zy‘X;Q(Y) - X,R(v)|y,—2y + |XR()’)|y,—2y”X;e(y) - X;e(v)”oo,—Zy)
+ Co(Ixg W lloo,—2y [XR ) = xR W)y, —2y + xR @y, —2y IXR (DY) — XR W) lls0,~2y)
= Celwly.x R(Ixg ™ — xzgWlly,—2y + 1x5 ) = xg @ lls0,0 + xR ) — xg @ llso,—2y)
+ Cex R(IXxr () = xRy, =2y + xR — xR W) lloe,0 + 1 XR () — xR W) lloo,—2y)
and
IDg(xR (xR () — DxR @)Xk W lloo,0 < IDEXRON (R () — Xk @) ls0,0
+ 1(Dg(xr () — Dg(xR WX g (W) ]ls0,0
< Co(IlXRD loe,0l Xk ) = xg (W lls0,0
+ xR ) = xR Nloc,0ll Xk @) llse,0)
= Cg,|w\y,XR(”X;g(y) - X;g(v)”oo,o
+1xr () = xR ll0o,0)-

Using above estimates we easily obtain

IDg (xR (WA R () = Dg(XRD xR W) ly.~2y < Cg jwl, . x RIY — v, (v = U)/”Diy.m
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For the remainder term of g(xr(y)) — g(xg(v)), using (2.13) we have
Rtg(XR()’)) _ R;S’(XR(U))
=g(xrR(1)) — 8(Xr(Ys)) — Dg(XR(YsNIXR(V)t,s — (xR (V1)) — (xR (V)
—Dg(XrW))SXRW)15) + DR (s RIEY — Dg(xr())s REEY
—(Sts — D((xr(Ys)) — g(xr (V5)))
+Dg(xr(Ys)(Sts — D xr(MsSwys — (DE(XR W) (St — 1) x g (v)s8wy 5)
—(Sts — D(DE(XRY) X g ()s8wr s — D(xR(V)s) X g (V)s8Wy 5)

+Dg(xr(¥s))(Sts — Dxr(Y)s — Dg(XR(0s))(Sts — D xR(V)s
=i+ii+iii+iv+v+vi.

For i, using (44) of [24] twice, we have
lillyet,

1 1
< II/0 /0 Cg[frz(XR(yl) — xr() + (r — ) (xR (3s)
—XRW)1TdréxR(Y)i,s ® S xR (Mi,sllH_,,

1,1
=+l fo [) Cg[‘L'I'ZXR(Ut) +(r — rrz)XR(vs)]drdr((SXR(y)t’s ® 83k (Mis

—3XRW)1s @ SxR(W)r.s) 17,
< CellXr(Y) = xR oo, 27 I8 xR We.s + (Sts = Dxr()II3,
+CellxR W) lloo,~2y (I8 XR Mrs + (Ses = DX )17,
FI8xR W5 + (Sis — DxrW) 17,
W8RG = xR s + (Sis — DXRG) — XRW)s |11y,
< Cellxr () = xr @ lloo—2y (IXR D ly—2y 1t = sI” + X D o0l — 5177)
+CollXR W) loo,—29 (IXR D Iy, =29 1t = 51 + xR (M lloo,0lt — 51
xR W)y, 2y It — 51
+Hxr @ llso0lt = s17) - (xR (D) = xRW)lly.—2y It — 51
Hixr() = xrWlls.0lt — 577,

hence,
. 2 /
Ili “2)/,72)/ = Cg,lwly,xR ly —v, (y —v) ”Di)/n
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Forii,

