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Abstract

In this paper, we consider the boundedness of the differential transforms for the gen-
eralized Poisson operators associated with the Laplace operator A. The related results
of the differential transforms for the heat semigroup are proved previously. By using
the subordination formula method, we prove the boundedness of the maximal operator
related to the differential transforms in weighted Lebesgue spaces. Moreover, we get
some L°°-behavior results and the local growth of the maximal operator related to
the differential transforms. Also, we get some similar results of the differential trans-
forms related to the generalized Poisson operators generated by Schrodinger operator
—A + V, where the nonnegative potential V belongs to the reverse Holder class B,
withg > n/2.
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1 Introduction
2

0
Let A = Z 2 be the Laplace operator in R”. Consider its heat semigroup
xX“
j=1""J

ePo(x) = / Wi(x — y)e(y)dy, x eR", >0,
R)l

where W is the Gauss—Weierstrass kernel

1 ki

W,(x) = W@'

For more information related with this semigroup, see [17].
For 0 < @ < 1, the generalized Poisson formula of f is given by

o > T s sa
Pt f(x) = m/ e e

Too [ g (PHYP)/ () ds )
4“[‘(0{) / /n (4ms)n/? sy T y)dym, xR >0,
(1.1)

It means that the generalized Poisson formula can be obtained via the heat semigroup
(e’ A},>(). In [6], Carffarelli and Silvestre studied the generalized Poisson formula to
solve an extension problem. Stinga and Torrea defined this kind of Poisson formula
for Hermite operator L = —A+|x 12in [19]. In the case « = 1/2, 73,1/2 is the Bochner
subordinated Poisson semigroup of ¢’?; see [17].

Let {a;}jez be an increasing sequence of positive real numbers, and {v;} ez be a
bounded sequence of real or complex numbers. Let {7}};~0 be an operator sequence.
We consider the differential transform series

D 0Ty, f () = Tay £ (). (1.2)

JEZ

In [12], Jones and Rosenblatt studied the behavior of the series of the differences
of ergodic averages and the differences of differentiation operators along lacunary
sequences in the context of the L? spaces. In [2], the authors solved these problems
with a different approach, which relied heavily on the method of Calder6n—Zygmund
singular integrals (see [15]). In [3], the authors considered the series (1.2) with the
Poisson operator related with translation semigroups f(t — s).

In order to analyze the series

> v (P, f ) = P f ().

JEZ
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where P;* is the generalized Poisson operator defined in (1.1), we can consider the
convergence of its partial sums. For each N € 72, N = (N1, N>) with N; < N, we
define the sum

Na
TR f) =Y v (Pa, f()=Pg f(x)
J=Ni
o0 azo‘ € /@) _ az.aefalz'/(%) —Iy1?/4s)
Z f / : . Fx—y) dsdy
4"‘1"(0:) n slta (477;5)"/2
+00 N2 a2 L& /O _ g2y as)
/ f -’ dsf (x — y)dy.
4"‘1"(0{) n gl (4 s)n/2
(1.3)
We denote the kernel of Ty by
+00 2 az‘-):-le_a§+l/(4S) _ a2ae_a]2/(45) e_|y|2/(4s)
J J
i ds
Kv = 4ar(a) / il sTHe (drs)n/2
=iV

We shall also consider the maximal operators

x € R",

T*f(x) =

where the supremum are taken over all N = (N1, Na) € 72 with N| < N,. We
shall consider the boundedness problem related to these operators. In [3], the authors
proved the boundedness of the above operators related with the one-sided generalized
Poisson type operator sequence.

Some of our results will be valid only when the sequence {a;} ez is lacunary. It

. aj+1 . .
means that there exists a p > 1 such that <—— > p, j € Z. In particular, we shall

aj
prove the boundedness of the operators 7* in the weighted spaces L? (R", w), where
w is the usual Muckenhoupt weights on R”. We refer the reader to the book by J.
Duoandikoetxea [7, Chapter 7] for definitions and properties of the A, classes. We

have the following results:

Theorem 1 (a) Foranyl < p < ocoandw € A, there exists a constant C depending
onn,p,p,aand vy such that

”T*f”Lp(Rn’w) = C ”f”LI)(R",w) )
for all functions f € LP(R", w).

(b) Forany w € Ay, there exists a constant C depending onn, p, a and ||v||;z) such
that

1
w({x eR":|T*f(x)| > 1}) < Colfln@aw, *>0,
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145 Page4of 39 H. Lei et al.

for all functions f € L'(R", w).

(¢) Given f € L®(R"), then either T* f (x) = oo forall x € R", or T* f(x) < 00
for a.e. x € R". And in this latter case, there exists a constant C depending on
n, p, « and ||v||;(z, such that

”T*f”BMO(R”) <C ”f”LOC(R”) .

(d) Given f € BMO(R"), then either T* f (x) = ocoforallx € R", or T* f(x) < 00
for a.e. x € R". And in this latter case, there exists a constant C depending on
n, p, & and ||v|\jeo(z, such that

7 £ spro@n < € I1f I Bro@n - (1.4)

Remark 1 From the conclusions we got in Theorem 1, for f € L?(R", w) with w €
Ap, in Theorem 8 we shall see that we can define T f by the limit of Ty f in L”-norm

Tf(x)= lim Ty f(x), x € R".
(N1,N2)—>(—00,+00)

In classical harmonic analysis, if f = X(o 1y and H is the Hilbert transform, it is
0

1
easy to see that - f H(f)(x)dx ~ log —asr — 07.In general, this is the growth of

a singular integral applied to a bounded functlon at the origin. The following theorem
shows that the growth of the function 7* f for bounded function f at the origin is
of the same order of a singular integral operator. Some related results about the local
behavior of variation operators can be found in [1]. One-dimensional results about
the variation of some convolutions operators can be found in [14]. And the one-
dimensional results about the differential transforms of one-sided fractional Poisson
type operator sequence is proved in [3]. In [4], the authors got local growth of the
differential transforms of heat semigroup generated by Laplacian.

Theorem 2 (a) Let {vj}jcz, € IP(Z) for some 1 < p < oo. For every f € L®°(R")
with support in the unit ball B = B(0, 1), for any ball B, C B with2r < 1, we
have

2 1/p'
/ IT*f(x)|dx < C <log —) Ivllzezy 1S | oo @y -
| By | B, r

(b) When1 < p < oo, forany 0 < € < p — 1, there exist a p-lacunary sequence
{aj}jez, asequence {v;}jcz, € £P(Z) and a function [ € L*°(R") with support in
the unit ball B = B(0, 1), satisfying the following statement: for any ball B, C B
with 2r < 1, we have

ANAY e)’
/ |T*f(x)|dx = C (log —> lvllzezy 1S | Loo@rn)y-
|B/| JB, r
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(c) When p = oo, there exist a p-lacunary sequence {a;}jcz, a sequence {v;}jcz €
[°(Z) and f € L°°(R™) with support in the unit ball B = B(0, 1), satisfying the
following statements: for any ball B, C B with2r < 1,

1 2
/ T*f(x)]dx = C <log —) ol zy 11 oo ).
| B B, r
In the statements above, p' = P and ifp=1p =oc.

p—1

The statements in Theorem 2 shows that, when 1 < p < oo, the growth of T* is
between the growth of the standard singular integral and the growth of the Hardy—
Littlewood maximal operator. And when p = oo, the growth of T* is the same with
the standard singular integral operator.

The organization of the paper is as follows: Sect.2 is devoted to prove the bound-
edness of the maximal operators 7*. And we will give the proof of the local growth
of T*, i.e. Theorem 2, in Sect.3. In Sect.4, we will get some similar results in the
Schrodinger setting.

Throughout this paper, the symbol C in an inequality always denotes a constant
which may depend on some indices, but never on the functions f under consideration.

2 Proof of Theorem 1

In this section, we will prove Theorem 1. In order to prove Theorem 1, we need to
prove the uniform boundedness of Ty first. By the Fourier transform, we can prove
that the operators Tﬁ are uniform bounded in Lz(R”) forall N € Z2, N; < N». Since
the kernel K (y, s) satisfies the size and smoothness conditions (see Theorem 5), we
can deduce the L”-boundedness results by using the Calderén—Zygmund theorem.
Thus, we have the following results:

Theorem 3 For the operator Ty, defined in (1.3), we have the following statements.

(a) Forany 1 < p < oo and w € Ap, there exists a constant C depending onn, p, a
and ||v||je(zy such that

||T[(\)/'[f||Lp(Rn’w) < CIfllLr®e e s
for all functions f € LP(R", w).

(b) Forany w € Ay, there exists a constant C depending on n, a and ||v||je(z) such
that

1
o({x eR": Ty f(0)| > A}) < Colfln@w, *>0,

for all functions f € L'(R", w).

The constants C appeared above all are independent of N.
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We shall use the Calder6n—Zygmund theory in proving the L?”-boundedness of the
differential transforms T associated with the generalized Poisson operators. We will

prove the L2-estimates first. And then, it remains to give the estimates about the kernels
of the differential transforms. By a standard argument, the results in Theorem 3 will
be obtained.