liillyga = 1Dg (xR ) RIEY = Dg(xr ()RR + Dg(xr ()RR
—zy

xR (W)
— Dg(xr(vs))R{ s IIngy

< 1Dg(xr ) (RIEY) — R,’Eﬁ(”)>|\Hd2 + (D (xR (Ys)) — Dg(XR(vs))Rt)ff(v)HHdz
25 d

< CgllXR O lloo,—2y [RXRD) — RXRW) |y, 1 — 527

+ CellXR() = XRW)lloo,—29 |RFR® |5, o1t — 5[,

hence,

liill2y,—2y < Cg,jw]y, x Rlly = v, (y = ”),”Div.n-

For iii, we easily have

liiillyga < IDEXR(SNXRYs) = XRWsDllpqalt — S|
—2y

hence,

For iv, we have

livllgya
n,,

hence,

For v, we have

vl 3ya
HY,,

hence,

= CelixrMlloo,0llxr () = xR Mlloc,0lr — S|

< Cy.uly x RIXRG) = XRW)lso,0lt — |27,

liiillay, ~2y = Celuly.x RIY = v, = 0l 2y
w

= I(Dg(xr (¥s)) — Dg(xr (s)))(Sts — 1)X}g(y)s5wt,s\|Hd2
-2y
+ 1Dg (xR () (Sts — D (X (¥)s — )(}g(v)s)c‘wz,s||Hal2
-2

< CellXR() = XRW)loo,~2y I Xg M lo,0lwly It = 37
+ CllXR D lloo,~2y X3 () = XR@)lloo,0lwly It = 3
< Couly x RIXRG) = XRW)lloo, ~2y W]y It = 17

+ Co uly x RIXR D) = X lloo,0lwlylt = 517,

livli2y, -2y = Cg jwly,,x RIly = v, (y = U),”Diy’"'

< 1St = D(DG(XR () — DR W) X R ()58Wr,s ]l 3y
—2y

+11(Sts — DD(XR W) (X (s — x}e(vmswt,suﬂizy
< CellXRG) = XRW)lloo,0llX g M lloo,0lwly |t — 517

+ Cell xR Nlo0,0 X () = Xk W lloo,0lwly It — 17
< Cox RIXR() — XRW)lloo,0lwly |t — 1Y

+ Cox RIXRO) = Xk W llos,0lwly |t — 5137,

’
||v||2y,—2y =< Cg,\wly,XR”y —v,(y—v) ”DlZUVU
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For vi, we have
illypa = (DGR (Ys)) — Dg(XR W) (Sts = DXR (s llgya
-2y —2y
+ IDg(XR (W) (Sts — DXR(Ds — xR W)l yya
-2y

< Coll xR — xR lloo,—2y IXR D o 01t — 517
+ ColixR Moo, —2y 1XR ) = XRW)loc,0lf — 517
< Cox RIXRG) = XRW)lloo,—2y It — 5|77

+ Couly o RIXR D) = Xg)llos 0l = 77,

hence,
. /
||vl||2y,—2y = Cg,lw\y,XR”y —v,(y—v) ”DiVn

Consequently, according to above estimates, we obtain
: 2
|REGROD — REIRO gy, 5y < Copuly x R+ ROy =0, (v =) ll 20

= Cawly x (BIly —v, (y = v)/”Diy*”'
Finally, one can easily obtain (2.25). O

According to above lemmas, we will derive that the modified equation of (2.2)
obtained by replacing f and g with fr and gg has a unique solution. To this end, for
. y) e Diy’n([O, 1]; H) and ¢ € [0, 1], we introduce

t t
Tr(w, y, y)lt] := fo Stu SR (yu)du +/0 StugR(Yu)dWy, (2.27)
with mildly Gubinelli derivative 7z (w, y, ')’ = gr(y). Because of the estimates

derived in the previous lemmas, we easily have the following result.

Remark 2.6 For the convenience of argument for the fixed point of Lyapunov—Perron
operator in the following Sect. 4, here we define operator 7 with no initial value.

Theorem 2.4 The following estimate holds true

H fo Su(fROw) — Fra)du + /0 S8R — SR WAL, gR(Y) — gR(V)

D"
< (Crplwly R+ Copluly CRA+ Il + 1wy )1+ wl))lly = v, (7 =o)L payn-
(2.28)
Furthermore, the mapping Tg : Diy’"([o, 1, H) — Di’/’"([o, 11; H) has a fixed-
point.