First, we present a lemma which will be used later.

Lemma1 ( [3, Lemma 2.1]) Let 0 < o < 1. Then for any complex number zy with
Rezog > 0 and | arg zo| < /4, we have

2
foo L _wdu L, [T e e/
e MeTuw — =g, ———dr.
0 u® 0 re

Now we present the uniform L?-boundedness of the operator Ty in the following
theorem:

Theorem 4 There exists a constant C > 0, depending onn, o and ||v||j00(z), such that

sup ||T;\1/f||L2(Rn) < C”f”Lz(R")'
N

Proof Let f € L?(R"). Using the Plancherel theorem, we have

N> aj+1
T8 f | oy = || D viCPe =P8 1) < Cllvlloezy Z/ O PEf|dt
J=N1 L2(R") Jj=—00 L2(R")

By using the second identity in (1.1), we have

—_— w
atP;xf(a:ca,/ e
0

o0 2~
=C8,/ e ’e_ﬂ‘s‘
0

o0 1
= c/ e tEPe 7
0

Note that the Fourier transform above can be well defined. Then we deduce that

HTl(‘)/éfHH Ry = Hf(f)/ ‘/- _’t|§|2e—ﬂ|i‘| —

dt

L2(R")

Thus again by the Plancherel theorem, the remainder is devoted to prove the uniform
boundedness of the multiplier

Ky@®|<c ‘/ ‘/ *’;|§|2€*ﬂlél

dr| <C, &eR".
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Taking zo = ¢|&|, we rewrite the above inequality in

d
Rrol=c [ [[Teraet

‘dZO, & eR".

By Lemma 1, for any £ € R", we have

00 00 2 00 00
_ _ % dr _ _0 0, du
Jo e o= [T [t
0 0 r 0 0 u®

Since |arg zo| < /4, we have |e’Z0/(2“)| < e—cleol/u gpg |e’20“/2| < e~cleolu where

c= \/5/4. Then
< /oo z0|% /OO e—c\zol/ue—clzolud_udzo
“Jo 0 u®

o o
2 ., dv
< / |zo2* ! f e 0l vemer g,
0 0 v
Recall that zg = ¢|&]|. Then, we have

o0 o0
_ 2 _du
/ |ZO|2a 1/ e ¢lzol /ve w—adZO
0 0 v
o0 o0
2 dv
:/ £ |2 t2a71‘/‘ o—cElnv,—e Y o
0 0 ve

- / i / " (el o€ g g v 32
o Jo v

e e ) 1 2 . dU o0
:/ / e lemel /“dtef“’—a < C/ e “Vdv < C,
0 0 v 0

where the constants C appeared above all are independent of N. Then the proof of the
theorem is complete. O

dzp.

e—zo/ue—zou

du
u—adZO

2

Also, we can get the kernel estimates in the following:

Theorem 5 There exists constant C > 0 depending on n, o and ||v||;o(z,(not on N)
such that, for any y # 0,

C
@ Kyl < G
.. o C
(i) [Vy Ky < MT_H
Proof i) This is the size condition of the kernel. We have
2 o) _ 2 e

+o0 °° ajfe a
|KN()’)| = C/ Sl+a S”/2 ds

/=—0<>
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+o0 °° > ) —Iy2/(4s)
—a2,/@4s) _ 2a —al/(s)| €
_C/ e —dje ‘sl+a+n/2 ds.
j—*OO

Observe that

"J+1

o0
20 —a?, /(4s) 2a 2/(4;)
> ‘“me M —ajter

Z

(M2ae—u2/(4s)) du

Jj=—00 ——0
20+1 +00 2a+1
5/ ‘(Zau&y—l _ uzs )e—uz/(4s) du SC/ w1 4 uzs )e—uz/(4s) du
0
+00 2a—1
201 (% 3/ gt
So(f) T () e
20+1
+s0‘_1/2/+00 (L) g L)
0 Vs Vs
< Cs”. 2.1)
Then, we have
o eIy /4s) Iy[? e—IV?/(4s)
Ky < CA /2+1 ds = / '/|‘V|2 /241 gt 9
2 1 C
<C / —ds+/ ——ds | < .
0 |y|n+2 Iy[2 Sn/2+1 |y|"
ii) It suffices to prove that for the first variable y; € R, we have
C
10y, K& )] < ——
[¥]
where
Yoo N2 a e—a%+]/<4s> T B YTV
3y K&(y) = ' i one ds
i AN gLt 2gn/2+1 :
j= NI
Then, by (2.1) we conclude that
_ Wl ,—Iy12/4s)
+00 1y12/(4s) +oo “te
o o )’Ie \/E
|ay1 KN()’)| = C/(; s st =< C/(; st
+00 o—|y[*/(8s) Iyl? P UAGD) C
= C/O /24372 —pp 3= / f $1/2+3/2 ds < [y
The proof of the theorem is complete. O
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Remark 2 If we consider an > (Z?*)-valued operator Q : f > {T§ f(x)} ;. on the
homogeneous space (R", d, dx), then T, f (x) = | Q.f (x) ll;0 (rny> and by Theorem 5,
we know that the kernel of the operator Q is an [°°(Z?*)-valued Calderén—Zygmund
kernel.

In the next result, we will take care of the behavior of 7y on BM O (R").

Theorem 6 Let{a;} ey be an increasing sequence. There exists a constant C depend-
ing on n, a and ||v| gz, (not on N) such that

175/ | parogn < € 1 lzogen)

and

H Tﬁf“BMO(R") = C ”f”BMO(R") .

Proof The finiteness of Ty for functions in L*°(R") is obvious, since for each N,
K is an integrable function. On the other hand, assume that f € BMO(R"). Let
B = B(xg, ro) and B* = B(xg, 2rg) with xg € R" and rop > 0. We decompose f to
be

== fpxp+(f = fBxwH + fs=H+ L+ f3

By Theorem 4, we have

/ T8 A7 dx < CIA g < CfB* 1f ) = fsldx < CIBIIf I pron -
(2.2)

This means that Ty f1(x) < 00, a.e. x € R". And we should note that Ty f3(x) = 0,
since ng f3 = fp forany j € Z. For Ty f2, we note that, for any x € B and ¢ > 0,

3 2 400 o=+ x—=y[))/(4s) ds
= — _— d _—
Pr fa(x) 4aF(a),/ / o)l 2 Y iTra

/+oo +0o0 / 1 1FO) — fsld 7272 ds
IS - L
4ar<a> kv <lxg—yl<apy x — ypri2e T IBIEY €T (i

20¢r _
l (a oz)z(k

— fald
<C TS Lf(y) — feldy

NN
(2kr0) [xo—y|<2t+1rg

12“ 2T (@ — o)
<C—- Z(z"m) U420 1 £l goen, < 0.
49T (o) pa

where 0 < o < a. So, P f2(x) is well defined for x € B and ¢ > 0. Since Ty f2(x)
is a finite summation and xo, ro is arbitrary, T) f2(x) < oo a.e. x € R". Hence,
TG f(x) <ocoa.e x € R".
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Now, let us prove the two inequalities. Since L*°(R") C BM O (R"), we only need
to prove the inequality in the case of f € BM O(R"). Choose some x; € B(xq, o)
such that T f2(x1) < oco. Now, taking a constant cg = Ty, f2(x1), we can write

1
ﬁ/B T f(x) — cp|dx

1
= E_/B TN i+ a4 f3)(0) = Ty f2(x1)| dx

IA

! 1
m/;g’Tﬁfl(X)‘dx-i-m/B’Tﬁfz(x)_Tﬁfz(xl)’dx
=1 + .

For the first term 17, by Holder’s inequality and (2.2) we have

12
I = |B|f |TNf1(x)|dx<(|B|/ |Tﬁf1(x)| dx) =Cllfllpmomn -

For the term I, by Theorem 5 ii) we have

1
L= —/ TN f2(x) — T f2(x1)| dx
|B| Jp

_1/
|Bl JB

1
5@// Ky (x —y) — K (x1 — y)| [ f2(y)| dydx

—xil
dyd
|B|//B*)c Ix |n+1 |f(y) fB| yax

1
dyd
|B| / /B*)C (|y—xo| |x0 — x|)”+1 |f())) fB| ydx
1
_C_/
|B| Jp

/2kr0<|) —xol<2++1r (Iy = X0l — |x0 — x|
11
<cy - o
< ;zk (2kro)n /y_x0|<2kﬂr0|f(y) feldy

fRn (Kfy(x —y) — K (x1 — ) f2(y)dy|dx

e 1) = il dydx
k=1

=Cllfllpmon) -

Hence, we deduce

1
E/B |5 f(x) —cp|dx < C I flamomn -
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Thus, we proved that Ty f € BM O(R") and

7% f | prro@n < C I lsmoe -
u]

In the following, we aim to prove Theorem 1. The next proposition, parallel to
Proposition 3.2 in [2](also Proposition 3.1 in [3]), shows that, without lost of generality,
we may assume that

l<p<@ <2 jez
aj

Proposition 1 Given a p-lacunary sequence {a;};cz and a multiplying sequence

{vi}jez € £2°(Z), we can define a p-lacunary sequence {n;};cz, and {w;}jcz €
L2°(Z) verifying the following properties:
: 2
D L<p=<ni/nj<e’ [fojlmg = 10w
(ii) Forall N = (N1, N2) there exists N' = (N{, N3) with Ty, = Ty, where Ty, is
the operator defined in (1.3) with the new sequences {n;}jez and {w;} jez.

In order to prove Theorem 1, we need a Cotlar’s type inequality. For any M € Z™,
let

Ty f(x) = sup ITv f(X)|, x eR",
—M<Ni <N, <M

where Ty denotes the differential transform operator related with the heat-diffusion
semigroup generated by —A. By a similar(in fact, easier) argument as in the proof
of Theorem 4, we can prove that Ty is uniform bounded on LZ(R"). Also, we can
prove that Ty is uniform bounded in L? (R”, w) for 1 < p < oo, uniform weak-(1, 1)
bounded and uniform BM O-bounded, because it is a Calder6n—Zygmund operator.
For these results, see [4].

Theorem 7 (See [4, Theorem 2.4]) For each g € (1, +00), there exists a constant C
depending on n, ||vl|;00(z) and p such that for every x € R" and every M & AR

Ty f(x) < C{M(T-pm.m [)(x) + Mg f(0)},

where

M

Toumf) =Y vi(e% f(x) — e f(x)

j=—M

and

M, f(x) = sup

1
q
—_— |f(y)|qu> , 1<gq<oo.
g>0<|B(x,a)| B(x,e)
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Now, we are in a position to prove Theorem 1.

Proof of Theorem 1 For each w € A,, choose 1 < g < p < oo such that w €
Ap/q. Then, it is well known that the maximal operators M and M, are bounded
on L?(R", w). On the other hand, since the operators Ty are uniformly bounded in
LP(R", w) with w € A,. Hence, by Theorem 7, we have

” Tltlf”LP(]R",w) =C (”M(T—M,Mf) ”LP(R",w) + ”qu”LP(R",w))

= C(IT-mmt oy + 1 N r@rar) < CUF ooy

Note that the constants C appeared above do not depend on M. Consequently, letting
M increase to infinity, we get the proof of the L? boundedness of the maximal operator
TX, where Ty f(x) = sup |Tn f (x)].

N

We should note that

Ny
T*f(x) = sup [T f(0)| = sup | Y vj(Ps  f(x) =P f(x)
Nez? Nez? j=N)
Ny 400 a2 a2
—c, Supz Z vj (/(; o <e—]4.tlAf(x) — e_zéAf(x)> S?fg)
NeZ j=Ni

+00 N2 a2 1 a2 d
< Ca/ e sup Z v; (e_ A f(x) — e_‘éAf(x)> I_Sa
0 s
1

NeZ? j=N
+o00
s ds
= C(x,p,v,n e TAf(X) slj’
0

where the operator TA* (which is bounded on L? (R", w) and the boundedness constant
is not depending on s) denotes the maximal differential transform related with {v;} jcz

and p2-lacunary sequence {ajz. /45} Z Then,

je
+o00 B _ ds
”T*f”LP(R”,w) = Caspav,n/o e “ TZf”LP(Rn,w) - = Capvn I flLr@ro) -

This completes the proof of part (a) of the theorem.

In order to prove (b), we consider the £%°(7%)-valued operator 7 f(x) =
{TY f ()} yezz- Since |7 f(x)|lgo(z2y = T*f(x), by using (a) we know that the
operator 7 is bounded from L”(R", w) into L‘zOc (ZZ)(R”’ w), forevery 1 < p < 00
and @ € A. The kernel of the operator 7 is given by K%(x) = {KJ (x)}yez2- By
Theorem 5 and the vector valued version of Theorem 7.12 in [7], we get that the oper-
ator 7 is bounded from L!(R", ) into weak- Léoo 22) (R", w) for w € A;. Hence, as
17 f ()l gooz2) = T f (x), we get the proof of (b).
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For (c), we shall prove that if f € L°(R") and there exists x9 € R” such that
T*f(xg) < oo, then T*f(x) < oo for a.e. x € R". Given x # xp. Set f| =
FXB(xo.41x—xo) and fo = f — fi. Note that T* is L”-bounded for any 1 < p < oo.

Then T* f1(x) < oo, because f; € LP(R") forany 1 < p < oco. On the other hand,
by Theorem 5 we have

‘TﬁfZ(x) — Tﬁfz(}m)‘
= ‘/R Ky (x, y) fa(y)dy — /Rn K,%(xo,y)fz(y)dy‘

-|[ (K, ) = K (0, 1)) F0)dy|
¢ (x0,4|x—xol)

[x — xo]
<c / Xl e dy
Be(xo.4lr—xol) 1y — xo|"F!

< Clfllpeom) < +oo.
Hence
| 7% 200 = T f2x0) [ 100 2y < C 1 f oo ey

and therefore T* f (x) = H Tﬁf(x)“lw(zz) < C < 0. For the L>® — BM O bound-
edness, we will prove it later.

(d) Let x9 € R" be one point such that T* f (xg) < 0o. Set B = B(xg, 4 |x — xol)
with x # x¢. And we decompose f to be

f=(—fBxp+(f =B+ fe= fi+ Hr+ f5

Note that 7* is L”-bounded for any 1 < p < oo. Then T* fj(x) < oo, because
f1 € LP(R"), forany 1 < p < 0co. And T* f3 = 0, since Pt‘j‘ffg = fyforany j € Z.
On the other hand, by Theorem 5 we have ‘

75 7o) = T o)
- \/R Ky G, 1) o0y = /R K (x0, 1) f2()dy |
- ‘/B (KN (x, ) = K (x0, ) fz(y)dy‘

lx — xo
SC/ —— g 1) — fBldy
B xol

cly—
+o00
< C2|x —Xo|/ lf () ffl|dy
P 2kg\2k-1p |y — xol"

—+0o0
|x — xol /
<C — d
< kEZI ST szIf(y) fBldy
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k
<cZz <k+1>|2k3|/ (\f(y) fm!+§|fzfs—fz~3\>dy

k=1

—cyr <k+1>‘2k3’f (70) = Fusl + 261 Flpwoqn) dy
k=1

—+00
<C 22_(k+1)(1 +2k) 1 fllsmomwn
k=1

=Cllfllsmomn

where 2B = B(xq, 2X - 4|x — xq|) for any k € N. Hence
|75 200 = T f200) [ 100 22y = C 1 f I sy

and therefore T* f (x) = || Ty f(x) ||l°°(ZZ) <C < oo.
Now, we shall prove the estimate (1.4) for functions such that 7* f (x) < oo a.e.
For any r > 0 and x¢ such that T* f (xg) < o0, consider the ball B = B(xg, r) and

fB = |;|/f(x)dx Let
=~ pxs+ (= fBxep:+ = i+ f2+f3

We have T* f3(x) = 0. Then,

1
—/ |T*fx) = (T*f)pldx = — | |— | (T"f(x)—T*f(y))dy|dx
|B| JB B
1 . .
= W/B/B |T* f(x) = T* f(y)| dydx
1
= W/ f ‘”Tﬁf(x)”lm(zz - ” T][éf(y)”1m(22)
B— / f |75 £ () = T £ )] e 2, Ayl
1
B_/ / |75 1o = TNfl(Y)HZOO(Zz dydx

b / / TE (6 = T8 o) o, dydx
|B12 Jp B” N N ”l (7%
= I1+1I.

dydx

The Holder inequality and L?-boundedness of T* imply that

1< ﬁ/ ”TNfl(x)HIOO(Zz)dx—i- |B|/ HTNfl(y)HIOO(W)dy
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1 2 2 1 2
< (i1 L1700 m0r) o+ (o [ T8RO )

1
< C|m—1/2 Il 2@y = CIfIBmon -

1/2

For 1, since x, y € B and the support of f is (2B)¢, by Theorem 5 we have
T8 @) - T8 LO)|
| [ K@ on@a- [ kioopod
]Rn R?l

= ‘/;23)5 (KI(:I(X, z) — Ky (. Z)) fz(z)dz‘

§C+oor/ /@~ f5l
= Jrpoeip 2 —xol !
+0o0 ’
< C,;W/m £ ) — faldz
+o0 k
<c) 2k T (!f(Z)—fsz’+Z’leB—le13|> dz
k=2 |2 B| =1
3 *"L/ - %1171 )d
§C1§2 28] s (If @ = fup| + BmMo(®) dz
+00
<CY 27K+ 20 I flpmogn
k=2

=Clflpmomn -

where 2 B = B(x¢, 2¥r). Hence, wehave I1 < C || flg MOR?) - Then by the arbitrary
of xp and r > 0, we proved

||T*f||BMO(]R") <C ”f”BMO(R”) .