Return to our consideration, in order to reduce the Lipschitz constants of f and g
by using g, the next goal is to characterize R as required. As already seen we have
to choose R as small as possible. Since in our discussions, it is always required that
R < 1 and C(R) is strictly increasing in R. As is often encountered in the theory of
stochastic dynamical systems [24], since all the estimates depend on the random input,
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it is meaningful to employ a cut-off technique for a random variable, i.e. R = R(w).
Such an argument will also be used here as follows.
We fix K > 0 and regard to (2.28), set R(w) be the unique solution of

Cropwl, RW) + Cg g wl, (RW)) (1 + wly + [w?l2,)(1 + |wly)* = K (2.29)

and set
R(w) := min{R(w), 1}. (2.30)

This means that if R(w) = 1, we apply the cut-off procedure for |y, y/”DZ,V”’ <1/2
orelse if R(w) < 1 for ||y, y/”,DZy.n < R(w)/2.

In the following sections, we work with a modified equation of (2.2), where the
drift and diffusion coefficients f and g are replaced by fg(y) and gg (). For notational
simplicity, the w-dependence of R will be omitted whenever there is no confusion.

According to (2.29), we have

Lemma2.9 Let (y,y") and (v,V) € Di,y’”([O, 11; H), we have

”TR(w’ Yy, yl) - TR(w’ v, U/), (TR(w’ Y, y/) - TR(wa v, U/))/Hpi%') (2 31)
S K“)’ -0, (y - v)/HD,%,V‘”’ .

3 Random dynamical system

In this section we will analyze the dynamics of REEs (2.2). Firstly we recall some
basic concepts and results on the random dynamical systems theory [1, 3], which allow
us to study invariant manifolds for (2.2).

Definition 3.1 Let (2, F, IP) be a probability space and 6 : R x Q — € be a family
of P-preserving transformations (i.e., ;[P = P for r € R) with following properties:

e the mapping (7, w) — 6w is (B(R) ® F, F)-measurable, where B(-) denotes the
Borel sigma-algebra;

o Oy = Ig;

e 04y =6, 065 forallt,s € R.

Then the quadruple (2, F, P, (6;):cRr) is called a metric dynamical system.

In our evolution setting, the construction of metric dynamical system depends on the
construction of shift map ®. According to [24] we know that shifts act quite naturally
on rough paths. For a y-Holder rough path w = (w, w?) and 7, 7 € R, let us define
the time-shift ©,w = (6, w, ; w?) by

Orwy i= Wr4r — We,

A 02 e 2
efwt,s T wl+r,s+r'

Note that 6 (6 w); s = w;4r — Ws4r. Furthermore, the shift leaves the path space
invariant:
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Lemma3.1 [24] Let T\, T5, T € R, and w = (w, wz) be a y-Holder rough path on
[T, T»] fory € (%, %]. Then the time-shift @ w = (O;w, waz) is also an y-Holder
rough pathon [Ty — t, Tr — 7]

According to [3], we consider the follwing concept:

Definition 3.2 [3] Let (2, F, P, (6;);cRr) be a metric dynamical system. We call w =
(w, w?) a rough path cocycle if the identity

Wiiss (w) = Wt,()(esw)
holds true for every w € 2, s € Rand ¢ > 0.

The previous definitions imply that one can use a space of paths as a probability
space 2. As example 3.5 in [24], fractional Brownian motion BH = (B# | BM) repre-
sents a rough path cocycle, by the same construction of path-space (Qpu, Fpu, Pgn)
of fractional Brownian motion(for further details see [3]), we have the abstract defi-
nition of metric dynamical systems for our problem modelling the underlying rough
driving process. Now we also need to define the dynamical system structure of the
solution operators of our rough evolution equations (2.2). Meanwhile, we recall the
classical definition of random dynamical system [1].