For the second part of (c¢), we can deduce it from the BM O-boundedness of 7* and
the inclusion L>*(R") ¢ BM O (R"). This completes the proof of Theorem 1. O

From the conclusions we got in Theorem 1, we have the following result:
Theorem 8 (a) If1 < p < ccandw € A, then Ty f convergesa.e.andin LP (R", w)
norms for all f € LP(R", w) as N = (N1, N) tends to (—o0, +00).

() If p = 1 and w € Ay, then Ty f converges a.e. and in measure for all f €
LY(R", w) as N = (N1, Na) tends to (—o0, +00).
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Proof First, we shall see that if ¢ is a test function, then Tﬁ(p(x) converges for all
x € R”". In order to prove this, it is enough to see that for any N = (L, M) with
0 < L < M, the series

M —L
A=) 0Py, e —Pro@)and B= ) vi(Py  ¢(x) =P e(x)
j=L j=—M

converge to zero, when L, M — +o00. For A, by the mean value theorem and the
p-lacunarity of the sequence {a;} ez we have

M +o0 a2 a2
o f Y+t 95 ds
4] = Ca| >, </0 e A(e & Ago(x)—eé%(x)) sl_a)
=L

+o00 M u;+l af d
sca/ e > v (e 2000 — e o) )| =
0 : ’ s
j=L

2 2
siyl syl
- s"/2 ds

+00 M sz =% -
= Cn,a/ e’ Z vj / € J+l (p(x — y)dy — / € j QO(X — y)dy b
0 ) R® aj_H Rn aj N
+00 M
=< Cn,a,v,p/ 673/ Z
0 R” s
M +
Zi Yo [ oty =2
: a” 0 R sl—a—n/2

1
< Cnauv,p H§0||L1(Rn) o — 0, as L,M — +o0.
L

s/ ds
a;’ lp(x — yldy e

For B, as the integral of the kernels are zero, we can write

L a?ile—afﬂ/(m _ aj;ae—ag/<4Av) o—IyI"/4s)
B=Cuu [ ,-;M ; o e 9 =) — o()dyds
U a8 a4 )
= Cra /0 / n EM vy m_— e 9 ) = e()dyds
00 —L a% e_a/2'+|/<4s) — az.“e_a%/m:) —|yI"/(4s)
it J e ) —
+Cn,a/1 / i;M vj st (A s)n/2 (p(x — y) — p(x))dyds

=: B] + B».
Proceeding as in the case A, and by using the fact that ¢ is a test function, we have

o *a§+1/(45) _ aZ.ae*l’_%/(‘lS) e_‘y|2/(4s)

! = a12‘+le J
i —y)— dyds
/0 / ",;Mv’ e Gy ©0 —9) — 9(0)dyds

IBll = Cn,oz
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1 L a?i1e_a%+'/(4s) - a]zae—a?/(zts) e*‘ylz/(%)
Cra [0 ./" ,;Z,:Mvj e (4ms)n/? V@l Lo @1y |yIdyds
_L 2a —al,/@4s) _ 2q —al/(@s) | p
< Coa V9l | > S G T —age W e
< Cna Vel pomn 0 Jor &, j sa+1/2 (4ms)n/2 Y

a o, —aj /(4s)
< Cn a,v,p ||V(p“L°C(R” f Z sa+l/2 i 9

If0<« then, for any 0 < ¢ < 2«, we have

1
2

|Bl| = Cn,oc,v,p |IV§0||L°°(R”) Z aJZ_a—s/ Ss/2—a—l/2ds
0

j=—M
2a—¢ - a?“—f
= Cn,a,v,p,s ”V(p”LOO(R") a_y, Z Qa—¢
j=M 4-L

—&

< Coavpe V@l poony a®%F —> 0, as L, M — +o0.

1
Ifi < a < 1, then

a ae aj /(43)

|31|<Cnaup||V§0||Loo(Rn/ Z W—l/zds

2a—1 - a?a_l ! 1
< Chav.p VOl ooy aZy E 2o—1 _ads
—ya-; Jo s
j=—M

—1

= Cn,oz,v,p ||V§0“L°°(R”) GE“L — O, as L, M — +o0.

Therefore, we get
|Bi]| — 0, asL, M — +o0.

On the other hand,

a2

o
1Bal < Cop 0l Il oo / Y s
1 .
j==M

= Cn,a,v”§0||L°°(R") Z aja‘/l Slqu
j=—M
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—L a2_01

2 J
< Coawplllie@na® Y
j=—m =L
20
20

1Y
S Cn,ot,v,,o”‘P”LOO(]R") md_L —> O, as L, M — +00.

As the set of test functions is dense in L”(R"), by Theorem 1 we get the a.e.
convergence for any function in L?(R"). Analogously, since L? (R"*) N L? (R", w) is
dense in L?(R", w), we get the a.e. convergence for functions in L” (R", o) with 1 <
p < oo. By using the dominated convergence theorem, we can prove the convergence
in L?(R", w)-norm for 1 < p < 00, and also in measure. O

3 Proof of Theorem 2

The dichotomy results announced in Theorem 1, parts (¢) and (d), about L°°(R") and
BM O (R") are motivated, in part, by the existence of a bounded function f such that
T* f (x) = oo as the following theorem shows. In [5], we can find some related results
for the variation operators.

Theorem 9 There exist bounded sequence (v} jez, p-lacunary sequence {a;} jez, and
f € L®@R") such that T* f (x) = oo for all x € R".

Proof We will only consider the case n = 1. For the multi-dimensional case, it is
similar just with minor modifications. Let f be the function defined by

fx) = Z(_l)kX(_GZkJrl’_aZk](x), x € R,

keZ

where a > 1 is a real number that we shall fix it later. It is easy to see that
f@x) = (=1 f (). G.1)
By changing variable, we have

pe 1o e O oy |
- —yd
410 = o /0 /R ey (6~ s

_ 1 /+oo . _S/. 12 _Slylzf( d ds
_ﬁF(a) ; s%e Rs e x—ajy ys.

Leta; = a?’, Then,

PY F(0) = ;‘/‘—FOo so‘e*s/ sl/zefs‘ylzf(—azjy)dyd—s
“ VaT(e) Jo R s
(=1 +oo

_ o —s/JrOO 172 —s\y|2f( )d ds
- VAT Jo e 0 e e
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We observe that

+ + +
/ Oosl/Ze—sly\2 | f(=y)|dy < / oosl/Ze—slylzdy — / Ooe—tzdt _ \/TE
0 0 0

Therefore,

+o00 +o00 d
/ so‘ef“'/‘ 12—l | f(— )|dy— < —\/_/ “e -8 —ﬁf‘(a) < 0.
0 0 2 0 S 2

Also, we have

+o0 ) +o0 o ds
lim s”‘eﬂ/ s12e701 f(—y)ydy— =0
0 R s

R—+o0

and

+00 & d
lim s%e™* f sl/ze_sly‘zf(—y)dy—s =0.
0 0 S

e—071

On the other hand, there exists a constant C > 0 such that

+o0 a d
lim s%™" / sl/ze_sly‘zf(—)’)dy—s
0 1

a——+00

400 N
= lim s“e_S/ 172yl dy =C=>0.
0 1

a——+00

Hence we can choose a > 1 big enough such that

+00 +oo
/ s /a sl/2e—s|y‘2f(—y)dyé _ / §s%e=S /a Sl/Ze—Xl)r\Zdyd_s
0 1 S 0 1 §
400 1/ o0 oo
_ /. Sae—sf asl/Qe_Slylzdyd—s +/ Sae—.v/ Sl/Ze—Sl}vIZdyd_s
0 0 0 a ’

+ 1/a
- f e / $12e= P £ yydy| 8
0 0

+00
+ / s%e™*
0

In other words, with the a > 1 fixed above, there exists constant C; > 0 such that

+00 d
/ sl/zeS'y'2f<—y>dy‘ =
a? N

+o0 ot a2 ds
/ Saeﬂ/ $12e-0P £(Zydy = . (3.2)
0 0 §

Hence

Py, fO0) = P2 fO)] = fr()
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Therefore, we have

2

JEL

Py, fO) = P8 f(0)] = o0
By using (3.1) and changing variable we get

P f() = / h Saeis/ 12 £ - aiyyay S
4 VaT(a) Jo R s

j +
DT / 12l () ay .
R as §

~ Jal@) Jy

Then
P fO) =P f(©)
(_1)j+1 too QO —s 1/2 —s|y|2 X ds
_ﬁr(a){/o se /ﬂ;s ¢ f(a2<i+1> _y)dyT

+
+ * §%pS Sl/Ze—stf (i _ y) dyd_s}.
0 R llzf S

By the dominated convergence theorem, we know that

+oo 1/2 2 dS
lim s“e—Sf s12e=S01 £ (h — y)dy—
h—0 Jo R N

+
:/ oos”‘e*s/sl/zefslylzf(—y)dyﬁ
0 R s

+ +
:/ OOS“e_S/ 0OSl/ze_slylzf(—y)dyE
0 0 s

=C; >0,

(3.3)

where C| is the constant appeared in (3.2). So, there exists 0 < ng < 1, such that, for

|| < no,

+00
/ s“e_s/ s1/2e_sly|2f(h —-y) dyd—s > ﬂ
0 R s~ 2

Then, for each x € R, we can choose j € Z such that —
a

satisfying this condition), and we have

X d
o, 1/2 ,=slyl? <_ ) &«
/0 e /RS ¢ ! a2+ y)dy s

+0o0
+/ Saeﬂ/ §1/2g=sI5P (L - )dyd_s >C) > 0.
0 R azj S
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Choosing v; = (—=1)/*!, j € Z, by (3.3) we have, for any x € R,

T*f) = Y (=DIT(PYL, f) = PS f)

== <m0
w

syl X ds
fr(a) 2 {/ / Vel f(a2<j+1> _y) dy

| 2| <m0
+o0 d
+/ so‘e*S/ sl/zefslylzf(% - )dy—s}
0 R a~l s

1
? et 2 O

X
i <no

We complete the proof of Theorem 9. O
At the end of this section, we will give the proof of Theorem 2.