Definition 3.3 A random dynamical system ¢ on H over a metric dynamical system
(2, F,P, (6;):cr) is a measurable mapping

@:[0,00) x X H—>H, (t,w,x)r— @t,w,x),

such that:

e 9(0,w, )= Iy forallw € Q;
e (t+T1,w,x) =, 00, 0(t,w,x)), forallx € H,t, 7 € [0, 00), w € 2;
e ¢(t,w,-): H — H is continuous for all # € [0, co) and all w € Q.

Now one can hope that the solution operators of (2.2) generate random dynam-
ical systems. As for all we know, the rough integral given in (2.6) is pathwise, no
exceptional sets occur. For completeness, we give a proof of this fact, see [24].

Lemma 3.2 Let w be a rough path cocycle, then the solution operator
t

t
fis ot w, E) =y = SiE + /0 Suuf )t + /0 Srug () AW

for any t € [0, 00) of the REE (2.2) generates a random dynamical system over the
metric dynamical system (2, Fy, P, (6;)1eR)-

Proof The proof is analogous to [22] and [24] Lemma 3.7. The difficultly is to check
the cocycle property for the solution operator. Here we just prove the cocycle property.

Firstly, we easily check thatif (y, y") € Diy’"([Tl +1, T +1]; H) then (y.40, ¥/, ) €
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D;Z;)"([Tl, T>]; H), here Ty, T» € R with T} < T3. The y-Holder continuity of y.,
and y’ . is obvious. For the remainder we have

y. Q /
”Rt,s+r ”'H_zy = ||6yt+7:,x+1: - Stsyx_:,.f8wt+r,s+r ”'H_zy
Q /
= ||3yr+r,x+r - S(t+r)—(s+r)ys+1—3wt+r,s+t ”'H,zy

y y 2
= IR o orcIH o, S IR [2y -2y It — 5|7

Next, we will obtain the shift property of rough integral. Let P be a partition of
[T, t + 7], then we have

t+t
/ Stte—ug(y)dwa
T

= lim 3 (Serr-ug0uswo + Str—u DG )

‘P‘ﬁo[u.v]efP
. 2
= \’Pl/l\lio Z (St—u/g(yu/-kr)‘Swv/+r,u/+r + St—u/Dg(yu’-!—r)y;’_;_fqu_z,uq_f)
[u' W' 1eP’
= ‘pl/i‘n_l)0 Z (S;_u’g(yu’+r)5(91 W)y + St—u’Dg(yu’+r)y,;/+féT wz%/,u’)
[u' v']eP!

t
=/0 Si_ w8y )dOrw,/,

where P’ is a partition of [0, 7] given by P’ := {[s — 7,1 — 7] : [s, t] € P}. The proof
of the cocycle property and mensurability of solution operators is similar to [22] and
[24], here we omit. O

The next concept of tempered random variables [1] is of fundamental importance
in the study of local random invariant manifolds.

Definition 3.4 A random variable R : Q — (0, 00) is called tempered from above,
with respect to a metric dynamical system (2, F, P, (6;);eRr), if

Int R(®
fimsup RGO o o al we @, 3.1)

t—=+00 |t|

where InT ¢ := max{Ina, 0}. A random variable is called tempered from below if
1/R is tempered from above. A random variable is tempered if and only if is tempered
from above and from below.

The temperedness reflexes the subexponential growth of the mapping ¢ — R(b,w),
according to [1] Proposition 4.1.3, a sufficient condition for temperedness is

E sup 1:\;(9[(1)) < Q. (3 2)
1€[0,1] ’

Moreover, if the random variable R is tempered from below with r — R(6,w) con-
tinuous for all w € €2, then for every ¢ > 0 there exists a constant C[e, w] > 0 such
that

R(6,0) > Cle, wle e, (3.3)
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for any w € Q.
According to [24] Lemma 3.9 and Lemma 3.10, we can assume that w = (w, w?)
is a rough path cocycle such that the random variables

Ri(w) = |wl, and Ry(w?) = |w?|y,

are tempered from above. These will be necessary for the proof of the existence for a
local unstable manifold. One needs to ensure that for initial values belonging to a ball
with a sufficiently small tempered from below radius, the corresponding trajectories
remain within such a ball (for further details, refer to [9, 10, 14, 24]). By previous
discussions, we easily obtain the result below:

Lemma 3.3 The random variable R(w) in (2.30) is tempered from below.