Proof of Theorem 2. First, we prove the theoreminthecase 1 < p < co.Since2r < 1,
we know that B\ By, # 0. Let f(x) = fi(x) + f2(x), where f1(x) = f(x)xB,, (x)
and f>(x) = f(x)xp\B,, (x). Then

IT* )| < |T* )| + |T* f(0)].

By Theorem 1,

. | . , 12
510, |7 f‘(x)‘dxf<|3r| , T dx)
| NG

§C<|B |/R|f1(X)I dx) < CIf g -

We also know that, for any j € Z,

2a =G /() _ 20, —ar /G | 2 4

+o0 as e —ate 7 e .
/ / Jj+1 J dde
0 n slte (4ms)n/2
+o00 ajz_glrlg*“_%ﬂ/(“s) +aj2,ae*“?/(4s) o=y /4s e 2T
n slta @nsynz. DT (@.

(3.4)

Then, by Holder’s inequality, (3.4) and Fubini’s Theorem, for 1 < p < oo and any
= (N1, N»), we have
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N>
> i (Pe 20 = P2 ()
J=N
N2 +00 2% o~ +1/(4s) —az.aeill?/(%')) e*\xfy\2/4x
<C v il / / y) dyds
< .Z ,/O NEm Gy PO) Y
J=Ni
N 1/p
N +o0 | a2 ]e—af+1/<4s> _ g2 /) o—bi—yI2/as P
J J )
< Clvlie _Z /(; REw / Gy 2200 dyds
J=Ni
+o0 2 —a} i/ (4s) _ajz_ae‘“f/(‘“) —x—y[2/4s
< » '
< Clolioes ( / L7 — G 1200 dyas)
J=Ni
2 2
+oo a%‘i]f“ﬁ'/(“)—a%"‘f“//(“) Xy /4s PN 1/p
x : : d’ds} )
{‘/0 /n slt+a (47‘[5)"/2 Y
N e jile—ajﬂ/(m _ ajz_ae—alz./m,c) o3P /s , 1/p'
< C ||vll» P dyds
< Clvle | /0 / " — G PO dy
J=Ni
Uy
+oo i+le—a]2+1/(4s) _ a?"‘e"’/z‘/(‘“) o—lv—yP/ds ’ /p
<Clv : : ; P dyds
< Cllvlr /0 / ",-;oo — g RO 4y

+00 el — yI2/4s , 7
<Clvlwrag / [;{n s sy 2P dyds .

For x € B\By, and y € B, we have r < |x — y| < 2. Then, by integration with polar
coordinates we get

+00 —lx—y /4 ) 1
7 dyd dr
|B | |B | B, / ‘/l;n P (47{ )n/z |f2(y)| yds
1/p'
oo (RM) +00 et 2 /4s
SC||f||L ®R") / / / / drd,, ,ds dar
|B | B, sn—1 r<r|<2 N (47TS)n/2 "
2\1/p
~ (log ;) 1l oo -
Hence,

!

! / 7" f ()| dx < C 1+(logg>l/p £ 1l oo e
18,1 /5, = r ERED

2\U/p'
= C(10g 7)1 -

For the case p = 1 and p = o0, the proof is similar and easier. Then we get the proof
of (a).
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For (b), we only consider the case n = 1. It is similar in the multi-dimensional
case. When 1 < p < oo, forany0 <e¢ < p — 1, let

0
fx) = Z (_l)kX(_a2k1_02k—l](X) and aj = a®,

k=—o00

with a > 1 being fixed later. Then, the support of f is contained in [—1, 0), and
{aj}jez is a p-lacunary sequence with p = a? > 1. We observe that

+00 +00 , ds +o0 0 i ds
/ Sae—sf Sl/Ze—sl)lzf(_y)dy ~l< / sae—s/ Sl/Ze—s\)lzdy_
0 0 S 0 0 s

JT

= 71"(0{) < Q.

Hence

+o00 +00 2
Jim §9e=s / s1267BP f(—y)dy =0
R—+00 Jo R
and
+o00 € d
lim s“e“/ s12e=DP £ (—y)dy= =0.
0 S

e—0% Jo

Also there exists a constant C > 0 such that

+00 1 12 | |2 ds
. a_—s —sly _ b
Jim [ f e fyay
+00 1
= hm sa67S sl/ze*ﬂy‘zdyﬁ =C.
a—+oo J a1 K

So, we can choose a > 1 big enough such that

/+°0 s’ /1 sl/ze_sly‘zf(—y)dyE = /+°0 s’ [1 sl/ze_sly‘zdyd—s
0 a—! S 0 a1 S
2
> 10 (/+OO %S /l/a Sl/Ze—SI)flzdy + /+OO 2o f+oosl/2e—s|y|2dyd_s)
0 0 0 a—1 §
2
> 10 (

+ 1
/ Oo“ae_sf 12 yyay S
0 0 s

+ +
/ > §%eS / * sl/ze_slyzf(—y)dyd—sD .
0 a—1 S

+
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Therefore, there exists a constant C; > 0 such that

o0 o0 2 ds
/ s“ef"'/ s12e70 f(—y)ydy— =C; > 0 (3.5)
0 0 s

and

+00 1/a? d
0 </ s“eﬂ/ sl/zefsly‘zdy—s
0 0

+ +oo
+/ Oosae—s/ $12 _szdyds ﬂ (3.6)
0 a—1 9

On the other hand, by the dominated convergence theorem, we have

. +0o0 12 2 ds
lim s“e_sf s12e=DF f(h — y)ydy—
h—0 Jo R N

+00 +00 5 ds
- / Sa”/ s12e70F f(—y)dy= = €1 > 0,
0 0 s

where C is the constant appeared in (3.5). So, there exists 0 < 19 < 1, such that, for
|7| < no,

+
f ooSae_sf31/2"3_S|y|2f(f1—y)dyd—s
0 R s

1 +00 +00 d C
> —/ s"‘e*/ sl/zefslylzf(—)’)dy—s =—. G.7
2 0 0 S 2

It can be checked that
F@x) = (D7 @)+ (D7D (=D x g g1y (x)
k=1

when j < 0. We will always assume j < 0 in the following. By changing variable,

1 o0 . 1 ]2 : ds
o _ o, /2 ,=slyl — g2 -
Pa]_f(x) = ﬁr’(a)/o s%e /Rs e f(x a y) dy .

i+
_ oosae—s/s1/2e—s\y|2
VaT(e) Jo R

f( );] >+Z( D X(—a2k — a2~ 1]( al y) dyi_s_

k=1
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Then

P f@) —PE fx)
(—1)itl e e ds
= —ﬁr(a){/() sTe /RSI/2€ 1yl f<a2j+2 _y) dy?

+
[ [aret (S )0
0 R as’ s
[ 25 —S|y _ - -
+/O s%e /Rs e Z( D" X(—a2t —aq2-1 (a21+2 y) dy .

k=1

T a s 172 —s|y? =l k X ds
[ s [ st Pe Y e Xar - (5 =)y =] 3.8

k=1

2Jo

For given ng as above, let 2r < 1 such that r < n% and r ~ a“’%no for a certain

.. . r
negative integer Jo. If Jo < j < 0, we have 57 < no- And, for any —r < x < r we
a

have

—Jj—1 X
1 K100 0) £ 0 D e o (a7 = 9) = Kam1400 )
k=1

and
—j .
—1 a1 4000 = 2D e gy (S37 = ¥) = Kt 400 ()
k=1
Hence, for the third and fourth integrals in (3.8), by (3.6) we have

- 1/24=s1y1? Z a
—s
/(; s* A% y (=¥ X(—a?,—a2%—1 ( 32 y) dy P

k=1

AR §1/2,=sly k X ds
+ A sYe” Z( D" X (—a2t — g2~ 1]< y) dy?

oo d 2C
> (— 2)/ / s1/2o=s01P g ?s > __1 (3.9)

So, for any x € [—r,r] and Jyp < j < 0, combining (3.8), (3.7) and (3.9), we have