4 Local unstable manifolds for REEs

In this section, we will study the existence of local unstable manifolds for (2.2) by the
Lyapunov—Perron method which is similar to the one employed in [14, 22] and [24].
However, here we want to connect the theory of random invariant manifolds for REEs
asin [6, 9, 14, 22] to rough paths theory.

Firstly, as in [14] and [10], we assume that the spectrum o (A) of linear operator A
only consists of a countable number of eigenvalues, and it splits as

o (A) = i,k e Ny =0, oy, (4.1)
with both o, and o nonempty, and
0, C{z€C:Rez>0} and o, C{z € C: Rez <0},

where C denotes the set of complex numbers and o, = {A, - - Ay} for some N > 0.
Denote the corresponding eigenvectors for {,y, k € N} by {e1,- - -, en, en+1, - - -},
furthermore, assume that the eigenvectors form an orthonormal basis of H. Thus there
is an invariant orthogonal decomposition H = H,, & H, with dim’H,, = N, such that
for the restrictions which are A, = Aly,, Ay = Aly,, one has 0, = {z € 0(A,)}
and oy = {z € 0 (Ay)}. Moreover, e4«! is a group of linear operators on H,,, and there
exist projections 7 and 7%, such that 7% + 7° = I, A, = 7" A and Ay = ' A.
Furthermore, we assume that the projections 7% and 7% commute with A. Additionally,
suppose that there are constants 0 < 8 < « such that

e x| < e x|, <0, (4.2)
le x| < e Px|l, >0, (4.3)

Definition 4.1 If a random set M"(w), which is invariant respect to random dynam-
ical system ¢ (i.e. p(f, w, M*(w)) C M“G;w) fort € R and w € Q,), can be
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represented as
MU w) ={§ +h"E w) : & € Hul, 4.4

where h" (&, W) : 'H,, — H, is Lipschitz continuous. Then we call M" (w) an unstable
manifold.

Definition 4.2 There exists a random neighborhood U(w) C H, of 0, if a ran-
dom set M} (w), which is invariant respect to random dynamical system ¢ (i.e.
o, w, M¥ (w)) Cc M* (6;w)fort € Rand w € Q,), can be represented as

loc loc

W) ={E+h"(E w): £ eU(w)} and 0 e M} (w), 4.5)
where h*(&§, W) : U(w) — 'H is Lipschitz continuous. Then we call Mj, (w) alocal
unstable manifold.

By proving the existence of a global unstable manifold for a modified equation
of (2.2) with cut-off over a random neighborhood of 0, we obtain a local unstable
manifold M} (W) for (2.2), namely (4.5) holds true when & belongs to a random
ball of H,, with a tempered radius.

Here, we employ the Lyapunov—Perron method which is similar with [22] and
[24]. As well, in our case, the continuous-time Lyapunov—Perron mapping for (2.2) is
presented by (compare with [10] and [24])

J(w, y)[r] == S;&" +/ Si,m" f(vw)du +/ St g(yu)dwy
0 0 (4.6)

T T
+/ Siuﬂsf(yu)dwrf S5, g (u)dwy
—00

for t < 0. Thanks to the presence of the rough integral we couldn’t directly deal
with (4.6), we need to track |wl|, and |w2|y that appear in (2.14) on a finite-time
horizon. Similar to [14] and [22], we derive an appropriate discretized Lyapunov—
Perron mapping and prove that it has a fixed-point in a suitable function space. The
local unstable manifold will be developed for the discrete-time random dynamical
system and will be shown that it holds true for the original continuous-time one, as in
14].

[ /]\nalogous to [14, 22] and [24], we only need to deal with rough integral on time-
interval [0, 1]. Let w € Q,,,7 € [0, 1] and i € Z~, replacing T by t +i — 1 in (4.6),
we have

Jw, )t +i—1=8, &"
i+1 |
_Zsf+i—1—k / Sty f Yugk—1)du
k=0 0
1
+]; Slf—unug(yu+k—l)d®k_lwu

1 1
- / S0 f i)t — / S g i —1)dO; 1 Wa
t t
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i—1 1
+ > Shisi (/ S _u f Qugk—Ddu
k=—o00 0
1
+ fo Sf_unsg<yu+k_1>d®k_1wu>
t t
+ /0 SE_ut® f Qi) + /0 S8 W 8 Gusi O wa, (A7)

by applying (4.7), we will give the structure of the discrete Lyapunov—Perron mapping.
for (y,y') € Di%n ([0, 11; H), we denote

T w, y, y)[-] = fo S5 £ () + /0 S/ g (AW, (48)

~ 1 1
Fu(w, y, y)[] = / S 7 f () + / S g (dwe,  (49)

where (7°/%(w, y, y)[1)" = (T*(w, y, y)[1)" = g(».). Meanwhile, in our evolution
setting, we directly deal with solutions of the REEs (2.2). It is an essential problem
that we need to find an appropriate space for the fixed-point argument. For this, similar
to [22] and [24] we introduce the following function space which helps us incorporate
the discretized version of (4.6).

Let § = O%ﬂ > 0, we denote BCS(Dﬁ,y’") as the space of a sequence of
mildly controlled rough paths y := (yi_l, (yi_l)/)l.ez, with yé_l = yi_z, where
(=1 1Y) € D0, 13 ), if

¥l gy p2rmy = iselgz ey, (yi_l)/||pﬁ)%'7([0’1];H) < o0. (4.10)

In the following, for notational simplicity, we denote y[i — 1, t] = J, “fort e [0, 1]
and y[t]l=y[i — L, f]ifr =¢+i—1.

Next, we modify (2.2) by the cut-off function given in Sect. 2, i.e. we replace f and
g by fr respectively gr. According to (4.7), it is reasonable to introduce the discrete
Lyapunov—Perron transform J;(w,y, &) for a sequence of mildly controlled rough
paths as the pair Jy(w,y, §) = (Jdl(w, v, &), Jj(w, Y, 5)), where y € BCg(Diy’”)
and & € H, the precise structure is given below. The dependence of J; on the cut-off
parameter R is indicated by the subscript R. For ¢ € [0, 1], w € @2, andi € Z™, we
define

i+1

1
J}e,d(w,y,S)[i — Lt =8, 8" - ZS?+i—1—k (/0 St fr(yr Ddu
k=0

1
+ f Si‘,L,n“gR<y’;—‘>d®k_lwu)
0
1 ) 1 .
—/ Sffuﬂ“fk(y{fl)du—f St i gr(yiHd®_ 1w,
t t
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i—1 1
+ D Shici (/ Si_m® fRO ™ Ddu
P 0

=—00

1
+ / Sf_unsgﬂyﬁ*l)d@k_lwu)
0

t t
+ f St RO Hdu+ f S5, gr(YTHd©;_ 1wy,
0 0
4.11)

Moreover, J 1%’ 4w, Y, 8) isdenoted as the mildly Gubinelli derivative of J [1?, 4wy, 6),
i.e. JI% Jw, ¥, 8 —1,1] := (Jlle Jw, Y, 8 — 1, t])’. Notice that one can easily
obtain &% = n"Jé’d(w, y, &)[—1, 1] by settingi =0and r = 1.

In the following, we will prove that (4.11) mapsy € BCj (Diy’n) into itself and is
a contractive mapping.

Theorem 4.1 In our setting, if K satisfies the gap condition

, (4.12)

N

© P Ce P+ 1) (7@ —1)(Ced +e27%) Ul
1 — e~ (B+9) 1 — 8 -

then, the mapping Jr a4 : Q2 X BCs (Diy’n) — BCj (Diy’n) possesses a unique fixed-
point

T € BCs(DE'™). Also, the mapping £* — T'(§, w) € BCs(D2"") is Lipschitz
continuous.