2C
a]+1f()_7)af(x)‘>c (Cl—Tl)=C~C1>O.
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. 1
We choose the sequence {v;};cz € €7 (Z) given by v; = (—1)]+1(—j)7ﬁ, then
for N = (Jp, 0), we have

1 |T* f(x)|dx
2r [—r,r]

0
1 / 1 1 __1L
> TS £ (x) dxz——/ (C~C1-(—j) p—s)dx
2r [_r’r]i N | V() 2r Ji—r 1 I;JO
1 2\ (p—e)
> Cp,s,oc -Cp - (=Jo) o ~ (log _) .
p

For (¢), letv; = (—1)j+1,aj = a% witha > 1 and 0 < no < 1 fixed in the proof
of (b). Consider the same function f asin (b). Then, ||v|; 7y = Land || f || ooy = 1.
By the same argument as in (b), with N = (Jp,0) and 0 < o« < 1, we have

L[ rreolas = [ 18 s
2r [—r,r] 2r [—r,r]

2
Cid Jo) ~ log =
fr(a)zr/[,,,; ‘t—fr() (—Jo) ~ log -

4 Boundedness of the differential transforms related to Schrodinger
operator —A + V

In this section, we would consider the differential transforms related with the gener-
alized Poisson operators generated by the Schrodinger operator L = —A + V in R”

with n > 3, where the nonnegative potential V belongs to the reverse Holder class
RH, with g > n/2, that is, there exists C > 0, such that

1
1 q C
(|B|/V( )qu> <ig1 ), VO

for every ball B in R". Associated with this potential, Z. Shen defines the critical radii
function in [16] as

1
p(x) —sup=r>0 2/ V(y)dy < 1}, x e R 4.1)
r"== JBx.r)

We will abuse p in this article, and it should be easy to distinct the p-lacunary with
p(x) for the reader. For more information related with Schodinger operators, see [8,
16].
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Lemma2 (See [16, Lemma 1.4]) There exist ¢ > 0 and kg > 1 such that for all
x,y €R?

_ _ko
e — yl\ % |x—y|>ko+1

o) <1 + ) < p(y) <cpx) <1 +
p(x) p(x)

In particular, there exists a positive constant C1 < 1 such that
if |x—yl<p) then Cip(x) < p(y) < Cy'p(x).
Let {7/};- ¢ be the heat—diffusion semigroup associated with L:
T =e " fx) = /R e NfMdy,  feLP®"), xR 1>0.
Lemma 3 (See [9, 11]) For every M > O there exists a constant Cyy such that

-y t t
0< e_lﬁ(x, y) < CMt_”/Ze_‘ o (1 + L L
p(x) — p(y)

—-M
) , x,yeR" r>0.

Lemma 4 (See [9, Proposition 2.16]) There exists a nonnegative Schwartz class func-
tion w on R" such that

VAN
etL('x9y)_Wl(x_y)‘§(_> C()[(x_y), xJ’GRn, t>07
p(x)
where W, is the Gauss—Weierstrass kernel, w;(x — y) 1= 2 ((x — y)/ﬁ) and

80:=2—— > 0. 4.2)
q

Lemma5 (See [10, Proposition 4.11]) For every 0 < § < 8, there exists a constant
¢ > 0 such that for every M > O there exists a constant C > 0 such that for
[x —y| < J/t we have

—tL _ —tL ¥ =yl ’ —n/2 6|x22/l< i £>_M
‘e x.2)—e (y’Z)’5C< Vi )t ¢ oo The)

Lemma 6 (See [9, Proposition 2.17]) For every 0 < § < min{l, ¢},

‘(e—tﬁ(x’ 2 — ey — z)) _ (e_“:(y, ) — ey — Z))‘ ~c <|xp(—z)y|>3wt(x .

forallx,z e R"andt > 0, with |x — y| < Cp(x) and |x — y| < %Ix -zl
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In fact, going through the proof of [9] we see that w(x) = e P,
Then by (1.1), we can define the generalized Poisson operators associated with the
Schrodinger operator £ as follows:

B t2¢x +00 _%2 —r q ds
“Fr@ )y S T @Oy

Let {a;} ez be an increasing sequence of positive real numbers, and {v;};cz be
a bounded sequence of real or complex numbers. We shall consider the differential
transform series

Pef(x)

Z vj (Pg i ) — 75;‘1.f(x)).

JEL

Foreach N € Z%, N = (N1, N») with N; < N, we define the sum

N

TR =Y vi(Py  f()=Ps f(x), xeR", (4.3)

J=Ni

Then, we have the following formula:

N>
Ty f(x) = Z vj( Mf(x) — Py ()
J=Ni
. —a%,  /(4s) 20 —a2/(4s)
a o _aj ¢’ —sL
4ar(a) Z // A e "7 (x, y)f(y)dsdy
400 N2 a e—ajz'+1/(45) _agae—ajz»/(4s)
J —sL
4ar(a) /f I e "= (x, y)dsf(y)dy.

We denote the kernel of T v by

2 2
20 =~ /(5) _ 2 ,—ad/@s)

+00 2 as% . e " ; ’
+1 -
Ky(x,y) = / v -2 e d e (x, y)ds.

4oT (a)
By Lemma 3, we can prove the following theorem as in the proof of Theorem 5,
which indicate that the kernel K, is an £%°(Z?)-valued Calderén-Zygmund kernel.

Theorem 10 For any x,y € R", x # y, and M > O, there exists constants C
depending onn, M, a and ||v;oo (7, such that

lsw c =yl =y
1) ‘KN(X»)’)‘S Ix — yp <1+ o(x) * P(y) ) ’
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ly —zI°

W, whenever
X =Yy

(i) 1Ky (x,y) — Kjy(x, )| + |K§(y.x) — Kjyz. x| = C
|lx —y| > 2|y —z| forany 0 < § <2—z.
q
Proof (i) For any M > 0, we have
+00 oo a2, e~/ _ 2u ,—ai/(4s) .
|K5(x, )| < C||U||100(Z)f ! RET ! e (x, y)|ds
]_*OO

+oo X 5 ) efsﬁx
:C/O Z ‘ %, —a2,,/@s) _ajgae—aj/(4As)’ Slia, y)ds.

j_—OO

Then, by (2.1) and Lemma 3 we have

3 +00 =L (x, y) ke=y? oo\ pmlr—y/(es)
Ky(x,»l=C ————ds=C —
|K§(x, )| < /0 . s /o +/|x_y|2 98

<C /|X—Y|2 : d+/‘+°° 1 ds | < ¢
AV TR TS A A

and

5 +oo ,—sL
RS (x. y)] < c/ GNP
0 S

le—yl? + -
c /x y +/ o sfn/zflef\xfylz/(cs) (i) ds
0 lx—yl? peo
lx—y|? M oo -
_c / 'O—(x)ds—i-/ 'O—(X)ds
0 |x — y[ntM+2 oy STEEMIH

__¢ <|x—y|>‘M
T le=yIm N k)

Then, together with the symmetry of e’sﬁ(x, y), we have

- C lx — vl |x—y|>‘M
Ky(x,y) < 1+ +
v o) = |x—y|"( o) o0y

(ii) It can be proved with the same method as in i) with Proposition 3.10 in [4]. O

Theorem 11 For the operator Tﬁ defined in (4.3), we have the following statements:

(@) Forany 1 < p < oo and w € A, there exists a constant C > 0 depending on
n, p,a and ||v||je0(zy such that

| 75| < Clflore o

LP(R",@
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for all functions f € LP(R", w).
(b) Forany w € Ay, there exists a constant C > 0 depending on n, a and ||v||;=z)
such that

- 1
ot e R T8/ (0] > 2) < C3 1 i 4> 0,

for all functions f € L'(R", w).
The constants C appeared above all are independent with N .

Proof For any f € L”(R", w)(1 < p < 400), we have

‘Tﬁ,‘f(x)‘ = /R K§(x, y)f(y)dy‘

IA

f & (x. y)f(y)dy‘ ‘ f f%(x,y)f(y)dy‘
[x—=yl<p(x) [x—y[>p(x)

IA

/ (R = Kiyx =) f(y)dy’
[x—yl=px)
+ V Ky (x, y)f(y)dy‘

[x—yl=p(x)

+

/ o (x, y)f(y)dy'
[x=yl>p(x)
=L+ h+ 5

For 77, by (2.1) and Lemma 4, we get

+o0 Nz _a %+./<4s)_ajz_ae—a$/(4s> .
= / f T (7200 = Wotr =) ) dsf ()dy
x=yl<p(x) =N §
+00 Ji:w Za e —at,/(4s) _ajz_aefaﬁ/m) A% e*c‘xi;"‘z
scnvnM/ / (—) ¢ asIfldy
@ k-ylzo Jo I slta p(x) §n/2

v

o f5 \P e
<C - eeE d
N /\Xﬂ'ls,a(x)/o s (p(x)) /2 s|f(n)dy
=C /

2
2

P S5\ et
/ —( ) T dlFldy
[x=yl<p(x) JO S \P
‘ 7

2
|

(x) K
+eo | Js S0 ,—ctgy
e / 7(—> T dslfO)ldy
x—yl=p) Jp2(x) § \P(X) sn/2

=: 111 + I12.

For the term /11, we have

p=(x) so-n _s o y\z
In =c/ / s (000~ R s £ ()| dy
[x=yl<p(x)
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PP 4 1
<o [ sf—l-m/ 555 £ ldyas

1
_ _C 4r
520 5"/% Jn

S CM(HHx), xeR",

If(y)ldy

where M denotes the classical Hardy—Littlewood maximal function.
n

For the term 7, since §g = 2 — —(see (4.2)) and n > 3, we have
q

+00 s s
In=<c / / Mo () d0ds| £ (y)ldy
[x—yl<p(x) Jp2(x)

< Cpx)™" / FO)Idy
[x=yl<p(x)
< CM(f)x), x€eR"

Hence, we have
I < CM(f)(x), xeR".

For I, we can write

L= ‘/ K{(x, y) f(y)dy| < Ky (x, y) f(y)dy
[x—yl<p(x) R”?

+ sup

>0

/| | K%(x,y)f(y)dy‘-

Now, let us consider the operator defined by

T:L*R") — L*R")

f=Tfx) = fRn Ky (x,y) f(y)dy.

From Theorem 4, we know that 7 is bounded on L2(R"). And T is a Calderén—
Zygmund operator associated with the kernel Ky (x, y)(see Theorem 5). Then, by
proving a Cotlar’s inequality as in [18, p. 34, Proposition 2] and the argument in [18,
p. 36, Corollary 2], we can prove that the maximal operator Tﬁ’* defined by

Ty f(x) = sup

e>0

fl | K (x, y) f(y)dy
x—y|>e
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is bounded on L?(R", w), for every 1 < p < oo, and from LI(R”,w) in to
L]’OO(R”, ). Combining this fact with Theorem 3, we conclude that

120 r®e 0y < CINfllLpRew, 1 <p<o0
and
120 1o ey < C NI R, o) -

For the last term /3, by (2.1) and Lemma 3 with M > 1,

3= / f%(x,y),f(y)dy‘
[x—y|>p(x)
+00 2 agile—af+]/(4s) - az.“e_a.%/ms)
:C/ [ v~ ’ e (x, )dsf()dy
[x=yl>p(x) sl+a
Jj= N1
boo 120 [ o @541 /@) _ a5/ 49)
= Clvlieoq / > Ea =L e y)dsl £ (»)ldy
x=yl>p(x) JO - s
]— oo
+oo 1yl s s\ M
=c| | e (1+ - +L> ds! £ ()ldy
[x=y|>p(x) g2l px)  p(y)
2 —
L R M
=< [ e <1+ - +i) ds! £ ()ldy
[x=y[>p(x) s2T1 px)  pk)
oo 1 —y? s -M
""C/ / e <1+ Vs +L) ds|f(y)Idy
[x—y|>px) Jp2(x) ST'H p(x) p(y)

=:I31 + I3.

For the term I3,

p(x) 1 xyl?
mec | e asirom
[x=yl>p(x) JO

52

2
-c P (x) le—cl@ 1 _Cz
-~ b s s"/2

1 P
DOW/RH 2kt If(y)ldy
<CM(f)(x), xeR"

If(y)ldy)

For the other term /3;, by changing variable we have

1 = 2 -M
m=c [ [ e (1 + i) ds! () Idy
k—yl>p() Jp2(x) 27 (x)

ool

+00
cf PO [ e Ty
lx—yl>p(x) 1 (up(x)”" u
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+oo up(x) oy
< If(y)I/ (1+u)—M( ) dy
p"(x) [x—y[>p(x) 1 lx — ¥l untl
n+1
<C If(y)|< S ) dy
P Jix—yl>p) lx — ¥l
1 X p(x) \"'!
=cC / If(y)l< ) dy
p"(x) kX::O 2% p(x)<[x—y| <2+ p(x) |x — yl
—+00 1 1
<cy 21 / 1f )l
gzk o iz N

<CM(f)(x), xeR"
Hence, we get
I3y < CM(f)(x), xeR".

Then, cornbinin~g the above estimates of I, I, I3 and the L”-boundedness of M,
we conclude that Tﬁ is a bounded operator on L?(R", w) for every 1 < p < 0o, and

from L' (R", ) into L1*°(R", ). We should note that the constants C appeared in
the above estimates all are independent with N = (N1, N,). Thus, the proof of the
theorem is complete. O

We shall also analyze the behavior in L>° and BM O . The space BM Oz (R"),
introduced in [8], is defined as the set of functions f such that

1 1
ﬁ/ ‘f(Z)_E/Bf‘dZSCI’ forallB =BR(X) R S,O(X),

— | |fI <C,, forall B= Br(x): R > p(x),
|B| JB

where p(x) is the critical radii associated with £, see (4.1). The norm || fll sy o, ®)
is defined as min{C1, C3}.

Theorem 12 Given f € BM O, (R"), then there exists a constant C depending only

onn, a, p and ||vl|je 7y such that

’f H <C f ny ,
H N BM ®M) = ” ”BMOC(R )
for all functions f € BM O, (R").

Proof We first show that, if f € BM O, (R"), then Tﬁ f is finite almost everywhere.
This information is contained in the lemma as follows:

Lemma7 Given f € BMOgR") and any xo € R*, Co > 1, then fﬁf(x) < oo at
almost every x € B = B(xg, Cop(x0)).
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Proof Let us split the function f to be

== pxp+(f = fB)xp<+ fe = fi+ f2+ f3,

where B* = B(xo0,2Cop(x0)). Since f € BMO,(R"), fi € L'(R™). By Theorem 11

(b), we know that Ty f1(x) < oo a.e. x € B. For Ty, f>, we note that, for any x € B
andt > 0,

. 20 oo o o= (@Hlr—y)/@s) ds
Pr frx) < /0 /n 7f2()’)d)’m

49T () (drrs)n/2
20 400 +00
t 1 2 ds
sc—f / )~ feldy eF
44T (@) Jo ,; 24Cop(x0) <Ixo—y|=25H Cop(xg) 1% — YIMT2* slite-a
2a’ A
t*“*T'(a — o) X —2a 1
SC—————) 2°Cop(x0))  —F—= [f(y)— feldy
49T (1) ; 2k Cop(x0))" Jixg—yl<2k+1 Cop(xo)
12T (o —

+00

O[/) k —2a’

< C———— > (2 Copx0) " (1 +20) I flparo, ey < 00,
49T (o) pa

where 0 < o’ < a. So, 75f‘ f>(x) is well defined for x € B and r > 0. Since Tﬁfz(x)

is a finite summation and xg, rq is arbitrary, Tﬁ fr(x) < 0o a.e. x € R". And, we
should note that

- 2 +o0 o=+ lx—y1H)/(4s) ds
P ‘ < d
‘ Ff00) = 4ar(a)/0 / Grsy2 P T

<C-fB=Clflgmo,mn -

So, fﬁfg(x) < 00. Hence, TI‘\",f(x) < o0 at almost every x € B = B(xg, Cop(x0)).
This completes the proof of the lemma. O

Assume that f € BM O, (R™). Our goal is to show that Tﬁf € BMO,(R"). By
Theorem 10, we know that the operator Tl‘\’,‘ is a y-Schrodinger-Calderén—Zygmund
operator with y = 0 appeared in [13]. By Theorem 1.2 in [13], we can prove the
B M O-boundedness of Tﬁ by checking a condition related with Tﬁl :

log (p(xo)) Lf 1) — (T 1) g dx < C 44
t |B| Jg

for every ball B = B(xg,t),x0 € R"and 0 <t < %p(xo). In fact, since

- ~ 1
[Ty 1(x) = (Ty Dl < Bl

B TE1(x) — TE1(y)| dy,
B
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we only need to prove that, with some 0 < § < Jo,

Ta10 - Tg1)| = C(

and then, (4.4) follows.
We shall note that, when x, y € B, p(x)

|F5100 - 7510

)
) , X,y €B, 4.5)

p(x0)

~ p(y) ~ p(xp). First, we have

oo Nz ‘a e—ujz+l/(4s)_ajzlae—ajz/(éts) . L,
=C // RE et (x,7) —e (y,z)> dsdz
a2 M _a e —aj, /@) _ 2a,—a;/(s)
=C /_/ Z vj e ’ e F(x.2) —e"‘ﬁ(y,z)) dsdz
j=Ni
2 2
02 (x0) Nz a2 o~/ 48) _ 2a ,—ai/(4s)
+C / / l+| 1 J (e—sﬁ(x, 7) — e—sﬂ(y’ Z)) dsdz
n Jag2 glta
j= N
gi 1 e~/ 49) _ a?a o~/ . .
+C / / o et —e (y,z)) dsdz
n 2(X0) Ky
= I+11+1Il.
For the term I, since Ws(x, 2)dz = W, (y, z)dz = 1 and by Lemma 4, we get
R" R"
422 N2 .a e—a_%ﬂ/ms)_agae—a%/<4.s>
r=c / / Era L, 2) = Wy(x,2)) dsdz
n Ky o
J=Ni
e Nz a2 oG/ 4s) _ 20 )/ (s) ;
+C /"[ e ! e (y,2) - Wx(y,z)) dsdz
42 M 2, —aj [ (4s) _ 20 ,—a;/(4s) S5\
<C/ Z U; ! ! —_— / ws(x — z) dzds
shte p(x))  Jrn
J=Ni
422 N7 2 e—afﬂ/ms)_ajz'ae—a‘%/ms) S5\
+ C/ [ (7) / ws(y — z) dzds
j=Ni s P(y) n

s
p(x)

t
p(x0)