Proof Lety := (y' !, (y/™1));cz- and v := (vI =), (v'~1Y);cp- € BCs(D2Y"") with
Ty = n”vl_l = &“. Firstly, we give several estimates which is essential for the
proof. According to Lemma 2.5, we easily have

8% 18" 0y, vy = Ce ™ TDNE" Oll oy < Ce@™VV g, (4.13)
the above expression keeps bounded for i € Z™. Denote

A =TRO1w, Y1 M) = TR @—rw, v DN,
from (2.14), one has
Al < [ = of T R =Y o

by (4.13), we have

|82 it A (S A ”Diyﬂ
= ” Shisik A OHDiM < Ce PUTIP) A 15

< CePli=1-K) ”yk—l _ vk—l’ (yk—l _ vk—l)/ ”Dzm. (4.14)
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Similarly, denote
A =T Ocrw, Y, DT = T Orrw, o* 1 )1,
we easily have

81—k A (S-u+i717k[\)/”Di,V’" < CemIT0 Hyk_l =L O Y ”Dﬁ}"”‘
(4.15)

Next, for the stable part of (4.11), due to (2.31), (4.14) and the norm of BC} (D?,,V’”),
we have

i—1

Z o —8G=1)

k=—00

(8% i1k TR w1 ORI = TR@ g, o1 F 1)) H

S T O—yw, Y1 GF I = T @ yw, o* 1 F )1,

2y.1
w

+e DI TR 6w,y L Y = TG w. v T D)L

(T3 1w,y I = TR G—qw, v~ 7 )1) H ,
'Dwyvrl

i—1
< Z e—ﬁ(i—l)ce—ﬂ(i—l—k)K”yk—l —Uk_],(yk_l _Uk_l)/”DZy,r/
[ w
S8G=1) g im1 i1 il =1y
47U K”y’ v (O vl )”Dayﬁ
-1
< lZ eiﬁ(i*l)Cefﬁ(’?l7k)e3(k71)Kef‘s(kfl)Hy]“l _kal’(ykfl _kal)/szy,n
o

k=—00

+e D gyl =l (il ”iil)/HDZM
w

i—1
< Z e—(ﬂ+8)(z—1—k)Ce—aKe—m—l)”yk—l N Uk—l)/npzm
]

k=—o00
+e—(ﬂ+b‘)(i—1—i)e—6(i—1)K”yi—l _ Ui—l’ (yi—l _ vi_l)/“DiV’”

i
< Z e*(ﬂq%)(l*lfk)K(Cefﬁ + 1)676(1(71) ”ykfl _ kalv (ykfl _ vk—l)/”DZV.n
k=—00 v

KePto(Ced + 1)
< ——— 1y -Vl 2y, -
1—e (ﬂ+5) BCS(DuJ )

Similarly, for the unstable part, according to (2.31), (4.15) and the norm of
BC3(D2""), we have

i+1

Zefa(ifl)

k=0

S i (TR Omrw, Y1, GO =TE O w, 01, F1Y)11),

(% (T @, Y, G- TR Gy, o, A D)) H )
Dwyv’l
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e DTG yw, y L (Y = TE G w, v ),

(Té @10,y 0 = T @qw. v 1)

2y,
’Dwy”

”
B IS ISR NS NSRS
k=0
+e DR [y =it (i - vi—l)’HDﬁﬁn
i+1
< Ze—S(i—l)Cea(i—l—k)eS(k_l)Ke_s(k_l) [ A G Uk_l)/”DiV'”
k=0
+e DKyt — o I = 0 Y e
i+1
< lX:e<a76><z‘717’<>0e*5Ke"w‘*l)||yk’1 AR CALEE i | PRV
k=0

_i_e(ozf&)(iflfi)eozfaefzS(ifl)K”yifl il (i ity “’Dﬁ,’"”

i
< Ze(a—a)(i—l—k)K(Ce—s + ea—s)e—a(k—l)Hyk—l _ Uk_l, (yk—l _ vk_l)/”D,%}’*”
k=0
K(e= @9 _ 1)(Ce™? + %79
=< 1— ea_a ||y - v”BCa(’Di?/'n)'

Combining previous estimates, we obtain that
_ 1
1R (w.y. ) = Tra(w. V. )l e, cprny < 5 1Y =Vl g, cpovn.