<

4121 8o 50
By
0 N

For 11, we have

(

2 N 2a ,—ai/4s) _ 2q —a%/(4s)
p=(xo) 22 as% . e “itl —a¥e Y
_ Lt J —sL _ —sL
n=d L e (0 =0, ) dste
J=N1
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p*(x0) |
_ c(/ / - ‘e*sﬁ(x, 2 —eE(y, )| dsdz
|x—z|>cp(x) J 42 s

p2(x0) 1 ” "
+/ / - ‘eﬂ (x,2) = Wy(x,2) + Wy(y,2) —e* (y,z)‘ dsdz
4x—yl<lx—z|<cp(x) /4

2 s

P (x0) | r r
4 / e e ) = Wt ) + Wy 2) — ey, )| dsdz)
lr—zl<dlx—y| J42 S

=CUL+IhL+1l).

Since |x — y| < 2t < /s, by Lemma 5 we have

2 S
1115C/ fp SN dsas
—zlep Ja2 S\ WS
lx — y|® p*(x0)
Cf — / ws(x — z) dsdz
lx—zl>cp(x) |X — 2] + 412

2
Ix —y|® /‘P (xo)
L — 1 dsdz
/|xz|>cp(x) [x — z|"H2H0 Jyp

x—yl®
c / Pz
lx—zl>cp(x) |X — Z|n+2+8

N
C .
<P(Xo)>

For the term [ I», in this case, |[x — y| < cp(x) and [x — y| <

p*(x0) | —v\?
112§C/ / —('x y') ws(x — z) dsdz
4|x—y|<|x—z|<cp(x) J412 s 0(2)
I — v\ 1 % (x0)
C/ ( ) ) / 1 dsdz
4lx—yl<|x—z|<cp(x) p(2) lx — z|" 442
_ J 2
c <|x yI) / P ()60)+2dZ
p(x0) 4lx—yl<|x—z|<cp(x) lx — z|"
lx —y[\° %
C <C .
p(x0) P (x0)
For the term 13, by Lemma 4, we have
PP (x0) | 8o 8
11350/ / - <ﬁ> ws(x—z)—i-(ﬁ) ws(y —2) | dsdz
|x—z|<4|x—y| J 42 s p(x) p(y

PP(x0) | %
§C(f / —<£> g (x — 7) dsdz
x—zl<alx—y| Ja2 s\ p(x)
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PP(x0) | %
+/ / <£> oy (y —2) dsdz)
ly—zl<5|x—y| J4r2 p(y)

02 (x0)
lg|<5 =21 s<p( )) ws(§) d&ds
Vs

IA

<<,
412
+00 1 8o |)C
<
- 442 <,O()C())> < )
lx — yl" <c ( > '
PG | p(x0)
Then, we get

: )
I<c ( )
o (x0)
with some 0 < § < .

We shall treat the latest term /7. In this case, since s > ,oz(xo) > 4¢2, then
A/s > 2t > |x — y|. By Lemma 5, we have, for 0 < § < &,

“+00 1 _ )
IIISC/ _<|x y|> / ws(x —z)dz ds
P 5\ WS "
+oo | _ s ¢ s
ce [ () e e () =)
p2(xg) S NG £ (x0) P (x0)

Combining the above estimates for /, I/ and 111, we have proved (4.5). Hence,
we get the estimation (4.4) and the BM O-boundedness of Tﬁ. This completes the
proof of Theorem 12. O

As in the Laplacian case, we also can consider the maximal operator

x e R",

T*f(x) =

where the supremum are taken over all N = (N1, Na) € 72 with N| < Ns.
Now we present our results as follows:

Theorem 13 (a) Foranyl < p < ccandw € A, there exists a constant C depending
onn, p,p,a and ||v|~ ) such that

T ‘ <C ")
171,y = C M ILr @

for all functions f € LP(R", w).
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(b) Forany A > 0 and w € Ay, there exists a constant C depending on n, p, o and
”UHZOO(Z) such that

1) ({x eR": ‘T*f(x)‘ > )v}) < C% I/ L @®e ) »

for all functions f € L'(R", w).
(¢) There exists a constant C depending on n, p, a and ||[v||;z, such that

* <C oo (RHY 5
” ”BMOE(R”) = Clfl ®"

forany f € L*®(R").
(d) There exists a constant C depending on n, p, a and ||vl|;z, such that

* <C .
H HBMOC(W) < Clfllsmo,mm

for all functions f € BM O (R").

With a similar argument as in the proof of Theorem 1, we can prove a Cotlar’s type
inequality in the Schrodinger setting. And then, all the statements in Theorem 13 can
be gotten just with minor changes. We omit the proof at here.

Data availability Not applicable

Declarations

Conflict of interest The authors declare that there is no conflict of interest regarding the publication of this
article.

References

1. Betancor, J.J., Crescimbenia, R., Torrea, J.L..: The p-variation of the heat semigroup in the Hermitian
setting: behaviour in L. Proc. Edinb. Math. Soc. 54, 569-585 (2011)

2. Bernardis, A.L., Lorente, M., Martin-Reyes, F.J., Martinez, M.T., de la Torre, A., Torrea, J.L.: Differ-
ential transforms in weighted spaces. J. Fourier Anal. Appl. 12, 83-103 (2006)

3. Chao, Z., Ma, T., Torrea, J.L.: Boundedness of differential transforms for one-sided fractional Poisson
type operator sequence. J. Geom. Anal. 31, 67-99 (2021)

4. Chao, Z., Torrea, J.L.: Boundedness of differential transforms for heat seimgroups generated by
Schrodinger operators. Canad. J. Math. 73, 622-655 (2021)

5. Crescimbeni, R., Maciaas, R.A., Mendrguez, T., Torrea, J.L., Viviani, B.: The p-variation as an operator
between maximal operators and singular integrals. J. Evol. Equ. 9, 81-102 (2009)

6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial
Differ. Equ. 32, 1245-1260 (2007)

7. Duoandikoetxea, J.: Fourier Analysis, Translated and revised from the 1995 Spanish Original by David
Cruz-Uribe. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence
(2001)

8. Dziubanski, J., Garrigés, G., Martinez, T., Torrea, J.L., Zienkiewicz, J.: BM O spaces related to
Schrodinger operators with potentials satisfying a reverse Holder inequality. Math. Z. 249, 329-356
(2005)

@ Springer



Boundedness of the differential transforms... Page390f39 145

12.
13.

14.

16.

17.

18.

19.

. Dziubaiiski, J., Zienkiewicz, J.: HP spaces for Schrodinger operators. In: Fourier Analysis and Related

Topics 56, Banach Center Publ., Inst. Math., Polish Acad. Sci., Warszawa, pp. 45-53 (2002)

. Dziubaiiski, J., Zienkiewicz, J.: HP spaces associated with Schrodinger operators with potentials from

reverse Holder classes. Colloq. Math. 98, 5-38 (2003)

. Kurata, K.: An estimate on the heat kernel of magnetic Schrodinger operators and uniformly elliptic

operators with non-negative potentials. J. London Math. Soc. 62, 885-903 (2000)

Jones, R.L., Rosenblatt, J.: Differential and ergodic transforms. Math. Ann. 323, 525-546 (2002)
Ma, T., Stinga, P., Torrea, J.L., Zhang, C.: Regularity estimates in Holder spaces for Schrodinger
operators via a 71 theorem. Ann. Mat. Pura Appl. 193, 561-589 (2014)

Ma, T., Torrea, J.L., Xu, Q.: Weighted variation inequalities for differential operators and singular
integrals. J. Funct. Anal. 268, 376-416 (2015)

. Rubio de Francia, J.L., Ruiz, FJ., Torrea, J.L.: Calderén—Zygmund theory for operator-valued kernels.

Adv. Math. 62, 7-48 (1986)

Shen, Z.: L? estimates for Schrodinger operators with certain potentials. Ann. Inst. Fourier (Grenoble)
45, 513-546 (1995)

Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathe-
matics Studies 63. Princeton University Press, Princeton (1970)

Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,
Monographs in Harmonic Analysis, III, vol. 43 (1993)

Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators.
Commun. Part. Differ. Equ. 35, 2092-2122 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer



	Boundedness of the differential transforms for the generalized Poisson operators generated by Laplacian
	Abstract
	1 Introduction
	2 Proof of Theorem 1
	3 Proof of Theorem 2
	4 Boundedness of the differential transforms related to Schrödinger operator -Δ+V
	References