When v = 0, we easily have that Jg 4 maps BCs (Dlzuy’") into itself. Applying fixed-
point argument, we deduce that Jg 4(w,y, £") has a unique fixed-point I'(§¥, w) €
BCs(D2Y"") for every & € ‘H,,, meanwhile, for gl', &) € H,, we have

IT G, w) = T wil g, p2rny
= r.a(w, D& w), §) = Jra(w, Ty, ), E g, p2rn,
< Wra(w, TGEY, w), &) — Jra(w, TE w), ED e, pvny
+Jr.a(w, T, w), &) — Jra(w, T (Y, w), éﬁt)HBCs(Diy,n)

1
< ISy B = 80, 0ll g vy + S ITE W) = T W)y oz,
1
-8
which implies that I'(§%, w) is Lipschitz continuous. O
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Atlast, as similar discussion have taken place in [14, 22] and [24], we derive a local
unstable manifold for our REEs (2.2). The proof of following results is identical to
the one of [22] and [24], we omit here. In the following we denote By, (0, p(w)) as
a ball in ‘H,,, which is centered at 0 and has a random radius p (w).

Lemma 4.1 The local unstable manifold of (2.2) is given by the graph of a Lipschitz
function i.e.
Mipe(w) = 1{& + 1" (&, w) : § € By, (0, p(w))}, (4.16)

where, p(w) is a tempered from below random variable and

h* (&, w) := 7' T'(&, w)[=1, Uy, 0.pw))

that is

0 1
P = 30 8 [ S frE wik 1 ubdu

k=—o00
0 1
+ Y8 [ St itk - Lubdog i,
0
k=—00

According to previous analysis, we easily obtain:
Theorem 4.2 The local unstable manifold of (2.2) is given by the graph of a Lipschitz
function i.e.

Mipe(w) = {§ + ", w) : & € By, (0. p(w)},

where, p(w) is a tempered frow below random variable and

0

0
B w) = / 88,7 f (vu)du + / 8,7 g (vu)d W

4.1 Example

Consider the 2mth order parabolic partial equation

dy(u, x) = (Lamyu(x) + pyu(x) + f(yu(x)) du + g(yu(x))dw, (x), u € [0, T],
y(0)=§¢€0,
bl

3 (u,x) =0, (u,x) € (0,T) x 00, k=0,1,---,m — 1.
v

where % stands for the normal derivative, O is a bounded domain in R? with a smooth
boundary,

—Lopy = Z a, (x) D"

[]<2m

@ Springer



Unstable Manifolds for Rough Evolution Equations Page350f36 159

is a uniformly elliptic operator with a, € C*(0) and w is a y-Holder continuous
path with 1/3 <y < 1/2.

We can consider the above equation as (2.2) in the space H = L>(O). Let
A = Loy, + pu, Dom(A) = H*™(O) N HY'(O) if 2m > %, thus we have that

Hopy = H02m—2y (O) and the requirement about 2m to such that 2m > 4 + 4y.
As we all know that A has a compact resolvent and has countably many eigenvalues
Aj of finite multiplicity, that tend to —oo when j — oo. In additional, the associated
eigenfunctions {e;}jcn form an orthogonal basis of H. Set u > 0 sufficiently large
such that there exists j* € N

Ajpy1 < =B <0 <o < Ajx.

Let H, = span(e; : A; > «) and H; be its orthogonal complement space in H. i.e.
‘H has an invariant splitting H = H,, @ H,. Meanwhile, the nonlinear terms f and g
satisfy our assumptions in (2.2).
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